1. (a) If \(\{e_1, \ldots, e_n\} \) is an orthonormal basis of \(\mathbb{R}^n \), then \(\text{Ric}_G(x) = \sum_i |x_i|^2 \) for any \(x \in \mathbb{R}^n \). Since \(\mathbb{R}^n \) has trivial center, \(\text{Ric}_G(x) > 0 \) for all \(x \neq 0 \).

Since the sphere \(S^{n-1} \) is compact, there exists \(c > 0 \) such that \(\text{Ric}_G(x) \geq c \) for all \(x \) with \(|x| = 1 \). Thus we can apply Myers to conclude that \(G \) and its universal cover are compact.

(b) \(\text{SL}(n, \mathbb{R}) \) has trivial center and \(\text{SL}(n, \mathbb{R}) \) is not compact.

(c) Follows directly from (a).

2. Let \(M \) be the orientable double cover of \(\mathbb{RP}^2 \times \mathbb{RP}^2 \). Since \(\pi_1(\mathbb{RP}^2 \times \mathbb{RP}^2) = \mathbb{Z}/2\mathbb{Z} \), \(M \) is not simply connected (otherwise \(\pi_1 \) would have at most 2 elements). Now apply Synge.