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1 Introduction

Consider the following model for card shuffling: a group of N cards, each colored red or
black, is arranged in a ring, and the shuffler repeatedly chooses two adjacent cards and
switches them. This simple model, which we call the interchange model, is an example of a
Markov chain; an in-depth analysis of this chain has never been done, and one of our goals
in this paper is to accomplish this analysis. The interchange model is in fact essentially
equivalent to a special case of another Markov chain known as the exclusion process, which
has wide applications to mathematical models in physics and biology, and so results about
the interchange chain produce new results about the exclusion process as well.

One of the most remarkable and serendipitous properties of the interchange model is
that the transition matrix describing it is precisely the matrix corresponding to a Hamiltonian
operator in physics, the so-called Heisenberg XXX Hamiltonian, describing a quantum
mechanical system of spin-1/2 particles. In this system, there are N particles arranged in a
ring, and each particle possesses a spin of either up or down; neighboring particles interact
via so-called spin-spin interactions, through which the energy associated to them depends
on whether their spins point in the same direction or in opposite directions. A generalized,
three-dimensional version of this model has been experimentally shown to be an accurate
model for the phenomena of ferromagnetism and antiferromagnetism, and some materials
(e.g., YFeO3) have even been shown to behave according to the somewhat simplistic one-
dimensional model described here. Following its discovery in 1926, the Heisenberg model
attracted much attention in the physics community, and, in 1931, Hans Bethe formulated the
famous Bethe ansatz to approach the one-dimensional Heisenberg model. Physicists have
since been able to use the Bethe ansatz to find all of the energy levels of the one-dimensional
Heisenberg system.

The correspondence between the interchange process and the Heisenberg model is
simply a correspondence between cards and spins; there are two types of both cards and
spins, and, in each case, the interaction is only between nearest neighbors in a ring. What
is astonishing, and not at all obvious, is that the spin-spin interaction from the Heisenberg
XXX model is mathematically equivalent to the card-shuffling “interaction” consisting of
switching nearest neighbors. Through this equivalence, the methods used by physicists to
find the energy levels of the Heisenberg model, and in particular the Bethe ansatz, can also
be used by mathematicians to find the eigenvalues of the transition matrix associated to
the interchange model; these eigenvalues, in turn, give information about how quickly the
interchange shuffle becomes random. The Bethe ansatz approach from physics can thus be
applied to mathematical random walk theory to yield results, difficult to verify by other
means, about the interchange walk and other Markov chains as well.

We now outline the contents of this paper. In Section 2, we give the necessary back-
ground from physics, by describing, deriving, and analyzing the Heisenberg model, paying
special attention to the one-dimensional XXX case. Section 3 is a diagonalization of the in-
terchange transition matrix, using the Bethe ansatz, in the cases in which there are either one
or two red cards. In Section 4, we examine consequences of this diagonalization, culminating
in the calculation in Section 5 of the rate at which the interchange process becomes random.
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Section 6 is devoted to other, related random walks, including the exclusion process and the
general interchange process; it concludes with an observation through which estimates from
random walk theory can be used in thermodynamics.

We will assume familiarity with some amount of analysis and random walk theory,
although we review elementary results about random walks in Section 5.1; in Section 6.2,
we also use a bit of representation theory. We do not assume familiarity with quantum
mechanics, although our review of quantum mechanical theory in Section 2 is designed to
be unobtrusive for those who do have some background in quantum mechanics.

Much of this paper is, we believe, original, since the approach of applying physics
to the interchange model, although hinted at by several sources, has apparently not yet
been carried out in a way that uses results from random walk theory. Section 2 is mainly
expository; Section 3 reformulates results already known to Bethe in 1931, but is original in
its use of a mathematical level of rigor rather than a physical trust of intuition. Sections 4,
5, and 6 are more or less entirely original, except where noted otherwise.
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2 Physical background

This section is almost purely physics, as we give the background necessary to understand
the remainder of the paper. We begin with an explanation in Section 2.1 of the importance
of the Heisenberg model to physics, and then proceed to define the Heisenberg model in
mathematical terms in Section 2.2. We then give a physical derivation in Section 2.3 of
the Heisenberg model, and discuss physical approaches to solving the Heisenberg model in
Section 2.4.

2.1 The Heisenberg model of magnetism

The Heisenberg model occupies a somewhat uncomfortable position in solid state and mathe-
matical physics. Easy to state and widely applicable, it is also extremely difficult to analyze.
The interaction model which became known as the Heisenberg model was discovered by
Werner Heisenberg and, nearly simultaneously, by P. A. M. Dirac, in 1926. Further work
over the following decade established the Heisenberg model, due to its versatility, to be “the
fundamental object of study of the theory of magnetism” [13, p. 40]. Since then, much work
in theoretical statistical mechanics, solid state physics, and mathematical physics alike has
been concentrated on understanding this model. Despite this effort, the Heisenberg model
remains largely intractable, its predicted energy levels and eigenfunctions poorly understood,
especially in a three-dimensional setting.

The first breakthrough towards solving the Heisenberg model was the diagonalization
by Hans Bethe [2] in 1931 of the one-dimensional Heisenberg XXX model; the ansatz, or
hypothesis, formulated in the process was later applied to many other physical models. Using
an extension of the Bethe ansatz, Rodney Baxter solved the more general one-dimensional
XY Z model in 1971. This solution, however, as well as approaches to the two-dimensional
and three-dimensional Heisenberg models, is exceedingly complicated. The one-dimensional
XXX model, and its solution, are still of interest, perhaps because they are somewhat well
understood; fortunately, we will only require analysis of this model.

The Heisenberg model can be used to describe magnetically ordered solids, in which
internal magnetic interactions cause individual magnetic ions to possess nonzero magnetic
moments below some critical temperature. Magnetically ordered solids separate broadly
into three groups: ferromagnets, antiferromagnets, and ferrimagnets. In ferromagnets, on
which we will concentrate, the local moments are energetically preferred to be all aligned
in a particular direction, the direction of spontaneous magnetization, so that the solid as
a whole has a nonzero spontaneous magnetic moment. In antiferromagnets, adjacent local
moments prefer to be antialigned; ferrimagnets have a nonzero spontaneous magnetization,
but not necessarily aligned local moments.

For those who are unfamiliar with quantum mechanics, we conclude this section by
introducing some quantum mechanical notation which will be used in subsequent sections.
Quantum mechanics postulates that all information about the state of a system is given by
that state’s wave function, which is an element ψ, usually of norm 1, in a Hilbert space H

over C. Typically, H = L2(K) for some K ⊂ R
n, with the usual complex inner product; in

that case, |ψ(r)|2 gives the probability density of finding the system at point r. The behavior
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of the system is controlled by the Hamiltonian H, a Hermitian operator on the Hilbert space
in question, via another postulate of quantum mechanics, the time-independent Schrödinger
equation Hψ = Eψ. (For a one-particle system, H(x) is typically of the form − ~

2

2m
∇2+V (r),

where m is the mass of the particle, ∇2 is the Laplacian operator, and V (r) is the potential
experienced by the particle.) The wave function ψ is then an eigenvector of H, and the
corresponding eigenvalue E is the energy of the system. By the spectral theorem, any
hermitian operator is diagonalizable, with all real eigenvalues; in particular, any energy
eigenvalue is real. In the following sections, we will use several times the fact that any two
commuting hermitian operators can be diagonalized by a basis of simultaneous eigenvectors.
In accordance with most physics textbooks, we will use Dirac notation when describing spin
states; thus |v〉 represents the vector described by v.

2.2 Mathematical formulation of the one-dimensional Heisenberg

model H
In this section, we formulate the Heisenberg Hamiltonian H in mathematical language, and
make some preliminary remarks. The system under study is a one-dimensional system of N
interacting spin-1/2 fermions, with interactions described by the Heisenberg Hamiltonian;
we will follow the notation of Takhtadzhan and Faddeev [16]. In mathematical terms, H
acts on the 2N–dimensional tensor product of N spin spaces H =

⊗N
j=1 hj. Here hj is a two-

dimensional vector space over C; the standard basis e+
j =

(
1
0

)
, e−j =

(
0
1

)
of hj corresponds in

physics to the two possible spin states | ↑〉, | ↓〉 of a spin-1/2 fermion. In defining operators
on H in terms of operators on the hj, we will use the following convenient notation: if ρ is a
linear operator on hj, then denote by ρj the operator on H defined by

ρj = 1 ⊗ · · · ⊗ 1
︸ ︷︷ ︸

j−1

⊗ρ ⊗ 1 ⊗ · · · ⊗ 1.

Intuitively, ρj acts precisely on the j-th component of the tensor product.
We define operators σx, σy, σz on any of the spaces hj by the usual Pauli spin matrices

σx =

(
0 1
1 0

)

, σy =

(
0 −i
i 0

)

, σz =

(
1 0
0 −1

)

,

where the matrices are with respect to the standard basis e+
j , e−j . These spin matrices give

operators σα
j on H. In terms of the Pauli spin operators, the Heisenberg XY Z Hamiltonian

is given by

H = −1

2

N∑

j=1

(Jxσ
x
j σx

j+1 + Jyσ
y
j σ

y
j+1 + Jzσ

z
j σ

z
j+1). (2.1)

Here σα
N+1 is understood to mean σα

1 , and Jx, Jy, Jz are real constants. Note that H is real
symmetric and therefore hermitian.

P. A. M. Dirac [6] observed that, when Jx = Jy = Jz = J (the so-called XXX model),
the above Hamiltonian operator has an alternative interpretation involving “switching spins.”
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In accordance with the notation in [15], let the operator Pj,k act on H by permuting hj and
hk; for instance, P2,3 maps e−1 ⊗ e+

2 ⊗ e−3 to e−1 ⊗ e−2 ⊗ e+
3 , and e−1 ⊗ e+

2 ⊗ e+
3 to itself. We next

introduce the usual spin raising and lowering operators σ± = (σx ± iσy)/2 on hj, which act
on the generators of hj by σ+(e+) = 0, σ+(e−) = e+, σ−(e+) = e−, σ−(e−) = 0. Then it is
easy to see that

Pj,j+1 =
σz

j σ
z
j+1 + 1

2
+ σ+

j σ−
j+1 + σ−

j σ+
j+1 =

1

2
(1 + σx

j σx
j+1 + σy

j σ
y
j+1 + σz

j σ
z
j+1),

so that the XXX Hamiltonian defined by (2.1) can be written as

H =
N

2
− J

N∑

j=1

Pj,j+1. (2.2)

This equation is the crucial step in linking the Heisenberg Hamiltonian to a Markov chain
involving interchanging neighboring cards in a circle.

Note that (2.2) implies that the XXX Hamiltonian conserves the numbers of e+ and
e− in any basis element of H, since it merely permutes them. This conservation holds more
generally if we merely assume that Jx = Jy, the so-called XXZ model. Indeed, when
Jx = Jy, we may rewrite H as

H = −1

2

N∑

j=1

(2Jx(σ
+
j σ−

j+1 + σ−
j σ+

j+1) + Jzσ
z
j σ

z
j+1). (2.3)

It is then apparent that H conserves the number of e+, and the number of e−, appearing in
a basis element of H. More precisely, introduce the operator σz

tot =
∑N

j=1 σz
j , the sum total

z spin of the system. (Any member of the standard basis of H is an eigenvector of σz
tot, with

eigenvalue equal to the difference between the number of e+ and e− in its representation.
For instance, if N = 3 and ψ = | ↓↑↓〉 = e−1 ⊗ e+

2 ⊗ e−3 , then σz
j (ψ) = (1 − 2)ψ = −ψ, since

there are one e+ and two e− in ψ.)
Each of σ+

j σ−
j+1, σ−

j σ+
j+1, and σz

j σ
z
j+1 conserves total z spin (to reiterate, this is intu-

itively #(e+)−#(e−)) for the standard basis of H, and so H commutes with σz
j on H. Thus

the matrix for H splits into sections corresponding to the various possible values of σz
tot.

(In physical language, σz
tot is a “good quantum number,” so that we can find simultaneous

eigenvectors of H and σz
tot.) If we denote by Hr the

(
N
r

)
-dimensional subspace of H consist-

ing of eigenvectors of σz
tot with eigenvalue N − 2r (that is, linear combinations of the

(
N
r

)

configurations of r down spins and N − r up spins), then H = H0 ⊕H1 ⊕H2 ⊕ · · · ⊕HN , and
H acts on each of the Hr separately; denote the restriction of H to Hr by Hr, and observe
that the matrix representation of Hr is of size

(
N
r

)
×

(
N
r

)
.

In the language of Markov chains, Hr roughly corresponds, in the XXX case, to the
transition matrix of the interchange chain on r red and N − r black cards; see Section 4.1
for further details. Since the steps of the Markov chain preserve the number of red cards
(or, equivalently, the number of down spins), examining the action of Hr on Hr corresponds
to looking at the Markov chain on all configurations of r red and N − r black cards, or on
r-subsets of an N -set.
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For future reference, we will use the following notation. The standard basis of Hr is
the collection of

(
N
r

)
vectors

{|x1x2 · · ·xr〉 : 1 ≤ x1 < x2 < · · · < xr ≤ N},

where x1, x2, . . . , xr are integers, and |x1x2 · · · xr〉 is the tensor product of the vectors e− in
positions x1, x2, . . . , xr and e+ everywhere else; for instance, when N = 5 and m = 2, then
|3, 5〉 = e+ ⊗ e+ ⊗ e− ⊗ e+ ⊗ e−.

