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Transverse knots

The standard contact structure

Standard contact R3: R3 equipped with the standard contact
structure
Estd = ker asd, Qs = dz — y dx.

The radially symmetric contact structure ker(dz — y dx + x dy).



Transverse knots

Transverse knots

Definition

A knot K in (R3,&q) is Legendrian if = 0 along K (i.e., K is
everywhere tangent to &).

Definition

A knot K in (R3, &q) is transverse if a > 0 along K (in particular,
K M &). Two transverse knots are transversely isotopic if they are
isotopic through transverse knots.

Transverse classification problem
Classify transverse knots of some particular topological type.




Transverse knots

Legendrian knots

One way to study transverse knots: through Legendrian knots. A
Legendrian knot is uniquely determined by its front (xz) projection
(then y = dz/dx).
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Legendrian classification problem

Classify Legendrian knots of some particular topological type.




Transverse knots

Legendrian stabilization

There are two operations on Legendrian knots that produce new
Legendrian knots of the same topological type: +/— Legendrian
stabilization.

front for a Legendrian knot

- =X

positive stabilization negative stabilization




Transverse knots

Legendrian and transverse knots

Any Legendrian knot has a “transverse pushoff”, and conversely

any transverse knot has a “Legendrian approximation” (not
unique).

Theorem (Epstein—Fuchs—Meyer, Etnyre-Honda 2001)

There is a one-to-one correspondence

{transverse knots} <—{Legendrian knots}/

(negative Legendrian stabilization/destab).
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Transverse knots

Braids and transverse knots

Another way to study transverse knots: braids.

Theorem (Bennequin 1983)

Any braid (conjugacy class) can be closed in a natural way to
produce a transverse knot in (R3, &5,4), and every transverse knot
is transversely isotopic to a closed braid.

This is a transverse version of Alexander's Theorem.



Transverse knots

Transverse Markov Theorem

Transverse Markov Theorem (Orevkov—Shevchishin 2001, Wrinkle
2002)

Two braids represent the same transverse knot iff related by:
@ conjugation in the braid groups
@ positive braid stabilization B +— Bo,:

] B ﬁ<777>E B -
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Cf. usual Markov Theorem: topological knots/links are equivalent
to braids mod conjugation and positive/negative braid stabilization.




Transverse knots

Transverse classification

If a transverse knot T is the closure of a braid B, the self-linking
number of T is
sl(T) = w(B) — n(B)

where w(B) = algebraic crossing number of B and n(B) = braid
index of B.

Definition

A topological knot is transversely simple if its transverse
representatives are completely determined by self-linking number;
otherwise transversely nonsimple.




Transverse knots

Transverse classification

If a transverse knot T is the closure of a braid B, the self-linking
number of T is
sl(T) = w(B) — n(B)

where w(B) = algebraic crossing number of B and n(B) = braid
index of B.

Definition

A topological knot is transversely simple if its transverse
representatives are completely determined by self-linking number;
otherwise transversely nonsimple.

Examples of transversely simple knots:

@ unknot (Eliashberg 1993)

@ torus knots (Etnyre 1999) and the figure 8 knot
(Etnyre—Honda 2000)

@ some twist knots (Etnyre-N.-Vértesi 2010)



Transverse knots

Transverse nonsimplicity

Three general approaches to proving that a knot type is
transversely nonsimple:

@ dividing-curve techniques for classifying Legendrian knots: e.g.
(2,3)-cable of (2,3) torus knot (Etnyre-Honda 2003) and
other torus knot cables (Etnyre-LaFountain—Tosun 2011)

@ braid-foliation techniques: Birman—Menasco “Markov
Theorem without stabilization”

@ invariants of transverse knots.



Transverse knots
Negative flypes

One way to produce candidates for possibly different transverse
knots of the same topological type and self-linking number:
negative flype (Birman—Menasco 1993).
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This corresponds to the “SZ move” for Legendrian knots
(Lipshitz—N.—Sarkar 2013).
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Transverse knots

Transversely nonsimple knots: Birman—Menasco examples

Birman—Menasco 2008: family of knots with braid index 3 that are
transversely nonsimple. The transverse knots given by the closures

of the 3-braids

b 1

a c_— a_—1
01020105 ; 0109

ofo3,
related by a negative flype, are transversely nonisotopic for
particular choices of (a, b, ¢).

OO OO

535371 5,133
010307104 010, 0705

Example: 1lapsq is transversely nonsimple.



