Math 621 Homework 3-due Friday February 9

Spring 2018

This problem set covers material up through the extra lecture on Monday February 5.

1. (a) Find a smooth vector field X on \mathbb{R} such that for every $t \neq 0$, the local flow ϕ_{t} fails to be defined on all of \mathbb{R}.
(b) Let M be a smooth manifold, and let X be a vector field on M with compact support: that is, there is a compact set $K \subset M$ such that if $p \notin K$, then $X_{p}=0$. Prove that in this case, ϕ_{t} is defined on all of M for all $t \in \mathbb{R}$, and that $\phi_{t}: M \rightarrow$ M is a diffeomorphism for all t. (It follows that ϕ_{t} is a one-parameter family of diffeomorphisms of M.)
2. (a) Let $\psi: M \rightarrow N$ be a diffeomorphism, and let X, Y be vector fields on M, with corresponding vector fields $\psi_{*} X, \psi_{*} Y$ on N. Prove that

$$
\left[\psi_{*} X, \psi_{*} Y\right]=\psi_{*}[X, Y] .
$$

(b) Let ψ be as in (a), and let $\phi_{t}: M \rightarrow M$ denote the time t flow of a vector field X on M. Express the time t flow of $\psi_{*} X$ in terms of ψ and ϕ_{t}.
(c) Let X, Y be vector fields on M, and let ϕ_{t}, ψ_{t} denote time t flow for X, Y respectively. Prove that $[X, Y]=0$ (i.e., the Lie bracket of X and Y is identically zero) if and only if ϕ_{t} and ψ_{s} commute for all $s, t \in \mathbb{R}$.
Remark: For general vector fields X, Y, the $\operatorname{map} \phi_{t} \circ \psi_{t} \circ \phi_{t}^{-1} \circ \psi_{t}^{-1}$ applied to a fixed point p gives a curve in M as t varies. At $t=0$, the derivative of this curve is 0 ; but its second derivative at $t=0$ is related to the value of $[X, Y]$ at p.
3. Let G be a Lie group and \mathfrak{g} its Lie algebra.
(a) For $X \in \mathfrak{g}$ (viewed as a left invariant vector field), let $\gamma_{X}(t)$ be the integral curve for X with $\gamma_{X}(0)=e$. Prove that $\gamma_{X}(t)$ is defined for all $t \in \mathbb{R}$ and that $\gamma_{X}: \mathbb{R} \rightarrow G$ is a group homomorphism. (Compare do Carmo chapter 3 exercise 3, p. 80.)
The element $\gamma_{X}(1) \in G$ is usually written as $\exp X$, and we have $\gamma_{X}(t)=$ $\exp (t X)$ for all t (convince yourself that this is true if it isn't clear). The notation comes from the fact that if $G=G L(n, \mathbb{R})$ and $X \in \mathfrak{g}=M_{n \times n}(\mathbb{R})$, then $\exp X=I+X+X^{2} / 2!+X^{3} / 3!+\cdots$ is the usual exponential for matrices.
(b) Let $\phi_{t}: G \rightarrow G$ denote time t flow for (the left invariant vector field) $X \in \mathfrak{g}$. Show that $\phi_{t}(g)=g \exp (t X)\left(=g \phi_{t}(e)\right)$ for all $t \in \mathbb{R}$ and $g \in G$.
(c) Assume that G is connected. In this case, G is generated as a group by the set $\{\exp (X) \mid X \in \mathfrak{g}\}$. (You don't have to prove this, but it's a worthwhile thing to think about.)
Given this fact, prove that G is abelian if and only if \mathfrak{g} is abelian (i.e., the Lie bracket on \mathfrak{g} is identically zero). (Hint: use 2(c).)

