Math 103X.02—Line and Surface Integrals
 Instructor: Lenny Ng
 Fall 2006

Line integrals

Path $\vec{x}:[a, b] \rightarrow \mathbb{R}^{n}$, scalar function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, vector field $\vec{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

- Scalar line integral $\int_{\vec{x}} f d s=\int_{a}^{b} f(\vec{x}(t))\left\|\vec{x}^{\prime}(t)\right\| d t$. Special case: $\int_{\vec{x}} d s=\operatorname{Length}(\vec{x})$.
- Vector line integral $\int_{\vec{x}} \vec{F} \cdot d \vec{s}=\int_{a}^{b} \vec{F}(\vec{x}(t)) \cdot \vec{x}^{\prime}(t) d t$.
- Also write $\int_{\vec{x}} \vec{F} \cdot d \vec{s}=\int_{\vec{x}} F_{1} d x+F_{2} d y+F_{3} d z$ if $\vec{F}=\left(F_{1}, F_{2}, F_{3}\right)$.
- Relation between scalar and vector line integrals: $\int_{\vec{x}} \vec{F} \cdot d \vec{s}=\int_{\vec{x}}(\vec{F} \cdot \vec{T}) d s$, where $\vec{T}=\vec{x}^{\prime} /\|\vec{x}\|$ is the unit tangent vector to the curve.
- Scalar line integrals are independent of parametrization; vector line integrals depend on an orientation of the path. (Reversing the orientation negates the vector line integral.)
- If \vec{x} represents a one-dimensional object in \mathbb{R}^{3} with density function $\delta(x, y, z)$, then the mass of the object is $\int_{\vec{x}} \delta d s$ and its center of mass is $(\bar{x}, \bar{y}, \bar{z})$, where $\bar{x}=\frac{\int_{\vec{x}} x \delta d s}{\int_{\vec{x}} \delta d s}$, etc.
- If \vec{F} is a force field, then $\int_{\vec{x}} \vec{F} \cdot d \vec{s}=$ work done by \vec{F} on a particle moving along the path \vec{x}.
- If \vec{F} is a velocity field, then $\int_{\vec{x}}(\vec{F} \cdot \hat{n}) d s=$ flux of \vec{F} across the curve, where \hat{n} is the outward-pointing unit normal. If C is a closed curve, then $\int_{\vec{x}} \vec{F} \cdot d \vec{s}=$ circulation of F around C.

Surface integrals

Parametrized surface $\mathbf{X}: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, underlying surface S.

- Tangent vectors $\vec{T}_{s}=\partial \mathbf{X} / \partial s, \vec{T}_{t}=\partial \mathbf{X} / \partial t$, normal vector $\vec{N}=\vec{T}_{s} \times \vec{T}_{t}$. A surface is smooth if $\vec{N} \neq \overrightarrow{0}$.
- Scalar surface integral $\iint_{S} f d S=\iint_{D} f(\mathbf{X}(s, t))\|\vec{N}(s, t)\| d s d t$. Special case: $\iint_{S} d S=$ Surface area (S).
- Vector surface integral $\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{D} \vec{F}(s, t) \cdot \vec{N}(s, t) d s d t$.
- Relation between scalar and vector surface integrals: $\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{S}(\vec{F} \cdot \hat{n}) d S$, where $\hat{n}=\vec{N} /\|\vec{N}\|$ is the unit normal vector to S.
- Scalar surface integrals are independent of parametrization; vector surface integrals depend on an orientation of the surface. (Reversing the orientation negates the vector surface integral.) Not all surfaces have a continuously varying orientation.
- If S represents a two-dimensional object with density function $\delta(x, y, z)$, then the mass of S is $\iint_{S} \delta d S$ and its center of mass is $(\bar{x}, \bar{y}, \bar{z})$, where $\bar{x}=\frac{\iint_{S_{x}} \delta d S}{\int_{S} \delta d S}$, etc.
- $\iint_{S} \vec{F} \cdot d \vec{S}=$ flux of \vec{F} across S.

Green's Theorem

- Green's Theorem: $D \subset \mathbb{R}^{2}$ region, ∂D oriented leftwise. Then

$$
\oint_{\partial D} M d x+N d y=\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
$$

- Vector reformulation of Green's Theorem (and special case of Stokes' Theorem):

$$
\oint_{\partial D} \vec{F} \cdot d \vec{s}=\iint_{D}(\vec{\nabla} \times \vec{F}) \cdot \hat{k} d A
$$

- Divergence Theorem in the plane: $\oint_{\partial D}(\vec{F} \cdot \hat{n}) d s=\iint_{D}(\vec{\nabla} \cdot \vec{F}) d A$.
- Special case of Green's Theorem: $\operatorname{Area}(D)=\frac{1}{2} \oint_{\partial D}(-y d x+x d y)$.

Conservative vector fields

The following are equivalent:

- \vec{F} is a conservative vector field.
- $\vec{F}=\vec{\nabla} f$ for some scalar function f.
- \vec{F} has path-independent line integrals.
- $\oint_{C} \vec{F} \cdot d \vec{s}=0$ for all simple closed curves C in the domain of \vec{F}.

If the domain of \vec{F} is simply connected, then these conditions are also equivalent to:

- $\vec{\nabla} \times \vec{F}=\overrightarrow{0}$.

The following material will be covered on the final but not on Test 4.

Stokes' Theorem

- Stokes' Theorem: S oriented, piecewise smooth surface, orientation on ∂S induced from orientation on S, \vec{F} vector field. Then

$$
\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot d \vec{S}=\oint_{\partial S} \vec{F} \cdot d \vec{s}
$$

- Use to convert from surface integral to line integral, from line integral to surface integral, or from one surface to another surface with the same boundary.
- Curl $=$ circulation per unit area: $C_{r}=$ circle of radius r centered at a point P in the plane normal to \hat{n}, oriented by right hand rule; then $(\vec{\nabla} \times \vec{F})(P) \cdot \hat{n}=\lim _{r \rightarrow 0^{+}} \frac{1}{\pi r^{2}} \oint_{C_{r}} \vec{F} \cdot d \vec{s}$.

Divergence Theorem (Gauss's Theorem)

- Divergence Theorem: R solid region in $\mathbb{R}^{3}, \partial R$ oriented away from R, \vec{F} vector field. Then

$$
\oiint_{\partial R} \vec{F} \cdot d \vec{S}=\iiint_{R}(\vec{\nabla} \cdot \vec{F}) d V .
$$

- Use to convert from surface integral to triple integral, from triple integral to surface integral, or to convert from one surface to another surface with the same boundary.
- Divergence = flux per unit volume: $S_{r}=$ spherical surface of radius r centered at a point P, oriented outwards; then $(\vec{\nabla} \cdot \vec{F})(P)=\lim _{r \rightarrow 0^{+}} \oiint_{S_{r}} \vec{F} \cdot d \vec{S}$.

