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Classification of manifolds

Motivating question in low-dimensional topology: classify or
characterize topological/smooth manifolds in 3 and 4 dimensions,
up to equivalence.

Three types of equivalence of manifolds:

homotopy equivalence

homeomorphism (topological equivalence)

diffeomorphism (smooth equivalence).

We have

diffeomorphic ⇒ homeomorphic ⇒ homotopy equivalent.

In three dimensions, diffeomorphic ⇔ homeomorphic.
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Poincaré conjecture

Poincaré conjecture

Let M be a closed topological 3-manifold such that

π1(M) = 1.

Then M is homeomorphic to S3.

Poincaré conjecture famously proven by Perelman about a decade
ago.
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Poincaré conjecture

Poincaré conjecture

Let M be a closed topological 3-manifold such that

π1(M) = 1.

Then M is homeomorphic to S3.

Poincaré conjecture famously proven by Perelman about a decade
ago.

n-dimensional Poincaré conjecture

Any topological manifold homotopy equivalent to Sn is
homeomorphic to Sn.

True in all dimensions (Smale n ≥ 5; Freedman n = 4; Perelman
n = 3).
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The smooth Poincaré conjecture

Smooth n-dimensional Poincaré conjecture

Any smooth manifold homotopy equivalent to Sn is diffeomorphic
to Sn.

True for n ≤ 3; resolved for n ≥ 5 (e.g., false for n = 7: Milnor’s
exotic S7’s).
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The smooth Poincaré conjecture

Smooth n-dimensional Poincaré conjecture

Any smooth manifold homotopy equivalent to Sn is diffeomorphic
to Sn.

True for n ≤ 3; resolved for n ≥ 5 (e.g., false for n = 7: Milnor’s
exotic S7’s).

Number of smooth structures on Sn:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

# 1 1
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The smooth Poincaré conjecture

Smooth n-dimensional Poincaré conjecture

Any smooth manifold homotopy equivalent to Sn is diffeomorphic
to Sn.

True for n ≤ 3; resolved for n ≥ 5 (e.g., false for n = 7: Milnor’s
exotic S7’s).

Number of smooth structures on Sn:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

# 1 1 1 1 28 2 8 6 992 1 3 2 16256

Kervaire–Milnor (1963): count for n ≥ 5 using homotopy theory.
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The smooth Poincaré conjecture

Smooth n-dimensional Poincaré conjecture

Any smooth manifold homotopy equivalent to Sn is diffeomorphic
to Sn.

True for n ≤ 3; resolved for n ≥ 5 (e.g., false for n = 7: Milnor’s
exotic S7’s).

Number of smooth structures on Sn:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

# 1 1 1 1 1 28 2 8 6 992 1 3 2 16256

Perelman (2003): n = 3.
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The smooth Poincaré conjecture

Smooth n-dimensional Poincaré conjecture

Any smooth manifold homotopy equivalent to Sn is diffeomorphic
to Sn.

True for n ≤ 3; resolved for n ≥ 5 (e.g., false for n = 7: Milnor’s
exotic S7’s).

Number of smooth structures on Sn:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

# 1 1 1 ? 1 1 28 2 8 6 992 1 3 2 16256

n = 4: open!
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Smooth 4-dimensional Poincaré

Smooth 4-dimensional Poincaré conjecture

If a smooth manifold M is homotopy equivalent (or
homeomorphic) to S4, then it is diffeomorphic to S4.

There are a number of possible counterexamples to this conjecture:
proposed “exotic S4’s”.

One stumbling block: a lack of good invariants of smooth
4-manifolds that apply to this setting.
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Smooth 4-dimensional Poincaré

Smooth 4-dimensional Poincaré conjecture

If a smooth manifold M is homotopy equivalent (or
homeomorphic) to S4, then it is diffeomorphic to S4.

There are a number of possible counterexamples to this conjecture:
proposed “exotic S4’s”.

One stumbling block: a lack of good invariants of smooth
4-manifolds that apply to this setting.

Cotangent bundles to the rescue?
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Phase space

Particle in R
3:

position q = (q1, q2, q3)

momentum p = (p1, p2, p3)

p

q

The phase space of the particle is

R
6 = R

3
(q1,q2,q3)

× R
3
(p1,p2,p3)

.
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The cotangent bundle

More generally, a particle in a manifold M has a position q ∈ M
and a velocity vector v ∈ TqM; for various reasons, it’s more
natural to consider the dual, momentum vector p ∈ (TqM)∗.

The phase space of the particle is the cotangent bundle

T ∗M = {(q, p) | q ∈ M, p ∈ (TqM)∗}.

