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Abstract. In this paper, we study the modified Camassa-Holm (mCH) equa-

tion in Lagrangian coordinates. For some initial datam0, we show that classical
solutions to this equation blow up in finite time Tmax. Before Tmax, existence

and uniqueness of classical solutions are established. Lifespan for classical so-

lutions is obtained: Tmax ≥ 1
||m0||L∞ ||m0||L1

. And there is a unique solution

X(ξ, t) to the Lagrange dynamics which is a strictly monotonic function of ξ

for any t ∈ [0, Tmax): Xξ(·, t) > 0. As t approaching Tmax, we prove that the
classical solution m(·, t) in Eulerian coordinates has a unique limit m(·, Tmax)

in Radon measure space and there is a point ξ0 such that Xξ(ξ0, Tmax) = 0

which means Tmax is an onset time of collisions of characteristics. We also
show that in some cases peakons are formed at Tmax. After Tmax, we regu-

larize the Lagrange dynamics to prove global existence of weak solutions m in

Radon measure space.

1. Introduction. In this work, we consider the following nonlinear partial differ-
ential equation in R:

mt + [(u2 − u2
x)m]x = 0, m = u− uxx, x ∈ R, t > 0, (1)

subject to an initial condition

m(x, 0) = m0(x). (2)

This equation is referred to as the modified Camassa-Holm(mCH) eqaution with
cubic nonlinearity, which was introduced as a new integrable system by several
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different researchers [14, 16, 28, 29]. It has a bi-Hamiltonian structure [18, 28] and
a Lax-pair [29]. Equation (1) also has solitary wave solutions of the form [18]:

u(x, t) = pG(x− x(t)), m(x, t) = pδ(x− x(t)), and x(t) =
1

6
p2t,

where p is a constant representing the amplitude of the soliton and G(x) = 1
2e
−|x| is

the fundamental solution for the Helmholtz operator 1−∂xx. With this fundamental
solution G, we have the following relation between functions u and m:

u(x, t) = G ∗m =

∫
R
G(x− y)m(y, t)dy.

Moreover, global existence of N -peakon weak solutions of the following form was
obtained in [17]:

uN (x, t) =

N∑
i=1

piG(x− xi(t)), mN (x, t) =

N∑
i=1

piδ(x− xi(t)).

In the present paper, we study local well-posedness for classical solutions and
global weak solutions to (1) in Lagrangian coordinates. Below we introduce the
Lagrange dynamics for the mCH equation. To this end, we first review the Lagrange
dynamics for incompressible 2D Euler equation:{

ωt(x, t) +∇ ·
(
u(x, t)ω(x, t)

)
= 0, (x, t) ∈ R2 × [0,∞),

ω(x, 0) = ω0(x),

where the velocity u is determined from the vorticity ω by the Biot-Savart law

u(x, t) =

∫
R2

K2(x− y)ω(y, t)dy, x ∈ R2,

involving the kernel K2(x) = (2π|x|2)−1(−x2, x1). Assume X(ξ, t) is the flow map
generated by the velocity field u(x, t):{

Ẋ(ξ, t) = u(X(ξ, t), t), ξ ∈ R2, t > 0,
X(ξ, 0) = ξ.

By the incompressible property ∇ · u = 0, we know

ω(X(ξ, t), t) = ω0(ξ). (3)

The 2D Euler equation can be rewritten in the Lagrange dynamics Ẋ(ξ, t) = u(X(ξ, t), t), X(ξ, 0) = ξ ∈ R2, t > 0,
ω(X(ξ, t), t) = ω0(ξ),
u(x, t) = (K2 ∗ ω)(x, t).

Comparing with the incompressible 2D Euler equation, assume X(ξ, t) is the
flow map for the mCH equation generated by the velocity field u2 − u2

x:

Ẋ(ξ, t) = (u2 − u2
x)(X(ξ, t), t), X(ξ, 0) = ξ ∈ R, t > 0.

In contrast with (3), we have the following property for the mCH equation:

m(X(ξ, t), t)Xξ(ξ, t) = m0(ξ).

Combining the above two equalities, the mCH equation (1) can be rewritten in the
Lagrange dynamics:
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Ẋ(ξ, t) = (u2 − u2

x)(X(ξ, t), t), X(ξ, 0) = ξ ∈ R, t > 0,

m(X(ξ, t), t)Xξ(ξ, t) = m0(ξ),

u(x, t) = (G ∗m)(x, t).

(4)

Changing of variable gives

u(x, t) =

∫
R
G(x− y)m(y, t)dy =

∫
R
G(x−X(θ, t))m(X(θ, t))Xθ(θ, t)dθ

=

∫
R
G(x−X(θ, t))m0(θ)dθ.

Set

U(x, t) : = u2(x, t)− u2
x(x, t)

=

(∫
R
G(x−X(θ, t))m0(θ)dθ

)2

−
(∫

R
Gx(x−X(θ, t))m0(θ)dθ

)2

. (5)

Then, Equation (4) can be rewritten as{
Ẋ(ξ, t) = U(X(ξ, t), t),
X(ξ, 0) = ξ ∈ R. (6)

When m0 ∈ L1(R), the following useful properties can be easily obtained:

|u(x, t)| ≤ 1

2
||m0||L1 , |ux(x, t)| ≤ 1

2
||m0||L1 and |U(x, t)| ≤ 1

2
||m0||2L1 . (7)

In the rest of this paper, we assume the initial m0 satisfying supp{m0} ⊂ (−L,L)
for some constant L > 0. Next, we summarize our main results in four theorems.

Theorem 1.1. Suppose m0 ∈ Ckc (−L,L) (k ∈ N, k ≥ 1). Then, there exists a
unique maximum existence time Tmax ≤ +∞ such that Lagrange dynamics (6) has
a unique solution

X ∈ Ck+1
1 ([−L,L]× [0, Tmax)),

which satisfies

Xξ(ξ, t) > 0 for (ξ, t) ∈ [−L,L]× [0, Tmax).

(The solution space is defined by (13).) The mCH equation (1)-(2) has a unique
classical solution

u ∈ Ck+2
1 (R× [0, Tmax)), m ∈ Ck1 (R× [0, Tmax)),

which can be represented by X(ξ, t) as

u(x, t) =

∫ L

−L
G(x−X(θ, t))m0(θ)dθ and m(x, t) =

∫ L

−L
δ(x−X(θ, t))m0(θ)dθ.

(8)

Moreover, m satisfies:

supp{m(·, t)} ⊂ (−L,L) for t ∈ [0, Tmax). (9)

If Tmax < +∞, then the following holds:
(i) We have

X ∈ Ck+1
1 ([−L,L]× [0, Tmax]).

(ii) The following equivalent statements hold:
(a)

lim sup
t→Tmax

||m(·, t)||L∞ = +∞,
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(b) {
Xξ(ξ, t) > 0 for (ξ, t) ∈ [−L,L]× [0, Tmax);

min
ξ∈[−L,L]

Xξ(ξ, Tmax) = 0.

(c)

lim inf
t→Tmax

{
inf

ξ∈[−L,L]

∫ t

0

(mux)(X(ξ, s), s)ds
}

= −∞,

(d)

lim inf
t→Tmax

{
inf
x∈R

(mux)(x, t)
}

= −∞,

(e)
lim sup
t→Tmax

||m(·, t)||W 1,p = +∞, for p ≥ 1,

(f) ∫ Tmax

0

||m(·, t)||L∞dt = +∞.

(iii) There exists a unique function u(·, Tmax) such that

lim
t→Tmax

u(x, t) = u(x, Tmax), lim
t→Tmax

ux(x, t) = ux(x, Tmax) for every x ∈ R.

Moreover, for any t ∈ [0, Tmax] we have

u(·, t), ux(·, t) ∈ BV (R)

and

Tot.Var.{u(·, t)} ≤M1, Tot.Var.{ux(·, t)} ≤ 2M1.

Here, BV (R) is the space of functions with bounded variation (see definition 5.1).
(iv) There exists a unique m(·, Tmax) ∈ M(R) (Radon measure space on R) such
that

m(·, t) ∗⇀m(·, Tmax) in M(R), as t→ Tmax.

(a) and (b) tell us that Tmax is an onset time of collisions of characteristics. (9)
implies that the supports for classical solutions will not change.

Our another main theorem is about finite time blow-up behaviors and the lifespan
of classical solutions. Let Tmax(m0) be the maximum existence time of the classical
solution to the mCH equation subject to an initial condition m0. Then we have the
following theorem about lifespan for classical solutions.

Theorem 1.2. Assume m0 ∈ Ckc (R) (k ∈ N, k ≥ 1).
(i) We have

Tmax(m0) ≥ 1

||m0||L∞ ||m0||L1

. (10)

(ii) If there exists ξ ∈ [−L,L] such that

m0(ξ)∂xu0(ξ) < 0, |m0(ξ)|(∂xu0(ξ))2 >
1

2
||m0||3L1 , (11)

then the classical solution to the mCH equation will blow up in finite time. Moreover,
for any ε > 0 we have

1

||m0||L∞ ||m0||L1

· 1

ε2
≤ Tmax(εm0) ≤ 1

||m0||2L1

· 1

ε2
. (12)
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This theorem implies that there are smooth initial data with arbitrary small
support and arbitrary small Ck(R)-norm, k ∈ N, for which the classical solution
does not exist globally.

Next, we give a theorem to show the formation of peakons at finite blow-up
time Tmax. From Theorem 1.1, we know there is a point ξ0 ∈ [−L,L] such that
Xξ(ξ0, Tmax) = 0. Set

FTmax := {X(ξ, Tmax) : ξ ∈ [−L,L], Xξ(ξ, Tmax) = 0}.

For any x ∈ FTmax , because Xξ(·, Tmax) ≥ 0, we know that X−1(x, Tmax) is either
a single point or a closed interval. Denote

F̂Tmax := {x ∈ FTmax : X−1(x, Tmax) = [ξ1, ξ2] for some ξ1 < ξ2}.

The figure below describe these singular points.
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Figure 1. At Tmax, Xξ(·, Tmax) ≥ 0 and Xξ(ξ, Tmax) = 0 for
ξ ∈ {ξ1, ξ4} ∪ [ξ21, ξ22] ∪ [ξ31, ξ32]. FTmax = {x1, x2, x3, x4} and

F̂Tmax = {x2, x3}.

For x ∈ F̂Tmax and X−1(x, Tmax) = [ξ1, ξ2], we show that m0 will not change

sign in [ξ1, ξ2] (see Proposition 3). Hence,
∫ ξ2
ξ1
m0(ξ)dξ 6= 0. We have the following

theorem.

Theorem 1.3. Assume FTmax = {xi}N1
i=1 and F̂Tmax = {xi}Ni=1 (N ≤ N1). Let

X−1(xi, Tmax) = [ξi1, ξi2] and pi =
∫ ξi2
ξi1

m0(ξ)dξ for 1 ≤ i ≤ N . Then

m(x, Tmax) = m1(x) +

N∑
i=1

piδ(x− xi)

where m1 ∈ L1(R) is given by (99).

At last, we give a theorem to show global existence of weak solutions (see Defi-
nition 6.3). Theorem 1.1 (iv) tells that classical solutions become Radon measures
when blow-up happens. After the blow-up time Tmax, we can extend our solution
m(x, t) globally in the Radon measure space. We have:
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Theorem 1.4. Let m0 ∈ M(R) with compact support. Then there exists a global
weak solution to the mCH equation satisfying:

u ∈ C([0,+∞);H1(R)) ∩ L∞(0,+∞;W 1,∞(R)),

and

m = u− uxx ∈M(R× [0, T )) for any T > 0.

Now, we compare the mCH equation with the Camassa-Holm (CH) equation:

∂tm+ ∂x(um) +m∂xu = 0, m = u− uxx, x ∈ R, t > 0.

The CH equation was established by Camassa and Holm [6] to model the unidi-
rectional propagation of waves at free surface of a shallow layer of water (u(x, t)
representing the height of water’s free surface above a flat bottom). It is also a
complete integrable system which has a bi-Hamiltonian structure and a Lax pair
[6].

There are some different properties between the CH equation and the mCH
equation.
• Classical solutions and blow-up criteria. For a large class of initial data, classical

solutions to the CH equation blow up in finite time (see [2] and references in it).
McKean [25] provided a necessary and sufficient condition for wave-breaking of the
CH equation. In 2012, Jiang et. al [22] gave a new and direct proof for McKean’s
theorem in [25]. Moreover, the only way that a classical solution of the CH equation
fails to exist globally is that the wave breaks [10] in the sense that the solution
u remains bounded while the spatial derivative ux becomes unbounded. For the
mCH equation, blow-up behaviors also happen for a large class of initial data (see
[8, 18, 24]). However, uxx (hence m) becomes unbounded when blow-up happens,
while u and ux remain bounded.
• Lifespan for classical solutions. Comparing with (12), the lower bound for

lifespan of strong solutions to the CH equation with initial data εu0(x) is given by
[13, 26]:

Tmax ≥
C

ε
for some C = C(u0).

• N -peakon weak solutions. Trajectories for N -peakon weak solutions to the CH

equation never collide [7, 9] provided that the initial datumm0(x) =
∑N
i=1 piδ(x−ci)

satisfies pi > 0 and ci 6= cj for i 6= j. However, the trajectories for N -peakon
solutions of the mCH equation may collide in finite time even if m0 ≥ 0 [17].
Moreover, for the CH equation, when blow-up happens at finite time Tmax, we have
lim inft→Tmaxux(x, t) = −∞ (see [10, 26]). Peakon solutions u and its derivative ux
are in BV space, which are bounded functions. Hence, peakon solutions can not be
formed when blow-up happens (comparing with Theorem 1.3) for the CH equation.
• General weak solutions. In [17], the authors proved nonuniqueness of weak

solutions obtained by Theorem 1.4. Comparing with Theorem 1.4, there is a unique
global weak solution u ∈ C([0,+∞);H1(R)) and m ∈ M+(R) (see [9, 12]) to the
CH equation when u0 ∈ H1(R) and 0 ≤ m0 ∈ M(R). For general initial data
u0 ∈ H1(R), global existence of weak solutions to the CH equation was obtained
by several different methods (see [4, 5, 19, 20, 31, 32]).

