1 HW 6

p 380 - 8 Let X_i be 1 of the i-th person sits at a new table and zero if not. Notice that if T is the number of tables used then

$$ T = \sum_{k=1}^{N} X_i $$

and so $ET = \sum_{k=1}^{N} EX_i$

If we assume that each person knows each pair of persons knows each other with probability p independently of all of the other pairs then each time some one shows up for them to sit at a new table they need to not know any of the other people there. So

$$ X_i = \begin{cases}
1 & (1-p)^{i-1} \\
0 & 1 - (1-p)^{i-1}
\end{cases} $$

Hence $EX_i = (1-p)^{i-1}$ and

$$ ET = \sum_{k=1}^{N} (1-p)^{i-1} = \sum_{k=0}^{N-1} (1-p)^i = \frac{1 - (1-p)^N}{p} $$

p 380 - 24 We skipped this one. So it was not graded.

p 380 - 50 We will need the Marginal density in y.

$$ f_Y(y) = \int_{0}^{\infty} f(x, y) dx = e^{-y} $$

so the density of x conditioned on y is

$$ f(x|y) = \frac{f(x, y)}{f_Y(y)} = \frac{e^{-\frac{x}{y}}}{y} $$

so since $E(g(X)|Y) = \int g(x)f(x|Y)dx$ we have

$$ E(X^2|Y) = \int_{0}^{\infty} x^2 e^{-\frac{x}{Y}} dx = 2Y^2 $$

This at least looks right since the answer should be a function of Y since that was not averaged out by the expectation.

p 380 - 59 The point is that by conditioning on the T defined in the hint we can reduce the problem to simple calculations. Let X be the number of flips to get H, H, H

$$ E(X|T = 0) = 3 \quad E(X|T = 1) = 1 + E(X) \quad E(X|T = 2) = 2 + E(X) \quad E(X|T = 3) = 3 + E(X) $$

also

$$ P(T = 0) = p^3 \quad P(T = 1) = 1 - p \quad P(T = 2) = p(1-p) \quad P(T = 3) = p^2(1-p) $$

so

$$ E(X) = E(X|T = 0)P(T = 0) + E(X|T = 1)P(T = 1) + E(X|T = 2)P(T = 2) + E(X|T = 3)P(T = 3) $$

$$ = 3p^3 + [1 + E(X)](1-p) + [2 + E(X)]p(1-p) + [3 + E(X)]p^2(1-p) $$

$$ = \frac{p^2 + p + 1}{p^3} $$
Looking at the moment generating function we see that X is distributed Poisson with parameter $\lambda = 2$ and Y is distributed binomial with $n = 10$ and $p = \frac{3}{4}$. Also we were told that the two were independent.

$$P(X + Y = 2) = P(X = 1, Y = 1) + P(X = 2, Y = 0) + P(X = 0, Y = 2)$$

$$= 10 \left(\frac{3}{4} \right)^9 \left(\frac{1}{4} \right)^1 + 2e^{-2} + \frac{3^2}{8} \left(\frac{1}{4} \right)^4 + \frac{2^2}{2} e^{-2} \left(\frac{1}{4} \right)^{10}$$

$$P(XY = 0) = P(X = 0, Y = 0) = \left(\frac{1}{4} \right)^{10} e^{-2}$$

Now since X and Y are independent $E(XY) = E(X)E(Y) = 2(\frac{15}{2}) = 15$

We have

$$E[(X - a)^2] = \int_{-\infty}^{\infty} (x - a)^2 f(x) dx$$

so

$$\frac{\partial}{\partial a} E[(X - a)^2] = \int_{-\infty}^{\infty} \frac{\partial}{\partial a} (x - a)^2 f(x) dx = -\int_{-\infty}^{\infty} 2(x - a)f(x) dx$$

$$= a \int_{-\infty}^{\infty} 2f(x) dx - \int_{-\infty}^{\infty} 2xf(x) dx = 2(a - E(X))$$

Setting the derivative equal to zero we see that $E(X) = a$. It is simple to see that it is a minimum. (Notice that when $a < E(X)$ the derivative is negative and when $a > E(X)$ the derivative is positive.)

Now

$$E[|X - a|] = \int_{-\infty}^{\infty} |x - a| f(x) dx = \int_{-\infty}^{a} (x - a)f(x) dx + \int_{a}^{\infty} (a - x)f(x) dx$$

so

$$\frac{\partial}{\partial a} E[|X - a|] = \frac{\partial}{\partial a} \int_{-\infty}^{a} (x - a)f(x) dx + \frac{\partial}{\partial a} \int_{a}^{\infty} (a - x)f(x) dx$$

and

$$\frac{\partial}{\partial a} \int_{-\infty}^{a} (x - a)f(x) dx = (a - a)f(a) - \int_{-\infty}^{a} f(x) dx = -\int_{-\infty}^{a} f(x)$$

$$\frac{\partial}{\partial a} \int_{a}^{\infty} (a - x)f(x) dx = -(a - a)f(a) + \int_{a}^{\infty} f(x) dx = \int_{a}^{\infty} f(x) dx$$

putting this all together and setting the derivative to zero gives

$$\int_{-\infty}^{a} f(x) dx = \int_{a}^{\infty} f(x) dx$$

so a must be the point which splits the probability mass in two equal parts. This is the definition of the medium.

