In this problem set, \(R \langle x_1, x_2, \ldots \rangle \) denotes the free \(R \)-module generated by \(x_1, x_2, \ldots \), and “calculate” means describe as an \(R \)-module (with justification, of course).

1. Let \((K, D)\) be the filtered complex given by

\[
K = \mathbb{Z}\langle x_0, y_0, x_1, y_1 \rangle \\
\mathcal{F}^0(K) = K \\
\mathcal{F}^1(K) = \mathbb{Z}\langle x_1, y_1 \rangle \\
\mathcal{F}^2(K) = 0
\]

\[
D(x_0) = 2y_0 + y_1 \\
D(y_0) = 0 \\
D(x_1) = 2y_1 \\
D(y_1) = 0.
\]

Calculate the spectral sequence \(E_1, E_2, \ldots, E_\infty \). Is \(E_\infty \) isomorphic to \(H(K) \)?

2. Let \((K, D)\) be the filtered complex given by

\[
K = \mathbb{R}\langle x_0, y_0, x_1, y_1, x_2, y_2, \ldots \rangle
\]

with \(D(x_m) = y_m \) and \(D(y_m) = 0 \) for all \(m \), with filtration

\[
\mathcal{F}^0(K) = K, \\
\mathcal{F}^m(K) = \mathbb{R}\langle y_{m-1}, y_m, y_{m+1}, \ldots \rangle, \quad m \geq 1.
\]

Calculate \(H(K) \), and show that the spectral sequence \(E_1, E_2, \ldots \) does not converge to \(H(K) \).

3. Let \((K, D)\) be the filtered complex given by

\[
K = \mathbb{R}\langle x_0, x_1, y_1, \ldots, x_{n-1}, y_{n-1}, y_n \rangle
\]

with \(D(x_0) = y_1 \), \(D(x_m) = y_{m+1} - y_m \) for \(1 \leq m \leq n-1 \), and \(D(y_m) = 0 \) for all \(m \), with filtration

\[
\mathcal{F}^0(K) = K, \\
\mathcal{F}^m(K) = \mathbb{R}\langle x_m, y_m, x_{m+1}, y_{m+1}, \ldots, x_{n-1}, y_{n-1}, y_n \rangle, \quad 1 \leq m \leq n-1, \\
\mathcal{F}^n(K) = \mathbb{R}\langle y_n \rangle, \\
\mathcal{F}^{n+1}(K) = 0.
\]

Calculate \(H(K) \) and the spectral sequence \(E_1, E_2, \ldots, E_\infty \).

(Hint: you should find that the spectral sequence converges to \(E_\infty = H(K) \) beginning at \(E_{n+1} \). This is an example where the differential \(d_n \) is nonzero, even though each term in the original differential \(D \) only changes filtration level by at most 1.)
4. Let \((K, D)\) be the complex given by

\[
K = \mathbb{R}\langle u, v, w, x, y, z \rangle \\
D(u) = w + x + z \\
D(v) = w + x \\
D(w) = y \\
D(x) = -y \\
D(y) = D(z) = 0.
\]

(a) Calculate \(H(K)\).

(b) For the filtration on \(K\) given by

\[
\mathcal{F}^0(K) = K, \\
\mathcal{F}^1(K) = \mathbb{R}\langle v, w, x, y, z \rangle, \\
\mathcal{F}^2(K) = \mathbb{R}\langle x, y \rangle, \\
\mathcal{F}^3(K) = 0,
\]

calculate the spectral sequence \(E_1, E_2, \ldots, E_\infty\).

(c) For the filtration on \(K\) given by

\[
\mathcal{F}^0(K) = K, \\
\mathcal{F}^1(K) = \mathbb{R}\langle w, x, y, z \rangle, \\
\mathcal{F}^2(K) = \mathbb{R}\langle y, z \rangle, \\
\mathcal{F}^3(K) = 0,
\]

calculate the spectral sequence \(E_1, E_2, \ldots, E_\infty\).