For more results about local well-posedness and blow up behavior of strong so-
lutions to the Cauchy problem (1)-(2), one can refer to [8, 15, 18, 24]. For weak
solutions, one can refer to [17, 33].
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The rest of this article is organized as follows. In Section 2, we use contraction
mapping theorem to prove local existence and uniqueness of solutions X(ξ, t) to
the Lagrange dynamics (6). Then, we use X(ξ, t) to obtain (u(x, t),m(x, t)) and
prove that it is a unique classical solution to the mCH equation (1)-(2). Besides,
when supt∈[0,T ) ||m(·, t)||L∞ is finite, we can extend this classical solution in time.
In Section 3, we show some blow-up criteria for classical solutions. In Section 4,
we prove that for some initial data classical solutions blow up in a finite time and
the estimates for blow-up rates are given. For small initial data, almost global
existence of classical solutions is obtained. In Section 5, we study classical solutions
at blow-up time Tmax. u(·, Tmax) and ux(·, Tmax) are BV functions while m(·, t)
has a unique limit m(·, Tmax) in Radon measure space as t→ Tmax. Moreover, we
prove that in some cases peakons are formed at Tmax. In the last section, we use
regularized Lagrange dynamics to prove global existence of weak solutions in Radon
measure space.

2. Lagrange dynamics and short time classical solutions. In this section, we
study the existence and uniqueness of solutions to Lagrange dynamics (6). Then,
we prove (u(x, t),m(x, t)) defined by (8) is a unique classical solution to (1)-(2).

First, let’s introduce the spaces for solutions. For nonnegative integers k, n and
real number T > 0, we denote

UT := [−L,L]× [0, T ]

and the function space

Ckn(UT ) :=
{
u : UT → R : ∂βxu ∈ C(UT ), |β| ≤ k; ∂αt u ∈ C(UT ), |α| ≤ n

}
.
(13)

Similarly, we can define Ckn(R× [0, T ]).
We will present the results of this section in three subsections as follows.

1. In Subsection 2.1, when m0 ∈ Ckc (−L,L), we prove local existence and unique-

ness of a solution X ∈ Ck+1
1 ([−L,L]× [0, t1]) to (6) such that

min{Xξ(ξ, t) : (ξ, t) ∈ [−L,L]× [0, t1]} > 0.

2. In Subsection 2.2, we prove u defined by (8) belongs to Ck+2
1 (R× [0, t1]) and

(u,m) is a unique classical solution to the mCH equation.
3. In Subsection 2.3, we prove that whenever the classical solution m satisfies

sup
t∈[0,T )

||m(·, t)||L∞ <∞,

we can extend the classical solution in time.

2.1. Local existence and uniqueness of solutions to Lagrange dynamics.
In this subsection, we use the contraction mapping theorem to prove short time exis-
tence and uniqueness of solutions to the Lagrange dynamics (6), which is equivalent
to the following integral equation:

X(ξ, t) = ξ +

∫ t

0

U(X(ξ, s), s)ds, (14)

where U is defined by (5). Set

TX(ξ, t) := ξ +

∫ t

0

U(X(ξ, s), s)ds. (15)
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For constants C2 > C1 > 0 and t1 > 0, we define

Qt1(C1, C2) :=
{
X ∈ C(Ut1) : C1(ξ − η)2 ≤ (X(ξ, t)−X(η, t))(ξ − η)

≤ C2(ξ − η)2, for any ξ, η ∈ [−L,L] and t ∈ [0, t1]
}
. (16)

Obviously, Qt1(C1, C2) is a closed subset of C(Ut1). We will look for suitable
constants C1, C2, t1 and then use the contraction mapping theorem in the set
Qt1(C1, C2).

Before presenting the existence and uniqueness theorem, we give two useful lem-
mas.

Lemma 2.1. Assume g ∈ L∞(−L,L) and X(ξ, t) ∈ Qt1(C1, C2) for some constants
C2 > C1 > 0 and t1 > 0. Let

A(x, t) :=

∫ L

−L
G′(x−X(θ, t))g(θ)dθ.

Then, we have A ∈ C(R× [0, t1]).

Proof. According to (16), X(ξ, t) is monotonic about ξ. For given (x, t) ∈ Ut1 , we
separate the proof into three parts.

Step 1. Continuity at (x, t) ∈ R× [0, t1] when x > X(L, t).
For (y, s) closed to (x, t) and because X ∈ C(Ut1) is monotonic, we can assume

y > X(θ, s) for θ ∈ (−L,L). A direct estimate gives

|A(y, s)−A(x, t)| =
∣∣∣∣ ∫ L

−L
G′(y −X(θ, s))g(θ)dθ −

∫ L

−L
G′(x−X(θ, t))g(θ)dθ

∣∣∣∣
≤
∫ L

−L
|G(x−X(θ, t))−G(y −X(θ, s))| · |g(θ)|dθ

≤ 1

2
||g||L∞

∫ L

−L
|y − x|+ |X(θ, t)−X(θ, s)|dθ.

Therefore, according to the uniform continuity of X, A is continuous at (x, t). The
proof of the case x < X(−L, t) is similar.

Step 2. Continuity at (x, t) ∈ R× [0, t1] when x = X(ξ, t) for some ξ ∈ (−L,L).
Due to the continuity of X, for (y, s) closed to (x, t), there exists η ∈ [−L,L]

such that X(η, s) = y. Without lose of generality, we assume ξ > η.

|A(y, s)−A(x, t)|

=

∣∣∣∣ ∫ L

−L
G′(X(η, s)−X(θ, s))g(θ)dθ −

∫ L

−L
G′(X(ξ, t)−X(θ, t))g(θ)dθ

∣∣∣∣
≤
∫ η

−L
|G′(X(η, s)−X(θ, s))−G′(X(ξ, t)−X(θ, t))||g(θ)|dθ

+

∫ ξ

η

|G′(X(η, s)−X(θ, s))−G′(X(ξ, t)−X(θ, t))||g(θ)|dθ

+

∫ L

ξ

|G′(X(η, s)−X(θ, s))−G′(X(ξ, t)−X(θ, t))||g(θ)|dθ.
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Then, the monotonicity of X(θ, t) implies that

|A(y, s)−A(x, t)| ≤ ||g||L∞ |ξ − η|+ ||g||L∞
∫ L

−L
|x− y|+ |X(θ, s)−X(θ, t)|dθ.

From the definition of Qt1(C1, C2), we have

|x− y| = |X(ξ, t)−X(η, s)| ≥ |X(ξ, s)−X(η, s)| − |X(ξ, t)−X(ξ, s)|
≥ C1|ξ − η| − |X(ξ, t)−X(ξ, s)|. (17)

Therefore, |ξ − η| ≤ 1
C1

(|x − y| + |X(ξ, t) −X(ξ, s)|). Hence, A(x, t) is continuous

at (x, t).

Step 3. Continuity at (x, t) ∈ R× [0, t1] when x = X(L, t). The case x = X(−L, t)
is similar.

For (y, s) closed to (x, t), we have two cases. When y > X(L, s), we can use Step
1. When there exists ξ ∈ (−L,L) such that y = X(ξ, s), we can use Step 2.

This is the end of the proof.

Lemma 2.2. Assume m0 ∈ L∞(−L,L) and X ∈ Qt1(C1, C2) for some constants
C2 > C1 > 0 and t1 > 0. Then, for −L ≤ η < ξ ≤ L, we have

[1− (M1M∞ + C2M
2
1 )t1](ξ − η) ≤ TX(ξ, t)− TX(η, t)

≤ [1 + (M1M∞ + C2M
2
1 )t1](ξ − η), (18)

where M1 := ||m0||L1 and M∞ := ||m0||L∞ .

Proof. Assume X ∈ Qt1(C1, C2) for some constants C2 > C1 > 0 and t1 > 0. For
−L ≤ η < ξ ≤ L, t ∈ [0, t1], we have

TX(ξ, t)− TX(η, t) = ξ − η +

∫ t

0

[U(X(ξ, s), s)− U(X(η, s), s)]ds. (19)

By (7), we obtain

|U(X(ξ, s), s)− U(X(η, s), s)|
≤ |u2(X(ξ, s), s)− u2(X(η, s), s)|+ |u2

x(X(ξ, s), s)− u2
x(X(η, s), s)|

≤M1|u(X(ξ, s), s)− u(X(η, s), s)|+M1|ux(X(ξ, s), s)− ux(X(η, s), s)|
=: I1 + I2.

Because X ∈ Qt1(C1, C2), we have

|u(X(ξ, s), s)− u(X(η, s), s)|

=

∣∣∣∣ ∫ L

−L
m0(θ)

(
G(X(ξ, s)−X(θ, s))−G(X(η, s)−X(θ, s))

)
dθ

∣∣∣∣
≤ 1

2
M1(X(ξ, s)−X(η, s)) ≤ 1

2
M1C2(ξ − η).

Thus,

I1 ≤
1

2
M2

1C2(ξ − η).

Next, we estimate I2.
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When X ∈ Qt1(C1, C2), we have (X(ξ, s) − X(θ, s))(X(η, s) − X(θ, s)) > 0 for
θ ∈ [−L, η)∩ (ξ, L]. On the other hand, we know |G′(a)−G′(b)| = |G(a)−G(b)| ≤
1
2 |a− b| when ab > 0. Therefore,

|ux(X(ξ, s), s)− ux(X(η, s), s)|

≤
∫

[−L,η)∩(ξ,L]

m0(θ)|G′(X(ξ, s)−X(θ, s))−G′(X(η, s)−X(θ, s))|dθ

+

∫ ξ

η

m0(θ)|G′(X(ξ, s)−X(θ, s))−G′(X(η, s)−X(θ, s))|dθ

≤ (
1

2
M1C2 +M∞)(ξ − η).

Thus

I2 ≤ (
1

2
C2M

2
1 +M1M∞)(ξ − η).

Combining I1 and I2 gives

−(C2M
2
1 +M1M∞)t1(ξ − η) ≤

∫ t

0

[U(X(ξ, s), s)− U(X(η, s), s)]ds

≤ (C2M
2
1 +M1M∞)t1(ξ − η).

Together with (19), we obtain (18).

We have the following existence and uniqueness theorem.

Theorem 2.3. Assume m0 ∈ Ckc (−L,L) (k ∈ N, k ≥ 1). Let M1 := ||m0||L1 and
M∞ := ||m0||L∞ . Then, for any t1 with

0 < t1 <
1

2M2
1 +M1M∞

, (20)

there exist constants C2 > C1 > 0 satisfying

1 +M1M∞t1
1−M2

1 t1
< C2 <

1−M1M∞t1
M2

1 t1
, (21)

and

0 < C1 < 1− (M1M∞ + C2M
2
1 )t1, (22)

such that (14) has a unique solution X ∈ Ck+1
1 (Ut1) satisfying

C1 ≤ Xξ(ξ, t) ≤ C2 (23)

for (ξ, t) ∈ [−L,L]× [0, t1].

Moreover, for any ` ∈ N, 0 ≤ ` ≤ k + 1, there exists a constant Ĉ` (depending
on ||m0||Ck , ||m0||L1 and t1) such that

|∂`ξX(ξ, t)| ≤ Ĉ`. (24)

Proof. We separate this proof into two parts.
Part I.(Existence and Uniqueness) We use the contraction mapping theorem

to prove the existence of a unique solution X ∈ C0
1 (Ut1) to (14).

Step 1. When 0 < t1 <
1

2M2
1 +M1M∞

, we prove there are constants C2 > C1 > 0

such that when X ∈ Qt1(C1, C2), we have TX ∈ Qt1(C1, C2), where TX is defined
by (15).
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When t1 satisfies (20), we have

M2
1 t1 <

1

2
and M1M∞t1 < 1. (25)

A simple computation shows that

1 +M1M∞t1
1−M2

1 t1
<

1−M1M∞t1
M2

1 t1
.

Hence, there is a constant C2 satisfying (21). Moreover, inequality (21) implies

1 + (M1M∞ + C2M
2
1 )t1 ≤ C2, (26)

and
0 < 1− (M1M∞ + C2M

2
1 )t1.

Therefore, we can choose C1 satisfying (22).
When X ∈ Qt1(C1, C2), combining (18), (22) and (26) gives

TX ∈ Qt1(C1, C2)

and Step 1 is completed.

Step 2. We prove TX is a contraction map on Qt1(C1, C2).
For X,Y ∈ Qt1(C1, C2), combining (7) we have

|TX(ξ, t)− TY (ξ, t)| ≤
∫ t

0

|U(X(ξ, s), s)− U(Y (ξ, s), s)|ds

≤M1

∫ t

0

|u(X(ξ, s), s)− u(Y (ξ, s), s)|ds+M1

∫ t

0

|ux(X(ξ, s), s)− ux(Y (ξ, s), s)|ds

=: J1 + J2. (27)

For the first term J1, we estimate

u(X(ξ, s), s)− u(Y (ξ, s), s)

=

∫ L

−L
m0(θ)

(
G(X(ξ, s)−X(θ, s))−G(Y (ξ, s)− Y (θ, s))

)
dθ

≤ 1

2

∫ L

−L
m0(θ)(|X(ξ, s)− Y (ξ, s)|+ |X(θ, s)− Y (θ, s)|)dθ

≤M1||X − Y ||C(Ut1 ). (28)

For the second term, due to (X(ξ, s)−X(θ, s))(Y (ξ, s)− Y (θ, s)) > 0, we obtain

ux(X(ξ, s), s)− ux(Y (ξ, s), s)

=

∫ L

−L
m0(θ)

(
G′(X(ξ, s)−X(θ, s))−G′(Y (ξ, s)− Y (θ, s))

)
dθ

≤M1||X − Y ||C(Ut1 ). (29)

Combining (27), (28), and (29), we have

|TX(ξ, t)− TY (ξ, t)| ≤ J1 + J2 ≤ 2M2
1 t1||X − Y ||C(Ut1 ),

which implies
||TX − TY ||C(Ut1 ) ≤ 2M2

1 t1||X − Y ||C(Ut1 ).