In Section 3, we will diagonalize Hr when r = 1 and r = 2; here the Bethe ansatz
will prove to be crucial. First, however, we backtrack a bit and derive the Heisenberg model
from a physical standpoint.

2.3 Physical derivation of the general Heisenberg model

In this section, we formulate, and provide the motivation behind, the general Heisenberg
model of magnetism, in the language of physics. As we go along, we will give some amount
of background in quantum mechanics for those unfamiliar with the basic theory. Please note
that this section exists primarily to motivate the study of the Heisenberg model, and, as
such, is mostly unrelated to the remainder of the paper; it may be skipped without greatly
affecting understanding of the rest of the paper. The physics in this section is very loosely
based on Keffer [11].

We derive the Heisenberg model beginning with a two-electron system under an electro-
static Coulomb interaction potential. Electron j has a position in R

3 as well as a spin (up or
down, or some combination), so that its wave function is an element of Hj

∼= L2(R3)⊗hj, the
tensor product of spatial and spin wave function spaces. (Here hj

∼= C
2 is a two-dimensional

vector space generated by e+
j = |↑〉 and e−j = |↓〉, as in Section 2.2.) The total wave function

is then an element of H1 ⊗ H2 = Hspatial ⊗ Hspin, where Hspatial
∼= L2(R3) ⊗ L2(R3) is the

spatial component of H1 ⊗H2, and Hspin
∼= h1 ⊗ h2 is the spin component of H1 ⊗H2. The

key observation here is that the Hamiltonian describing the Coulombic interaction, which
acts only on Hspatial, can be formally replaced by a “spin Hamiltonian” acting only on Hspin.
We will now briefly describe the reasoning behind this replacement.

The Coulomb interaction Hamiltonian is given by

HCoul = − ~
2

2m
(∇2

1 + ∇2
2) +

e2

|r1 − r2|
,

where HCoul acts on H1 ⊗ H2, ∇2 is the usual Laplacian operator on L2(R3) (or, more
precisely, on L2(R3) ∩ C2(R3), but we will assume that all wave functions are twice differ-
entiable), and e2

|r1−r2|
represents the electrostatic Coulomb repulsion potential between the

two electrons. (The exact form of this Hamiltonian is relatively unimportant, and has been
included only for completeness.) Note that H depends only on the spatial coordinates r1, r2

of the electrons, and not on their spins, and therefore it essentially acts only on the spatial
component Hspatial of H1 ⊗ H2.

We now invoke the Pauli exclusion principle, which postulates that the total wave
function describing the two electrons be antisymmetric, i.e., that it is replaced by its negative
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when H1 and H2 are formally interchanged. Since the total wave function must be an
eigenvector of H, it is easy to see that it is expressible as the tensor product ψspatial ⊗ ψspin

of an eigenvector of H in Hspatial and a vector in Hspin. Then one of ψspatial and ψspin is
symmetric, and the other is antisymmetric. Symmetric and antisymmetric spatial wave
functions are given by

ψsym
spatial = ψ1(r1)⊗ψ2(r2) + ψ2(r1)⊗ψ1(r2) and ψanti

spatial = ψ1(r1)⊗ψ2(r2)−ψ2(r1)⊗ψ1(r2),

where ψ1 and ψ2 are wave functions in L2(R3) determined by HCoul and the time-independent
Schrödinger equation.

Symmetric and antisymmetric spin wave functions, on the other hand, are given by

ψsym
spin = |↑↑〉, |↑↓〉 + |↓↑〉, or |↓↓〉, and ψanti

spin = |↑↓〉 − |↓↑〉.

(Here, e.g., |↑↓〉−|↓↑〉 represents e+
1 ⊗e−2 −e−1 ⊗e+

2 ; this is standard physical notation.) The
symmetric and antisymmetric spin vectors may be distinguished by their eigenvalues with
respect to the spin operator σ1 · σ2 = σx

1σx
2 + σy

1σ
y
2 + σz

1σ
z
2 , where σα

j is the operator on hj

defined as in Section 2.2; it is straightforward to check that the symmetric spin vectors are
eigenvectors of σ1 ·σ2 with eigenvalue 1, while the antisymmetric spin vector is an eigenvector
of σ1 · σ2 with eigenvalue −3.1

Under the Coulomb Hamiltonian HCoul, the two spatial wave functions ψsym
spatial and

ψanti
spatial have different energies Esym and Eanti, which may be calculated from the Hamiltonian.

Although the origin of this energy difference is the spatial Coulombic interaction, we may
recast it formally as a spin-spin interaction through our calculation of the eigenvalues of the
ψspin vectors with respect to σ1 · σ2. Indeed, the “spin Hamiltonian”

Hspin =
3Esym + Eanti

4
+

Esym − Eanti

4
σ1 · σ2

has eigenvalue Eanti for the triplet symmetric spin states (which correspond to spatial wave
function ψanti

spatial) and Esym for the singlet antisymmetric spin state (which corresponds to
spatial wave function ψsym

spatial), and is thus formally equivalent to HCoul. Since energies
are relative, we may ignore the constant term in the above expression, obtaining Hspin =
−J

2
σ1 · σ2, where J , the so-called exchange integral, is given by J = (Esym − Eanti)/2. The

sign of J indicates whether aligned or antialigned spins are energetically preferred, so that
J > 0 for a ferromagnet, while J < 0 for an antiferromagnet. (This does not affect the
eigenvectors, but does affect which eigenvectors correspond to the “ground state” or “low-
lying excitations”; for instance, the ground state of the antiferromagnet will be the highest

1For those familiar with quantum mechanics, there is a simple explanation for the eigenvalues of the
triplet (symmetric) and singlet (antisymmetric) spin vectors with respect to σ1 · σ2. If the spin angular
momentum vectors of the two electrons are S1 = (Sx

1
, Sy

1
, Sz

1
) and S2 = (Sx

2
, Sy

2
, Sz

2
) (in units of ~), then

Sα
j = σα

j /2. Now the triplet (total spin quantum number S = 1) and singlet (S = 0) states are eigenvectors

of S
2 = (S1 + S2)

2 with eigenvalue S(S + 1); but all states are eigenvectors of S
2

1
and S

2

2
with eigenvalue

3/4, and so S(S + 1) = S
2 = S

2

1
+ S

2

2
+ 2S1 · S2 = 3/2 + 2S1 · S2. Replacing Sj by σj/2 gives the desired

eigenvalues for σ1 · σ2.
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excited state of the corresponding ferromagnet.) By writing the Hamiltonian in terms of
σ1 · σ2, we have reformulated a Coulomb exchange interaction in the much simpler guise of
a spin-spin interaction.

In a magnetically ordered solid with no external magnetic field, we sum the above
spin Hamiltonian Hspin = J

2
σ1 · σ2 over all pairs of electrons to obtain the Heisenberg (or

Heisenberg-Dirac, or Heisenberg-Dirac-Van Vleck) Hamiltonian:

H = −1

2

∑

i,j

Jij σi · σj.

For a solid with localized electrons, the exchange integral Jij falls off rapidly with increasing
distance between the two electrons, and is the same for all nearest neighbor pairs of electrons,
so that we may approximate the Heisenberg Hamiltonian by H = −J

2

∑

n.n. σi · σj, where
the sum is over all nearest neighbor pairs. Although we have derived this Hamiltonian using
electrons, it may be used more generally for particles with arbitrary spin, not just for spin-
1/2 fermions. It is in the spin-1/2 case, however, that a direct connection to random walks
and transition matrices may be made, as we will see in Section 4.1.

Often, due to the anisotropic nature of atoms and atom arrangements in the magnet-
ically ordered solid, it is not equally easy to achieve magnetization in all directions. In this
case, we use a generalized, anisotropic Heisenberg Hamiltonian:

H = −1

2

∑

n.n.

(Jxσ
x
i σx

j + Jyσ
y
i σ

y
j + Jzσ

z
i σ

z
j ). (2.4)

This is the general Heisenberg XY Z Hamiltonian. When there is one preferred direction,
we align this direction with the z axis; then Jx = Jy, and we obtain the Heisenberg XXZ
model. As a side note, if we set Jx = Jy = 0 in the XXZ model, we obtain the Ising model,
a favorite among statistical physicists and combinatorialists alike for its understandability,
relative simplicity, and applicability.

We will, however, only use the isotropic version of the Hamiltonian, the XXX model,
in which Jx = Jy = Jz. As indicated in Section 2.2, we will further restrict our attention
to the one-dimensional case with periodic boundary conditions. In this scenario, there are
N electrons arranged on a line with periodic boundary conditions (or, alternatively, in a
circular ring), so that each electron has two nearest neighbors. Bethe’s 1931 paper [2]
addresses precisely this case.

2.4 Physical solution of the Heisenberg model: magnons

From now on, we will only be working with the one-dimensional Heisenberg XXX model
on N spins, so that, in particular, Jx = Jy = Jz = J . In addition, assume that J > 0, the
ferromagnetic model; then we may set J = 1 without loss of generality:

H = −1

2

N∑

j=1

(σx
j σx

j+1 + σy
j σ

y
j+1 + σz

j σ
z
j+1). (2.5)
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To find the ground state (lowest energy eigenvalue) and low-lying excitations (energies above
but close to the ground state) of the ferromagnetic XXX model, solid state physics intro-
duces the notion of a spin wave, or magnon. Although the analysis can be done in two or
three dimensions, we will restrict our attention, as before, to a one-dimensional chain with
periodic boundary conditions. Some of this section is based on the analysis of magnons in
Keffer [11] and Mattis [13].

In the terminology of the previous section, it is an interesting and well-studied prob-
lem of physics to compute, or estimate, the energies and eigenvectors corresponding to the
ground state and “elementary” excitations of the Hamiltonian H defined by (2.5). The
ground state corresponds to the eigenvector and eigenvalue of H0, while elementary excita-
tions correspond to the diagonalization of H1 and are known as spin waves or, synonymously,
magnons. (Strictly speaking, magnons are quantized spin waves, but this is an issue of seman-
tics.) Following a hypothesis of Felix Bloch, physicists then proceed to estimate eigenvalues
and eigenvectors for H2 by essentially combining two spin waves to produce “two-magnon”
states; these, along with a small number of “bound” states, give approximate eigenvalues
and eigenvectors for H2. For values of r beyond 2, more spin waves can be combined to
give an approximate diagonalization of Hr, but with decreasing accuracy. In Section 3, we
will approach the diagonalization of Hr from a rigorous mathematical standpoint, using the
Bethe ansatz, but only for r = 1 and r = 2.

We first discuss the ground state of H. The vector |−〉, representing a state with all
spins up, is clearly an eigenstate of H, since it alone generates H0; an easy computation
reveals that the corresponding energy eigenvalue is −N/2. This energy level is in fact
(N + 1)–fold degenerate: if 0 ≤ r ≤ N , then

∑

1≤x1<···<xr≤N |x1 · · · xr〉 is also an eigenvector
of H with eigenvalue −N/2. It is not hard to show (see, e.g., Pathria [14, p. 703]) that all
eigenvalues of H are at least −N/2, so that this is in fact the ground state energy. (This
statement is clear when translated into the language of Markov chains—see Section 4.1—in
which it merely says that the largest eigenvalue of the transition matrix of the interchange
process is 1.) Accordingly, we will write E0 = −N/2 in this section and subsequent ones.

At or near absolute zero, our one-dimensional chain of spins will be in its ground
state, which may be forced to be |−〉 (all spins aligned) if we apply an infinitesimal external
magnetic field to break the ground state degeneracy. If we increase the temperature, the
chain may be excited out of the ground state and into one of its low-lying excitations. The
most elementary excitations involve states with one spin reversed, |xj〉. None of these pure
states are eigenvectors of H, but various linear combinations of the |xj〉 are. Indeed, the

formulation of H from (2.3) readily gives the following criterion: ψ =
∑N

j=1 a(j)|xj〉 is an
eigenvector of H with eigenvalue E if and only if

Ea(j) = (2 − N/2)a(j) − a(j − 1) − a(j + 1)

for all j. (Here we impose the periodic boundary condition a(j+N) = a(j).) This is a simple
difference equation with solution a(j) = Aeipj, where p is determined by the boundary
condition, which gives p = 2kπ/N , k = 0, . . . , N − 1. Thus we have the N normalized
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eigenvectors

ψp =
1√
N

N∑

j=1

eipj|xj〉, (2.6)

which give corresponding energy eigenvalues

E = E0 + 2(1 − cos p). (2.7)

These eigenvectors are called spin waves, or magnons. (The former name arises from their
semiclassical interpretation as chains of precessing spin vectors—see, e.g., Ashcroft and Mer-
min [1]; the latter name is perhaps by analogy with phonons, which come from elastic
vibrations in crystals, and are quite similar in behavior to magnons.) The energy required
to excite the system from its ground state to a spin wave is given by 2(1 − cos p), which we
will abbreviate in this section by E(p). It is easy to check that these spin waves form an
orthonormal basis of H1.