If dimR M = n, then dimR T ∗M = 2n.

M
T ∗M

q

(TqM)∗
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Symplectic manifolds

Cotangent bundles T ∗M are examples of symplectic manifolds.

Definition

A 2-form ω on a 2n-dim’l manifold W is a symplectic form if

dω = 0 (ω is closed)

ωn is a nowhere zero 2n-form (ω is nondegenerate).

Definition

An even-dimensional manifold is a symplectic manifold if it has a
symplectic form.
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Symplectic manifolds

Cotangent bundles T ∗M are examples of symplectic manifolds.

Definition

A 2-form ω on a 2n-dim’l manifold W is a symplectic form if

dω = 0 (ω is closed)

ωn is a nowhere zero 2n-form (ω is nondegenerate).

Definition

An even-dimensional manifold is a symplectic manifold if it has a
symplectic form.

The “prototypical” symplectic manifold is R2n = T ∗
R
n with

coordinates q1, . . . , qn, p1, . . . , pn and symplectic form

ω = dq1 ∧ dp1 + · · · + dqn ∧ dpn.
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Cotangent bundles are symplectic

More generally, on a cotangent bundle T ∗M with local coordinates
q1, . . . , qn, p1, . . . , pn, we can define a 2-form ω ∈ Ω2(T ∗M) by

ω = dq1 ∧ dp1 + · · · + dqn ∧ dpn.

Theorem

For any smooth manifold M, ω is independent of coordinates,
and (T ∗M, ω) is a symplectic manifold.

If M and M ′ are diffeomorphic (equivalent as smooth
manifolds), then the symplectic manifolds T ∗M and T ∗M ′ are
symplectomorphic (equivalent as symplectic manifolds).
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The symplectic form on T
∗
M

Coordinate-free definition of ω ∈ Ω2(T ∗M):

There is a canonical 1-form λcan ∈ Ω1(T ∗M), the Liouville form:
for v ∈ T(q,p)(T

∗M),

λcan(v) = 〈π(v), dπ(v)〉.

T(q,p)(T
∗M)

dπ

&&LLLLLLLLLL

π
xxrrrrrrrrrr

T ∗
qM oo λcan //____________ TqM

Then
ω = −dλcan.
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Arnol‘d’s strategy

V. I. Arnol‘d: study the smooth topology of M via the symplectic
topology of T ∗M.

Question

If M,M ′ are closed smooth manifolds such that T ∗M and T ∗M ′

are symplectomorphic, are M and M ′ necessarily diffeomorphic?

Note: recent result of Adam Knapp (2012) shows that this is not
necessarily true without the closed condition: exotic R

4’s have
symplectomorphic cotangent bundles.
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Smooth invariants from symplectic geometry

One way to produce invariants of smooth manifolds:

Smooth
topology

Symplectic
topology

M
smooth manifold

// T ∗M
symplectic manifold

??

��
smooth invariant of M symplectic invariant of T ∗M

:=oo
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Smooth invariants from symplectic geometry

One way to produce invariants of smooth manifolds:

Smooth
topology

Symplectic
topology

M
smooth manifold

// T ∗M
symplectic manifold

??

��
smooth invariant of M symplectic invariant of T ∗M

:=oo

The symplectic invariants are often given by counts of holomorphic
curves.
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Holomorphic curves

Gromov, 1980s: one can create interesting invariants of symplectic
manifolds (W , ω) by studying holomorphic curves in W : Riemann
surfaces in W satisfying a certain compatibility condition with ω

(involving an almost complex structure on W tamed by ω).

(W,ω)

Gromov’s insight: in many cases, there are only finitely many
holomorphic curves, and counting them yields symplectic invariants
(cf. algebraic geometry).
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Holomorphic curves continued

More generally, the moduli space of holomorphic curves is often
well-behaved (e.g., a manifold with corners) and studying this
moduli space yields symplectic invariants.

symplecticW

moduli space of holomorphic curves
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Hamiltonian Floer Homology

One invariant of (certain) symplectic manifolds: Hamiltonian Floer
homology (based on Floer, 1988).

Theorem (Viterbo 1996, Salamon–Weber 2003,
Abbondandolo–Schwarz 2004)

The Hamiltonian Floer homology of the symplectic manifold T ∗M
is isomorphic to the singular homology of the free loop space LM:

HF∗(T
∗M) ∼= H∗(LM).