Transverse invariants

Transverse invariants

Invariants of transverse knots T are typically defined via a braid
representative B or a Legendrian approximation L:

@ an invariant of braids, invariant(B), that is also invariant

under braid conjugation and positive braid stabilization
(transverse Markov theorem);

— f—
— B I <- - = ] B =

I —X
@ an invariant of Legendrian knots, invariant(L), that is also
invariant under negative Legendrian stabilization.
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Transverse invariants
Lee generators

Let K be a knot diagram corresponding to the closure of a braid B.
Lee, 2002: the filtered Khovanov complex Ckx(K) has two cycles

VE(B) € Crn(K)

supported in the oriented resolution of K and generating Lee
homology Lee(K) = H(Ckn(K)).

Plamenevskaya, 2004: let
Y(B) € Gr Ckn(K)

be the lowest filtered piece of {/;i(B): this labels each circle in the
oriented resolution by x where the Frobenius algebra for Khovanov
homology is Z[x]/(x?).



Transverse invariants

The Plamenevskaya invariant

Theorem (Plamenevskaya 2004)

[(B)] € H(Gr Ckn(K)) = Kh(K)

is invariant under braid isotopy, conjugation, and positive
stabilization. This yields a transverse invariant of a transverse knot
T of topological type K, the Plamenevskaya invariant

W(T) e Ki>¥(T(K).

v

In fact the element )*(B) in the filtered complex Cxp(K) is also a
transverse invariant (Lipshitz—N.-Sarkar 2013).



Transverse invariants

Effective transverse invariants

Definition

A transverse invariant is effective if it can distinguish different
transverse knots with the same self-linking number and topological
type (i.e., prove that some topological knot is transversely
nonsimple).

| \

Question

Is the Plamenevskaya invariant (or the filtered Plamenevskaya
invariant) effective?

This is still open!

Theorem (Lipshitz—N.—Sarkar 2013)

The Plamenevskaya invariant and the filtered Plamenevskaya
invariant are invariant under negative flypes.




Transverse invariants

Generalizations of the Plamenevskaya invariant

Plamenevskaya's invariant is a distinguished element in Khovanov
homology.

Wu, 2005: distinguished elements in Khovanov—Rozansky s(,
homology. These are also invariant under conjugation and positive
braid stabilization: transverse invariants.

Unknown whether the Wu sl,, invariants are effective.



Transverse invariants

What transverse invariants are effective?

Known to be effective:

@ Ozsvath—-Szabé—Thurston 2006: HFK grid invariant:
distinguished element in knot Floer homology via grid
diagrams

o Lisca—Ozsvath—Stipsicz—Szabd 2008: LOSS invariant:
distinguished element in knot Floer homology via open book

decompositions: same as HFK grid invariant
(Baldwin—Vela-Vick—Vértesi 2011)

@ Ekholm—Etnyre—N.—Sullivan 2010: transverse homology:
filtered version of knot contact homology



HFK grid invariant
HFK grid invariant

Ozsvath—Szabd—Thurston 2006:

transverse knot T of topological type K

|

distinguished element 6~ (T) € HFK~(m(K)).
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In combinatorial model for CFK via grid diagrams
(Manolescu—Ozsvath—Sarkar), 6~ (T) is the generator given by the
upper-right corners of the X's for a Legendrian approximation of T.



HFK grid invariant

HFK grid invariant, continued

Result (after mapping HFK~ — ﬁﬁ() for T transverse of type K:

0(T) € HFK gy 41(m(K), 2EL).

Theorem (Ozsvath-Szabé—Thurston 2006)

The HFK grid invariant 0 is a transverse invariant.

Crude way to apply 0: if Ty, T, are transverse knots with
0(T1) =0 and Q(Tg) # 0, then they're distinct.

Theorem (N.-Ozsvath—Thurston 2007)

The HFK grid invariant 0 is an effective transverse invariant.

E.g., can be used to recover Etynre-Honda's result that the
(2, 3)-cable of the (2, 3) torus knot is transversely nonsimple.



HFK grid invariant

Limitations of crude approach

0(T) € HFK (1)1 (m(K), L0y .

o If this group is 0, then §(T) = 0 carries no information.
e If 6(T1),6(T2) # 0, how to tell them apart?
Slightly more precise statement of invariance:

Theorem (Ozsvath—Szabé—Thurston 2006)

If T1, T, are isotopic transverse knots and Gy, Gy are grid diagrams
of corresponding Legendrian approximations, then the transverse
isotopy gives a sequence ~y of grid moves from Gy to Gy inducing a
combinatorially-defined isomorphism

Ve ! ﬁl.:T((Gl) — H/\F/<(G2)

~

and 7.(0(G1)) = 0(G2).