Inequality (25) shows that TX is a contraction map.
At last, by the contraction mapping theorem, the system (14) (or (6)) has a

unique solution in C(Ut1).
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On the other hand, using Lemma 2.1 we can see U = u2 − u2
x ∈ C(R × [0, t1]),

which means

∂tX ∈ C(Ut1).

Hence, X ∈ C0
1 (Ut1) and Part I is finished.

Part II. (Regularity) We show X obtained in the first part belongs to Ck+1
1

(Ut1).
From the first part, we can see solution X belongs to C0

1 (Ut1). For this solution
we have the following properties

X(ξ, t)−X(θ, t) > 0, −L < θ < ξ; X(ξ, t)−X(θ, t) < 0, ξ < θ < L.

On the other hand, G(x) = 1
2e
−|x| satisfies:

G′(x) = G(x), x < 0; G′(x) = −G(x), x > 0.

We obtain∫ ξ

−L
G′(X(ξ, s)−X(θ, s))m0(θ)dθ = −

∫ ξ

−L
G(X(ξ, s)−X(θ, s))m0(θ)dθ, (30)∫ L

ξ

G′(X(ξ, s)−X(θ, s))m0(θ)dθ =

∫ L

ξ

G(X(ξ, s)−X(θ, s))m0(θ)dθ, (31)

Hence,

ux(X(ξ, t), t)

=

∫ ξ

−L
G′(X(ξ, t)−X(θ, t))m0(θ)dθ +

∫ L

ξ

G′(X(ξ, t)−X(θ, t))m0(θ)dθ

= −
∫ ξ

−L
G(X(ξ, t)−X(θ, t))m0(θ)dθ +

∫ L

ξ

G(X(ξ, t)−X(θ, t))m0(θ)dθ.

We obtain

U(X(ξ, t), t) = u2(X(ξ, t), t)− u2
x(X(ξ, t), t)

= 4

(∫ ξ

−L
G(X(ξ, t)−X(θ, t))m0(θ)dθ

)(∫ L

ξ

G(X(ξ, t)−X(θ, t))m0(θ)dθ

)
.

(32)

Thus

X(ξ, t) =ξ + 4

∫ t

0

(∫ ξ

−L
G(X(ξ, s)−X(θ, s))m0(θ)dθ

)
(∫ L

ξ

G(X(ξ, s)−X(θ, s))m0(θ)dθ

)
ds. (33)

Because X(ξ, t) is monotonic about ξ, its derivative exists for a.e. ξ ∈ [−L,L].
Differentiating with respect to ξ shows that for a.e. ξ ∈ [−L,L],

Xξ(ξ, t) = 1 + 4G(0)m0(ξ)

∫ t

0

(∫ L

ξ

G(X(ξ, s)−X(θ, s))m0(θ)dθ

−
∫ ξ

−L
G(X(ξ, s)−X(θ, s))m0(θ)dθ

)
ds
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+ 4

∫ t

0

Xξ(ξ, s)

(∫ ξ

−L
G′(X(ξ, s)−X(θ, s))m0(θ)dθ

)
(∫ L

ξ

G(X(ξ, s)−X(θ, s))m0(θ)dθ

)
ds

+ 4

∫ t

0

Xξ(ξ, s)

(∫ ξ

−L
G(X(ξ, s)−X(θ, s))m0(θ)dθ

)
(∫ L

ξ

G′(X(ξ, s)−X(θ, s))m0(θ)dθ

)
ds, (34)

Due to (30) and (31), the sum of the last two terms in (34) is zero, which leads to

Xξ(ξ, t) = 1 + 2m0(ξ)

∫ t

0

(∫ L

ξ

G(X(ξ, s)−X(θ, s))m0(θ)dθ

−
∫ ξ

−L
G(X(ξ, s)−X(θ, s))m0(θ)dθ

)
ds. (35)

Because m0 ∈ Ckc (−L,L), we have Xξ ∈ C(Ut1) which means X ∈ C1
1 (Ut1).

From (35), we have

|Xξ(ξ, t)| ≤ 1 +M1M∞t1 = 1 + ||m0||C ||m0||L1t1 for t ∈ [0, t1]. (36)

Differentiating (35) with respect to ξ shows that

Xξξ(ξ, t) = 1 + 2m′0(ξ)

∫ t

0

(∫ L

ξ

G(X(ξ, s)−X(θ, s))m0(θ)dθ

−
∫ ξ

−L
G(X(ξ, s)−X(θ, s))m0(θ)dθ

)
ds− 2m2

0(ξ)t

+ 2m0(ξ)

∫ t

0

Xξ(ξ, s)

∫ L

−L
G(X(ξ, s)−X(θ, s))m0(θ)dθds. (37)

Hence, we obtain Xξξ ∈ C(Ut1) and

|Xξξ(ξ, t)| ≤ 1 + 2||m0||C1 ||m0||L1t1 + 2||m0||2Ct1 + 2||m0||2C ||m0||2L1t21.

We have X ∈ C2
1 (Ut1).

Similarly, taking derivative about ξ for k times on both sides of (35) gives that

X ∈ Ck+1
1 (Ut1)

and (24) holds.

Remark 1. Monotonicity of X(·, t) plays an important role in our proof. Without
monotonicity, the vector field for the Lagrange dynamics may be not Lipschitz.
From (35), we know supp{Xξ(·, t) − 1} ⊂ (−L,L). Hence, we can continuously
extend Xξ(·, t) globally as

Xξ(ξ, t) = 1 for ξ ∈ R \ [−L,L].
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2.2. Classical solutions to the mCH equation. Next, we prove the short time
existence and uniqueness of the classical solutions to (1)-(2).

The following lemma shows that we can construct classical solutions to the mCH
equation (1)-(2) from the solutions to the Lagrange dynamics (6). Moreover, we
show that the support of m(·, t) will not change.

Lemma 2.4. Let m0 ∈ Ckc (−L,L) for some integer k ≥ 1. Assume that X ∈
Ck+1

1 (Uδ) (for some δ > 0) is the solution of (6) and strictly monotonic about
ξ for any fixed time t ∈ [0, δ]. u(x, t), m(x, t) are defined by (8). And assume

u ∈ Ck+2
1 (R× [0, δ]). Then, (u(x, t),m(x, t)) is a classical solution of (1)-(2).

Moreover, we have

supp{m(·, t)} ⊂ (−L,L), t ∈ [0, δ]. (38)

Proof. We denote (φ, ψ) :=
∫
R φ(x)ψ(x)dx. For any test function φ ∈ C∞c (R), we

have

(φ,m) =

∫
R
φ(x)

∫ L

−L
m0(θ)δ(x−X(θ, t))dθdx =

∫ L

−L
m0(θ)φ(X(θ, t))dθ.

(φ,mt) =
d

dt
(φ,m) =

∫ L

−L
m0(θ)φ′(X(θ, t))Ẋ(θ, t)dθ

=

∫ L

−L
m0(θ)φ′(X(θ, t))U(X(θ, t), t)dθ =

∫
R
φ′(x)U(x, t)m(x, t)dx

= −
∫
R
φ(x)(U(x, t)m(x, t))xdx.

Since that φ is arbitrary, we have

mt + (Um)x = mt + [(u2 − u2
x)m]x = 0.

Next, we prove (38). Because X(ξ, t) is monotonic and G′(x) = −G(x) for x > 0,
we obtain

ux(X(L, t), t) =

∫ L

−L
G′(X(L, t)−X(θ, t))m0(θ)dθ = −u(X(L, t), t).

Hence, we have

Ẋ(L, t) = u2(X(L, t), t)− u2
x(X(L, t), t) = 0 for t ∈ [0, δ],

which implies

X(L, t) ≡ X(L, 0) = L.

Similarly, we have X(−L, t) ≡ X(−L, 0) = −L.
For any φ ∈ C∞c (R), supp{φ} ⊂ R \ (−L,L) gives

(φ,m) =

∫ L

−L
m0(θ)φ(X(θ, t))dθ = 0.

Hence, (38) holds.

Remark 2. Consider the following general equation with α > 0,

mt + [m(u2 − α2u2
x)]x = 0. (39)
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When supp{m0} ⊂ (−L,L), the support of the classical solution m(x, t) to (39)
is also contained in (−L,L). Indeed, by scaling ũ(x, t) = u(αx, αt) and m̃(x, t) =
m(αx, αt) = ũ(x, t)− ũxx(x, t), ũ and m̃ satisfy

m̃t + [(ũ2 − ũ2
x)m̃]x = 0.

Due to supp{m̃0} ⊂ (−αL,αL), by (38) we know supp{m̃(·, t)} ⊂ (−αL,αL).
Hence, we have supp{m(·, t)} ⊂ (−L,L).

Next, we present a useful lemma which is similar to Lemma 2.1.

Lemma 2.5. Assume g ∈ C(Ut1) and g(·, t) ∈ Cc(−L,L) for any fixed time t ∈
[0, t1]. Let X ∈ C1

1 (Ut1) satisfy (23) for some constants C2 > C1 > 0. Set

A(x, t) :=

∫ L

−L
δ(x−X(θ, t))g(θ, t)dθ.

Then, we have A ∈ C(R× [0, t1]) and∫ L

−L
G′′(x−X(θ, t))g(θ, t)dθ ∈ C(R× [0, t1]).

Proof. From the proof of Lemma 2.4, we know [X(−L, t), X(L, t)] = [−L,L]. How-
ever, in order to make no confusion, we still use [X(−L, t), X(L, t)] in this proof.

By using the inverse function theorem, for any t ∈ [0, t1], there is a continuously
differentiable function Z(·, t) ∈ C1[X(−L, t), X(L, t)] such that

Z(X(θ, t), t) = θ for θ ∈ [−L,L]

and
X(Z(x, t), t) = x for x ∈ [X(−L, t), X(L, t)].

Moreover, we have
1

C2
≤ Zx(x, t) ≤ 1

C1
.

Changing variable and using the property of Dirac measure, we have

A(x, t) =

∫ L

−L
δ(x−X(θ, t))g(θ, t)dθ =

∫ X(L,t)

X(−L,t)
δ(x− y)g(Z(y, t), t)Zx(y, t)dy

=

{
0, for x > X(L, t) or x < X(−L, t);
g(Z(x, t), t)Zx(x, t), for x ∈ [X(−L, t), X(L, t)].

(40)

Next, we separate the proof into three parts, which is similar to the proof of Lemma
2.1.

Step 1. Continuity at (x, t) ∈ R × [0, t1] when x > X(L, t). Then case for x <
X(−L, t) is similar.

In this case, we have A(x, t) = 0. For any (y, s) closed to (x, t) and because
X ∈ C(Ut1), we can assume y ≥ X(L, s). Because g(·, s) ∈ Cc(−L,L), we have
A(y, s) = 0. Hence, A is continuous at (x, t).

Step 2. Continuity at (x, t) ∈ R × [0, t1] when x = X(ξ, t) for some ξ ∈ (−L,L).
This means x ∈ (X(−L, t), X(L, t)).

Due to the continuity of X, for (y, s) closed enough to (x, t), we can assume y ∈
[X(−L, s), X(L, s)]. In other words, there exists η ∈ [−L,L] such that X(η, s) = y.
Because

|A(y, s)−A(x, t)| = |g(Z(x, t), t)Zx(x, t)− g(Z(y, s), s)Zx(y, s)|,



2560 YU GAO AND JIAN-GUO LIU

we only have to prove Z and Zx are continuous at (x, t). (17) shows that

|Z(x, t)− Z(y, s)| = |ξ − η| ≤ 1

C1
(|x− y|+ |X(ξ, t)−X(ξ, s)|), (41)

which means Z is continuous at (x, t).
Because Zx(x, t) = 1

Xξ(ξ,t)
and Zx(y, s) = 1

Xξ(η,s)
, we have

|Zx(x, t)− Zx(y, s)| =
∣∣∣∣ 1

Xξ(ξ, t)
− 1

Xξ(η, s)

∣∣∣∣ ≤ 1

C2
1

|Xξ(ξ, t)−Xξ(η, s)|.

From (41) we can see (η, s) → (ξ, t) as (y, s) → (x, t). Together with X ∈ C1
1 (Ut1)

implies the continuity of Zx(x, t) at (x, t).
Hence, A(x, t) is continuous at (x, t).

Step 3. x = X(L, t). The case x = X(−L, t) is similar.
For (y, s) closed to (x, t), we have two cases. When y > X(L, s), we can use Step

1. When there exists ξ ∈ (−L,L) such that y = X(ξ, s), we can use Step 2.
Put Step 1,2,3 together and we can see A ∈ C(R× [0, t1]).
At last, because G(x) is fundamental solution for Helmholtz operator 1 − ∂xx,

we have ∫ L

−L
G′′(x−X(θ, t))g(θ, t)dθ

=

∫ L

−L
G(x−X(θ, t))g(θ, t)dθ −

∫ L

−L
δ(x−X(θ, t))g(θ, t)dθ.

Hence,
∫ L
−LG

′′(x−X(θ, t))g(θ, t)dθ ∈ C(R× [0, t1]).