Thus the symplectic structure on T ∗M remembers at least some
homotopic data about M.
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Exotic spheres and cotangent bundles

Recently, Mohammed Abouzaid has shown that the symplectic
structure on T ∗M can encode more than the
homotopic/topological structure of T ∗M: it can encode smooth
information.

Theorem (Abouzaid, 2008)

If Σ is an exotic S4k+1 that does not bound a parallelizable
manifold, then T ∗Σ is not symplectomorphic to T ∗S4k+1.

Kervaire–Milnor: there are 8 different smooth structures on S9;
this shows that 6 of them are distinct from the standard smooth
structure.

Abouzaid’s argument studies certain moduli spaces of holomorphic
curves on T ∗Σ.



Topological motivation The cotangent bundle Knot contact homology Relation to physics

Conormal bundles

We will focus on a relative of the cotangent construction.

Definition

Let K ⊂ M be a submanifold. The conormal bundle to K is

LK := {(q, p) | q ∈ K and 〈p, v〉 = 0 for all v ∈ TqK}

⊂ T ∗M.

M

LK ∩ TqM

q
K

(q, p) ∈ LK ⊂ T ∗M
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Conormal bundle and the symplectic structure

If dim(M) = n, then dim(T ∗M) = 2n and dimension counting
shows that dim(LK ) = n regardless of the dimension of K .

Theorem

For any submanifold K ⊂ M,

LK ⊂ T ∗M

is Lagrangian: a maximal-dimensional submanifold of T ∗M on
which the symplectic form ω is identically 0.

We will be interested in the case where M = R
3 and K ⊂ R

3 is a
knot: a smooth embedding of S1 in R

3. In this case,
LK ∼= S1 × R

2 is a Lagrangian submanifold of T ∗
R
3 ∼= R

6.
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Knots in R
3

We consider knots in R
3 up to smooth isotopy: two knots K0 and

K1 are smoothly isotopic if there is a 1-parameter family of knots
Kt for 0 ≤ t ≤ 1.

Smoothly isotopic knots (here, the right-handed trefoil).
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The conormal bundle as a knot invariant

If knots K0,K1 ⊂ R
3 are smoothly isotopic, then there is a

1-parameter family of Lagrangian submanifolds LKt
⊂ T ∗

R
3:

LK0
, LK1

are Lagrangian isotopic.

Question

How much of the topology of the knot K ⊂ R
3 is encoded in the

symplectic/Lagrangian structure of LK ⊂ T ∗
R
3?
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The conormal bundle as a knot invariant

If knots K0,K1 ⊂ R
3 are smoothly isotopic, then there is a

1-parameter family of Lagrangian submanifolds LKt
⊂ T ∗

R
3:

LK0
, LK1

are Lagrangian isotopic.

Question

How much of the topology of the knot K ⊂ R
3 is encoded in the

symplectic/Lagrangian structure of LK ⊂ T ∗
R
3?

Conjecture?

The Lagrangian submanifold LK is a complete knot invariant: if
K0,K1 are knots such that LK0

and LK1
are Lagrangian isotopic,

then K0 and K1 are smoothly isotopic.

(More precise conjecture involves “Legendrian isotopy” in the
contact manifold ST ∗

R
3 of ΛK := LK ∩ ST ∗

R
3.)
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Conormal bundle detects the unknot

Theorem (N., 2005)

LK detects the unknot O: if K ⊂ R
3 is a knot such that ΛK and

ΛO are Legendrian isotopic, then K is unknotted: K = O.

K = O?the unknot O
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Legendrian contact homology

To distinguish between Lagrangians LK for different knots K , need
good invariants of Lagrangian submanifolds in symplectic
manifolds.

ai

aj2

aj1

p−kp−
1 p−2

p+

ajk

R × V

R × Λ

R
∆

D2
k

One is given by Legendrian contact homology (LCH)
(Eliashberg–Hofer, 1990s; Etnyre–Ekholm–Sullivan, 2005). LCH
inputs a Legendrian submanifold Λ of a contact manifold V , and
outputs a count of holomorphic curves in the symplectization
R× V with boundary on R× Λ and certain asymptotic behavior.
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Legendrian contact homology

To distinguish between Lagrangians LK for different knots K , need
good invariants of Lagrangian submanifolds in symplectic
manifolds.

ai

aj2

aj1

p−kp−
1 p−2

p+

ajk

R × V

R × Λ

R
∆

D2
k

In our setting, LCH counts certain holomorphic disks in T ∗M with
boundary on LK .
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Knot contact homology

K ⊂ R
3 knot // LK ⊂ T ∗

R
3 Lagrangian

LCH

��
HC∗(LK ), symplectic invariantoo
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Knot contact homology