HFK grid invariant
Enter naturality

Naturality statement (conjectural)

Let Gy, Gy be grid diagrams for the same topological knot, and let
~ be a sequence of grid moves from Gy to Gp. Then the
isomorphism

Y« : HFK™(G1) — HFK™(Gp)

depends only on the homotopy class of the path
v C {smooth knots}.

Cf. related work of Juhdsz—Thurston (2012) on naturality in HF.

Note: a similar statement for ﬁﬁ( fails to hold, at least for
unpointed knots (Sarkar 2011).



HFK grid invariant
Naturality and the HFK grid invariant

Can use naturality in conjunction with 6.

Let K be an oriented topological knot. The mapping class group
of K is

MCG(K) = m1({smooth knots isotopic to K}).

Corollary of naturality

Let Ty, T be transverse of type K with MCG(K) =1, and let
Gi, Gy be grid diagrams for Ty, To. If Ty, To are transversely
isotopic, then for any sequence -y of grid diagrams from Gy to Gp,

(0(Gy)) = 0(Gy).




HFK grid invariant

Birman—Menasco transverse knots

Corollary of naturality (N.=Thurston)

The Birman—Menasco pair o3030305 " and 0305 o303 can be

w]w)

Here MCG(11ax) =1, and the @ invariants constitute distinct
nonzero elements of

distinguished by 0.

HFKs(11a40,4) = (Z/2)2.

This argument can be extended to other Birman—Menasco pairs
(possibly ofoboSayt, oioy oSk for a, b, c > 3 with a # ¢), but

not all of them.



HFK grid invariant

Transverse mapping class group

Definition
Let T be a transverse knot. The transverse mapping class group of
T is

TMCG(T) = m1({transverse knots transversely isotopic to T}).

For a transverse knot K, there is an obvious map
TMCG(K) — MCG(K).

Naturality and 6 can be used to show that this map is not an
isomorphism for some transverse knots K.



HFK grid invariant

Transverse mapping class group, continued

Corollary of naturality (N.—Thurston, preliminary)
Consider any twist knot K where the number of crossings in the
shaded region is odd and > 3.

.,

There is a transverse knot T of type K such that the map

TMCG(T) — MCG(K) (= Z/2)

Is not surjective.

Cf. Kédlman 2004: there are Legendrian knots L for which the map
LMCG(L) - MCG(K) is not injective.



Transverse homology
Knot contact homology

Definition

K knot. The knot contact homology of K is the Legendrian
contact homology of the unit conormal bundle N*K in the contact
5-manifold ST*R3:

HC.(K) := LCH.(ST*R3, N*K).

@ invariant of smooth knots

@ combinatorial description in terms of a braid B whose closure
is K (N. 2003, Ekholm—Etnyre-N.-Sullivan 2011)

o HC.(K) = H.(A,d), where (A, ) is a differential graded
algebra over the ring

Z[H (N*K)] = Z[ L, i FY].



Transverse homology
Transverse homology

When T is a transverse knot, the coefficient ring for the DGA
(A, D) can be improved:

ZINF ]~ Z[U N .

This comes from positivity of intersection with a holomorphic
4-manifold, the conormal lift of the contact structure &qq.

Theorem (N., Ekholm—Etnyre—N.-Sullivan 2010)

The homology of the DGA (A, d) defined over Z|U, N1, u*1] is a
transverse invariant, the (minus) transverse homology HT, (T).




Transverse homology
Transverse homology and knot Floer homology

The complex for transverse homology HT, (T) (over

Z[U, A*L, 4#1]) can be thought of as an additional filtration on
the complex for knot contact homology HC,.(K) (more precisely,
set U = 1 on the chain level). In this sense it's similar to knot
Floer homology:

HT.(T) : HC(K) :: HFK (K) : HF.(Y).

As in Heegaard Floer, one can define other flavors of transverse
homology:

° ﬁ?*(T) (set U =0)

o HT>(T) (®Z[U, U™]): in fact, this is an invariant of the
underlying smooth knot.



Transverse homology

Effectiveness of transverse homology

Theorem (N. 2010)

HT.(T) is an effective transverse invariant.