Now we prove that u(x, t),m(x, t) defined by (8) is a unique classical solution of
(1)-(2).

Theorem 2.6. Assuming m0 ∈ Ckc (−L,L) (k ∈ N, k ≥ 1). Then, for

t1 <
1

2||m0||2L1 + ||m0||L1 ||m0||L∞
,

u given by (8) belongs to Ck+2
1 (R× [0, t1]) and m belongs to Ck1 (R× [0, t1]). (u(x, t),

m(x, t)) is a unique classical solution to (1)-(2).

Proof. Let M1 := ||m0||L1 and M∞ := ||m0||L∞ . For t1 <
1

2M2
1 +M1M∞

, by Theorem

2.3, we know there exist a solution X ∈ Ck+1
1 (Ut1) to (6) satisfying (23) for C1, C2

given by (21) and (22).
Part I. Regularity.

Step 1. When k = 1, we have X ∈ C2
1 (Ut1) and we prove u ∈ C3

1 (R× [0, t1]).
Taking derivative about t for u(x, t) in (8) gives that

∂tu(x, t) = −
∫ L

−L
U(X(θ, t), t)G′(x−X(θ, t))m0(θ)dθ.

Because m0(θ)U(X(θ, t), t) ∈ C(Ut1) and m0(·)U(X(·, t), t) ∈ Cc(−L,L) for any fix
time t ∈ [0, t1], Lemma 2.5 shows that ∂tu ∈ C(R× [0, t1]).

For the spatial variable x, integration by parts leads to

ux(x, t) =

∫ L

−L
G′(x−X(θ, t))m0(θ)dθ =

∫ L

−L
G(x−X(θ, t))∂θ

(
m0(θ)

Xθ(θ, t)

)
dθ,
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uxx(x, t) =

∫ L

−L
G′(x−X(θ, t))∂θ

(
m0(θ)

Xθ(θ, t)

)
dθ,

and

uxxx(x, t) =

∫ L

−L
G′′(x−X(θ, t))∂θ

(
m0(θ)

Xθ(θ, t)

)
dθ. (42)

Set g(θ, t) := ∂θ

(
m0(θ)
Xθ(θ,t)

)
. Then, g(θ, t) satisfies the assumption of Lemma 2.5.

Hence

uxxx ∈ C(R× [0, t1]) and u ∈ C3
1 (R× [0, t1]).

Step 2. When k = 2, we have X ∈ C3
1 (Ut1). Integration by parts changes (42) into

uxxx(x, t) =

∫ L

−L
G′(x−X(θ, t))∂θ

(
1

Xθ
∂θ

(
m0(θ)

Xθ(θ, t)

))
dθ.

Hence

∂4
xu(x, t) =

∫ L

−L
G′′(x−X(θ, t))∂θ

(
1

Xθ
∂θ

(
m0(θ)

Xθ(θ, t)

))
dθ.

And Lemma 2.5 shows that u ∈ C4
1 (R× [0, t1]).

Step 3. If k > 2, we can keep using integration by parts and Lemma 2.5 and obtain

u ∈ Ck+2
1 (R× [0, t1]).

Step 4. Because m = u − uxx, from the above steps, we already know ∂kxm ∈
C(R× [0, t1]). In this step, we show ∂tm ∈ C(R× [0, t1]). Due to (38), we only have
to show ∂tm ∈ C([−L,L]× [0, t1]). From (40), for x ∈ (−L,L) and X(ξ, t) = x, we
have

m(X(ξ, t), t) = m0(Z(x, t))Zx(x, t) =
m0(ξ)

Xξ(ξ, t)
. (43)

Taking derivative of both sides of (43), we have

d

dt
m(X(ξ, t), t) = mx(X(ξ, t), t)Xt(ξ, t) + ∂tm(X(ξ, t), t)

= [mx(u2 − u2
x)](x, t) +mt(x, t), (44)

and

d

dt

m0(ξ)

Xξ(ξ, t)
= −2m0(ξ)mux(X(ξ, t), t)

Xξ(ξ, t)
= −2m2ux(x, t). (45)

Combining (43), (44) and (45), we obtain

mt = −[m(u2 − u2
x)]x ∈ C([−L,L]× [0, t1]).

From the above proof (or Lemma 2.4), we can see that u(x, t),m(x, t) is a classical
solution to (1)-(2).

Part II. Uniqueness of the classical solution to (1)-(2).
Assume there is another classical solution m1 ∈ Ck1 (R× [0, t1]) to (1)-(2). u1 =

G∗m1 ∈ Ck+2
1 (R×[0, t1]). We prove that u1(x, t) can also be defined by the solution

X(ξ, t) to (6), which means

u1(x, t) =

∫ L

−L
G(x−X(θ, t))m0(θ)dθ = u(x, t). (46)
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To this end, define another characteristics Y (ξ, t) by

Ẏ (ξ, t) = (u2
1 − ∂xu2

1)(Y (ξ, t), t),

subject to

Y (ξ, 0) = ξ ∈ R.
By standard ODE theory, we can obtain a solution Y ∈ Ck+1

1 (R× [0, t1]).

Step 1. We prove

u1(x, t) =

∫ L

−L
G(x− Y (θ, t))m0(θ)dθ.

Taking derivative with respect to ξ shows that

Ẏξ(ξ, t) = 2(m1∂xu1)(Y (ξ, t), t)Yξ(ξ, t). (47)

Taking time derivative of m1(Y (ξ, t), t)Yξ(ξ, t) gives that

d

dt
[m1(Y (ξ, t), t)Yξ(ξ, t)] = [∂tm1(Y, t) + ∂xm1(Y, t)Yt]Yξ +m1(Y, t)Yξt

= [∂tm1 + (u2
1 − ∂xu2

1)∂xm1]Yξ + 2∂xu1m
2
1Yξ

= [∂tm1 + [(u2
1 − ∂xu2

1)m1]x]Yξ = 0.

This implies

m1(Y (θ, t), t)Yξ(θ, t) = m0(θ), for θ ∈ [−L,L]. (48)

Hence, we can see

u1(x, t) =

∫
R
G(x− y)m1(y, t)dy =

∫
R
G(x− Y (θ, t))m1(Y (θ, t), t)Yξ(θ, t)dθ

=

∫ L

−L
G(x− Y (θ, t))m0(θ)dθ. (49)

Step 2. We prove Y (ξ, t) = X(ξ, t).
From (49), we obtain

Ẏ (ξ, t) = (u2
1 − ∂xu2

1)(Y (ξ, t), t)

=

(∫ L

−L
G(Y (ξ, t)− Y (θ, t))m0(θ)dθ

)2

−
(∫ L

−L
G′(Y (ξ, t)− Y (θ, t))m0(θ)dθ

)2

,

which means that Y (ξ, t) is also a solution to (6).
From Theorem 2.3 we know that the strictly monotonic solution to (6) is unique.

Therefore, to prove Y (ξ, t) = X(ξ, t), we only have to prove Y (·, t) is strictly mono-
tonic for t ∈ [0, t1].

Combining (47) and (48) gives that

Yξ(ξ, t) = exp

(
2

∫ t

0

(m1∂xu1)(Y (ξ, s), s)ds

)
, (ξ, t) ∈ [−L,L]× [0, t1].

Because ||Y ||L∞([−L,L]×[0,t1]) < +∞, u1 ∈ Ck+2
1 (R×[0, t1]) and m1 ∈ Ck1 (R×[0, t1]),

the minimum and maximum of (m1∂xu1)(Y (ξ, s), s) can be obtained on [−L,L] ×
[0, t1]. Hence

e2K1t1 ≤ Yξ(ξ, t) ≤ e2K2t1 , for t ∈ [0, t1],
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where
K1 = min

(ξ,s)∈[−L,L]×[0,t1]
(m1∂xu1)(Y (ξ, s), s)

and
K2 = max

(ξ,s)∈[−L,L]×[0,t1]
(m1∂1u1)(Y (ξ, s), s).

Hence, Y (·, t) is strictly monotonic for t ∈ [0, t1].
Combining Step 1 and Step 2, we obtain (46).

Remark 3. (48) also can be easily obtained by [30, Theorem 5.34]
The strictly monotonic property of X plays a crucial role in the proof of the

above Theorem. Whenever X is strictly monotonic, we can use integration by parts
to obtain the regularity of u(x, t). Conversely, if m(x, t) is a classical solution, then
the characteristics for the mCH equation is strictly monotonic.

For the convenience of the rest proof, we summarize the results in the proof of
Part II of Theorem 2.6 and give a corollary.

Corollary 1. Let m0 ∈ Ckc (−L,L) (k ∈ N, k ≥ 1) and X ∈ Ck+1
1 ([−L,L]× [0, T ])

be the solution to (6). u ∈ Ck+2
1 (R × [0, T ]), m ∈ Ck1 (R × [0, T ]) is a classical

solution to (1)-(2). Then, we have

Xξ(ξ, t) = exp

(
2

∫ t

0

(mux)(X(ξ, s), s)ds

)
for (ξ, t) ∈ [−L,L]× [0, T ] (50)

and

e2K1T ≤ Xξ(ξ, t) ≤ e2K2T for (ξ, t) ∈ [−L,L]× [0, T ], (51)

where
K1 = min

(ξ,s)∈[−L,L]×[0,T ]
(mux)(X(ξ, s), s)

and
K2 = max

(ξ,s)∈[−L,L]×[0,T ]
(mux)(X(ξ, s), s).

Moreover, we have

m(X(ξ, t), t)Xξ(ξ, t) = m0(ξ) for (ξ, t) ∈ (−L,L)× [0, T ]. (52)

Proof. The proof for (51) and (52) is the same as the proof for uniqueness in The-
orem 2.6.

Remark 4. From (52), we know that m(X(θ, t), t) does not change sign for any
t ∈ [0, T ]. We present a precise argument here.

Set

A+ := {ξ ∈ (−L,L) : m0(ξ) > 0}, A− := {ξ ∈ (−L,L) : m0(ξ) < 0},
and

A0 := {ξ ∈ (−L,L) : m0(ξ) = 0}.
Hence,

A+ ∪A− ∪A0 = (−L,L).

For t ∈ [0, T ], denote

A+
t := {X(ξ, t) ∈ R : ξ ∈ A+}, A−t := {X(ξ, t) ∈ R : ξ ∈ A−},

and
A0
t := {X(ξ, t) ∈ R : ξ ∈ A0}.
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Then, we have A+
0 = A+, A−0 = A− and A0

0 = A0. Due to the monotonicity of
X(·, t), one can easily show that A+

t and A−t are open sets while A0 is a closed set
for t ∈ [0, T ]. Also we have

A+
t ∪A−t ∪A0

t = (X(−L, t), X(L, t))

and (by (52))

m(x, t)

 > 0, for x ∈ A+
t

= 0, for x ∈ A0
t

< 0, for x ∈ A−t .

Due to

Ẋξ(ξ, t) = 2(mux)(X(ξ, t), t) ≡ 0 for ξ ∈ A0,

we obtain

Xξ(ξ, t) ≡ Xξ(ξ, 0) = 1 for ξ ∈ A0, t ∈ [0, T ].

This can also be obtained by (35).

2.3. Solution extension. In this subsection, we will show that as long as classical
solutions to (1)-(2) satisfying ||m(·, t)||L∞ <∞ we can extend the solutions X and
m in time.

Proposition 1. Assume m0 ∈ Ckc (−L,L) and X ∈ Ck+1
1 ([−L,L] × [0, T0)) is the

solution to (6). Let m ∈ Ck1 (R× [0, T0)) be the corresponding solution to (1)-(2). If

sup
t∈[0,T0)

||m(·, t)||L∞ < +∞,

then there exists T̃0 > T0 such that

X ∈ Ck+1
1 ([−L,L]× [0, T̃0])

is a solution to (6), and

u ∈ Ck+2
1 (R× [0, T̃0]), m ∈ Ck1 (R× [0, T̃0])

is a solution to (1)-(2).

Proof. There exists a constant M̃∞ satisfies

sup
t∈[0,T0)

||m(·, t)||L∞ ≤ M̃∞.

From Lemma 2.4, we know m(·, t) has a uniform (in t) support. Hence, there exists

a constant M̃1 such that

sup
t∈[0,T0)

||m(·, t)||L1 ≤ M̃1.

Consider time T1 = T0− 1

3(2M̃2
1 +M̃1M̃∞)

. Our target is to prove that the classical

solution can be extend to T̃0 := T1 + 1

2(2M̃2
1 +M̃1M̃∞)

> T0. We will show this in two

steps.

Step 1. In this step we consider a dynamic system from time T1.
From (38) we know m(·, T1) ∈ Ckc (−L,L). Set

m̃0(θ̃) := m(θ̃, T1) for θ̃ ∈ [−L,L].
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Consider dynamics for X̃(ξ̃, t):

d

dt
X̃(ξ̃, t) =

(∫ L

−L
G(X̃(ξ̃, t))− X̃(θ̃, t))m̃0(θ̃)dθ̃

)2

−
(∫ L

−L
G′(X̃(ξ̃, t))− X̃(θ̃, t))m̃0(θ̃)dθ̃

)2

,

X̃(ξ̃, 0) = ξ̃ ∈ [−L,L].

(53)

Because m̃0(·) = m(·, T1) ∈ Ckc (−L,L), by Theorem 2.6, we know that for any

0 < t1 <
1

2M̃2
1 + M̃1M̃∞

,

there exists a solution X̃(ξ̃, t) to (53) and a classical solution (ũ(x, t), m̃(x, t)) to (1)
subject to initial condition

m̃(x, 0) = m̃0(x) = m(x, T1).

Moreover,

X̃ ∈ Ck+1
1 ([−L,L]× [0, t1]),

ũ ∈ Ck+2
1 (R× [0, t1]) and m̃ ∈ Ck1 (R× [0, t1]).