To those with some background in quantum mechanics, the formula (2.6) for a spin
wave should look familiar, since it is nearly identical to the formula for the wave function
ψ of a free particle in one dimension with periodic boundary condition ψ(x + N) = ψ(x):
ψ(x) = eipx/

√
N , where p is as above. In this case, p is the momentum, or wave number (since

we have set ~ = 1, these are the same), of the particle; in other words, ψ is an eigenfunction
of the momentum operator p = −i(d/dx) with eigenvalue p. By analogy, we now define a
“discrete” momentum operator acting on H, so that we can apply the familiar result from
quantum mechanics that momentum commutes with a translation-invariant Hamiltonian.

Consider the site translation operator T on H defined by

T |x1x2 · · ·xr〉 = |x1 + 1, x2 + 1, . . . , xr + 1〉,

where the right hand side denotes |1, x1 +1, x2 +1, . . . , xr−1 +1〉 if xr = N . Any eigenvector
ψ of T will satisfy Tψ = eipψ for some p; here p is real, since T is unitary, and unique up to
integer multiples of 2π, and is known as the (total) momentum of ψ. Now H is translation
invariant, which means that T commutes with H, and so momentum is a good quantum
number. Thus we can find a basis of H consisting of simultaneous eigenvectors of H and
T ; in particular, we can find a basis of H1 of eigenvectors of H1 and T . Indeed, ψp is an
eigenvector of T with eigenvalue eip, so that it has momentum p according to our definition of
momentum. Under this interpretation, (2.7) becomes a so-called dispersion relation between
energy E and momentum p.

Thus the “elementary” excitations of H are given by spin waves. Perhaps it is not sur-
prising that the eigenvectors of H1 have this form; after all, with the translational symmetry
inherent in the model, the eigenvectors must show a similar symmetry. It is more surprising,
however, that further excitations of H—in particular, most of the eigenvectors of H2—are
given approximately by superpositions of spin waves, as was first postulated by Felix Bloch
in 1930.

Consider a vector ψ =
∑

x1<x2
a(x1, x2)|x1x2〉 in H2, and suppose that this is an eigen-

vector of H2 with eigenvalue E. For ease of notation, extend the definition of a(x1, x2)
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symmetrically: if x2 < x1, define a(x1, x2) = a(x2, x1), and take x1, x2 modulo N . Applica-
tion of H2 to ψ leads to a series of equations that the a(x1, x2) must satisfy:

(E − E0 − 4)a(x1, x2) + a(x1, x2 − 1) + a(x1, x2 + 1) + a(x1 + 1, x2) + a(x1 − 1, x2)

=

{
0 if x2 6= x1 ± 1
a(x1, x1) + a(x2, x2) − a(x1, x2) − a(x2, x1) if x2 = x1 ± 1

(2.8)

whenever x1 6= x2. Here the meaningless a(x1, x1) and a(x2, x2) cancel on both sides of
the equation, whenever they appear, unless x1 = x2. The analysis becomes simpler if we
postulate that (2.8) holds for all x1 and x2 by imposing periodic boundary conditions (that
is, a(x1, x2) is unchanged when x1 or x2 changes by a multiple of N), and letting (2.8) when
x1 = x2 define the “unphysical” quantities a(x1, x1).

In Section 3.3, we will solve (2.8) exactly, using the Bethe ansatz. Here, we solve it
approximately in order to gain insight about the solutions. If the right hand side of (2.8)
were zero for all (x1, x2) rather than for most pairs, it would be solvable by the “plane wave”
ψp1,p2

given by
a(x1, x2) = ei(p1x1+p2x2) + ei(p2x1+p1x2), (2.9)

where p1 and p2 are given by periodic boundary conditions, which postulate that Npj/2π ∈ Z.
(Since we have required a(x1, x2) = a(x2, x1), we cannot have unequal constant factors
multiplying the exponentials, as we will have in (3.8) in Section 3.3.) Intuitively, ψp1,p2

is the
symmetrized combination (in this case, a product) of two spin waves ψp1

(x1) and ψp2
(x2),

which have momenta p1 and p2, respectively. This would yield an energy eigenvalue E, from
(2.8), satisfying

E − E0 = 2(1 − cos p1) + 2(1 − cos p2) = E(p1) + E(p2), (2.10)

which may be interpreted (cf. (2.7)) as the combined energy of two superimposed spin waves
with momenta p1 and p2. (Recall that E(p) is the energy associated with a spin wave of
momentum p.)

As with H1, we may take advantage of the translation invariance of H2 to define a
“total” momentum operator (so called to distinguish it from the pseudo-momenta p1 and
p2). Since Tψp1,p2

= ei(p1+p2)ψp1,p2
, the vector ψp1,p2

has total momentum P = p1 + p2.
Some of the ψp1,p2

are in fact eigenvectors of H2. When p2 = 0 (or, similarly, when p1 =
0), the vector ψp1,0 given by (2.9) is an exact eigenvector of H2; if σ−

tot =
∑

j σ−
j represents

the total spin lowering operator, then ψp1,0 =
√

Nσ−
totψp1

, where ψp1
is an eigenvector of H1,

as defined above. (Note that ψp1,0 is an eigenvector of H2 because σ−
tot commutes with H.) In

general, applying σ−
tot to an eigenvector of Hr yields an eigenvector of Hr+1; see Section 6.2.

When p1, p2 6= 0, the vectors ψp1,p2
are not eigenvectors of H, but we may try to combine

vectors with the same total momentum (P = p1 + p2 constant) to obtain eigenvectors of H
with well-defined total momentum. Change coordinates by writing p = (p1 − p2)/2, x =
x1−x2, X = (x1 +x2)/2, so that a(x1, x2) = eiPX(eipx +e−ipx). (These new coordinates have
a physical interpretation: X is the center-of-mass coordinate, x is the relative coordinate,
and p is a sort of relative momentum.) Now form a linear combination ψ over states with
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constant P and varying p, where p attains all possible values:

ψ(x1, x2) = eiPX(
∑

p

eipxf(p)) = eiPXF (x),

where f(p) = f(−p) and this equation defines F (x) (so that F (x) = F (−x)). Substituting
into the characteristic equation (2.8), multiplying by e−ipx, and summing over x gives

(E − E0 − E(p1) − E(p2))f(p) =
4

N

∑

p′

(cos x)

(

cos
P

2
− cos p′

)

f(p′). (2.11)

This series of equations may be further analyzed (see Mattis [13]) to find f(p) and a more
exact value for E. For our purposes, it suffices to note that (2.11) implies that, up to order
1/N , E ≈ E0 + E(p1) + E(p2), in accordance with (2.10).

When p1 and p2 are real, we have each momentum independently ranging more or less
uniformly in [0, 2π) (recall that originally Npj/2π ∈ Z). We then have a “continuum” of
so-called two-magnon states with energy eigenvalues given approximately by (2.10). Since
we may write E(p1)+E(p2) = 4(1−cos(P/2) cos p), the energies of two-magnon states range,
for fixed P , between the extremes E0 + 4(1 − cos(P/2)) and E0 + 4(1 + cos(P/2)).

There are also states in which p1 and p2 are not real. (Note that total momentum
P = p1 + p2 is real, even if p1 and p2 are not.) These are known as “bound states,” and for
given P , their energies lie outside (in fact, below) the corresponding range of two-magnon
energies.

We will not go into further detail here, since we will precisely calculate the eigenvectors
and eigenvalues of H2 in Section 3, using the Bethe ansatz. In Section 4.4, we will rederive,
in a mathematically rigorous fashion, our analysis from this section regarding two-magnon
and bound states.
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3 Diagonalization via the Bethe ansatz

Having discussed physical aspects of the Heisenberg model, we now proceed to effect a
mathematical diagonalization of the one-dimensional XXX model by using the Bethe ansatz.
Section 3.1 introduces the formulation of the Bethe ansatz relevant to the XXX model, and
Sections 3.2 and 3.3 carry out the diagonalizations of Hr in the case of one (r = 1) and two
(r = 2) opposite spins, respectively.

3.1 The mathematical Bethe ansatz

The exact solution of the Heisenberg isotropic ferromagnetic model hinges on the powerful
ansatz, or hypothesis, first postulated by Bethe [2] in 1931. Originally used to hypothesize
the form of the eigenvectors of the XXX model, the Bethe ansatz has been generalized
successfully to give the form of eigenvectors in many other models, including delta-function
interaction potentials, analyzed by C. N. Yang and C. P. Yang, and ice-type models, analyzed
by Lieb and Baxter. C. N. Yang [17] gives three equivalent intuitive physical descriptions
of the Bethe ansatz, in its greatest generality: the wave function of a system is a finite
sum of pure exponentials in each of a number of regions into which the coordinate space of
the system is divided; the system in question displays reflection but no diffraction; and the
system obeys a “large number of conservation laws.”2 Of these descriptions, the first comes
closest to the version of the Bethe ansatz which we will use, which roughly states that the
wave function in the region {x1 < · · · < xN} is a superposition of exponentials.

We now describe the “classical” Bethe ansatz, as applied to the XXX model. Note that
the formulation below of the Bethe ansatz does not purport to be a formula for eigenvectors;
it is merely a tool which makes the task of finding eigenvectors easier by suggesting that they
take a certain form. Using the Bethe ansatz, we may easily find a number of eigenvectors,
which we must then count to verify that they constitute all eigenvectors.

Bethe ansatz 3.1 The eigenvectors

ψ =
∑

1≤x1<···<xr≤N

a(x1, . . . , xr)|x1 · · ·xr〉

of Hr have coefficients of the form

a(x1, . . . , xr) =
∑

π∈Sr

Aπ exp

[

i
r∑

j=1

pπ(j)xj

]

,

where p1, . . . , pr are r unequal numbers, Sr is the symmetric group on r elements, and the
Aπ are complex numbers depending on π.

It is straightforward to show that ψ from the Bethe ansatz has a well-defined total momentum
(as defined in Section 2.4) of p1 + · · · + pm.

2Yang illustrates the importance of the Bethe ansatz by using it in [17] to deduce the central Yang-Baxter
equation in statistical mechanics.
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From the Bethe ansatz, it is possible to deduce heuristically a set of conditions which
determine the energy eigenvalues of Hm; see Izyumov and Skryabin [9] for this nonrigorous
argument, as well as a more general result for the XXZ model. Here we will simply quote
the result from [9]: the eigenvalues of Hr are given by

E = E0 +
m∑

j=1

1

λ2
j + 1/4

, (3.1)

where the λj satisfy the series of equations

(
λj + i/2

λj − i/2

)N

=
∏

1≤ℓ≤N, ℓ 6=j

λj − λℓ + i

λj − λℓ − i
(3.2)

for each j = 1, . . . , N ; λj here is related to pj from the Bethe ansatz via the relation

pj = 2 cot−1(2λj) =
1

i
log

λj + i/2

λj − i/2
. (3.3)

Although we will use equations (3.1), (3.2), and (3.3) in Sections 3.2 and 3.3 to find precise
eigenvectors of Hr, we will independently verify that the vectors thus obtained are in fact
eigenvectors, thus showing that the equations are correct in these cases. These equations,
like the Bethe ansatz itself, are simply a convenience which allow us to find eigenvectors of
Hr more easily than otherwise.

3.2 Diagonalization of H1

As a first application of the Bethe ansatz, we will diagonalize the Heisenberg XXX Hamilto-
nian in the case of one opposite spin, i.e., when r = 1. This relatively simple example is easy
to approach rigorously; we follow the approach of Izyumov and Skryabin [9]. In Section 3.3,
we treat the case r = 2, which is more unwieldy and whose mathematical formalism has
been inadequately addressed in the literature. The remaining cases 3 ≤ r ≤ N/2 are too
complicated to be precisely treated in this paper. Indeed, the exact diagonalization of Kr is
equivalent to the solution of an r-body problem, which is essentially impossible when r ≥ 3:
“the analysis of 3- or more-magnon states requires the solution of a full many-body problem”
[13, p. 138].

We consider the Bethe ansatz in the case r = 1, and then verify that it is correct in

this case. Equation (3.2), which we stated without proof, simply becomes
(

λ+i/2
λ−i/2

)N

= 1; if

p is defined as in (3.3), then eipN = 1, and so p = 2kπ/N for some k = 0, . . . , N − 1. The
Bethe ansatz then postulates that the eigenvectors ψ of H1 are given by

ψ = A
N∑

x=1

eipx|x〉.

It is easy to check that when p = 2kπ/N , the vector ψ is indeed an eigenfunction of H1, with
eigenvector E = E0 + 2(1 − cos p); we did this, more or less, in Section 2.4. (Recall that E0
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is defined by E0 = −N/2.) The N eigenvectors thus obtained form an orthogonal basis of
H1 (orthonormal if A =

√
N) with respect to the usual complex scalar product. This proves

the following result, already stated in Section 2.4.

Proposition 3.2 The N eigenvalues of H1 are given by

E = E0 + 2(1 − cos(2kπ/N)),

where k = 0, . . . , N − 1.