L)

0105 (710'2 030205 0]0;1010;1(0;102(7%)
These two transverse m(7¢) knots can be distinguished by HT:
count number of augmentations (ring homomorphisms)

ﬁ?o —)Z/3.



Comparison
Comparison of transverse invariants

Legendrian knot atlas (Chongchitmate-N. 2010): 13 knots of arc

index < 9 are conjectured to be transversely nonsimple.
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Comparison
Comparison of transverse invariants

Legendrian knot atlas (Chongchitmate-N. 2010): 13 knots of arc

index < 9 are conjectured to be transversely nonsimple.

Knot

m(72)

m(7s)

944

m(945)

Q48

HFK

HT

Knot

10108

m(10132)

10136

m(10140)

HFK

v

v

HT

Knot

m(10145)

10160

m(10161)

12n59;

HFK

HT

N.—Ozsvath—Thurston 2007, using HFK grid invariant




Comparison
Comparison of transverse invariants

Legendrian knot atlas (Chongchitmate-N. 2010): 13 knots of arc

index < 9 are conjectured to be transversely nonsimple.

Knot m(72) m(76) 944 m(945) 48
HFK

HT

Knot 10128 m(10132) 10136 m(10140)
HFK v v

HT

Knot m(10145) 10160 m(10161) 12n591

HFK v v v

HT

Chongchitmate—N. 2010, using HFK grid invariant




Comparison
Comparison of transverse invariants

Legendrian knot atlas (Chongchitmate-N. 2010): 13 knots of arc

index < 9 are conjectured to be transversely nonsimple.

Knot m(72) m(76) 944 m(945) 48
HFK v

HT

Knot 10128 m(10132) 10136 m(10140)
HFK v v

HT

Knot m(10145) 10160 m(10161) 12n591

HFK v v v

HT

Ozsvath—Stipsicz 2008, using LOSS invariant




Comparison
Comparison of transverse invariants

Legendrian knot atlas (Chongchitmate-N. 2010): 13 knots of arc

index < 9 are conjectured to be transversely nonsimple.

Knot m(72) m(76) 944 m(945) 48
HFK | v v @)

HT

Knot 10128 m(10132) 10136 m(10140)
HFK || v (7) v v

HT

Knot m(10145) 10160 m(10161) 12n591

HFK v v v

HT

N.—Thurston, using HFK grid invariant and conjectural naturality




Comparison
Comparison of transverse invariants

Legendrian knot atlas (Chongchitmate-N. 2010): 13 knots of arc

index < 9 are conjectured to be transversely nonsimple.

Knot m(72) m(76) O44 m(945) Q43
HFK v X X v (?) X
HT

Knot 10128 m(10132) 10136 m(10140)
HFK | v (?) v x v

HT

Knot m(10145) 10160 m(10161) 12n501

HFK v X v v

HT

HFK invariants don’t work: HFK = 0 in relevant bidegree.




Comparison
Comparison of transverse invariants

Legendrian knot atlas (Chongchitmate-N. 2010): 13 knots of arc

index < 9 are conjectured to be transversely nonsimple.

Knot m(72) m(76) 944 m(945) 48
HFK v X X v (7) X
HT v v v v
Knot 10128 m(10132) 10136 m(10140)
HFK | v (7) v X v

HT v v v

Knot m(10145) 10160 m(10161) 12n591

HFK v X v v

HT v v v

N. 2010, using transverse homology




Comparison
Comparison of transverse invariants

Legendrian knot atlas (Chongchitmate-N. 2010): 13 knots of arc

index < 9 are conjectured to be transversely nonsimple.

Knot m(72) m(76) O44 m(945) Q43
HFK v X X v (7) X
HT v v v ? v
Knot 10128 m(10132) 10136 m(10140)
HFK | v (7) v X v

HT ? v v v

Knot m(10145) 10160 m(10161) 12n591

HFK v X v v

HT v 7 v v

These are “transverse mirrors’,

as are the Birman—Menasco knots.




Comparison
Comparison of transverse invariants

Legendrian knot atlas (Chongchitmate-N. 2010): 13 knots of arc

index < 9 are conjectured to be transversely nonsimple.

Knot m(72) m(76) Q44 m(945) O48
HFK v X X v (7) X
HT v v v ? v
Knot 10128 m(10132) 10136 m(10140)
HFK | V() v X v

HT ? v v v

Knot m(10145) 10160 m(10161) 12ng91

HFK v X v v

HT v ? v v
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