Choose t1 = 1

2(2M̃2
1 +M̃1M̃∞)

and set T̃0 = T1 + t1. Thus T0 < T̃0.

Step 2. In this step we extend the solutions to [0, T̃0].

Changing variable by ξ̃ = X(ξ, T1), initial value X̃
(
X(ξ, T1), 0

)
= X(ξ, T1) allows

us to define

X(ξ, T1 + t) := X̃
(
X(ξ, T1), t

)
for ξ ∈ [−L,L], t ∈ [0, t1] (54)

and we have

X ∈ Ck+1
1 ([−L,L]× [0, T̃0]).

Similarly, because m̃(x, 0) = m(x, T1), we can use ũ(x, t), m̃(x, t) to define

u(x, T1 + t) := ũ(x, t), m(x, T1 + t) := m̃(x, t) for (x, t) ∈ R× [0, t1]

and we have

u ∈ Ck+2
1 (R× [0, T̃0]), m ∈ Ck1 (R× [0, T̃0]).

Moreover, we can see (u(x, t),m(x, t)) we defined is a classical solution to (1)-(2) in

[0, T̃0].

Next, we show X(ξ, t) satisfies (6) in [0, T̃0].

Actually, changing variable by θ̃ = X(θ, T1) and combining (54) and (52) lead to

u(x, T1 + t) = ũ(x, t) =

∫ L

−L
G(x− X̃(θ̃, t))m̃0(θ̃)dθ̃

=

∫ L

−L
G(x−X(θ, T1 + t))m(X(θ, T1), T1 + t)Xθ(θ, T1 + t)dθ

=

∫ L

−L
G(x−X(θ, T1 + t))m0(θ)dθ.

Similarly, ∫ L

−L
G′(x− X̃(θ̃, t))m̃0(θ̃)dθ̃ = ux(x, T1 + t).
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Therefore, (53) turns into{
Ẋ(ξ, T1 + t) = u2(X(ξ, T1 + t), T1 + t)− u2

x(X(ξ, T1 + t), T1 + t),

X(ξ, T1 + 0) = X̃(X(ξ, T1), 0) = X(ξ, T1),

for ξ ∈ [−L,L] and t ∈ [0, t1].

Hence, X ∈ Ck+1
1 ([−L,L] × [0, T̃0]) is a solution to (6). Corollary 1 ensures

the strictly monotonicity of X(·, t) for t ∈ [0, T̃0]. Therefore, X(ξ, t) is the unique

solution which extends the solution to T̃0.

3. Blow-up criteria. In this section, we give some criteria on finite time blow-up
of classical solutions to the mCH equation.

Let Tmax > 0 be the maximal existence time of classical solution to the mCH
equation. In other words, Tmax satisfies||m(·, t)||L∞ < +∞, 0 ≤ t < Tmax,

lim sup
t→Tmax

||m(·, t)||L∞ = +∞.

Next lemma shows that the solution to Lagrange dynamics (6) can be extended
to the blow-up time Tmax.

Lemma 3.1. Let m0 ∈ Ckc (−L,L). Let Tmax be the maximal existence time for

the classical solution m(x, t) to (1)-(2) and X ∈ Ck+1
1 ([−L,L] × [0, Tmax)) be the

solution to (6). Then we have

X ∈ Ck+1
1 ([−L,L]× [0, Tmax]). (55)

Proof. Let t go to Tmax in (33) and we obtain X(ξ, Tmax). Using (36) and Lipschitz
property of G(x) = 1

2e
−|x|, we can obtain that

X ∈ C([−L,L]× [0, Tmax]).

Let t go to Tmax in (35) and (37). Similarly, combining (24) gives

X ∈ C2
0 ([−L,L]× [0, Tmax]).

Keep doing like this and we can see

X ∈ Ck+1
0 ([−L,L]× [0, Tmax]).

At last, let t go to Tmax in (32) and combining (6), we have ∂tX ∈ C([−L,L]×
[0, Tmax]).

We have the following blow up criteria.

Theorem 3.2. Let m0 ∈ Ckc (−L,L) (k ∈ N, k ≥ 1). X(ξ, t) is the solution to
Lagrange dynamics (6). Assume Tmax < +∞ is the maximum existence time for
the classical solution to (1)-(2). Then, the following equivalent statements hold.
(i)

lim sup
t→Tmax

||m(·, t)||L∞ = +∞, (56)

(ii) {
Xξ(ξ, t) > 0 for (ξ, t) ∈ [−L,L]× [0, Tmax);

min
ξ∈[−L,L]

Xξ(ξ, Tmax) = 0. (57)
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(iii)

lim inf
t→Tmax

{
inf

ξ∈[−L,L]

∫ t

0

(mux)(X(ξ, s), s)ds

}
= −∞, (58)

(iv)

lim inf
t→Tmax

{
inf
x∈R

(mux)(x, t)

}
= −∞, (59)

(v)

lim sup
t→Tmax

||m(·, t)||W 1,p = +∞ for p ≥ 1, (60)

(vi) ∫ Tmax

0

||m(·, t)||L∞dt = +∞. (61)

Proof. We follow the following lines to prove this theorem,

(56)⇒ (57)⇒ (58)⇒ (59)⇒ (60)⇒ (56)

and

(58)⇒ (61)⇒ (56).

Step 1. We prove (56)⇒ (57).
Assume m(x, t) blows up in finite time Tmax. We prove (57) by contradiction.

From Lemma 3.1, we know X ∈ C2
1 ([−L,L]× [0, Tmax]). If (57) does not hold, then

we have

min
{
Xξ(ξ, t) : (ξ, t) ∈ [−L,L]× [0, Tmax]

}
> C1 > 0.

Combining (52) and (38), we have

sup
t∈[0,Tmax)

||m(·, t)||L∞(R) = sup
t∈[0,Tmax)

||m(X(·, t), t)||L∞(−L,L)

= sup
t∈[0,Tmax)

∣∣∣∣∣∣∣∣ m0(·)
Xθ(·, t)

∣∣∣∣∣∣∣∣
L∞(−L,L)

≤ ||m0||L∞
C1

.

This is a contradiction to (56).

Step 2. We prove (57)⇒ (58).
From (57), we have

lim inf
t→Tmax

{
inf

ξ∈[−L,L]
Xξ(ξ, t)

}
= 0.

Together with (50), we can see (57)⇒ (58).

Step 3. We prove (58)⇒ (59).
(58) implies that

lim inf
t→Tmax

{
inf

ξ∈[−L,L]
(mux)(X(ξ, t), t)

}
= −∞. (62)

Because of (38), for any t ∈ [0, Tmax) we have

inf
ξ∈[−L,L]

(mux)(X(ξ, t), t) = inf
x∈[−L,L]

mux(x, t) = inf
x∈R

mux(x, t).

Hence, we can see that (62) and (59) are equivalent.

Step 4. We prove (59)⇒ (60).
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Assume (59) holds. We prove (60) by contradiction. For any 1 ≤ p ≤ +∞, if

lim sup
t→Tmax

||m(·, t)||W 1,p < +∞,

then

sup
t∈[0,Tmax)

||m(·, t)||W 1,p < +∞.

W 1,p(R) ⊂ L∞(R) with continuous injection for all 1 ≤ p ≤ +∞ implies that

sup
t∈[0,Tmax)

||m(·, t)||L∞ < +∞.

On the other hand, we have

sup
t∈[0,Tmax)

||ux(·, t)||L∞ ≤ sup
t∈[0,Tmax)

∣∣∣∣∣∣∣∣ ∫ L

−L
G′(· −X(θ, t))m0(θ)dθ

∣∣∣∣∣∣∣∣
L∞
≤ 1

2
||m0||L1 .

(63)

Hence we obtain supt∈[0,Tmax) ||mux(·, t)||L∞ < +∞, which is a contradiction with

(59). Therefore, (60) holds.

Step 5. We prove (60)⇒ (56).
Assume (60) holds. If supt∈[0,Tmax) ||m(·, t)||L∞ < +∞, by Proposition 1, there

exists T > Tmax such that m ∈ C1
1 (R× [0, T ]). Because m(·, t) has uniform compact

support for t ∈ [0, T ], we have

sup
t∈[0,Tmax)

||m(·, t)||W 1,p ≤ sup
t∈[0,T ]

||m(·, t)||W 1,p < +∞,

which is a contradiction.

Step 6. At last, we prove

(58)⇒ (61)⇒ (56).

When (61) holds, one can easily obtain (56). So, we only have to prove (58) ⇒
(61). (58) implies

lim sup
t→Tmax

{
sup
x∈R

∫ t

0

|mux(x, s)|ds
}

= +∞.

Due to (63), we obtain

sup
x∈R

∫ t

0

|mux(x, s)|ds ≤ C
∫ t

0

||m(·, s)||L∞ds ≤ C
∫ Tmax

0

||m(·, t)||L∞dt

and this gives (61).

Remark 5. (57) shows that there is a ξ0 such that Xξ(ξ0, Tmax) = 0. This means
Tmax is an onset time of collision of characteristics. Now, we can conclude that if
m(x, t) blows up in finite time Tmax, then we have

X ∈ Ck+1
1 ([−L,L]× [0, Tmax]) and m ∈ Ck1 (R× [0, Tmax)).

The blow-up criterion (59) can also be found in [18]. Besides, (61) is similar to
the well known blow-up criterion for smooth solutions to 3D Euler equation [1].

Remark 6 (Other equivalent criteria). Because m(x, t) has compact support for
t ∈ [0, Tmax), by Poincaré inequality, (60) is equivalent to (for any 1 ≤ p ≤ +∞)

lim sup
t→Tmax

||mx(·, t)||Lp = +∞. (64)
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Because m = u− uxx and |u(x, t)| =
∣∣∣ ∫ L−LG(x−X(θ, t))m0(θ)dθ

∣∣∣ ≤ 1
2 ||m0||L1 , we

know that (56) is equivalent to

lim sup
t→Tmax

||uxx(·, t)||L∞ = +∞.

(63) tells us ux is bounded. Hence the blow up behavior is different with the
Camassa-Holm equation, where ux becomes unbounded [10, 11].

When m0(x) ≥ 0, equality (52) implies m(x, t) ≥ 0 for any t ∈ [0, Tmax). Then,
all the above blow-up criteria are equivalent to

lim sup
t→Tmax

{
sup
x∈R

m(x, t)
}

= +∞.

4. Finite time blow up and almost global existence of classical solutions.
In the rest of this paper, we assume m0 ∈ C1

c (−L,L).
In this section, we show that for some initial data solutions to the mCH equation

blow up in finite time. Some blow-up rates are obtained. Moreover, for any ε > 0
and initial data εm0(x) ∈ C1

c (R), we prove that the lifespan of the classical solutions
satisfies

Tmax(εm0) ∼ C

ε2
,

where C is a constant depends on m0(x).
Our finite time blow-up results are similar to the blow-up results in [8, 18, 24] but

with some subtle differences. All these three papers apply the idea from transport
equation and focus on the derivative of u2−u2

x which is 2mux. Comparing with [18,
Theorem 5.2,5.3], we show finite time blow-up for m0 which can change its sign.
Besides, our starting point do not have to be the maximum point of m0 in contrast
with [24, Theorem 1.3]. The main idea of our proof is similar to [8, Theorem 1.5]
which shows blow-up for a sign-changing m0 with the effect of the linear dispersion
term γux (γ ≥ 0).

We have the following proposition.

Proposition 2. Suppose m0 ∈ C1
c (−L,L). Let Tmax be the maximal time of the ex-

istence of the corresponding classical solution m(x, t) to (1)-(2). X ∈ C2
1 ([−L,L]×

[0, Tmax)) is the solution to (6).
(i) If ξ0 ∈ [−L,L] satisfies m0(ξ0) 6= 0, then we have

Xξ(ξ0, t) = 1 + 2m0(ξ0)

∫ t

0

ux(X(ξ0, s), s)ds for t ∈ [0, Tmax). (65)

(ii) We have the following lower bound for blow-up time

Tmax ≥
1

||m0||L∞ ||m0||L1

. (66)

Proof. (i) The mCH equation (1) can be rewritten as

mt + (u2 − u2
x)mx = −2m2ux. (67)

Therefore, we have

d

dt
m(X(ξ, t), t) = −2(m2ux)(X(ξ, t), t).

By (52), when m0(ξ0) 6= 0 we know m(X(ξ, t), t) 6= 0 and it will keep sign (positive
or negative) for t ∈ [0, Tmax). Hence
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1

m2(X(ξ0, t), t)

d

dt
m(X(ξ0, t), t) = −2ux(X(ξ0, t), t). (68)

This implies

d

dt

(
1

m(X(ξ0, t), t)

)
= 2ux(X(ξ0, t), t).

Integrating from 0 to t leads to

1

m(X(ξ0, t), t)
=

∫ t

0

2ux(X(ξ0, s), s)ds+
1

m0(ξ0)
, (69)

and combining (52) gives (65).
(ii) If Tmax <

1
||m0||L∞ ||m0||L1

, then (65) and (7) give that

Xξ(ξ0, Tmax) ≥ 1− ||m0||L∞ ||m0||L1Tmax > 0,

which is a contradiction with the assumption of blow-up at Tmax.

In view of equation (67), the most natural way to study blow-up behavior is
following the characteristics. This method was used for the Burgers equation and
the CH equation. Equality (69) reminds us the proof for finite time blow-up of
Burgers equation:

ut + uux = 0, for x ∈ R, t > 0. (70)

Consider its characteries Ẋ(x, t) = u(X(x, t), t) and we have

d

dt
u(X(x, t), t) = 0.

Taking derivative of (70) gives

uxt + u2
x + uuxx = 0.

