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The table depicts conjectural classifications of Legendrian knots in all
prime knot types of arc index up to 9.

• For each knot, the non-destabilizable Legendrian representatives are
depicted (modulo the symmetries described below), with their (tb, r),
along with the conjectural mountain range. As usual, rotate 45◦

counterclockwise to translate from grid diagrams to fronts.
• Legendrian classification is known for torus knots and 41 [4], and for

twist knots [5]. In the table, torus knots are denoted in the usual
way by T (p, q), and the twist knot with n half-twists is denoted by
Kn.

• It is interesting to compare this atlas to the table from [6]. It would
be interesting to know which of the Legendrian knots can be dis-
tinguished via various modern techniques: Massey products, SFT,
etc.

• The (tb, r) coordinates for the mountain ranges can be inferred from
the other (tb, r) information. Boxes enclose dots with the same
(tb, r). Mountain ranges extend downward from the depicted parts
in the usual way; mountain ranges without boxes indicate knot types
that are conjecturally Legendrian simple.

• The conjectured mountain ranges include black and red dots, one
dot for each Legendrian isotopy type; the black dots represent a
“lower-bound” range of Legendrian types that we have been able to
distinguish using current techniques, while the red dots are Legen-
drian knots that we believe to be distinct from the black dots. We
believe that the mountain ranges are complete as shown—i.e., that
there are no other Legendrian knots besides the ones depicted—but
this is only known for the knot types that have been classified.

• Two symmetries on Legendrian knots are: orientation reversal, L 7→

−L, and Legendrian mirror, L 7→ µ(L) (reflecting fronts in the x

axis). Both of these negate rotation number. Orientation reversal
also changes topological type in general, but all of the knots in the
atlas are invertible.

Each Legendrian knot L thus produces up to four knots: L, −L,
µ(L), −µ(L). The table depicts one representative from each of
these orbits of up to four knots, along with information about which
of the four knots in the orbit are isotopic, if any. For knots with
nonzero rotation number, we choose a representative L with positive
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rotation number, and L is trivially distinct from −L and µ(L) (this
fact depicted by hyphens in the table).

• Legendrian knots that we believe but cannot yet prove to be distinct
are labeled with matching letters (see e.g. 62). Question marks
indicate knots where we believe but cannot prove that L is distinct
from −L, µ(L), or −µ(L). All check marks have been verified by
computer; all X marks without question marks have been verified by
various techniques (see below for particular knot types).

• Graded ruling invariants and linearized contact homology are calcu-
lated using the Mathematica notebook Legendrian invariants.nb

(the variety found on Josh Sabloff’s web page). Knots with no graded
rulings/augmentations are denoted in these columns by a hyphen (for
nonzero rotation number) or ∅ (for zero rotation number).

• The atlas was obtained via a computer program that performed
moves on grid diagrams (see [9, 11]), in a manner similar to Gridlink
[2]. More documentation is forthcoming.

• For 62, 63, and 74, see [7]. In particular, for 74, K1 and K2 from
[7] are the second and third knots in our table; an easy extension of
the calculation in [7] shows that K2 is not isotopic to its Legendrian
mirror.

• For m(10132) and m(10140), see [8]. The same techniques work to
distinguish transverse representatives for m(10145), m(10161), and
12n591 (see also below).

• For m(72), see [5, 10].
• Six knot types that we know of, marked with asterisks, have Leg-

endrian representatives that are non-destabilizable (or conjecturally
so) but do not maximize tb. For m(10145), m(10161), and 12n591,
non-destabilizability can be proven using knot Floer homology [11]
(in some cases, by inspection; otherwise via the program of [8]); note
that the behavior here had previously only been seen for the (2, 3)
cable of the (2, 3) torus knot [3], which is significantly more compli-
cated in various ways than the examples here. Interestingly, each of
these three knot types has non-destabilizable Legendrian represen-
tatives whose tb is 2 less than maximal, as well as representatives
whose tb is 1 less than maximal.

For m(10139), 10161, and m(12n242), non-destabilizability has not
yet been proven, but a new phenomenon conjecturally emerges: knots
with non-maximal tb that cannot be destabilized because there is
nothing for them to be the stabilization of. In other words, the
mountain ranges here have peaks that are not of maximal tb. It
would be very interesting to prove this: e.g., that there is no Legen-
drian m(10139) knot with (tb, r) = (−16, 3).

• In some of the above cases, non-destabilizability can also be proven
using Legendrian contact homology and the characteristic algebra
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[7]. In particular, see [12] for m(10161). However, the characteris-
tic algebra vanishes for the non-max-tb non-destabilizable m(10139),
10161, and m(12n242) knots.

• Of the knots in the table, m(72), m(10132), m(10140), m(10145),
m(10161), and 12n591 can be proven to be transversely nonsimple
using knot Floer homology [10, 11]. The table suggests that the
following knots are also transversely nonsimple: 76, m(76), 77, 944,
m(945), 948, 10128, 10136, and 10160. All other knots with arc index
at most 9 may be transversely simple. There is unfortunately no
overlap with the Birman–Menasco 3-braid examples [1], all of which
have arc index at least 10.
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