Math 621 Homework 1—due Friday January 26 Spring 2018

Changes to class dates in the near future:

- +: we will have class **Monday 1/22** and **Monday 2/5**, both at 3:05–4:20 in the usual room.
- -: we will not have class *Wednesday 1/31*.

For a full updated schedule of class changes, please see the course web site, https://services.math.duke.edu/~ng/math621/.

- 1. Let \mathbb{CP}^n denote the usual complex projective n-space, defined as the quotient of $\mathbb{C}^{n+1}\setminus\{0\}$ by the group $\mathbb{C}\setminus\{0\}$ acting by scalar multiplication. Show that \mathbb{CP}^n is a smooth manifold of dimension 2n by constructing an atlas $\{(f_i,U_i,V_i)\}$ and checking that the transition functions $f_j^{-1}\circ f_i$ (mapping what subset of \mathbb{R}^{2n} to what subset of \mathbb{R}^{2n} ?) are smooth.
- 2. do Carmo chapter 0 exercise 5, p. 32.
- 3. do Carmo chapter 0 exercise 9, p. 33, but don't do the Klein bottle case in (b).
- 4. (a) In #3, you showed that \mathbb{RP}^n is orientable if and only if n is odd. In this problem, prove directly that \mathbb{RP}^n is orientable if n is odd by explicitly giving an oriented atlas for \mathbb{RP}^n , along the lines of the atlas given in class and on pp. 4–5, and proving that your atlas is oriented.
 - (b) Use your answer to #1 to prove that \mathbb{CP}^n is orientable for all n.