Then we have

d

dt
ux(X(x, t), t) = (uuxx)(X(x, t), t) + uxt(X(x, t), t) = −u2

x(X(x, t), t),

which implies

1

ux(X(x, t), t)
= t+

1

u0x(x)
. (71)

Hence, if there exists x0 ∈ R such that u0x(x0) < 0, then ux goes to −∞ in finite
time.

(69) is similar to (71). But we can not have direct estimate on the blow-up time
like the Burgers equation. Hence we need to give some estimate about ux. We have
the following lemma.

Lemma 4.1. Suppose m0 ∈ C1
c (−L,L) and M1 := ||m0||L1 . Let Tmax be the

maximal time of existence of the corresponding classical solution m(x, t) to (1)-(2).
X ∈ C2

1 ([−L,L]× [0, Tmax)) is the solution to (6). Then we have∣∣∣∣ ddtux(X(ξ, t), t)

∣∣∣∣ ≤ M3
1

2
. (72)
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Proof. From (1), we obtain

ut + (u2 − u2
x)ux = −(1− ∂xx)−1[2uxm

2 + 6uxuxxm+ 2u2
xmx]. (73)

Taking derivative to (73) with respect to x and after some calculation we obtain

uxt + (u2 − u2
x)uxx = −uu2

x −G ∗ (uu2
x) +

2

3
u3 − 2

3
G ∗ (u3)−G′ ∗

(
1

3
u3
x

)
Combining Young’s inequality and (7) gives

|uxt + (u2 − u2
x)uxx|

≤ ||uu2
x||L∞ +

∣∣∣∣∣∣uu2
x −

2

3
u3
∣∣∣∣∣∣
L∞
||G||L1 +

2

3
||u||3L∞ +

∣∣∣∣∣∣1
3
u3
x

∣∣∣∣∣∣
L∞
||G′||L1

≤ 1

2
M3

1 ,

which implies (72).

Next, we state and prove our main results in this section.

Theorem 4.2. Suppose m0 ∈ C1
c (−L,L) and M1 := ||m0||L1 . Let Tmax be

the maximal time of existence of the classical solution m(x, t) to (1)-(2). X ∈
C2

1 ([−L,L] × [0, Tmax)) is the solution to (6). If there is a ξ0 ∈ [−L,L] such that
m0(ξ0) > 0 and

−∂xu0(ξ0) >

√
M3

1

2m0(ξ0)
, (74)

then m(x, t) defined by (8) blows up at a time

Tmax ≤ t∗ :=
2

M3
1

(
− ∂xu0(ξ0)−

√[
∂xu0(ξ0)

]2
− M3

1

2m0(ξ0)

)
. (75)

Moreover, when Tmax = t∗, we have the following estimate of the blow-up rate
for m:

||m(·, t)||L∞ ≥
1

C(Tmax − t)
for t ∈ [0, Tmax), (76)

and for Xξ we have

inf
ξ∈(−L,L)

Xξ(ξ, t) ≤ Cm0(ξ0)(Tmax − t) for t ∈ [0, Tmax), (77)

Where

C = −∂xu0(ξ0) +

√[
∂xu0(ξ0)

]2
− M3

1

2m0(ξ0)
.

Proof. Step 1.
Assume m0(ξ0) > 0. Combining (68) and (72) shows that

d

dt

(
1

m2(X(ξ0, t), t)

d

dt
m(X(ξ0, t), t)

)
= −2

d

dt
ux(X(ξ0, t), t) ≥ −M3

1 . (78)

Integrating (78) shows that

1

m2(X(ξ0, t), t)

d

dt
m(X(ξ0, t), t) ≥ −M3

1 t− 2∂xu0(ξ0) (79)
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where we used

1

m2(X(ξ0, t), t)

d

dt
m(X(ξ0, t), t)

∣∣∣∣
t=0

= −2∂xu0(ξ0).

Integrating (79) gives

1

m(X(ξ0, t), t)
≤ 1

2
M3

1 t
2 + 2∂xu0(ξ0)t+

1

m0(ξ0)
.

If ξ0 satisfies (74), then we have

1

2
M3

1 t
2 + 2∂xu0(ξ0)t+

1

m0(ξ0)
=

1

2
M3

1 (t− t∗)(t− t∗),

where

t∗ =
2

M3
1

(
− ∂xu0(ξ0)−

√[
∂xu0(ξ0)

]2
− M3

1

2m0(ξ0)

)
and

t∗ =
2

M3
1

(
− ∂xu0(ξ0) +

√[
∂xu0(ξ0)

]2
− M3

1

2m0(ξ0)

)
.

Hence

0 <
1

m(X(ξ0, t), t)
≤ 1

2
M3

1 (t− t∗)(t− t∗). (80)

This implies that there is a time 0 < Tmax ≤ t∗ such that

m(X(ξ0, t), t)→ +∞, as t→ Tmax

which means m(x, t) blows up at the time Tmax.

Step 2.
Assume Tmax = t∗. From (80), we have

||m(·, t)||L∞ ≥ m(X(ξ0, t), t) ≥
2

M3
1 (t− t∗)(t− t∗)

≥ 2

M3
1 t∗(Tmax − t)

=
1

C(Tmax − t)
.

Hence, we have (76).
From (52) and (80), we have

inf
ξ∈(−L,L)

Xξ(ξ, t) ≤ Xξ(ξ0, t) =
m0(ξ0)

m(X(ξ0, t), t)
≤ 1

2
m0(ξ0)M3

1 (t− t∗)(t− t∗)

≤ 1

2
m0(ξ0)M3

1 t∗(Tmax − t) ≤ Cm0(ξ0)(Tmax − t).

Hence, (77) follows and this ends the proof.

Similarly, we have the following theorem.

Theorem 4.3. Suppose m0 ∈ C1
c (−L,L) and M1 := ||m0||L1 . Let Tmax be

the maximal time of existence of the classical solution m(x, t) to (1)-(2). X ∈
C2

1 ([−L,L] × [0, Tmax)) is the solution to (6). If there is a ξ1 ∈ [−L,L] such that
m0(ξ1) < 0 and

∂xu0(ξ1) >

√
M3

1

−2m0(ξ1)
, (81)
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then m(x, t) defined by (8) blows up at a time

Tmax ≤ t∗ :=
2

M3
1

(
∂xu0(ξ1)−

√[
∂xu0(ξ1)

]2
+

M3
1

2m0(ξ1)

)
.

Moreover, when Tmax = t∗, we have the following estimate of the blow-up rate
for m(x, t):

||m(·, t)||L∞ ≥
1

C(Tmax − t)
for t ∈ [0, Tmax),

and for Xξ we have

inf
ξ∈(−L,L)

Xξ(ξ, t) ≤ Cm0(ξ1)(t− Tmax) for t ∈ [0, Tmax),

Where

C = ∂xu0(ξ1) +

√[
∂xu0(ξ1)

]2
+

M3
1

2m0(ξ1)
.

From conditions (74) and (81), if there exists ξ ∈ [−L,L] such that (11) holds,
then the classical solution will blow up in finite time.

Now we can prove Theorem 1.2.

Proof of Theorem 1.2. (i) (10) follows from (66).
(ii) Let m0 satisfies the assumptions in Theorem 4.2. Then, for any ε > 0 we

know εm0 also satisfies the assumptions. Hence, from (75) we have

Tmax(εm0) ≤ 2||εux||L∞
||εm0||3L1

≤ 1

||m0||2L1

· 1

ε2
,

where (7) was used. Together with (10) we can obtain (12).

5. Solutions at blow-up time and formation of peakons. In this section, we
study the behavior of classical solutions at blow-up time Tmax.

First, we show that u and ux are uniformly BV function for t ∈ [0, Tmax] (in-
cluding the blow-up time Tmax) and m(·, t) has a unique limit in Radon measure
space as t approaching Tmax.

Let us recall the concept of the space BV (R).

Definition 5.1. (i) For dimension d ≥ 1 and an open set Ω ⊂ Rd, a function
f ∈ L1(Ω) belongs to BV (Ω) if

Tot.V ar.{f} := sup

{∫
Ω

f(x)∇ · φ(x)dx : φ ∈ C1
c (Ω;Rd), ||φ||L∞ ≤ 1

}
<∞.

(ii) (Equivalent definition for one dimension case) A function f belongs to BV (R)
if for any {xi} ⊂ R, xi < xi+1, the following statement holds:

Tot.V ar.{f} := sup
{xi}

{∑
i

|f(xi)− f(xi−1)|

}
<∞.

Remark 7. Let Ω ⊂ Rd for d ≥ 1 and f ∈ BV (Ω). Df := (Dx1
f, . . . ,Dxdf)

is the distributional gradient of f . Then, Df is a vector Radon measure and the
total variation of f is equal to the total variation of |Df |: Tot.V ar.{f} = |Df |(Ω).
Here, |Df | is the total variation measure of the vector measure Df ([23, Definition
(13.2)]).
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If a function f : R→ R satisfies Definition 5.1 (ii), then f satisfies Definition (i).
On the contrary, if f satisfies Definition 5.1 (i), then there exists a right continuous
representative which satisfies Definition (ii). See [23, Theorem 7.2] for the proof.

We have the following theorem about u and ux at Tmax.

Theorem 5.2. Let m0 ∈ C1
c (−L,L) and M1 := ||m0||L1 . Let Tmax be the maximal

existence time for the classical solution m(x, t) to (1)-(2) and X ∈ C2
1 ([−L,L] ×

[0, Tmax]) be the solution to (6). Then, the following assertions hold:
(i) There exists a function u(x, Tmax) such that

lim
t→Tmax

u(x, t) = u(x, Tmax), lim
t→Tmax

ux(x, t) = ux(x, Tmax) for every x ∈ R.

(82)

(ii) For any t ∈ [0, Tmax] we have

u(·, t), ux(·, t) ∈ BV (R)

and

Tot.Var.{u(·, t)} ≤M1, Tot.Var.{ux(·, t)} ≤ 2M1. (83)

Proof. We use three steps to prove (i) and (ii) together.

Step 1. We prove u ∈ C(R× [0, Tmax]).

Due to (55) and u(x, t) =
∫ L
−LG(x −X(θ, t))m0(θ)dθ for t ∈ [0, Tmax), let t go

to Tmax and we obtain

u(x, Tmax) =

∫ L

−L
G(x−X(θ, Tmax))m0(θ)dθ.

Moreover, we have u ∈ C(R× [0, Tmax]).

Step 2. For 0 ≤ t < Tmax, we prove (83).
For G = 1

2e
−|x|, we know G, Gx ∈ BV (R) and the following holds

Tot.Var.{G} = 1, Tot.Var.{Gx} = 2.

When t ∈ [0, Tmax), for any {xi} ⊂ R, xi < xi+1, we have∑
i

|u(xi, t)− u(xi−1, t)| ≤
∫ L

−L

∑
i

|G(xi −X(θ, t))−G(xi−1 −X(θ, t))||m0(θ)|dθ

≤ Tot.Var.{G}||m0||L1 = M1,

which means Tot.Var.{u(·, t)} ≤ M1. Similarly, we can obtain Tot.Var.{ux(·, t)} ≤
2M1 for t ∈ [0, Tmax).

Step 3. We prove (82) and show that u(x, Tmax) satisfies (83).
The first part of (82) is deduced by u ∈ C(R × [0, Tmax]). To prove the second

part, we have to do a little more job.
Combining (7), step 2, and [3, Theorem 2.3], we know that there exists a conse-

quence {tk}(→ Tmax) and two BV functions ũ(x), ṽ(x) such that

lim
k→∞

u(x, tk) = ũ(x), lim
k→∞

ux(x, tk) = ṽ(x) for every x ∈ R,

and

Tot.Var.{ũ} ≤M1, |ũ| ≤ 1

2
M1 and Tot.Var.{ṽ} ≤ 2M1, |ṽ| ≤ 1

2
M1.
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Because
lim

t→Tmax
u(x, t) = u(x, Tmax) for every x ∈ R,

we know ũ(x) = u(x, Tmax).
For any test function φ ∈ C∞c (R), we have

−
∫
R
u(x, Tmax)φx(x)dx = −

∫
R
ũ(x)φx(x)dx = − lim

k→∞

∫
R
u(x, tk)φx(x)dx

= lim
k→∞

∫
R
ux(x, tk)φ(x)dx =

∫
R
ṽ(x)φ(x)dx,

which means ṽ(x) is the derivative of u(x, Tmax) in distribution sense. Define
ux(x, Tmax) = ṽ(x) for every x ∈ R and we obtain

lim
k→∞

ux(x, tk) = ũx(x) = ux(x, Tmax) for every x ∈ R.

Because ux(x, t) is continuous in [0, Tmax), we know

lim
t→Tmax

ux(x, t) = ũx(x) = ux(x, Tmax) for every x ∈ R.

This is the end of the proof.

Next we give a theorem to prove that m(·, t) has a unique limit in Radon measure
space M(R) as t approaching Tmax. Before this, let’s recall the definition A+

t and
A−t in Remark 4 and denote

A+
Tmax

:= {X(ξ, Tmax) ∈ R : ξ ∈ A+}, A−Tmax := {X(ξ, Tmax) ∈ R : ξ ∈ A−}.
Because X(ξ, Tmax) may not be strictly monotonic, it is not obvious to see that
A+
Tmax

and A−Tmax are open sets. We give a lemma to show this.

Lemma 5.3. A+
Tmax

and A−Tmax are open sets.

Proof. We only deals with A+
Tmax

and the proof for A−Tmax is similar.

For x0 ∈ A+
Tmax

, there exist ξ ∈ (−L,L) such that m0(ξ) > 0 and x0 =
X(ξ, Tmax). Set

ξ1 := min{ξ ∈ [−L,L] : m0(ξ) ≥ 0 and X(ξ, Tmax) = x0}
and

ξ2 := max{ξ ∈ [−L,L] : m0(ξ) ≥ 0 and X(ξ, Tmax) = x0}.
By continuity of m0 and X(ξ, Tmax), ξ1 and ξ2 can be obtained.