K ⊂ R
3 knot // LK ⊂ T ∗

R
3 Lagrangian

LCH

��
HC∗(K ), knot invariant HC∗(LK ), symplectic invariant

:=oo

Definition

Let K ⊂ R
3 be a knot. The knot contact homology HC∗(K ) is the

LCH associated to LK ⊂ T ∗
R
3. This is a knot invariant (an

invariant of knots up to smooth isotopy).
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Knot contact homology, continued

Theorem (N. 2003, 2005, 2010; Ekholm–Etnyre–N.–Sullivan 2011)

There is a combinatorially-defined differential graded algebra
(A, ∂) associated to a knot K, for which

H∗(A, ∂) = HC∗(K ).

The algebra A is a finitely-generated noncommutative algebra over
the ring Z[λ±1, µ±1,U±1].
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Knot contact homology, continued

Theorem (N. 2003, 2005, 2010; Ekholm–Etnyre–N.–Sullivan 2011)

There is a combinatorially-defined differential graded algebra
(A, ∂) associated to a knot K, for which

H∗(A, ∂) = HC∗(K ).

The algebra A is a finitely-generated noncommutative algebra over
the ring Z[λ±1, µ±1,U±1].

Conjecture?

Knot contact homology is a complete knot invariant: if knots
K1,K2 satisfy

HC∗(K1) ∼= HC∗(K2)

then K1 = K2.
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Properties of knot contact homology

Theorem (N., 2005)

Knot contact homology HC∗(K ) determines the Alexander
polynomial ∆K (t).

Knot contact homology is “relatively strong” as a knot
invariant: it can distinguish mirrors, mutants, etc.

Two famous “mutant” knots: the Kinoshita–Terasaka knot and
the Conway knot.
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A new polynomial knot invariant

Definition

The augmentation variety of a knot K (with DGA (A, ∂)) is

{(λ, µ,U) ∈ (C \ {0})3| there is an algebra map

ǫ : A → C with ǫ ◦ ∂ = 0}

⊂ (C \ {0})3.
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A new polynomial knot invariant

Definition

The augmentation variety of a knot K (with DGA (A, ∂)) is

{(λ, µ,U) ∈ (C \ {0})3| there is an algebra map

ǫ : A → C with ǫ ◦ ∂ = 0}

⊂ (C \ {0})3.

This appears to be a codimension-1 algebraic set for all knots K .

Definition

The augmentation polynomial of a knot K

AugK (λ, µ,U) ∈ Z[λ, µ,U]

is the polynomial for which the augmentation variety is
{AugK (λ, µ,U) = 0}.
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Computing the augmentation polynomial

In practice, to a knot K , knot contact homology associates a finite,
combinatorially defined collection of polynomials in some variables
x1, . . . , xn with coefficients in Z[λ, µ,U]:

K  {p1(x1, . . . , xn), . . . , pm(x1, . . . , xn)}.

The augmentation variety is the set of (λ, µ,U) for which these
polynomials have a common root in x1, . . . , xn:

p1(x1, . . . , xn) = 0

p2(x1, . . . , xn) = 0

...

pm(x1, . . . , xn) = 0.
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Augmentation polynomial: unknot

For K = O, the unknot: the collection of polynomials in n = 0
variables is

{U − λ− µ+ λµ}.

Thus
AugO(λ, µ,U) = U − λ− µ+ λµ.
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Augmentation polynomial: trefoil

For K = T , the right-handed trefoil: the collection of polynomials
in n = 1 variable is

{Ux21 − µUx1 + λµ3(1− µ),Ux21 + λµ2x1 + λµ2(µ − U)}.

Then take the resultant of these two polynomials:

AugT (λ, µ,U) = (U3 − µU2) + (−U3 + µU2 − 2µ2U + 2µ2U2

+ µ3U − µ4U)λ+ (−µ3 + µ4)λ2.
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Relation to other knot invariants

Theorem (N. 2005)

A specialization of the augmentation polynomial,

AugK (λ, µ, 1),

contains the A-polynomial AK (λ, µ
2) as a factor.

Here the A-polynomial is a knot invariant related to
SL2C-representations of the knot complement and hyperbolic
structures.

Corollary (N. 2005)

The augmentation polynomial AugK (λ, µ,U), and thus knot
contact homology, detects the unknot: if AugK = AugO then
K = O.
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Relation to other knot invariants, continued

It appears that knot contact homology in general is intimately
related with the topology of the knot complement.

