Math 621 Homework 2—due Friday February 2 Spring 2018

- 1. (Yet another way to view tangent vectors.) Let $p \in M$, and let \mathcal{F}_p denote the \mathbb{R} -vector space of smooth functions $f:M\to\mathbb{R}$ such that f(p)=0. Also, for the purposes of this problem, let a derivation at p be an \mathbb{R} -linear map $\delta:C^\infty(M)\to\mathbb{R}$ satisfying $\delta(fg)=f(p)\delta(g)+\delta(f)g(p)$. (This is slightly different from our definition in class, which used germs.)
 - (a) If $\delta : \mathcal{F}_p \to \mathbb{R}$ is an \mathbb{R} -linear map such that $\delta(fg) = 0$ for any $f, g \in \mathcal{F}_p$, show that δ extends to a unique derivation at p.
 - (b) Let \mathcal{F}_p^2 denote the subspace of \mathcal{F}_p generated by all products fg for $f,g\in\mathcal{F}_p$. Show that the vector space of all derivations at p is isomorphic to the dual vector space $(\mathcal{F}_p/\mathcal{F}_p^2)^*$. (Thus we can view T_pM as $(\mathcal{F}_p/\mathcal{F}_p^2)^*$.)
- 2. Let M and N be smooth manifolds. The product $M \times N$ is then naturally a smooth manifold as well (see do Carmo chapter 0 exercise 1, p. 31). Let $\pi_M : M \times N \to M$ and $\pi_N : M \times N \to N$ denote projection. Prove that the map

$$\phi: T_{(p,q)}(M \times N) \to T_pM \oplus T_qN$$

defined by $\phi(v) = ((d\pi_M)_{(p,q)}(v), (d\pi_N)_{(p,q)}(v))$ is an isomorphism.

- 3. do Carmo chapter 0 exercise 2, p. 32.
- 4. A vector field on $\mathbb{R}^2\setminus\{0\}$ can be thought of as a vector field on $S^2\setminus\{N,S\}$, where N,S are the north and south poles, by the differential of the usual stereographic projection map $\mathbb{R}^2\to S^2\setminus\{N\}$. (Equivalently, view stereographic projection as a coordinate chart on $S^2\setminus\{N\}$; then tangent vectors to points in $S^2\setminus\{N,S\}$ are in exact correspondence with tangent vectors to the corresponding points in $\mathbb{R}^2\setminus\{0\}$.) Let x_1,x_2 be the usual coordinates on \mathbb{R}^2 , and for some fixed $\alpha\in\mathbb{R}$, consider the radial vector field $r^\alpha(x_1\frac{\partial}{\partial x_1}+x_2\frac{\partial}{\partial x_2})$ on $\mathbb{R}^2\setminus\{0\}$, where $r=\sqrt{x_1^2+x_2^2}$. Prove that the corresponding vector field on $S^2\setminus\{N,S\}$ can be extended to a smooth vector field on all of S^2 if and only if $\alpha=0$.