1. If ξ1 = ξ2, then there is only one point ξ0 = ξ1 such that m0(ξ0) > 0 and
x0 = X(ξ0, Tmax). In this case, set

η1 := max{ξ : m0(ξ) = 0 and ξ < ξ0}
and

η2 := min{ξ : m0(ξ) = 0 and ξ > ξ0}.
Because m0(ξ0) > 0, we know η1 < ξ0 < η2 and m0(ξ) > 0 for ξ ∈ (η1, η2). Hence

X(ξ, Tmax) ∈ A+
Tmax

, for ξ ∈ (η1, η2).

Because X(ξ, Tmax) is nondecreasing, we obtain

x0 = X(ξ0, Tmax) ∈ (X(η1, Tmax), X(η2, Tmax)) ⊂ A+
Tmax

.

2. If ξ1 < ξ2, we have

X(ξ, Tmax) ≡ x0, for ξ ∈ [ξ1, ξ2]. (84)
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By definition we know m0(ξi) ≥ 0 for i = 1, 2. When m0(ξi) = 0 for i = 1 or i = 2,
from Remark 4 we know Xξ(ξi, Tmax) = 1. This implies that X(ξ, Tmax) is strictly
monotonic in a neighborhood of ξi which is a contradiction with (84). Hence, we
have

m0(ξi) > 0, for i = 1, 2.

Hence, there exist ξ3 < ξ1 and ξ4 > ξ2 such that

m0(ξ) > 0 for ξ ∈ (ξ3, ξ4).

Therefore, we have

X(ξ3, Tmax) < X(ξ1, Tmax) = x0 = X(ξ2, Tmax) < X(ξ4, Tmax),

and

X(ξ, Tmax) ∈ A+
Tmax

for ξ ∈ (ξ3, ξ4),

which imply

x0 = X(ξ1, Tmax) ∈ (X(ξ3, Tmax), X(ξ4, Tmax)) ⊂ A+
Tmax

.

For any Radon measure µ and measurable set A, we use µ|A to stand for the
restriction of µ on the set A. We have the following Theorem.

Theorem 5.4. Let the assumptions in Theorem 5.2 holds. Then there exists a
unique Radon measure m(·, Tmax) such that

m(·, t) ∗⇀m(·, Tmax) in M(R), as t→ Tmax. (85)

Moreover, m(·, Tmax) has the following properties:
(i) Compact support:

supp{m(·, Tmax)} ⊂ (−L,L). (86)

(ii) Denote

m+
Tmax

:= m(·, Tmax)
∣∣∣
A+
Tmax

and m−Tmax := m(·, Tmax)
∣∣∣
A−Tmax

.

Then m+
Tmax

is a positive Radon measure and m−Tmax is a negative Radon measure.
Besides, we have

m(·, Tmax) = m+
Tmax

+m−Tmax . (87)

(iii) The following equality holds:∫
R
|m|(dx, Tmax) =

∫
R
|m(x, t)|dx =

∫ L

−L
|m0(x)|dx, t ∈ [0, Tmax). (88)

Proof. Step 1. Proof of (85).
Because ux(·, Tmax) is a BV function, its derivative uxx(·, Tmax) is a Radon mea-

sure. We know

m(·, Tmax) = u(·, Tmax)− uxx(·, Tmax)

is a Radon measure and for any test function φ ∈ C∞c (R), we have∫
R
φ(x)m(dx, Tmax) =

∫
R
u(x, Tmax)φ(x) + ux(x, Tmax)φx(x)dx. (89)
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Then, we have

lim
t→Tmax

∫
R
m(x, t)φ(x)dx = lim

t→Tmax

∫
R
u(x, t)φ(x) + ux(x, t)φx(x)dx

=

∫
R
u(x, Tmax)φ(x) + ux(x, Tmax)φx(x)dx

=

∫
R
φ(x)m(dx, Tmax).

This proves (85).

Step 2. Proof of (i).
For any test function φ ∈ C∞c (R), we have∫

R
φ(x)m(dx, Tmax) = lim

t→Tmax

∫
R
m(x, t)φ(x)dx

= lim
t→Tmax

∫
R
m(X(ξ, t), t)φ(X(ξ, t))Xξ(ξ, t)dξ

= lim
t→Tmax

∫ L

−L
m0(ξ)φ(X(ξ, t))dξ

=

∫ L

−L
m0(ξ)φ(X(ξ, Tmax))dξ, (90)

where (52) was used. Because X(L, t) = L and X(−L, t) = −L for t ∈ [0, Tmax],
we have X(·, Tmax) ∈ (−L,L). Let test function φ satisfy supp{φ} ⊂ R \ (−L,L).
Then we obtain∫

R
φ(x)m(dx, Tmax) =

∫ L

−L
m0(ξ)φ(X(ξ, Tmax))dξ = 0,

which implies (86).

Step 3. Proof of (ii).
Due to (90), we know

m(·, Tmax) = X(·, Tmax)#m0.

For φ ∈ C∞c (R) and φ ≥ 0, by the definition of A+ we have∫
R
φ(x)dm+

Tmax
=

∫
A+
Tmax

φ(x)m(dx, Tmax)

=

∫
A+

m0(ξ)φ(X(ξ, Tmax))dξ ≥ 0.

Hence, m+
Tmax

is a positive Radon measure. With the same argument, we can see

that m−Tmax is a negative Radon measure.
On the other hand, by using (90), we have∫

R
φ(x)d(m+

Tmax
+m−Tmax) =

∫
A+
Tmax

∪A−Tmax

φ(x)m(dx, Tmax)

=

∫
A+∪A−

m0(ξ)φ(X(ξ, Tmax))dξ =

∫
A+∪A−∪A0

m0(ξ)φ(X(ξ, Tmax))dξ

=

∫ L

−L
m0(ξ)φ(X(ξ, Tmax))dξ =

∫
R
φ(x)m(dx, Tmax),
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which implies (87).

Step 4. Proof of (iii).
From (52), we have

|m(X(ξ, t), t)|Xξ(ξ, t) = |m0(ξ)|,
which implies∫

R
|m(x, t)|dx =

∫
R
|m(X(ξ, t), t)|Xξ(ξ, t)dξ =

∫ L

−L
|m0(ξ)|dξ for t ∈ [0, Tmax).

For any test function φ ∈ C∞c (R), we have∫
R
φ(x)|m|(dx, Tmax) =

∫
A+
Tmax

φ(x)m(dx, Tmax)−
∫
A−Tmax

φ(x)m(dx, Tmax)

=

∫
A+

m0(ξ)φ(X(ξ, Tmax))dξ −
∫
A−

m0(ξ)φ(X(ξ, Tmax))dξ.

Choose φ ∈ C∞c (R) satisfying

φ(x) ≡ 1, x ∈ (X(−L, Tmax), X(L, Tmax)).

Hence, we have∫
R
|m|(dx, Tmax) =

∫
A+

m0(ξ)dξ −
∫
A−

m0(ξ)dξ =

∫ L

−L
|m0(ξ)|dξ.

This ends the proof.

Remark 8. In Section 6, we will prove the global existence of weak solutions to
the mCH equation when initial datum m0 belongs toM(R). Hence, we can extend
m globally in time after blow up time. Similar results can be found in [17], where
a sticky particle method was used.

Next, we introduce another two sets to study solutions at Tmax. Assume m0 ∈
C1
c (R) and X ∈ C2

1 ([−L,L] × [0, Tmax]) is the solution to the Lagrange dynamics
(6). Set

F := {ξ ∈ (−L,L) : Xξ(ξ, Tmax) = 0}
and

O := {ξ ∈ (−L,L) : Xξ(ξ, Tmax) > 0}.
Then, F is a closed set and O is an open set. Moreover, we have

F ∪O = (−L,L).

Because the classical solution blows up in finite time Tmax, we know F is not empty.
On the other hand, due to m0(±L) = 0, Remark 4 tells that Xξ(±L, Tmax) = 1
which implies O is not empty.

Set

OTmax := {X(ξ, Tmax) : ξ ∈ O} and FTmax := {X(ξ, Tmax) : ξ ∈ F}. (91)

Then, we have

OTmax ∪ FTmax = (X(−L, Tmax), X(L, Tmax)).

X(·, Tmax) is strictly monotonic in O. Hence, OTmax is also an open set and FTmax
is a closed set. Moreover, we claim that

OTmax = [X(−L, Tmax), X(L, Tmax)]. (92)
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To show (92), we only have to prove FTmax ⊂ OTmax . For any x ∈ FTmax , there
exists ξ0 such that x = X(ξ0, Tmax) and Xξ(ξ0, Tmax) = 0. Let ξ1 = max{ξ :
X(ξ, Tmax) = x}. ∀ε > 0, there is ξε ∈ (ξ1, ξ1 + ε) such that Xξ(ξε, Tmax) > 0 and

X(ξε, Tmax) ∈ OTmax . Hence, limε→0X(ξε, Tmax) = X(ξ1, Tmax).
We have the following theorem.

Theorem 5.5. Let assumptions in Theorem 5.2 hold. Then we have

u(·, Tmax) ∈ C3(R \ FTmax)

and

m(·, Tmax) ∈ C1(OTmax) ∩ L1(OTmax).

Moreover, the following holds

m(X(ξ, Tmax), Tmax)Xξ(ξ, Tmax) = m0(ξ) for ξ ∈ O.

Proof. Step 1. We first consider the cases when x 6∈ (X(−L, Tmax), X(L, Tmax)).
Because m0(L) = 0, from Remark 4 we know Xξ(L, Tmax) = 1, which means

X(ξ, Tmax) is strictly monotonic in a small neighborhood of L. Hence,

X(L, Tmax) > X(ξ, Tmax) for ξ ∈ [−L,L).

From this we know, if x ≥ X(L, Tmax), we have x−X(ξ, Tmax) > 0 for ξ ∈ (−L,L).
From Theorem 5.2, we know

u(x, Tmax) =

∫ L

−L
G(x−X(θ, Tmax))m0(θ)dθ.

Thus

ux(x, Tmax) =

∫ L

−L
G′(x−X(θ, Tmax))m0(θ)dθ

= −
∫ L

−L
G(x−X(θ, Tmax))m0(θ)dθ = −u(x, Tmax).

This shows

u(x, Tmax) = u(X(L, Tmax), Tmax)e−x+X(L,Tmax).

Hence, u(·, Tmax) ∈ C∞[X(L, Tmax),+∞).
Similarly, we can show u(·, Tmax) ∈ C∞(−∞, X(−L, Tmax)].

Step 2. We only left the case for x ∈ OTmax .
When x ∈ OTmax , there exists a η ∈ O such that X(η, Tmax) = x. Because

Xξ(η, Tmax) > 0, we know η is the unique point satisfying X(η, Tmax) = x. Rewrite
u(x, Tmax) as

u(x, Tmax) =

∫ L

η

G(X(η, Tmax)−X(θ, Tmax))m0(θ)dθ

+

∫ η

−L
G(X(η, Tmax)−X(θ, Tmax))m0(θ)dθ.

Using Xη(η, Tmax) > 0, we can obtain

ux(x, Tmax) =
1

Xη(η, Tmax)
uη(X(η, Tmax), Tmax)

=
1

Xη(η, Tmax)

(∫ L

η

G′(X(η, Tmax)−X(θ, Tmax))Xη(η, Tmax)m0(θ)dθ
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− 1

2
m0(η) +

1

2
m0(η) +

∫ η

−L
G′(X(η, Tmax)−X(θ, Tmax))Xη(η, Tmax)m0(θ)dθ

)
.

Hence,

ux(x, Tmax) =

∫ L

η

G(X(η, Tmax)−X(θ, Tmax))m0(θ)dθ

−
∫ η

−L
G(X(η, Tmax)−X(θ, Tmax))m0(θ)dθ. (93)

Taking derivative again shows that

uxx(x, Tmax) =− m0(η)

2Xη(η, Tmax)
+

∫ L

η

G(X(η, Tmax)−X(θ, Tmax))m0(θ)dθ

− m0(η)

2Xη(η, Tmax)
+

∫ η

−L
G(X(η, Tmax)−X(θ, Tmax))m0(θ)dθ

=− m0(η)

Xη(η, Tmax)
+ u(x, Tmax). (94)

Because m0 ∈ C1
c (R) and Xξ(·, Tmax) ∈ C1(−L,L), which implies

u(·, Tmax) ∈ C3(OTmax).

Together with Step 1 and Step 2, we obtain

u(·, Tmax) ∈ C3(R \ FTmax).

Step 3. Because R \ FTmax is an open set, for any φ ∈ C∞c (R \ FTmax) we have∫
R
φ(x)m(dx, Tmax) =

∫
R
u(x, Tmax)φ(x) + ux(x, Tmax)φx(x)dx

=

∫
R\FTmax

u(x, Tmax)φ(x) + ux(x, Tmax)φx(x)dx

=

∫
R\FTmax

(u(x, Tmax)− uxx(x, Tmax))φ(x)dx,

where (89) was used. Because φ is arbitrary and u(·, Tmax) ∈ C3(R \ FTmax), we
obtain

m(·, Tmax) = u(·, Tmax)− uxx(·, Tmax) ∈ C1(R \ FTmax). (95)

From Theorem 5.4, we know m(·, Tmax) has compact support in (−L,L). Hence,

m(·, Tmax) ∈ C1(OTmax).

Because the Radon measure m(·, Tmax) has finite total variation, we obtain

m(·, Tmax) ∈ L1(OTmax).