3.3 Diagonalization of H2

In the mathematical physics literature, the use of the Bethe ansatz to diagonalize the Heisen-
berg XXX Hamiltonian is typically presented without much rigor; see, for instance, Bethe’s
original paper [2] or Izyumov and Skryabin’s detailed exposition of the Bethe ansatz in [9].
The problem of showing that the eigenvectors produced by the Bethe ansatz give a complete
diagonalization of the Heisenberg Hamiltonian is often treated lightly or not at all. In this
section, we will rigorously treat the diagonalization of Hr in the case of two opposite spins,
i.e., when r = 2.

In the case r = 2, the series of equations (3.2) becomes
(

λ1 + i/2

λ1 − i/2

)N

=
λ1 − λ2 + i

λ1 − λ2 − i
=

(
λ2 − i/2

λ2 + i/2

)N

. (3.4)

This equation and the relation between pj and λj from (3.3) imply, in particular, that
eiNp1p2 = 1, so that eip1p2 = ω2, where ω = eiπk/N for some k = 0, . . . , N − 1. If we then set
x = eip2/ω = ω/eip1 , and throw out the nonsensical root x = 0, then (3.4) becomes an N -th
degree polynomial equation in x:

(ω + ω−1)xN − 2xN−1 − 2ωNx + (ωN+1 + ωN−1) = 0.

In terms of x, the expression (3.1) for energy becomes

E = E0 + 4 − (ω + ω−1)(x + x−1).

The following result verifies the Bethe ansatz predictions of (3.1) and (3.2) by showing
that the above formulas give essentially all of the eigenvalues of H2.

Proposition 3.3 The
(

N
2

)
eigenvalues of H2 are given by

E(k, x) = E0 + 4 − 2

(

cos
kπ

N

)(

x +
1

x

)

, (3.5)

where x 6= 0,±1 is a root of the polynomial equation

qk(x) ≡
(

cos
kπ

N

)

xN − xN−1 − (−1)kx + (−1)k

(

cos
kπ

N

)

= 0 (3.6)

and k runs from 0 to N−1, along with the extra eigenvalues E = E0 for all N , and E = E0+2
when N is even. (With respect to multiplicity, only one of each pair of E(k, x) and E(k, 1/x)
is counted as an eigenvalue.)
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Here (3.6) defines the polynomial qk(x). In order to prove the proposition, we first establish
a lemma essentially due to Bethe [2].

Lemma 3.4 Given k = 0, . . . , N − 1 and x satisfying qk(x) = 0, there exists an eigenvector
ψk,x of H2 with eigenvalue E(k, x) defined by (3.5).

Proof. Our strategy is to use the Bethe ansatz as motivation to find a potential eigenvector
of H2, and then to derive qk(x) = 0 as a necessary and sufficient condition for our vector to be
an eigenvector with the desired eigenvalue. The Bethe ansatz hypothesizes that eigenvectors
of H2 will have the form

ψ =
∑

1≤x1<x2≤N

a(x1, x2)|x1x2〉, (3.7)

where
a(x1, x2) = A12e

i(p1x1+p2x2) + A21e
i(p2x1+p1x2) (3.8)

and p1 6= p2. For ease of notation, introduce new variables P1 and P2 where Pj = eipj , so
that (3.8) becomes

a(x1, x2) = A12P
x1

1 P x2

2 + A21P
x1

2 P x2

1 . (3.9)

We now rewrite (2.8), the conditions on the coefficients a(x1, x2) for ψ to be an eigen-
function of H2 with eigenvalue E:

Ea(x1, x2) = (4−N/2) a(x1, x2)− a(x1 − 1, x2)− a(x1 + 1, x2)− a(x1, x2 − 1)− a(x1, x2 + 1)
(3.10)

if x2 6= x1 + 1, and

Ea(x1, x1 + 1) = (2 − N/2) a(x1, x1 + 1) − a(x1 − 1, x1 + 1) − a(x1, x1 + 2). (3.11)

The function a(x1, x2) is only defined when x1 and x2 are integers with 1 ≤ x1 < x2 ≤ N .
Equation (3.9) makes sense for all x1 and x2, however, so extend the domain of a(x1, x2) to all
integers x1 < x2; we will later impose the necessary boundary condition, that a(x2, x1+N) =
a(x1, x2). (Since (3.9) is not necessarily symmetric in x1 and x2, we cannot extend the domain
of a(x1, x2) by symmetry to all x1 and x2, as we did in Section 2.4.)

It is straightforward to check that (3.9) satisfies (3.10) for arbitrary A12 and A21, when

E = E0 + 2(1 − cos p1) + 2(1 − cos p2). (3.12)

Thus (3.10) is satisfied for all x1 and x2 (not necessarily with x2 6= x1 +1) when (3.12) holds.
A comparison of (3.11) with the case x2 = x1 + 1 in (3.10) yields the additional condition

2a(x1, x1 + 1) = a(x1, x1) + a(x1 + 1, x1 + 1), (3.13)

which is then equivalent to (3.11). On substituting (3.9), we find that (3.13), in turn, is
equivalent to the relation

A12

A21

= −2P1 − 1 − P1P2

2P2 − 1 − P1P2

. (3.14)
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Finally, the boundary condition a(x1, x2) = a(x2, x1 + N) holds, from the definition (3.9),
exactly when

A12

A21

= PN
1 = P−N

2 . (3.15)

We may eliminate the auxiliary variables A12 and A21 from (3.14) and (3.15) to get

PN
1 = P−N

2 = −2P1 − 1 − P1P2

2P2 − 1 − P1P2

. (3.16)

We conclude that if P1, P2, and E satisfy (3.12) and (3.16), then the vector with
coefficients defined by (3.9) is an eigenvector of H2 with eigenvalue E. Now given k and
x 6= ±1 satisfying (3.6), we may define

P1 = ω/x, P2 = ωx, (3.17)

where ω = eiπk/N . (The requirement that x 6= ±1 ensures that P1 6= P2, so that a(x1, x2)
is not identically zero. As a side note, (3.17) implies that the total momentum p1 + p2, as
defined in Section 2.4, is equal to 2kπ/N , a fact we will use in the proof of Proposition 3.3.)
With this definition, (3.16) becomes precisely the given condition (3.6), while (3.12) becomes
(3.5). Thus our values for k and x produce an eigenvector ψk,x defined by (3.7) and (3.9)
with eigenvalue E(k, x), as desired. 2

Proof of Proposition 3.3. We first count the number of eigenvalues and eigenvectors we
obtain through the construction of Lemma 3.4. The polynomial equation (3.6), qk(x) = 0,
has N roots unless N is even and k = N/2, in which case it has N − 2 nonzero roots.
Note that if x is a root of qk, then 1/x does also, and that ψk,x = ψk,1/x in this case. (The
transformation x → 1/x merely interchanges P1 and P2.) We may check that qk has no
double roots when k 6= 0 by simultaneously setting qk = dqk/dx = 0; we obtain a quadratic
in x,

(N − 1)

(

cos
kπ

N

)

x2 − N

(

sin
kπ

N

)2

x +

(

1 − N cos
kπ

N

)

= 0,

whose two roots can be verified not to satisfy qk(x) = 0 when k 6= 0. Also note that x = 1
is a root of qk exactly when k = 0 (double root) or k is odd, while x = −1 is a root exactly
when N + k is odd.

Suppose that N is even. From the above observations, a simple counting argument
yields that a given value of k = 0, . . . , N − 1 will produce N/2 − 1 eigenvectors if k = 0,
k = N/2, or k is odd, and N/2 eigenvectors if k is even and k 6= 0, N/2, for a total of
(

N
2
− 1

) (
N
2

+ 2
)

+
(

N
2

) (
N
2
− 2

)
=

(
N
2

)
− 2 eigenvectors. Two additional eigenvectors are

given by ψ0, defined by a(x1, x2) ≡ 1, with eigenvalue E0 = −N/2, and ψeven, defined by

a(x1, x2) =







(−1)x1 if x2 = x1 + 1
1 if x1 = 1, x2 = N
0 otherwise,

with eigenvalue E0 + 2. Note that we have chosen ψ0, the constant eigenvector, so that we
may regard it as an eigenvector of the form ψk,x/2, where k = 0 and x = 1.
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Similarly, if N is odd, we find that a given value of k will produce (N−1)/2 eigenvectors
when k 6= 0, and (N −3)/2 eigenvectors when k = 0, for a total of

(
N
2

)
−1 eigenvectors. One

additional eigenvector is given, as above, by ψ0, defined by a(x1, x2) ≡ 1, with eigenvalue
E0.

Thus, for either parity of N , we obtain
(

N
2

)
eigenvectors. To complete the diagonal-

ization of H2, it suffices to show that these eigenvectors are linearly independent. In fact,
all pairs of eigenvectors are orthogonal under the usual complex scalar product (·, ·), as we
now show. Recall the site translation operator T from Section 2.4, which is defined on H2

by T |x1x2〉 = |x1 + 1, x2 + 1〉. Any eigenvector ψk,x of H2 produced by the Bethe ansatz
and Lemma 3.4 is, by virtue of its form (3.8), an eigenvector of T as well, with eigenvalue
ep1+p2 = e2iπk/N . (In the language of Section 2.4, ψk,x has total momentum 2πk/N .) Now
consider two eigenvectors ψk,x and ψk̃,x̃ produced by Lemma 3.4. If k 6= k′, then ψk,x and
ψk̃,x̃ are eigenvectors of T with different eigenvalues; since T is hermitian, the two vectors are
orthogonal. If k = k′, on the other hand, then we claim that ψk,x and ψk̃,x̃ are eigenvectors
of H with different eigenvalues, so that they are again orthogonal. Indeed, their eigenvalues
with respect to H are the same, by (3.5), only if x + 1/x = x̃ + 1/x̃, which happens only
if x̃ = x or x̃ = 1/x, a case we have already ruled out by noting that qk has no double
roots, and allowing only one of each pair of ψk,x and ψk,1/x. Thus all pairs ψk,x and ψk̃,x̃ are
orthogonal.

The “extra” eigenvectors ψ0 and ψeven are orthogonal to all of these eigenvectors. If
we write ψ0 in the form ψk,x/2 where k = 0, x = 1, then the above argument shows that ψ0

is orthogonal to all of the ψk,x. In addition, if N is even, then

(ψk,x, ψeven) =
N∑

x1=1

(−1)x1a(x1, x1 + 1) =
N∑

x1=1

(−1)x1

(
a(x1, x1) + a(x1 + 1, x1 + 1)

2

)

= 0,

where we have used (3.13) and the periodic boundary condition for a(x1, x2).
Thus all eigenvectors are pairwise orthogonal, and hence the entire collection of eigen-

vectors is linearly independent, which completes the diagonalization and the proof of Propo-
sition 3.3. 2
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4 Applications of the diagonalization

This section is devoted to consequences of the diagonalization of H1 and H2 effected in Sec-
tion 3. In Section 4.1, we show that the Heisenberg Hamiltonian is directly related to the
transition matrix of the interchange process, so that our diagonalization from Section 3 may
be applied to the interchange process. Section 4.2 gives some preliminary results necessary
for Sections 4.3 and 4.4; Section 4.3 calculates the so-called spectral gap of the interchange
chain, which essentially determines how quickly the chain becomes random, and Section 4.4
rederives results given by Izyumov and Skryabin [9] on the asymptotic distribution of eigen-
values of the interchange model when the number of cards is large.

4.1 The interchange model Kr

Consider the
(

N
r

)
-dimensional complex vector space generated by the

(
N
r

)
configurations of

r red and N − r black cards in a circle. Through the identification of a red card in position
j with the down spin vector e−j and a black card in position j with e+

j , this vector space is
canonically isomorphic to the space Hr defined in Section 2.2.

Now consider the following random walk on Hr, which we call the interchange process
on ZN . At each step, choose a pair of neighboring cards (sites) uniformly at random, and
switch the cards (spins occupying those sites). This defines a reversible, irreducible Markov
chain with uniform stationary distribution µ ≡ 1/

(
N
r

)
. (For the precise definitions of these

terms, see Section 5.1.) Let Kr be the associated
(

N
r

)
×

(
N
r

)
transition matrix.

We may define Kr formally as follows. Identify a basis element of Hr by the r-element
subset of ZN corresponding to the positions of the red cards (down spins, e−j ); in other words,
identify |x1 · · ·xr〉 with {x1, . . . , xr} ⊂ ZN . If A1 and A2 are two r-subsets of ZN , then the
transition probability from A1 to A2 is

Kr(A1, A2) =







0 if |A1 ∩ A2| ≤ r − 2
0 if |A1 ∩ A2| = r − 1 and A1 − A2 = {x1},

A2 − A1 = {x2}, with x2 − x1 6= ±1
1/N if |A1 ∩ A2| = r − 1 and A1 − A2 = {x1},

A2 − A1 = {x2}, with x2 − x1 = ±1
1 − d(A1)/N if A1 = A2, where

d(A1) = |{(x1, x2) : x1 ∈ A1, x2 6∈ A1, x2 − x1 = ±1}|.
(4.1)

As a side note, we may define, in a similar manner, a more general interchange process
on any finite graph G, as follows. Place r red cards and N − r black cards on the N vertices
of G; a step in the chain consists of choosing an edge of G uniformly at random and switching
the cards on the endpoints of that edge. Our particular interchange process corresponds to
letting G be a cycle on N vertices, which is naturally associated with the Cayley graph of
ZN with generators {±1}. Subsequent references to “interchange” without further qualifiers
will be understood to mean interchange on ZN .

