Homework 5 - Due Fri. Oct. 17th
Math 465 - Fall 2014

Dr. Mauro Maggioni
Office: 309 Gross Hall
Phone: 660-2825
Web page: www.math.duke.edu/~mauro
E-mail: mauro.maggioni at duke.edu

Homework policies: as in previous homework

Assignment

Exercise 1 (50 pts). Consider the space \(L^2([\pi, \pi]) = \{g : \int_{\pi}^{\pi} |g(x)|^2dx < +\infty\} \) with the norm \(||g|| := \sqrt{\int_{\pi}^{\pi} |g(x)|^2dx} \), associated to the inner product \(\langle g, h \rangle := \int_{\pi}^{\pi} g(x)h(x)dx \).

- Show that \(\{\frac{1}{\sqrt{2\pi}}1, \frac{1}{\sqrt{\pi}} \cos(nx), \frac{1}{\sqrt{\pi}} \sin(mx)\}_{m,n\geq 1} \) is an orthonormal set (here 1 denotes the constant function 1). To simplify the notation in what follows let

\[(\varphi_1, \varphi_2, \varphi_3, \varphi_4, \varphi_5 \ldots) := \{ \frac{1}{\sqrt{2\pi}}1, \frac{1}{\sqrt{\pi}} \cos(x), \frac{1}{\sqrt{\pi}} \sin(x), \frac{1}{\sqrt{\pi}} \cos(2x), \frac{1}{\sqrt{\pi}} \sin(2x), \ldots \}. \]

This is in fact an orthonormal basis (this is a nontrivial fact that you are not required to prove), i.e. for any \(f \in L^2([\pi, \pi]) \) we have

\[\left\| f - \sum_{i=1}^{L} < f, \varphi_i > \varphi_i \right\| \rightarrow 0 \quad \text{as} \quad L \rightarrow +\infty \]

- We let \(P_L f = \sum_{i=1}^{L} < f, \varphi_i > \varphi_i \) be the \(L \)-th partial sum used above. Interpret this as an orthogonal projection of \(f \) onto the span of the first \(L \) Fourier modes.

- Sample the interval \([\pi, \pi]\) at \(p \) equispaced points \(x_1, \ldots, x_p \) (for example using the linspace function in Matlab), and implement a function that computes \(P_L f \) for any given \(f \) (sampled at the points \(x_i \)) and given \(L > 0 \). Check your function is reasonable by using to (approximately) check that \(\{\varphi_i\}^{L}_{i=1} \), for moderate values of \(L \), is an orthonormal basis. Discuss how this may be implemented in matrix form, and how many basic computations this function takes, as a function of \(p \) and \(L \).

- Choose various functions (for example \(f(x) = e^{\sin(2\pi x)} \) or \(f(x) = 1_{-[\pi,0]}(x) + 1_{[0,\pi]}(x) \) and/or others) and a suitable \(p \) (e.g. \(p = 1000 \)), and study \(||f - P_L f|| \) as a function of \(L \): this is monotonic decreasing (why?) and tending to 0 as \(L \rightarrow +\infty \), and if plotted in log, 0 scale you may see a trend in the decay rate. Try this for smooth periodic functions (recall: a function is period if \(f(x+2\pi) = f(x) \) for all \(x \), i.e. \(f \) “repeats itself” from each interval \(I \) of width \(2\pi \) to any interval \(I+2k\pi \), for any \(k \) positive or negative integer), and for periodic functions that not smooth (e.g. they have a jump discontinuity).

- The same as the previous point, but by adding Gaussian noise of size \(\sigma \) (e.g. for \(\sigma = 0.01, 0.1 \)) to each of the functions \(f \) you considered, obtaining a sampled function \(\hat{f} \). Can you tell what \(||f - P_L \hat{f}|| \) tends to as \(L \rightarrow +\infty \)? [Hint: it depends on \(\sigma \)]. This experiment needs to be done a bit carefully: make sure you keep \(L \) much smaller than the number of sample points \(p \), e.g. \(L \ll \sqrt{p} \) should suffice. How do the approximations \(P_L f \) look like compared to the noisy \(f \)? More or less noisy? If you look instead at \(||f - P_L \hat{f}|| \), how does this “error” behave as a function of \(L \)? Is it still monotone? Make sure you try both a smooth \(2\pi \)-periodic function such as \(e^{2\pi \sin(x)} \) and a
non-smooth 2π-periodic function such as (the periodization of) \(f(x) = 1_{[-\pi, 0)}(x) + 1_{[0, \pi)}(x) \), as the answer to the last question may depend on the smoothness of \(f \), at least in the regimes of values of \(p \) and \(L \) that you are exploring.