Comments and Corrigenda

Corrections and additions to these “Comments and Corrigenda” may be sent by email to layton@math.duke.edu.

Comments

1. Page 4, final paragraph:
 the Archimedean property is correct as it stands, since it is implied in its statement that the integer \(n \) must be positive. However, some texts stipulate that the integer \(n \) is a positive integer (e.g., J.R. Kirkwood’s, An Introduction to Analysis, 2d edition).

2. Page 73, definition of \textit{continuous}:
 (i) in this definition, it is implicit in the assertion that \(c \in \text{Dom}(f) \), and in the notation “\(f(c) \)” in Equation (1), that \(f \) is defined at \(c \) and that \(f(c) \) is a finite real number;
 (ii) note that no provision of this definition requires that the terms \(x_n \) of the sequence \(\{x_n\} \) be distinct.

3. Theorem 3.1.3 on page 77 could also be written as follows:
 A function \(f(x) \) is continuous at at point \(c \in \text{Dom}(f) \) if and only if
 for every number \(\epsilon > 0 \), there is a number \(\delta(\epsilon) > 0 \) such that
 \(x \in \text{Dom}(f) \) and \(|x - c| \leq \delta \) imply that \(|f(x) - f(c)| \leq \epsilon \).
 Note that no provision of this theorem prohibits the case of \(x = c \).

4. Page 78, second half:
 this passage is the definition of the limit of a function \(f(x) \) as its argument \(x \) converges to \(c \);
 this concept is of fundamental importance and merits attentive study.

Corrigenda

1. Page 15. A typographical error appears in the fourth line of the proof; in that line, \(T \) should be \(U \).

2. Page 19. The argument of the function \(f \) displayed in Figure 1.3.2 is \(s \), whereas the argument in the accompanying text is \(x \); both should be \(x \) (or both \(s \)).

3. Page 24. In problem 4(b), equality cannot be achieved under the hypotheses given; therefore part (b) should read: “(b) \(\sqrt{ab} < \frac{1}{2}(a+b) \)”
4. Page 76. In the third line of text, which is a set-out equation, the function in the second summand on the right-hand side of that equation should should be g and not f.

5. Page 111. In the first line of problem 2, the domain for the function f should be $[0,3]$ and not $[0,1]$.