Let G be a connected reductive \mathbb{Q}-group and let $H \leq G$ be a subgroup with $H(\mathbb{R})$ compact. Under suitable assumptions, we use Lindenstrauss and Venkatesh’s method to prove a relative Weyl law, that is, an asymptotic formula for the number of eigenfunctions of the Laplacian on a locally symmetric space uniformized by G weighted by the period of the eigenfunction over a locally symmetric subspace uniformized by H.

As an application, we use an idea of Rudnick and Sarnak and work of Gelbart, Rogawski and Soudry to prove the existence of automorphic representations with “large periods” in a situation involving an isotropic unitary group G. Finally, we explain how a very weak analogue of the conjectures of Sakellaridis and Venkatesh imply similar “large period” results in great generality.