In order to determine the rate of convergence to the limiting stationary distribution
of the interchange Markov chain, we wish to find the eigenvalues of Kr. The crucial fact in
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diagonalizing Kr is that Kr is very simply related to Hr; we may then use the results from
Sections 3.2 and 3.3 to compute the spectrum of Kr.

Proposition 4.1 If I is the identity operator, then Kr = I/2 −Hr/N .

Proof. This follows directly from (2.2) and the equation Kr = (
∑N

j=1 Pj,j+1)/N , where
Pj,j+1 is defined, as in Section 2.2, to be the operator switching the sites labelled j and j +1.
2

Corollary 4.2 The eigenvalues E of Hr and β of Kr are in one-to-one correspondence via
the relation β = 1/2 − E/N .

Because of Corollary 4.2, we will examine the eigenvalues of Hr in subsequent sections, in
order to obtain information about our Markov chain Kr.

Corollary 4.3 The eigenvalues β of K1 are given by β = 1 − 2
N

(1 − cos
(

2kπ
N

)
), where

k = 0, . . . , N − 1.

Corollary 4.4 The eigenvalues β of K2 are given by

β(k, x) = 1 − 2

N

(

2 −
(

cos
kπ

N

)(

x +
1

x

))

,

where k = 0, . . . , N − 1 and x 6= 0,±1 satisfies qk(x) = 0, along with the extra eigenvalues
β = 1 for all N , and β = 1 − 2/N when N is even.

The interchange model Kr on r red cards and N − r black cards has a simple inter-
pretation when r = 1 (or r = N − 1). In this case, there is only one distinguished card; at
each stage, it moves left with probability 1/N , moves right with probability 1/N , and stays
put with probability 1 − 2/N . This chain is therefore linearly related to the simple random
walk on ZN ; the interchange transition matrix Kr is precisely (1 − 2/N)I plus 2/N times
the simple random walk transition matrix. The eigenvalues of the simple random walk on
ZN are well known to be cos(2kπ/N), k = 0, . . . , N − 1, and so we recover Corollary 4.3.

For other values of r, the interchange process Kr cannot be so easily analyzed, and we
believe that much of our analysis of K2 is original. Unlike the state space of K1, which is
essentially the group ZN , the state space Xr of Kr for higher values of r is not a group, and
so we cannot use the rich theory of random walks on groups (see, e.g., Diaconis [3, §3]); Xr

is, however, a homogeneous space, as we now explain. Since Xr represents the collection of
configurations of r red cards and N−r black cards on {1, . . . , N}, there is a natural transitive
action of the symmetric group SN on Xr which simply permutes the arrangement of cards
according to some permutation π; in other words, the action of SN on itself descends to an
action of SN on Xr. If x0 is some configuration in Xr, then the isotropy subgroup of x0, or
the subgroup of permutations which fix x0, is isomorphic to Sr × SN−r (permutations which
permute the r red cards among themselves, and the N − r black cards among themselves),
and Xr is thus isomorphic to SN/(Sr × SN−r). The transitive action of SN on Xr, and the
resulting identification of Xr with a quotient of SN , makes Xr a homogeneous space, as
defined by Diaconis [3, §3F].
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4.2 Nature of the roots of qk

For the remainder of Section 4, we will focus on the problem of analyzing the spectrum of
H2, although we will also give corresponding results for H1 for purposes of comparison. In
order to understand the eigenvalues of H2, we first make a few remarks about the roots of the
polynomials qk. If x 6= 0,±1 is a root of qk, then by Proposition 3.3, there is an eigenvalue
of H2 which is linearly related to x + 1/x by (3.5). Since H2 is hermitian, it has all real
eigenvalues, and so x + 1/x must be real. But this can happen only if x is real or |x| = 1. It
will be convenient to abbreviate the complex unit circle {|x| = 1} by S1; then every root of
qk is in R ∪ S1.

The distinction between the two types of roots of qk—those lying in R, and those
lying in S1—corresponds to our distinction in Section 2.4 between two-magnon and bound
states, respectively. Indeed, if x ∈ S1, then P1 and P2, as defined in (3.17), both lie on the
complex unit circle, so that the “momenta” p1 and p2 are real; in our physical description
from Section 2.4, the resulting eigenvector is precisely a two-magnon state. By contrast, if
x is real, then P1 and P2 do not lie on the unit circle, so that p1 and p2 are not real; the
resulting eigenvector is a bound state.

How many real roots does qk have? If x 6= ±1, then qk(x) = 0 if and only if

xN−1 + (−1)kx

xN + (−1)k
= cos

kπ

N
. (4.2)

Analysis of the behavior of the left hand side of this equation yields the following result.
Note that if N is even and k = N/2, then qk has no real roots not equal to 0 or ±1.

Proposition 4.5 If k 6= N/2, then qk has exactly two real roots not equal to ±1 if the
following condition holds:

cos
kπ

N
∈







(−1, 1) if N, k even
(−N−2

N
, N−2

N
) if N even, k odd

(−N−2
N

, 1) if N odd, k even
(−1, N−2

N
) if N, k odd.

Otherwise, qk has no real roots not equal to ±1.

From Proposition 4.5, we see that practically all of the roots of qk lie on S1. If x = eiθ

is a root of qk, then we may divide the numerator and denominator of (4.2) by eiNθ/2 to
obtain

cos
kπ

N
=







cos((N
2
−1)θ)

cos(N
2

θ)
if k is even

sin((N
2
−1)θ)

sin(N
2

θ)
if k is odd.

(4.3)

Straightforward analysis of the functions
cos((N

2
−1)θ)

cos(N
2

θ)
and

sin((N
2
−1)θ)

sin(N
2

θ)
gives us the following

result, which says that the roots of qk in S1 are essentially evenly spaced in S1 with respect
to argument.
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Proposition 4.6 There is exactly one root of qk in S1 with argument in each of the follow-
ing intervals:

k even, N even: ( π
N

, 3π
N

), (3π
N

, 5π
N

), . . . , ( (N−3)π
N

, (N−1)π
N

);

k even, N odd: ( π
N

, 3π
N

), (3π
N

, 5π
N

), . . . , ( (N−4)π
N

, (N−2)π
N

), and also ( (N−2)π
N

, π) if cos kπ
N

< −N−2
N

;

k odd, N even: (2π
N

, 4π
N

), (4π
N

, 6π
N

), . . . , ( (N−4)π
N

, (N−2)π
N

), and also (0, 2π
N

) if cos kπ
N

> N−2
N

, and

( (N−2)π
N

, π) if cos kπ
N

< −N−2
N

;

k odd, N odd: (2π
N

, 4π
N

), (4π
N

, 6π
N

), . . . , ( (N−3)π
N

, (N−1)π
N

), and also (0, 2π
N

) if cos kπ
N

> N−2
N

.

Furthermore, all roots of qk in S1−{±1} are given by the roots in these intervals, along with
their inverses (complex conjugates).

4.3 Spectral gap of K1 and K2

We now calculate the second largest eigenvalue β1 of Kr for r = 1 and r = 2. In the
literature, the absolute value of the eigenvalue β∗ of a Markov chain which is second largest
in absolute value, after 1, is known as the spectral gap, and its value controls the rate of
convergence of the chain; see Section 5.1 for more particulars. After computing β1, we will
show that the smallest eigenvalue of K1 (respectively K2) is at least 1 − 4/N (respectively
1− 8/N); in particular, it is nonnegative for N ≥ 8, and so the spectral gap β∗ is β1 in these
cases.

By Corollary 4.2, the two largest eigenvalues of Kr correspond to the ground state
and lowest excitation of the chain of fermions described by Hr. The result for r = 1 follows
immediately from Proposition 3.2, while the result for r = 2, as usual, requires more work.

Proposition 4.7 The ground state and lowest excitation energy eigenvalues of H1 are given
by E0 = −N/2, with multiplicity 1, and

E1 = E0 + 4
(

sin
π

N

)2

,

with multiplicity 2.

Proposition 4.8 The ground state and lowest excitation energy eigenvalues of H2 are given
by E0 and E1, as defined in Proposition 4.7, again with multiplicities 1 and 2, respectively.

Proof. Let ω = eiπ/N . Note that E1 is the eigenvalue corresponding to setting k = 1 and
x = ω (or x = 1/ω) in Proposition 3.3; it is easy to check that q1(ω) = 0. It suffices to show
that the eigenvalues E given by (3.5) in the statement of Proposition 3.3 all satisfy E ≥ E1,
with equality if and only if k = 1 and x = ω or x = 1/ω, or k = N − 1 and x = −ω or
x = −1/ω.

So say 0 ≤ k ≤ N−1, and x 6= 0,±1 satisfies qk(x) = 0. It suffices to show that E ≥ E1

for k ≤ N/2, since qk(x) = 0 implies that qN−k(−x) = 0, and E(k, x) = E(N − k,−x).
Assume, therefore, that k ≤ N/2, so that cos(kπ/N) ≥ 0. Recall that either x ∈ S1 or
x ∈ R.
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First consider the cases k = 0 and k = 1. If k = 0, then q0(x) = (x − 1)(xN−1 − 1), so
that x is an (N − 1)–st root of unity, and

E +
N

2
− 4 = −2

(

x +
1

x

)

≥ −4 cos
2π

N − 1
> −2

(

1 + cos
2π

N

)

= −4
(

cos
π

N

)2

,

whence E > E1. If k = 1, then by Proposition 4.5, q1 has no real roots besides ±1, since
cos π

N
> N−2

N
(in fact, cos(πx) > 1−2x for all x < 1/2). Thus x ∈ S1. Assume that Im x > 0;

otherwise replace x by 1/x. Then (4.3) becomes

cos
π

N
=

sin(
(

N
2
− 1

)
arg x)

sin(
(

N
2

)
arg x)

. (4.4)

Since the right hand side of (4.4) is an increasing function of arg x for arg x ∈ (0, π/N), and
since x = eiπ/N satisfies (4.4), we conclude that arg x ∈ (π/N, π). But this gives

E +
N

2
− 4 = −4

(

cos
π

N

)

cos(arg x) ≥ −4
(

cos
π

N

)2

,

so that E ≥ E1, with equality if and only if x = ω or x = 1/ω.
Now suppose that 2 ≤ k ≤ N/2. If x ∈ S1, then

E +
N

2
− 4 = −2

(

cos
kπ

N

)(

x +
1

x

)

> −2 cos
kπ

N
≥ −2 cos

2π

N
= −4

(

cos
π

N

)2

+ 2,

and so E > E1 + 2. If x ∈ R, then we may assume that x > 0, since otherwise E ≥ E0 + 4;
then the following series of inequalities holds:

x(x − 1)(xN−1 − 1) > 0;

x +
1

x
< 1 +

xN + 1

xN−1 + x
= 1 +

1

cos kπ
N

≤ 1 + cos 2π
N

cos kπ
N

;

E +
N

2
− 4 = −2

(

cos
kπ

N

)(

x +
1

x

)

> −2

(

1 + cos
2π

N

)

= −4
(

cos
π

N

)2

,

whence E > E1 again. 2

Corollary 4.9 The two largest eigenvalues of each of K1 and K2 are β0 = 1 and

β1 = 1 − 4

N

(

sin
π

N

)2

.

We conjecture that β1 given in Corollary 4.9 is the second largest eigenvalue of Kr for
all r; see Section 6.2 for partial results. We next place an upper bound on the eigenvalues
of H1 and H2, or, equivalently, a lower bound on the eigenvalues of K1 and K2.
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Proposition 4.10 All eigenvalues E of H1 satisfy E ≤ E0 + 4, while all eigenvalues E of
H2 satisfy E ≤ E0 + 8.

Proof. For H1, the proposition follows from Proposition 3.2. For H2, we claim the slightly
stronger statement that E(k, x) ≤ E0 + 8 when x ∈ S1, and E(k, x) ≤ E0 + 2 when x ∈ R.
If x ∈ S1, this follows from Proposition 3.3. If x is real, then the inequality E(k, x) ≤ E0 +2
is equivalent to

(
cos kπ

N

)
(x + 1/x) ≥ 1. By (4.2), this, in turn, is equivalent to

0 ≤ xN + xN−2 + (−1)kx2 + (−1)k

xN + (−1)k
− 1 =

xN−2 + (−1)kx2

xN + (−1)k
,

which is easy to verify for all x. 2

Corollary 4.11 All eigenvalues β of K1 satisfy β ≥ 1− 4/N , while all eigenvalues β of K2

satisfy β ≥ 1 − 8/N . In particular, when N ≥ 8, β1 is the spectral gap β∗ of K1 and K2.

4.4 Asymptotic spectrum distribution of K1 and K2

In this section, we look at the asymptotic behavior of the spectra of K1 and K2 as N → ∞,
which corresponds in physics to the “classical limit.” This will give additional information
about the rates of convergence of these Markov chains, which will be dealt with more precisely
in Section 5.3. The spectrum distributions derived below, including (4.5) and (4.6), are also
derived, using the Bethe ansatz, by Izyumov and Skryabin [9]; their reasoning is heuristic
and mathematically unsound, however, whereas we will give a rigorous derivation based on
previous results in this paper.

