Math 621 Homework 2-due Friday February 2

Spring 2018

1. (Yet another way to view tangent vectors.) Let $p \in M$, and let \mathcal{F}_{p} denote the \mathbb{R}-vector space of smooth functions $f: M \rightarrow \mathbb{R}$ such that $f(p)=0$. Also, for the purposes of this problem, let a derivation at p be an \mathbb{R}-linear map $\delta: C^{\infty}(M) \rightarrow \mathbb{R}$ satisfying $\delta(f g)=f(p) \delta(g)+\delta(f) g(p)$. (This is slightly different from our definition in class, which used germs.)
(a) If $\delta: \mathcal{F}_{p} \rightarrow \mathbb{R}$ is an \mathbb{R}-linear map such that $\delta(f g)=0$ for any $f, g \in \mathcal{F}_{p}$, show that δ extends to a unique derivation at p.
(b) Let \mathcal{F}_{p}^{2} denote the subspace of \mathcal{F}_{p} generated by all products $f g$ for $f, g \in \mathcal{F}_{p}$. Show that the vector space of all derivations at p is isomorphic to the dual vector space $\left(\mathcal{F}_{p} / \mathcal{F}_{p}^{2}\right)^{*}$. (Thus we can view $T_{p} M$ as $\left(\mathcal{F}_{p} / \mathcal{F}_{p}^{2}\right)^{*}$.)
2. Let M and N be smooth manifolds. The product $M \times N$ is then naturally a smooth manifold as well (see do Carmo chapter 0 exercise 1, p. 31). Let $\pi_{M}: M \times N \rightarrow M$ and $\pi_{N}: M \times N \rightarrow N$ denote projection. Prove that the map

$$
\phi: T_{(p, q)}(M \times N) \rightarrow T_{p} M \oplus T_{q} N
$$

defined by $\phi(v)=\left(\left(d \pi_{M}\right)_{(p, q)}(v),\left(d \pi_{N}\right)_{(p, q)}(v)\right)$ is an isomorphism.
3. do Carmo chapter 0 exercise 2, p. 32.
4. A vector field on $\mathbb{R}^{2} \backslash\{0\}$ can be thought of as a vector field on $S^{2} \backslash\{N, S\}$, where N, S are the north and south poles, by the differential of the usual stereographic projection map $\mathbb{R}^{2} \rightarrow S^{2} \backslash\{N\}$. (Equivalently, view stereographic projection as a coordinate chart on $S^{2} \backslash\{N\}$; then tangent vectors to points in $S^{2} \backslash\{N, S\}$ are in exact correspondence with tangent vectors to the corresponding points in $\mathbb{R}^{2} \backslash\{0\}$.) Let x_{1}, x_{2} be the usual coordinates on \mathbb{R}^{2}, and for some fixed $\alpha \in \mathbb{R}$, consider the radial vector field $r^{\alpha}\left(x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}\right)$ on $\mathbb{R}^{2} \backslash\{0\}$, where $r=\sqrt{x_{1}^{2}+x_{2}^{2}}$. Prove that the corresponding vector field on $S^{2} \backslash\{N, S\}$ can be extended to a smooth vector field on all of S^{2} if and only if $\alpha=0$.

