Math 103X.02—Line and Surface Integrals Instructor: Lenny Ng Fall 2006

Line integrals

Path \vec{x} : $[a, b] \to \mathbb{R}^n$, scalar function $f : \mathbb{R}^n \to \mathbb{R}$, vector field $\vec{F} : \mathbb{R}^n \to \mathbb{R}^n$.

- Scalar line integral $\int_{\vec{x}} f \, ds = \int_{\vec{x}}^{b} f(\vec{x}(t)) \|\vec{x}'(t)\| \, dt$. Special case: $\int_{\vec{x}} ds = \text{Length}(\vec{x})$.
- Vector line integral $\int_{\vec{x}} \vec{F} \cdot d\vec{s} = \int_{-\infty}^{b} \vec{F}(\vec{x}(t)) \cdot \vec{x}'(t) dt.$
- Also write $\int_{\vec{x}} \vec{F} \cdot d\vec{s} = \int_{\vec{x}} F_1 dx + F_2 dy + F_3 dz$ if $\vec{F} = (F_1, F_2, F_3)$.

• Relation between scalar and vector line integrals: $\int_{\vec{x}} \vec{F} \cdot d\vec{s} = \int_{\vec{x}} (\vec{F} \cdot \vec{T}) ds$, where $\vec{T} = \vec{x}' / \|\vec{x}\|$ is the unit tangent vector to the curve.

- Scalar line integrals are independent of parametrization; vector line integrals depend on an orientation of the path. (Reversing the orientation negates the vector line integral.)
- If \vec{x} represents a one-dimensional object in \mathbb{R}^3 with density function $\delta(x, y, z)$, then the mass of the object is $\int_{\overline{x}} \delta ds$ and its center of mass is $(\overline{x}, \overline{y}, \overline{z})$, where $\overline{x} = \frac{\int_{\overline{x}} x \delta ds}{\int_{\overline{z}} \delta ds}$, etc.
- If \vec{F} is a force field, then $\int_{\vec{r}} \vec{F} \cdot d\vec{s} =$ work done by \vec{F} on a particle moving along the path \vec{x} .
- If \vec{F} is a velocity field, then $\int_{\vec{x}} (\vec{F} \cdot \hat{n}) ds =$ flux of \vec{F} across the curve, where \hat{n} is the outward-pointing unit normal. If C is a closed curve, then $\int_{\vec{x}} \vec{F} \cdot d\vec{s} = \text{circulation of}$ F around C.

Surface integrals

Parametrized surface $\mathbf{X} : D \subset \mathbb{R}^2 \to \mathbb{R}^3$, underlying surface *S*.

• Tangent vectors $\vec{T}_s = \partial \mathbf{X} / \partial s$, $\vec{T}_t = \partial \mathbf{X} / \partial t$, normal vector $\vec{N} = \vec{T}_s \times \vec{T}_t$. A surface is smooth if $\vec{N} \neq \vec{0}$.

• Scalar surface integral
$$\iint_{S} f \, dS = \iint_{D} f(\mathbf{X}(s,t)) \| \vec{N}(s,t) \| \, ds \, dt$$
. Special case: $\iint_{S} dS =$
Surface area(S).

Surface area(S).

- Vector surface integral $\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{D} \vec{F}(s,t) \cdot \vec{N}(s,t) \, ds \, dt.$
- Relation between scalar and vector surface integrals: $\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{S} (\vec{F} \cdot \hat{n}) dS,$

where $\hat{n} = \vec{N} / \|\vec{N}\|$ is the unit normal vector to *S*.

- Scalar surface integrals are independent of parametrization; vector surface integrals depend on an orientation of the surface. (Reversing the orientation negates the vector surface integral.) Not all surfaces have a continuously varying orientation.
- If *S* represents a two-dimensional object with density function $\delta(x, y, z)$, then the mass of *S* is $\iint_S \delta dS$ and its center of mass is $(\overline{x}, \overline{y}, \overline{z})$, where $\overline{x} = \frac{\iint_S x \delta dS}{\int_S \delta dS}$, etc.
- $\iint_{S} \vec{F} \cdot d\vec{S} =$ flux of \vec{F} across S.

Green's Theorem

• Green's Theorem: $D \subset \mathbb{R}^2$ region, ∂D oriented leftwise. Then

$$\oint_{\partial D} M \, dx + N \, dy = \iint_{D} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dx \, dy$$

- Vector reformulation of Green's Theorem (and special case of Stokes' Theorem): $\oint_{\partial D} \vec{F} \cdot d\vec{s} = \iint_{D} (\vec{\nabla} \times \vec{F}) \cdot \hat{k} \, dA.$
- Divergence Theorem in the plane: $\oint_{\partial D} (\vec{F} \cdot \hat{n}) ds = \iint_{D} (\vec{\nabla} \cdot \vec{F}) dA.$
- Special case of Green's Theorem: Area $(D) = \frac{1}{2} \oint_{\partial D} (-y \, dx + x \, dy).$

Conservative vector fields

The following are equivalent:

- \vec{F} is a conservative vector field.
- $\vec{F} = \vec{\nabla} f$ for some scalar function f.
- \vec{F} has path-independent line integrals.
- $\oint_C \vec{F} \cdot d\vec{s} = 0$ for all simple closed curves *C* in the domain of \vec{F} .

If the domain of \vec{F} is *simply connected*, then these conditions are also equivalent to:

• $\vec{\nabla} \times \vec{F} = \vec{0}$.

The following material will be covered on the final but not on Test 4.

Stokes' Theorem

• Stokes' Theorem: S oriented, piecewise smooth surface, orientation on ∂S induced from orientation on S, \vec{F} vector field. Then

$$\iint_{S} (\vec{\nabla} \times \vec{F}) \cdot d\vec{S} = \oint_{\partial S} \vec{F} \cdot d\vec{s}.$$

- Use to convert from surface integral to line integral, from line integral to surface integral, or from one surface to another surface with the same boundary.
- Curl = circulation per unit area: C_r = circle of radius r centered at a point P in the plane normal to \hat{n} , oriented by right hand rule; then $(\vec{\nabla} \times \vec{F})(P) \cdot \hat{n} = \lim_{r \to 0^+} \frac{1}{\pi r^2} \oint_{C_r} \vec{F} \cdot d\vec{s}$.

Divergence Theorem (Gauss's Theorem)

• Divergence Theorem: *R* solid region in \mathbb{R}^3 , ∂R oriented away from *R*, \vec{F} vector field. Then

$$\oint_{\partial R} \vec{F} \cdot d\vec{S} = \iiint_R (\vec{\nabla} \cdot \vec{F}) \, dV.$$

- Use to convert from surface integral to triple integral, from triple integral to surface integral, or to convert from one surface to another surface with the same boundary.
- Divergence = flux per unit volume: S_r = spherical surface of radius r centered at a point P, oriented outwards; then $(\vec{\nabla} \cdot \vec{F})(P) = \lim_{r \to 0^+} \oint_{S_r} \vec{F} \cdot d\vec{S}$.