For K1, the limiting distribution of eigenvalues is given by Corollary 4.3 as E =
1 − 2

N
(1 − cos p), where p ranges uniformly in [0, 2π).
From the results in Section 4.2, we may deduce the asymptotic distribution of eigen-

values of K2 as N → ∞. We first look at the limiting distribution of the bound states. There
will be a bound state corresponding to k if the condition in Proposition 4.5 holds. Now if
0 ≤ k ≤ N − 1, then the inequality cos

(
kπ
N

)
< N−2

N
holds approximately when k > 2

√
N/π,

and similarly cos
(

kπ
N

)
> −N−2

N
approximately when k < N − 2

√
N/π. Thus Proposition 4.5

implies that there are on the order of N bound states (there are negligibly few values of k
which do not give bound states). If we write P = 2kπ/N (here P = p1 + p2 is the total
momentum, where p1 and p2 are as in the proof of Lemma 3.4), then P is roughly uniformly
distributed in [0, 2π), and the value of x > 1 for which qk(x) = 0 is, by (4.2), x ≈ 1/ cos(P/2).
This leads to an eigenvalue distribution of

β = 1 − 2

N

(

2 −
(

cos
kπ

N

)(

x +
1

x

))

≈ 1 − 1

N
(1 − cos P ), (4.5)

where, to reiterate, P is uniform in [0, 2π).
We next look at the distribution of the approximately N2/2 two-magnon states. These

are indexed by k and x, where qk(x) = 0 and x ∈ S1; by Proposition 4.6, arg x ranges
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uniformly in [0, π) as N → ∞. The relation (3.17) between Pj = eipj and k and x, from the
proof of Lemma 3.4, implies that p1 = kπ/N + arg x and p2 = kπ/N − arg x; in terms of p1

and p2, (3.12) gives us an eigenvalue distribution of

β = 1 − 2

N
((1 − cos p1) + (1 − cos p2)), (4.6)

where we may assume that p1 and p2 range independently and uniformly in [0, 2π). Note
that solving for E = N/2 − Nβ in this equation gives the energy distribution (2.10) from
our discussion of magnons, which we previously only justified by heuristic means.

To summarize, we have found that there are approximately N2/2 “two-magnon” eigen-
values of K2, and that their distribution roughly obeys (4.6); the approximately N “bound”
eigenvalues roughly obey the distribution given by (4.5).
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5 Rates to stationarity

This paper culminates in the calculation, performed in this section, of rates to stationarity
for the interchange walks K1 and K2. After describing the necessary notation and results
from random walk theory in Section 5.1, we place bounds (both upper and lower) on the
distance of K1 and K2 from stationarity after a number of steps in Sections 5.2 and 5.3,
respectively. In each case, we find that it takes order N3 steps for the chain to become
random.

5.1 Background

Before we apply our Bethe ansatz diagonalization to the interchange random walk, we review
some terminology and elementary results from the theory of random walks. A Markov chain
on a finite state space X, with |X| = n, is characterized by a square n×n transition matrix
K, so that K(x, y) is the probability of ending at y after one step of the process, given initial
state x. A measure µ : X −→ [0, 1] is a reversing measure for K if µ(x)K(x, y) = µ(y)K(y, x)
for all x, y ∈ X; if K has a reversing measure, then K is reversible; the unique reversing
measure µ with

∑

x∈X µ(X) = 1, which is known as the stationary distribution of K, is
invariant under application of K. Finally, K is irreducible if for any x, y ∈ X, there is an m
such that Km(x, y) > 0. We will assume that the chain K is reversible and irreducible, so
that the matrix K is real symmetric; then K is completely diagonalizable, with eigenvalues
1 = β0 > β1 ≥ β2 ≥ . . . ≥ βN−1 > −1.

The reversing measure µ defines an inner product space L2(µ) of complex-valued func-
tions on X, where the inner product is given by 〈f |g〉 =

∑

x∈X f(x)g(x)µ(x), and the L2

norm on L2(µ) is defined by ‖f‖2 = 〈f |f〉1/2. Probability distributions on X can then be
considered as elements in L2(µ). Note that if µ(x) ≡ 1/n is uniform, then the L2(µ) inner
product 〈·|·〉 is related to the usual hermitian inner product (·, ·) by n〈f |g〉 = (f, g).

We wish to measure the distance of a probability distribution on X from stationarity.
In particular, let Km

x (y) = Km(x, y) be the (x, y) entry in the matrix Km, or the probability
that the chain will be in state y after m steps, given that it begins in state x. The more
“random” the distribution Km

x is, the closer it will be to stationarity. To quantify the
distance between a distribution and stationarity, we use the total variation distance

‖Km
x − µ‖TV = max

A⊂X
|Km

x (A) − µ(A)| =
1

2
max

‖f‖∞≤1
|Km

x (f) − µ(f)|, (5.1)

where P (A) denotes
∑

x∈A P (x), P (f) denotes
∑

x∈X f(x)P (x), and ‖f‖∞ = maxx∈X |f(x)|.
The following proposition, essentially taken from Diaconis and Saloff-Coste [4], summarizes
some elementary results from random walk theory, used to obtain upper bounds on distances
from stationarity.

Proposition 5.1 Let {ϕj}n−1
j=0 be an orthonormal basis of eigenvectors of K in L2(µ), or-

dered to satisfy Kϕj = βjϕj, where 1 = β0 > β1 ≥ · · · ≥ βn−1 > −1 are the eigenvalues of
K; also, let ‖ · ‖2 denote the L2(µ) norm, and let β∗ = max{β1, |βn−1|} be the spectral gap
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of K. Then we have

‖Km
x − µ‖TV ≤ 1

2

∥
∥
∥
∥

Km
x

µ
− 1

∥
∥
∥
∥

2

=
1

2

(
n−1∑

j=1

|ϕj(x)|2β2m
j

)1/2

, (5.2)

‖Km
x − µ‖TV <

√
n

2
βm
∗ , (5.3)

1

n

∑

x∈X

‖Km
x − µ‖2

TV ≤ 1

4

n−1∑

j=1

β2m
i . (5.4)

The proof of Proposition 5.1 is standard; see, e.g., Diaconis and Saloff-Coste [4]. The in-
equality given by (5.3) is usually somewhat crude, since it only uses one eigenvalue rather
than all of them. Inequality (5.4) states that the average (root-mean-square) distance from
stationarity, averaged over all initial states, is bounded above by (

∑n−1
j=1 β2m

j )1/2/2; when K
is vertex transitive, as is the case for the interchange process K1, all distances from station-
arity are the same, and we obtain ‖Km

x − µ‖TV ≤ (
∑n−1

j=1 β2m
j )1/2/2 for all initial states x,

which is usually better than (5.3) by a factor of
√

n.
To find a lower bound on distance from stationarity, we have the following useful result.

Proposition 5.2 If µ ≡ 1/n is uniform and Kϕ = βϕ, then

‖Km
x − µ‖TV ≥ |ϕ(x)|

2‖ϕ‖∞
βm,

where ‖ϕ‖∞ = max |ϕ(x)|.

Proof. If β = 1, the result is trivial. Otherwise, ϕ is orthogonal to the constant eigenvector
of K, so that µ(ϕ) = 0. Introduce δx defined by δx(x) = 1/µ(x), δx(y) = 0 if y 6= x. Then

Km
x (ϕ) = 〈ϕ|Kmδx〉 = 〈Kmϕ|δx〉 = βm〈ϕ|δx〉 = βmϕ(x).

We now use the definition (5.1) of total variation distance, with f = ϕ/‖ϕ‖∞:

‖Km
x − µ‖TV ≥ 1

2
|Km

x (f) − µ(f)| =
|ϕ(x)|
2‖ϕ‖∞

βm. 2

5.2 Rate to stationarity of K1

As mentioned in Section 4.1, K1 is essentially the simple random walk on ZN , but with
positive holding probability. To bound rates of convergence of K1, we wish to bound the
sum of powers of the eigenvalues of K1, by the results of the previous section.
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Lemma 5.3 Let {βk : 0 ≤ k ≤ N − 1} be the set of eigenvalues of K1, as given in Corol-
lary 4.3, and let m > N3. Then

N−1∑

k=1

βm
k < 3e−4π2m/N3+γm/N5

,

where γ = 4π4/3.

Proof. Taylor series expansion reveals that 1 − cos x ≥ x2/2 − x4/24 for any x ∈ [0, π], so
that

1 − α(1 − cos x) ≤ e−α(x2/2−x4/24) (5.5)

for any α > 0 and x ∈ [0, π]. It follows that if k ≤ N/2, then βk ≤ e−4k2π2/N3+γk4/N5 ≤
e−4kπ2/N3+γ/N5

; the first inequality follows from (5.5), and the second is straightforward to
check. Thus we have

N−1∑

k=1

βm
k ≤ 2

⌊N/2⌋
∑

k=1

βm
k < 2

∞∑

k=1

e−4kπ2m/N3+γm/N5

< 3e−4π2m/N3+γm/N5

,

where the final inequality assumes that m > N3. 2

We are now in a position to place extremely sharp upper and lower bounds on the
distance from stationarity of (K1)

m
x , the probability distribution after m steps, given initial

state x. Proposition 5.4 shows that it takes order N3 steps for the chain K1 to become
random. This is more or less expected, since K1 runs N/2 times as slowly as the simple
random walk on ZN , which takes order N2 steps to become random; more specifically, if Q
represents the simple random walk, then ‖Qm − µ‖ ∼ e−π2m/2N2

[3, §3C].

Proposition 5.4 Let x be any initial state of K1. If m > N3, then

‖(K1)
m
x − µ‖TV ≤ 3

2
e−4π2m/N3+γm/N5

, (5.6)

where γ = 4π4/3; conversely, for any m,

‖(K1)
m
x − µ‖TV ≥ 1

2
e−4π2m/N3

. (5.7)

Proof. By equation (5.4), Lemma 5.3, and the fact that K1 is vertex transitive on its state
space ZN , we deduce the upper bound (5.6). The lower bound (5.7) is a straightforward

application of Proposition 5.2, with β = β1 = 1 − 4
N

(
sin π

N

)2
and corresponding eigenvector

ϕ defined by ϕ(j) = e2iπj/N ; we have ‖ϕ‖∞ = 1 and |ϕ(x)| = 1 for all x. Now the inequality
1 − α(sin x)2 ≥ e−αx2

, which holds for all α ≥ 0 and x ∈ R and is easily shown by calculus,
implies, when α = 4/N and x = π/N , that β1 ≥ e−4π2/N3

; the proposition follows. 2
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5.3 Rate to stationarity of K2

In accordance with the results from Section 5.1, we wish to bound
∑

β(k, x)m, where m is
an integer and the sum is over all eigenvalues β(k, x) 6= 1 of K2. Since the second largest
eigenvalue of K2, by Corollary 4.9, is approximately 1−4π2/N3 ≈ e−4π2/N3+4π4/3N5

, this sum
is roughly bounded below by e−4π2m/N3+4π4/3N5

. We will show that the sum is also bounded
above, up to constants, by this exponential. The condition m > N3 in the proposition can
be replaced by a much weaker condition on m, although (5.8) does not hold for, say, m = 1
and N large; in any case, our interest lies in the behavior of

∑
β(k, x)m when m is large,

and so m > N3 is an acceptable condition.

Lemma 5.5 If m > N3, then
∑

β(k,x) 6=1

β(k, x)m < 8e−4π2m/N3+γm/N5

, (5.8)

where γ = 4π4/3.

This result is, up to constants, more or less intuitively clear; the proof is rather involved and
not at all illuminating, but is included for completeness. We will need the following simple
lemma.

Lemma 5.6 If µ and ν are real numbers with 2π/N ≤ µ + ν ≤ π, then

1 − cos µ cos ν >
(µ + ν)π

2N
− π4

3N4
.

Proof. It is straightforward to check that the function y2 − πy/N − y4/3 takes on its
minimum value over the interval [π/N, π/2] when y = π/N , so that y2 − y4/3 ≥ πy/N −
π4/3N4 on this interval. But Taylor expansion yields (sinx)2 > y2 − y4/3, and so

1 − cos µ cos ν ≥ 1 −
(

cos
µ + ν

2

)2

=

(

sin
µ + ν

2

)2

>
(µ + ν)π

2N
− π4

3N4
. 2

Proof of Lemma 5.5. For brevity, we omit some steps in the proof. It will be convenient
to split the sum into two sums, one over eigenvalues from the “two-magnon” states, and the
other over eigenvalues from the “bound” states. We first bound the sum over “two-magnon”
eigenvalues, i.e., those eigenvalues β(k, x) from Proposition 3.3 with x ∈ S1. Since the roots
of qN−k give rise to the same energy eigenvalues as the roots of qk, the sum of β(k, x)m over
all k and x ∈ S1 (roots of qk(x)) is at most twice the same sum over k ≤ N/2.