In a different direction, knot contact homology is also related to
the HOMFLY-PT polynomial, a two-variable knot polynomial that
generalizes the Alexander and Jones polynomials:

Conjecture

The augmentation polynomial encodes a specialization of the
HOMFLY-PT polynomial, PK (a, 1).

The motivation for this conjecture comes from physics.
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Conifold transition

S2

S3

S2

S3

S3

R3

R4

T ∗S3 cone on S2 × S3 X = O(−1) ⊕O(−1)

S2 = CP
1

Gopakumar–Vafa (1998), building on work of Witten: starting with
T ∗S3, pass through the “conifold transition” to obtain a
6-manifold X , the total space of the rank 2 complex vector bundle

O(−1)⊕O(−1)

��
CP

1.
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Conifold transition

S2

S3

S2

S3

S3

R3

R4

T ∗S3 cone on S2 × S3 X = O(−1) ⊕O(−1)

S2 = CP
1

Conjecture (Gopakumar–Vafa)

In the large N limit:

SU(N) Chern–Simons theory on S3
OO

��
closed topological string theory on X .
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Conifold transition and LK

T ∗S3 conifold X = O(−1) ⊕O(−1)

LK

K

L̃K

S3

S2

Ooguri–Vafa (1999): given a knot K ⊂ S3, follow the Lagrangian
LK through the conifold transition to obtain a Lagrangian

L̃K ⊂ X .
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Conifold transition and LK

T ∗S3 conifold X = O(−1) ⊕O(−1)

LK

K

L̃K

S3

S2

Conjecture (Ooguri–Vafa)

In the large N limit:

SU(N) Chern–Simons theory for K ⊂ S3
OO

��

open topological string theory for L̃K ⊂ X .



Topological motivation The cotangent bundle Knot contact homology Relation to physics

Conifold transition and LK

T ∗S3 conifold X = O(−1) ⊕O(−1)

LK

K

L̃K

S3

S2

Checked for unknot, some torus knots.

Slightly more mathematical statement:

Chern–Simons knot invariants for K ⊂ S3

(e.g. Jones polynomial)OO

��

open Gromov–Witten invariants for L̃K ⊂ X .



Topological motivation The cotangent bundle Knot contact homology Relation to physics

Mirror manifold

Aganagic–Vafa (2012) propose a “generalized
Strominger–Yau–Zaslow conjecture” that uses L̃K ⊂ X to produce
a mirror to X .

Conjecture (Aganagic–Vafa)

The pair (X , L̃K ) produces a mirror Calabi–Yau 3-fold to X ,

XK = {(u, v , x , p) | uv = AK (e
x , ep ,Q)}

⊂ C
4.

Here Q is a parameter measuring the complexified Kähler class of
CP

1 and AK is a three-variable polynomial.
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The mirror and knot invariants

T ∗S3

LK
conifold transition//

X = O(−1) ⊕O(−1)

L̃K

mirror
��

XK = {uv = AK (e
x , ep ,Q)} ⊂ C

4

tti i
i

i
i

i
i

i
i

���
�

�

HOMFLY-PT
polynomial PK (a, q),
colored HOMFLY-PT

Khovanov homology,
Khovanov–Rozansky homologies?

The dashed arrows use string-theoretic arguments of
Gukov–Schwarz–Vafa (2004) and others.
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Physics and the augmentation polynomial

Conjecture (Aganagic–Ekholm–N.–Vafa 2012)

The two polynomials AK and AugK are equal for all knots K.

This would imply that the augmentation polynomial AugK (λ, µ,U)
is at least as strong as many other known knot invariants.

Currently: a great deal of circumstantial evidence for this
conjecture, but no proof.
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Summary of knot invariants

K ⊂ R
3 smooth knot

cotangent/conormal bundle
��

LK ⊂ T ∗
R
3 Lagrangian submanifold

Legendrian contact homology
��

HC∗(K ) = H∗(A, ∂) knot contact homology

��
AugK (λ, µ,U) augmentation polynomial

++WWWWWWWWWWWWWWWWWWWWWW

���
�

�

HOMFLY, knot homologies, ??? unknot detection
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Thanks!

For further reading:

T. Perutz, The symplectic topology of cotangent bundles, article in the March 2010 EMS Newsletter

L. Ng, Conormal bundles, contact homology, and knot invariants, math/0412330

T. Ekholm and J. Etnyre, Invariants of knots, embeddings and immersions via contact geometry,
math/0412517

L. Ng, A topological introduction to knot contact homology, forthcoming

Another forthcoming survey paper?


	Topological motivation
	The cotangent bundle
	Knot contact homology
	Relation to physics