The idea is that we want to estimate the mean μ. We construct $Y = \lambda X_1 + (1 - \lambda) X_2$. Notice that $EY = \mu$ so it on average will have the value μ. We want the value it talks to be as close to μ as we can. Hence we want the definition of Y which will be as highly concentrated around μ as possible. This mean we want the variance as small as possible. Now $\text{Var}(Y) = \lambda^2 \text{Var}(X_1) + (1 - \lambda)^2 \text{Var}(X_2) = \lambda^2 \sigma_1^2 + (1 - \lambda)^2 \sigma_2^2$. Differentiating with respect to λ, we find that the minimum is at $\lambda = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}$.

$$\text{Cov}(X, Y|Z) = E[(X - E(X|Z))(Y - E(Y|Z))|Z]$$

$$= E[XY - YE(X|Z) - XE(Y|Z) + E(X|Z)E(Y|Z)|Z]$$

Now we need that $E[E(X|Z)E(Y|Z)|Z] = E[X|Z]E[Y|Z]$ so the random variables are independent as the joint moment generating function is just the product of the independent ones.

First let us assume that $\text{Cov}(X, Y, Z) = 0$ if $i \neq j$ and show the random variables are independent. From above we have

$$M(t_1, \ldots, t_m) = \exp \left(\sum_{i=1}^{m} t_i \mu_i + \frac{1}{2} \sum_{i=1}^{m} t_i \sum_{j=1}^{m} t_j \text{Cov}(X_i, X_j) \right)$$

$$= \exp \left(\sum_{i=1}^{m} t_i \mu_i + \frac{1}{2} \sum_{i=1}^{m} t_i^2 \text{Var}(X_i) + \frac{1}{2} \sum_{i=1}^{m} \sum_{j \neq i}^{m} t_i t_j \text{Cov}(X_i, X_j) \right)$$

Since each of X_i is just a Normal random variable (being the sum of independent Normal random variables),

$$M_i(t_i) = Ee^{t_i X_i} = \exp \left(t_i \mu_i + \frac{t_i^2}{2} \sum_{i=1}^{m} \text{Var}(X_i) \right)$$

First let us assume that $\text{Cov}(X_i, X_j) = 0$ if $i \neq j$ and show the random variables are independent. From above we have

$$M(t_1, \ldots, t_m) = \exp \left(\sum_{i=1}^{m} t_i \mu_i + \frac{1}{2} \sum_{i=1}^{m} t_i^2 \text{Var}(X_i) \right)$$

$$= \exp(t_1 \mu_1 + \frac{t_1^2}{2} \text{Var}(X_1)) \cdots \exp(t_1 \mu_m + \frac{t_m^2}{2} \text{Var}(X_m)) = M_1(t_1) \cdots M_m(t_m)$$

so the random variables are independent as the joint moment generating function is just the product of the individual ones.

Now let us assume that they are independent and show that $\text{Cov}(X_i, X_j) = 0$ if $i \neq j$. Since the X_i are independent we know that $M(t_1, \ldots, t_m) = M_1(t_1) \cdots M_m(t_m)$ so

$$M(t_1, \ldots, t_m) = \exp \left(\sum_{i=1}^{m} t_i \mu_i + \frac{1}{2} \sum_{i=1}^{m} t_i^2 \text{Var}(X_i) + \right)$$

However the expression for the joint moment generating function given at the start still holds. Comparing the two implies that $\text{Cov}(X_i, X_j) = 0$ if $i \neq j$.
Since X is log normal with parameters (μ, σ^2), $Y = \log(X)$ is normal with mean μ and variance σ^2.

Now

$$\exp(\mu t + \frac{\sigma^2 t^2}{2}) = \mathbb{E}(e^{tY}) = \mathbb{E}(e^{t \log(X)}) = \mathbb{E}((e^{t \log(X)})^t) = \mathbb{E}(X^t)$$

So to obtain the mean we evaluate the right hand side at $t = 1$ and to get the second moment we use $t = 2$. So

$$\mathbb{E}(X) = \exp(\mu + \frac{\sigma^2}{2}) \quad \mathbb{E}(X^2) = \exp(\mu^2 + \sigma^2 2)$$

$$\text{Var}(X) = \exp(\mu^2 + \sigma^2 2) - \exp(\mu^2 + \sigma^2)$$