Let k ≤ N/2. Consider the roots of qk in S1 with positive imaginary part; these may
be labelled xk,0, . . . , xk,ℓ (ℓ ≈ N/2 depends on k) in increasing order of argument, so that
0 < arg xk,0 < · · · < arg xk,ℓ < π. Write θk,j = arg xk,j, and write ξk,j = k+Nθk,j/π. We now

bound ξk,j. When k = 0, we may directly calculate that ξ0,j = Nθ0,j/π = 2(j+1)N
N−1

≥ j+2. For
other values of k, Proposition 4.6 implies bounds on ξk,j as follows: ξ1,j ≥ j + 2; ξ2,j ≥ j + 3;
and ξk,j ≥ j + k for k ≥ 3.
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In all cases, 2 ≤ ξk,j ≤ N , and so we may apply Lemma 5.6 to conclude that

β(k, xk,j) = 1 − 4

N
(1 − cos(kπ/N) cos θk,j) > 1 − 2ξk,jπ

2

N3
+

4π4

3N5
≥ e4π4/3N5

(e2π2/N3

)ξk,j .

Raising this inequality to the m-th power, summing over all two-magnon eigenvalues β(k, xk,j)
with k ≤ N/2, and estimating the resulting sum by an infinite sum via the bounds on ξk,j

gives
∑

k≤N/2, x∈S1

β(k, x)m <

(
2η2m − η4m

(1 − ηm)2

)

eγm/N5

< 3η2meγm/N5

,

where η denotes e−2π2/N3

, and we have assumed that m > N3 (so that ηm < e−2π2

).
We next wish to sum β(k, x)m over all k and x ∈ R − {0,±1} satisfying qk(x) = 0.

As before, we bound this above by twice the same sum over k ≤ N/2. Now suppose
that k ≤ N/2, and that x > 1 satisfies qk(x) = 0; we consider two cases. If k is even,

then by (4.2) and the fact that xN−1+x
xN+1

> 1/x, we have that x > 1/ cos(kπ/N), so that
x + 1/x < cos(kπ/N) + 1/ cos(kπ/N), and Corollary 4.4 gives

β(k, x) < 1 − 2

N

(

sin
kπ

N

)2

≤ e−2kπ2/N3+γ/2N5 ≤ η2keγ/N5

,

as in the proof of Lemma 5.3.
If k is odd, then denote N−2

N
by c; by Proposition 4.5, cos(kπ/N) < c. Now by (4.2)

and the fact that xN−1−x
xN−1

> c/x, we have that x + 1/x < cos(kπ/N)/c + c/ cos(kπ/N), and
so

β(k, x) < 1 − 2

N

(

2 − c − (cos kπ
N

)2

c

)

< 1 − 4(1 − c)

N
= 1 − 8

N2
< e−8/N2

.

We find that

∑

k≤N/2, x>1

β(k, x)m < eγm/N5

(
η4m

1 − η2m
+ Ne−8m/N2

)

< η2meγm/N5

.

The last inequality is a crude estimate which definitely holds when m > N3. So the sum of
β(k, x)m over all bound states is as most twice this, or 2η2m. Combining this with the 6η2m

upper bound for the sum of β(k, x)m over all two-magnon states gives an upper bound of
8η2meγm/N5

= 8e−4π2m/N3+γm/N5

for the total sum
∑

β(k, x)m.
When N is even, we must add the eigenvalue β = 1 − 2/N ; but we may absorb

(1 − 2/N)m into the bound state sum, and the same upper bound holds. 2

Proposition 5.1 and Lemma 5.5 immediately give the following result.

Proposition 5.7 If m > N3 and γ = 4π4/3, then

1
(

N
2

)

∑

1≤x1<x2≤N

‖(K2)
m
|x1x2〉

− µ‖TV < 2e−4π2m/N3+γm/N5

.
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In other words, it takes order N3 steps, on average, for K2 to become random. Proposition 5.1
and the fact that β∗ ≤ e−4π2/N3+γ/N5

from the proof of Lemma 5.5 also imply a weak upper
bound on individual total variation distances:

‖(K2)
m
|x1x2〉

− µ‖TV < 4Ne−4π2m/N3+γm/N5

.

We conjecture that the “correct” upper bound is on the order of e−4π2m/N3+γm/N5

for all
initial states |x1x2〉.

To complement the upper bound on distance from stationarity provided by Proposi-
tion 5.7, we next give the corresponding lower bound.

Proposition 5.8 For any m,

‖(K2)
m
|x1x2〉

− µ‖TV ≥ 1

2

∣
∣
∣
∣
cos

(
π(x2 − x1)

N

)∣
∣
∣
∣
e−4π2m/N3

.

Proof. We use Proposition 5.2, with β = β(1, eiπ/N), the second largest eigenvalue of
K1. The proof of Lemma 3.4 constructs an eigenvector ψ of K1 corresponding to eigenvalue
β(1, eiπ/N), given by

ψ(x1, x2) = a(x1, x2) = e2iπx1/N + e2iπx2/N .

Clearly ‖ψ‖∞ ≤ 2, and |ψ(x1, x2)| = 2
∣
∣
∣cos

(
π(x2−x1)

N

)∣
∣
∣; from the proof of Proposition 5.4, we

also know that β = 1 − 4
N

(
sin π

N

)2 ≤ e−4π2/N3

, and the result follows. 2

If N is even, then Proposition 5.8 is vacuous when x2 − x1 = N/2; in this case, using
Proposition 5.2 with β = β(2, e2iπ/N) gives the lower bound ‖Km

x − µ‖TV ≥ e−16π2m/N3

/2.
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6 Other walks

This section is devoted to Markov chains other than K1 and K2. Section 6.1 introduces
the exclusion model, and demonstrates how our results from previous sections may be used
to improve on currently known bounds on the eigenvalues of the exclusion model on ZN .
Section 6.2 gives partial results towards an analysis of the general interchange model Kr. In
Section 6.3, we turn the tables and show how random walk theory may be applied to physics
and, in particular, statistical mechanics.

6.1 Exclusion model

We may apply our work on the interchange model to other chains as well. One simple
application involves the exclusion model; we describe this model, deduce bounds on its con-
vergence, and compare our bounds to the best previously known bounds, obtained through
comparison with the Bernoulli-Laplace model of diffusion.

Given a regular undirected graph G, the (symmetric) exclusion model on G has as
its state space all

(
N
r

)
possible placings of r indistinguishable objects on the vertices of G,

where N is the number of vertices in G, and r < N is fixed. A step in the exclusion process
constitutes choosing one of the objects uniformly at random, choosing one of its neighbors
in the graph uniformly at random, and either moving the object to the neighboring vertex if
it is unoccupied, or leaving the system as is, if it is occupied. Formally, let V (G) and E(G)
be the vertex and edge sets of G, respectively, and let d be the common degree of all vertices
in G. The state space is all r-subsets of V (G), and the transition probability from A1 to A2

is

Pr(A1, A2) =







0 if |A1 ∩ A2| ≤ r − 2
0 if |A1 ∩ A2| = r − 1 and A1 − A2 = {v1},

A2 − A1 = {v2}, with (v1, v2) 6∈ E(G)
1/(rd) if |A1 ∩ A2| = r − 1 and A1 − A2 = {v1},

A2 − A1 = {v2}, with (v1, v2) ∈ E(G)
P

v∈A1
d(v,A1)

rd
if A1 = A2, where

d(v, A1) = |{v′ ∈ A1 : (v, v′) ∈ E(G)}|,

(6.1)

when A1 and A2 are r-subsets of V (G). For extensive background on the exclusion model
and its significance, see Liggett [12].

We wish to consider the exclusion model on a cycle on N vertices, also known as
the (undirected) Cayley graph of ZN with generators {±1}; let Pr be the corresponding
transition matrix. Like the Heisenberg XXX Hamiltonian H, the exclusion matrix Pr is
linearly related to the interchange matrix Kr; this is the content of the following observation.

Proposition 6.1 Kr = 1 − 2r
N

(1 − Pr).

Proof. Compare the definitions (4.1) and (6.1) of Kr and Pr. If 2r ≤ N , then the
interchange process may be described as performing the exchange process with probability
2r/N , and doing nothing with probability 1 − 2r/N ; the result follows. If 2r > N , then
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exchange is the same as interchange with probability N/2r, and holding with probability
1 − N/2r. 2

Along the same lines, we may prove more generally that a generalized interchange
model K ′

r on a regular graph with common vertex degree d, in which there are r red cards
and N−r cards, and each move chooses two neighboring vertices at random and interchanges
them, is related to the corresponding exchange model P ′

r by K ′
r = 1 − rd

N
(1 − P ′

r).
Propositions 4.9 and 6.1 imply that the spectral gap of each of P1 and P2 is λ1 =

1 −
(
sin π

N

)2
; we believe that the precise calculation of the spectral gap for P2 is new. As

for the interchange model, the spectral gap eigenvalue dominates the sum (5.4) of powers
of eigenvalues, and we conclude that it takes, on average, about N2/π2 steps for each of P1

and P2 to reach stationarity:

∑

λ6=1

λm < 8e−π2m/N2+π4m/3N4

, (6.2)

where the sum is over eigenvalues λ of P1 or P2. (A precise proof of this statement requires a
series of involved estimates nearly identical to those presented in Section 5.3, and is omitted
here.)

The best previously known approach for bounding time to stationarity in the exclusion
model is the method of comparison, as described in Diaconis and Saloff-Coste [4]. This tech-
nique bounds the eigenvalues of the exclusion matrix Pr by comparing the exclusion model
with another Markov chain, the classical Bernoulli-Laplace model of diffusion. Through
Proposition 6.1, comparison can be used to bound the eigenvalues of the interchange matrix
Kr for any r, thus providing more general results than our Bethe ansatz approach, which
is limited to r = 1 and r = 2. In the case r = 2, however, the Bethe ansatz method gives
the correct bound on convergence of the interchange and exclusion models on ZN , while the
comparison method, as we shall see, is off by a log N term.

Before discussing the results of comparison, we briefly describe the Bernoulli-Laplace
model of diffusion; see Feller [7] for applications of this model. In Bernoulli-Laplace diffusion,
there are r objects on one side of a partition, and N − r on the other; each step consists of
choosing one object from each side, and switching them. Note that the Bernoulli-Laplace
chain is linearly related to the generalized interchange model on Kr,N−r, the bipartite graph
on groups of r and N − r vertices; interchange on Kr,N−r is equivalent to Bernoulli-Laplace
with probability r(N−r)/

(
N
2

)
and holding with probability 1−r(N−r)/

(
N
2

)
. The eigenvalues

of the Bernoulli-Laplace matrix P̃r are known and relatively simple (unlike those of the

interchange model on ZN); Diaconis and Shahshahani [5] compute them to be 1− j(N−j+1)
r(N−r)

,

0 ≤ j ≤ r, with multiplicity
(

N
j

)
−

(
N

j−1

)
.

A detailed discussion of comparison techniques is beyond the scope of this paper; the
interested reader is referred to Diaconis and Saloff-Coste [4]. For our purposes, it suffices
to note that we can bound the eigenvalues of the exclusion process by comparison with the
Bernoulli-Laplace model via the following result of Diaconis and Saloff-Coste, which is a
special case of Theorem 3.1 in [4].
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Proposition 6.2 The eigenvalues 1 = λ0 > λ1 ≥ · · · ≥ λ(N
r )−1 of the exclusion process Pr

are bounded above by

λi ≤ 1 − ki(N − ki + 1)

2r∆0

,

where ki = j when
(

N
j−1

)
≤ i <

(
N
j

)
, 0 ≤ j ≤ min{r,N − r}, and ∆0 = m(m + 1)(2m + 1)/6,

m = ⌊N/2⌋.

In the case r = 2, Proposition 6.2 implies that, besides the trivial eigenvalue 1, N−1 of
the eigenvalues of P2 are bounded above by 1− 6N

(N+1)3
, and the other

(
N
2

)
−N eigenvalues are

bounded above by 1− 12(N−1)
(N+1)3

. (In fact, the second largest eigenvalue λ1 of P2 is approximately

1−π2/N2, by Propositions 4.9 and 6.1, so that the upper bound of 1− 6N
(N+1)3

for λ1 provided

by comparison is quite close.) Comparison thus implies that the sum of the m-th powers of
the eigenvalues of K2 is bounded above as follows:

∑

λ6=1

λm <

(
N

2

)(

1 − 6N

(N + 1)3

)m

∼ 1
2
e−6m/N2+2 log N . (6.3)

This upper bound is off by a log N term, compared to our result (6.2), obtained via the
Bethe ansatz. Since the upper bound on every eigenvalue is on the order of 1 − c/N3, the
upper bound on the sum of their powers cannot be much improved from (6.3); the best upper
bound from comparison methods will contain a log N term.

6.2 General interchange model Hr

We next consider the general interchange model Hr on ZN . As noted in Section 3.2, solving
for the exact eigenvalues of Hr is equivalent to solving a many body problem, and is thus
essentially impossible. We can, however, find some of the eigenvalues of Hr; our main result in
this section, Proposition 6.5, states that if r < N/2, then Hr+1 inherits all of the eigenvalues
of Hr. Proving this is more difficult than it may appear, and requires the following purely
combinatorial result.

Lemma 6.3 Let r be an integer, and, for any k between 0 and 2r + 1, let Vk be the
(
2r+1

k

)
-

dimensional vector space, over a field of characteristic 0, formally generated by the basis
{vA : A ⊂ {1, . . . , 2r + 1}, |A| = k}. Then the map ϕ : Vr −→ Vr+1 defined by

ϕ(vA) =
∑

B⊃A, |B|=r+1

vB =
∑

1≤k≤2r+1, k 6∈A

vA∪{k}

is an isomorphism.

Proof. We explicitly construct an inverse to ϕ as follows:

ϕ−1(vB) =
∑

|A|=r

f(|A − B|) vA, (6.4)
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where f is some function on {0, 1, . . . , r} to be determined. If |C| = r + 1, then we want
the coefficient of vC in

∑

|A|=r f(|A − B|) ϕ(vA) to be 1 if C = B, and 0 otherwise; this

will imply that (6.4) gives a formula for ϕ−1. To calculate this coefficient, let |A − C| =
|C − A| = m. Note that there are r sets A with |A| = r and A ⊂ C, and these are
exactly the sets for which ϕ(vA) will contain a nonzero coefficient of vC ; of these, m satisfy
|A − B| = m − 1, while the other r + 1 − m satisfy |A − B| = m. Thus the coefficient in
question is mf(m− 1)+ (r +1−m)f(m) (when 1 ≤ m ≤ r +1; the coefficient is (r +1)f(0)
when m = 0), and (6.4) will give a formula for ϕ−1 if and only if f(0) = 1/(r + 1) and
mf(m − 1) + (r + 1 − m)f(m) = 0 for 1 ≤ m ≤ r + 1. But this is satisfied by

f(m) =
(−1)m

(r + 1)
(

r
m

) , (6.5)

and we conclude that ϕ is indeed an isomorphism, with inverse given by (6.4) and (6.5). 2

To use the above lemma, we translate some of the physics notation from Section 2.2 into
combinatorial language. Identify the vector |x1, . . . , xr〉 with the formal symbol v{x1,...,xr},
so that vA is the vector corresponding to the state in which down spins (or red cards) are
precisely in the positions corresponding to the elements of A. Then {vA : A ⊂ ZN , |A| = r}
is the standard basis of Hr. Now consider the operator σ−

tot, defined in Section 2.4 as
∑N

j=1 σ−
j .

Since σ−
j sends an up spin in the j-th position to a down spin, and a down spin in the j-th

position to zero, it is easy to see that σ−
tot may be defined in our combinatorial language as

follows:
σ−

tot(vA) =
∑

k∈ZN , k 6∈A

vA∪{k},

where A is any subset of ZN . In this form, it is clear that σ−
tot maps Hr to Hr+1 when

0 ≤ r < N ; in physics language, σ−
tot raises the number of down spins by one.

Lemma 6.4 If r < N/2, then the collection of vectors {σ−
totvA : A ⊂ ZN , |A| = r} is

linearly independent.

Proof. Suppose that constants αA satisfy
∑

|A|=r αAσ−
totvA = 0. Let C be any subset of ZN

with |C| = 2r + 1. For any B ⊂ C with |B| = r + 1, the coefficient of vB in the above sum
is the sum of αA over all A with A ⊂ B and |A| = r; but this is precisely the coefficient of
vB in

ϕ




∑

A⊂C, |A|=r

αAvA



 , (6.6)

where ϕ is as in the statement of Lemma 6.3, with C replacing {1, . . . , 2r + 1}. Since this
coefficient must be 0 for all B ⊂ C with |B| = r + 1, we conclude that (6.6) must be equal
to 0. But ϕ is injective by Lemma 6.3, and therefore αA = 0 for all A ⊂ C. This is true for
any C ⊂ ZN with |C| = 2r + 1, so that αA = 0 for all A, and the result follows. 2

36



Proposition 6.5 If r < N/2, then the multiset of eigenvectors of Hr (respectively Kr) is
contained in the multiset of eigenvectors of Hr+1 (respectively Kr+1).

Proof. By Corollary 4.2, the result for K follows from the result for H, and so it suffices
to prove the proposition for H. Now σ−

tot commutes with H; this may be proven directly
from the definition of H and the easily computed commutation relations [σ−

j , σx
j ] = iσz

j ,
[σ−

j , σy
j ] = −iσz

j , [σ−
j , σz

j ] = −iσ−
j . Thus any eigenvector ψ of Hr gives rise to an eigenvector

σ−
totψ of Hr+1 with the same eigenvalue. Now Lemma 6.4 states that σ−

tot maps the standard
basis of Hr to a linearly independent set in Hr+1; it is a simple exercise in linear algebra to
conclude that σ−

tot maps any basis of Hr to a linearly independent set in Hr+1. In particular,
a basis of eigenvectors of Hr is mapped to a linearly independent collection of eigenvectors
of Hr+1 with the same eigenvalues, and the proposition follows. 2

As an illustration of Proposition 6.5, note that the eigenvalue βk of K1 corresponds to the
eigenvalue β(k, eiπk/N) of K2, a “two-magnon” eigenvalue.

Corollary 6.6 If r < N/2, then the spectral gap of Kr+1 is no smaller than the spectral gap
of Kr.

We conjecture that the spectral gap of Kr is in fact the same for all r; this is true
for r = 1 and r = 2, by Corollary 4.11. The treatment of the Heisenberg antiferromagnet,
given by equation (2.4) with Jx = Jy = Jz = −1, by Hulthén [8] shows that the ground
state energy of the antiferromagnet H is asymptotically N/2− 2N log 2; this means that the
highest energy eigenvalue of the corresponding XXX ferromagnet is −N/2 + 2N log 2, so
that the smallest eigenvalue of Kr is at least 1 − 2 log 2 ≈ −0.39, and therefore the spectral
gap of Kr is in fact the second largest eigenvalue β1. The best general result in the direction
of this conjecture is given by the comparison techniques mentioned in Section 6.1. For general
r, Proposition 6.2 implies the following upper bound on the second largest eigenvalue β1 of
the interchange chain Kr, complemented by a lower bound implied by Proposition 6.5:

1 − 4π2

N3
≤ β1 < 1 − 24

(N + 2)3
.

The conjecture is that equality holds for the lower bound.
Proposition 6.5 has an interpretation in terms of representation theory; we briefly

describe this, assuming familiarity with some basic representation theory, on the level of
Diaconis [3]. The state space Xr of Kr consists of the collection of r-subsets of {1, . . . , N},
corresponding to the locations of the red cards. Since the elements of Xr generate the
vector space Hr, there is an obvious isomorphism between Hr and L(Xr), the vector space
of complex valued functions on Xr. Recall from Section 4.1 that Xr is itself identical to
SN/(Sr × SN−r). Then the group SN acts on L(Xr) through its action on Xr, and it follows
that L(Xr) ∼= Hr gives a representation on SN . Following Diaconis [3], we will denote this
representation by M (N−r,r); James [10] writes it as [N − r][r]. (The special case M (N−1,1) is
sometimes called the natural representation of SN .)
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Assume that 2r ≤ N . Then M (N−r,r) has a decomposition into irreducible representa-
tions of SN , which, by Young’s rule (see [10]), is given by

Hr
∼= M (N−r,r) ∼= SN ⊕ S(N−1,1) ⊕ S(N−2,2) ⊕ · · · ⊕ S(N−r,r), (6.7)

where S(N−k,k) is the so-called Specht module associated to the partition (N − k, k) of N .
Thus M (N−r−1,r+1) ∼= M (N−r,r) ⊕ S(N−r−1,r+1), and so Hr is a direct summand of Hr+1 when
2r < N . But this is precisely what we proved in Proposition 6.5 (or, more precisely, in
Lemma 6.4): the map σ−

tot is an inclusion from Hr to Hr+1, and so Hr+1
∼= Hr ⊕ (Hr)

⊥.
Writing (Hr)

⊥ as S(N−r−1,r+1) (with SN = H0), we recover (6.7).
In terms of eigenvectors, the

(
N
r

)
-dimensional space Hr inherits

(
N

r−1

)
eigenvectors of H

from Hr−1; this collection of eigenvectors of H in Hr is completed by a basis of (Hr−1)
⊥ ⊂ Hr

consisting of another
(

N
r

)
−

(
N

r−1

)
eigenvectors of H. The Specht module S(n−r,r) is generated

by eigenvectors of H in Hr not derived (via σ−
tot) from Hr−1.

More concretely, view Hr as L(Xr), the space of complex valued functions on r-
subsets of {1, . . . , N}. Then SN in the decomposition (6.7) of Hr is the one-dimensional
subspace of constant functions on Xr; this corresponds, in the notation of physics, to
∑

1≤x1<···<xr≤N |x1 · · ·xr〉, which, as noted in Section 2.4, is the ground state eigenvector

of Hr. The next summand, S(N−1,1), is the (N − 1)–dimensional subspace generated by
functions of the form A 7→ ∑

x∈A f(x), where f is a function on {1, . . . , N} satisfying
∑

x f(x) = 0; in physics notation, this is the space generated by an application of (σ−
tot)

r−1

to vectors of the form
∑

x f(x)|x〉 ∈ H1, where
∑

x f(x) = 0, as before. By Proposition 6.5,

E1 = E0 + 4
(
sin π

N

)2
is an eigenvalue of Hr for all r; since it derives from an eigenvector of

H1, this eigenvalue is associated to S(N−1,1). Our conjecture, in this language, is that the
lowest excited energy eigenvalue of Hr is associated to S(N−1,1) for any r.

As a side note, another walk which may be of interest is the even more general walk
in which more than two colors of cards are allowed; this corresponds to a physical system in
which the particles have more than two options for spins. A physical solution to this random
walk might rely on Sutherland’s Bethe ansatz approach towards systems with more than
two types of spins [15].

6.3 Applications of random walk analysis to statistical mechanics

We conclude this paper with a promising link, which we believe is new, between mathemat-
ical random walks and thermodynamics. The majority of this paper has been devoted to
applications of physics, and the Bethe ansatz in particular, to random walk theory; in this
final section, we reverse the process and demonstrate how random walk theory may be ap-
plied to physics, by giving the behavior of a physical system at low temperatures. Although
our discussion will focus on the interchange model, it can easily be extended to other Markov
chains which also model physical systems.

In random walk theory, much attention is devoted to the sum of powers of eigenvalues
of a Markov chain

∑

β 6=1 βm, since this sum is more or less the distance of the chain after
m steps from stationarity; see section 4.1. This sum of powers is reminiscent of Boltzmann
factors and partition functions from classical thermodynamics, as we now see.
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Consider a system of N spin-1/2 particles in a line, with periodic boundary condi-
tions, subject to the Heisenberg ferromagnetic XXX Hamiltonian H given by (2.5). The
time-independent Schrödinger equation postulates that this system will have a well-defined
energy equal to one of the energy eigenvalues of H. These energies are not equally prob-
able; qualitatively, the system is more likely to occupy a lower energy state than a higher
one. In the absence of outside constraints, the energy levels of H are occupied according to
the Maxwell-Boltzmann distribution of classical statistical mechanics, which states that the
probability that the system will occupy energy level E is proportional to e−E/kT , where k is
the Boltzmann constant and T is the temperature of the system. If the ground state (lowest
energy level) of the system is E0 and the excited states (i.e., all states except for the ground
state) are given by E1, E2, . . . , then the probability P that the system is in some excited
state is

P =

∑

j>0 e−Ej/kT

e−E0/kT +
∑

j>0 e−Ej/kT
≈

∑

j>0

e−(Ej−E0)/kT = P ′,

where we define P ′ to be the probability that the system is in some excited state relative
to the probability that it is in its ground state, and the approximation, which consists of
dropping the sum in the denominator, is valid at small temperatures.

To connect these probabilities to random walks, we use the relation β = 1/2 − E/N ,
given by Corollary 4.2, between the eigenvalues β of the interchange walk Kr and the energy
levels E of the physical system Hr. Since β0 = 1, we obtain

P ′ =
∑

j>0

e−N(1−βj)/kT .

But this is extremely similar to
∑

βm
j ; indeed, the inequalities β ≤ eβ−1 ≤ β1/2 when

0.3 ≤ β ≤ 1, and the fact (see Section 4.3) that all eigenvalues β of Kr are between 0.3 and
1 when N ≥ 12, show that

∑

β
N/kT
j ≤ P ′ ≤

∑

β
N/2kT
j

when N ≥ 12, so that P ′ is “sandwiched” between two sums of the form
∑

βm
j . Thus

the probability P that the physical system will be in an excited state at temperature T
is approximately the distance from stationarity of the interchange chain after N/kT steps.
From our results on the interchange walk, we conclude that, if we assume the system has
either one or two opposite spins, then the system is “guaranteed” to be in its ground state
(the probability of being in an excited state drops exponentially with T ) when kT is of order
1/N2.

In this way, results about distances of random walks from stationarity translate into
results about probabilities of being in excited states. Given a random walk which is linearly
related to a Hamiltonian, as Kr is linearly related to Hr, the amount of time needed for the
random walk to reach stationarity translates into the temperature needed for the physical
system to be in its ground state, and vice versa. Random walks for which this technique
may be used include the Bernoulli-Laplace model of diffusion (which translates directly into
a Heisenberg model in which all particles are nearest neighbors) and the Ising model; there
are probably many more.
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