From (94), we know

m(x, Tmax) =
m0(η)

Xη(η, Tmax)

where x ∈ OTmax and X(η, Tmax) = x. This means (52) holds in the set O:

m(X(ξ, Tmax), Tmax)Xξ(ξ, Tmax) = m0(ξ) for ξ ∈ O.

This finishes our proof.
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Because u(·, Tmax) and ux(·, Tmax) are BV functions, their discontinuous points
are countable. We give a proposition to show discontinuous points of ux(·, Tmax).
First, let us introduce two subsets of FTmax .

F̃Tmax = {x ∈ FTmax : X−1(x, Tmax) = {ξ} for some ξ ∈ [−L,L]},
and

F̂Tmax = {x ∈ FTmax : X−1(x, Tmax) = [ξ1, ξ2] for some ξ1 < ξ2}. (96)

Proposition 3. Let the assumptions in Theorem 5.2 hold. Then, ux(·, Tmax) ∈
C(R \ F̂Tmax) and ux(·, Tmax) is not continuous at y ∈ F̂Tmax .

Proof. Step 1. Assume y ∈ F̃Tmax and we prove ux(·, Tmax) is continuous at y.
By definition of FTmax , we know there is only one point ξ0 ∈ F , such that

X(ξ0, Tmax) = y. Due to (92), there exist two sequence {yn} and {ŷn} such that
the following hold:

{yn} ⊂ OTmax , lim
n→+∞

yn = y, yn is increasing

and
{ŷn} ⊂ OTmax , lim

n→+∞
ŷn = y, ŷn is decreasing.

Because yn ∈ OTmax , there is a unique ξn ∈ O such that X(ξn, Tmax) = yn.

Similarly, we have a unique ξ̂n ∈ O such that X(ξ̂n, Tmax) = ŷn. (Uniqueness is
because X(ξ, Tmax) is strictly monotonic in O.) Moreover, we have

ξn < ξ0 < ξ̂n,

and
lim

n→+∞
ξn = ξ0 = lim

n→+∞
ξ̂n.

Because formula (93) holds for x ∈ OTmax , we know

ux(yn, Tmax) =

∫ L

ξn

G(X(ξn, Tmax)−X(θ, Tmax))m0(θ)dθ

−
∫ ξn

−L
G(X(ξn, Tmax)−X(θ, Tmax))m0(θ)dθ.

Let n goes to infinity and we obtain

ux(y−, Tmax) =

∫ L

ξ0

G(X(ξ0, Tmax)−X(θ, Tmax))m0(θ)dθ

−
∫ ξ0

−L
G(X(ξ0, Tmax)−X(θ, Tmax))m0(θ)dθ.

Similarly, we have

ux(ŷn, Tmax) =

∫ L

ξ̂n

G(X(ξ̂n, Tmax)−X(θ, Tmax))m0(θ)dθ

−
∫ ξ̂n

−L
G(X(ξ̂n, Tmax)−X(θ, Tmax))m0(θ)dθ.

and

ux(y+, Tmax) =

∫ L

ξ0

G(X(ξ0, Tmax)−X(θ, Tmax))m0(θ)dθ
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−
∫ ξ0

−L
G(X(ξ0, Tmax)−X(θ, Tmax))m0(θ)dθ.

This implies ux(y−, Tmax) = ux(y+, Tmax). For any y ∈ F̃Tmax , define

ux(y, Tmax) =

∫ L

ξ0

G(X(ξ0, Tmax)−X(θ, Tmax))m0(θ)dθ

−
∫ ξ0

−L
G(X(ξ0, Tmax)−X(θ, Tmax))m0(θ)dθ.

Then using similar argument for any sequence R \ F̂Tmax 3 yn → y, we know

ux(·, Tmax) ∈ C(R \ F̂Tmax).

Step 2. Assume y ∈ F̂Tmax and we prove ux(·, Tmax) is discontinuous at y.
Set

ξ1 = min{ξ ∈ F : X(ξ, Tmax) = y} and ξ2 = max{ξ ∈ F : X(ξ, Tmax) = y}.

By definition of F̂Tmax we know ξ < ξ2. Moreover, we know

X(ξ, Tmax) = y, Xξ(ξ, Tmax) = 0 for ξ ∈ [ξ1, ξ2].

Claim. m0 will not change sign in [ξ1, ξ2].
If this is not true, then we have η ∈ [ξ1, ξ2] such that m0(η) = 0. Remark 4 tells

us that Xξ(η, Tmax) = 1 and we obtain a contradiction.

Similar to Step 1, we have four sequences yn, ξn, ̂̂yn and
̂̂
ξn which satisfy

lim
n→+∞

yn = y = lim
n→+∞

̂̂yn,
yn ∈ OTmax increasing, ̂̂yn ∈ OTmax decreasing,

and

lim
n→+∞

ξn = ξ1, lim
n→+∞

̂̂
ξn = ξ2.

From (93), we know

ux(yn, Tmax) =

∫ L

ξn

G(X(ξn, Tmax)−X(θ, Tmax))m0(θ)dθ

−
∫ ξn

−L
G(X(ξn, Tmax)−X(θ, Tmax))m0(θ)dθ.

Let n go to +∞ and we obtain

ux(y−, Tmax) =

∫ L

ξ1

G(X(ξ1, Tmax)−X(θ, Tmax))m0(θ)dθ

−
∫ ξ1

−L
G(X(ξ1, Tmax)−X(θ, Tmax))m0(θ)dθ

=

∫ L

ξ1

G(y −X(θ, Tmax))m0(θ)dθ −
∫ ξ1

−L
G(y −X(θ, Tmax))m0(θ)dθ.

Similarly, we also have

ux(y+, Tmax) =

∫ L

ξ2

G(y −X(θ, Tmax))m0(θ)dθ −
∫ ξ2

−L
G(y −X(θ, Tmax))m0(θ)dθ.
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Hence, using the above claim, we have

ux(y−, Tmax)− ux(y+, Tmax) = 2

∫ ξ2

ξ1

G(y −X(θ, Tmax))m0(θ)dθ

=

∫ ξ2

ξ1

m0(θ)dθ 6= 0 (97)

which shows that ux(·, Tmax) is not continuous at y.

Next, we prove Theorem 1.3. Let’s give some notations first.

Assume FTmax = {xi}N1
i=1 and x1 < x2 . . . < xN1

. Let F̂Tmax = {xi}Ni=1 (N ≤ N1).
From the proof (97), we know that for each 1 ≤ i ≤ N there exist ξi1 < ξi2 such
that

ux(xi−, Tmax)− ux(xi+, Tmax) = pi

where

pi =

∫ ξi2

ξi1

m0(θ)dθ. (98)

Set

m1(x) =

{
m(x, Tmax), x ∈ OTmax ;
0, x ∈ R \OTmax .

(99)

Proof of Theorem 1.3. For any text function φ ∈ C∞c (R), we have∫
R
φ(x)m(dx, Tmax) =

∫
R
u(x, Tmax)φ(x) + ux(x, Tmax)φx(x)dx

=

(∫ x1

−∞
+

N1−1∑
i=1

∫ xi+1

xi

+

∫ +∞

xN1

)[
u(x, Tmax)φ(x) + ux(x, Tmax)φx(x)

]
dx.

Because ux(·, Tmax) ∈ Ck+2(R \ FTmax), integration by parts leads to∫
R
φ(x)m(dx, Tmax)

=

(∫ x1

−∞
+

N1−1∑
i=1

∫ xi+1

xi

+

∫ +∞

xN1

)[(
u(x, Tmax)− uxx(x, Tmax)

)
φ(x)

]
dx

+

N1∑
i=1

(
ux(xi−, Tmax)− ux(xi+, Tmax)

)
φ(xi)

=

∫
OTmax

m(x, Tmax)φ(x)dx+

N1∑
i=1

(
ux(xi−, Tmax)− ux(xi+, Tmax)

)
φ(xi).

Because ux(·, Tmax) is continuous at xi for i ≥ N+1, combining (95) and (98) gives
that∫

R
φ(x)m(dx, Tmax) =

∫
OTmax

m(x, Tmax)φ(x)dx+

N∑
i=1

∫ ξi2

ξi1

m0(θ)dθφ(xi)

=

∫
OTmax

m(x, Tmax)φ(x)dx+

N∑
i=1

piφ(xi)
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=

∫
OTmax

m(x, Tmax)φ(x)dx+

N∑
i=1

∫
R
piδ(x− xi)φ(x)dx

=

∫
R

(
m1(x) +

N∑
i=1

piδ(x− xi)
)
φ(x)dx.

This theorem tells us that peakons are exactly the points in the set F̂Tmax . Hence,
a peakon is formulated when some Lagrangian labels in a interval [ξ1, ξ2] aggregate
into one point at Tmax and the weight of the peakon is the integration of m0(x) on
[ξ1, ξ2].

6. Solutions after blow-up. At the blow up time, the solution to the mCH equa-
tion m becomes a Radon measure. In this section, we assume initial datum m0 be-
longs to the Radon measure space M(R) and use the Lagrange dynamics to prove
that weak solution to (1)-(2) exists globally in Radon measure space.

6.1. Regularized Lagrange dynamics and BV estimate. Let m0 ∈ M(R)
satisfies

supp{m0} ⊂ (−L,L) and M1 := |m0|(R) < +∞. (100)

G′ is not continuous and may not be integrable with respect to Radon measure m0.
(6) can not be used directly. Hence, a regularization is needed.

Let’s give the definition of mollifier.

Definition 6.1. (i) Define the mollifier 0 ≤ ρ ∈ Ck(R), k ≥ 2 satisfying∫
R
ρ(x)dx = 1, ρ(x) = ρ(|x|) and supp{ρ} ⊂ {x ∈ R : |x| < 1}.

(ii) For each ε > 0, set

ρε(x) :=
1

ε
ρ(
x

ε
).

With this definition, we define

Gε(x) := (ρε ∗G)(x).

Hence, Gε ∈ Ck(R) for k ≥ 2. By Young’s inequality we have

||Gε||L∞ ≤ ||G||L∞ =
1

2
, ||Gεx||L∞ ≤ ||Gx||L∞ =

1

2
(101)

and

||Gε||L1 ≤ ||G||L1 = 1, ||Gεx||L1 ≤ ||Gx||L∞ = 1.

Because Gxx(x) = G(x) when x 6= 0, we have

|Gεxx(x)| =
∣∣∣∣∫

R
ρε(y)Gxx(x− y)dy

∣∣∣∣ =

∣∣∣∣∫
R
ρε(y)G(x− y)dy

∣∣∣∣ ≤ 1

2
, for |x| > ε.

On the other hand, because Gεxx ∈ C[−ε, ε], there is a constant `ε > 0 such that

Gεxx(x) ≤ `ε for x ∈ [−ε, ε].
Hence, Gεx(x) is a global Lipschitz function. For any measurable function X(ξ, t),
we define

Uε(x;X) :=

(∫
R
Gε(x−X(θ, t))dm0(θ)

)2

−
(∫

R
Gεx(x−X(θ, t))dm0(θ)

)2
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and

U ε(x;X) := [ρε ∗ Uε](x;X).

The regularized Lagrange dynamics is given by{
Ẋ(ξ, t) = U ε(X(ξ, t);X),
X(ξ, 0) = ξ ∈ [−L,L].

Consider this equation in the Banach space C[−L,L] with sup norm. One can easily
show that the vector field is globally Lipschitz. Hence, by the Picard theorem for
ODEs in a Banach space, we obtain a unique global solution

Xε(ξ, t) ∈ C([−L,L]× [0,+∞)) for any ε > 0.

Define

uε(x, t) :=

∫
R
Gε(x−Xε(θ, t))dm0(θ), mε(x, t) := uε(x, t)− uεxx(x, t) (102)

and

mε(·, t) := Xε(·, t)#m0(·). (103)

By the definition, we have

uε(x, t) =

∫
R
Gε(x−Xε(θ, t))dm0(θ) =

∫
R
Gε(x− y)mε(dy, t).

Hence, we have the following relation between mε and mε

mε(x, t) = (1− ∂xx)

∫
R
Gε(x− y)mε(dy, t) =

∫
R
ρε(x− y)mε(dy, t). (104)

In the following of this paper, we denote

Uε(x, t) := (uε)2(x, t)− (uεx)2(x, t) and U ε(x, t) := [ρε ∗ Uε](x, t).

Hence, we have

Ẋε(ξ, t) = U ε(Xε(ξ, t), t). (105)

From Definition 5.1 we can easily obtain

Tot.Var.{G} = 1, Tot.Var.{Gx} = 2

and

Tot.Var.{Gε} = 1, Tot.Var.{Gεx} = 2. (106)

We have the following Lemma about uε.

Lemma 6.2. Let m0 ∈M(R) satisfy (100). For ε > 0, uε(x, t) is defined by (102).
Then, the following statements hold:
(i)

||uε||L∞ ≤
1

2
M1 and ||uεx||L∞ ≤

1

2
M1 uniformly in ε.

(ii)

Tot.Var.{uε(·, t)} ≤M1 and Tot.Var.{uε(·, t)} ≤ 2M1 uniformly in ε.

(iii) For any t, s ∈ [0,∞), we have∫
R
|uε(x, t)− uε(x, s)|dx ≤ 1

2
M3

1 |t− s| and

∫
R
|uεx(x, t)− uεx(x, s)|dx ≤M3

1 |t− s|.
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Moreover, for any T > 0, there exist subsequences of uε, uεx (also denoted as uε,
uεx) and two functions u, ux ∈ BV (R× [0, T )) such that

uε → u, uεx → ux in L1
loc(R× [0,+∞)) as ε→ 0

and u, ux satisfy all the properties in (i), (ii) and (iii).

Proof. (i) From (101) and the definition of uε, we can easily obtain (i).
(ii) For any {xi} ⊂ R, xi < xi+1, (106) yields∑

i

|uε(xi, t)− uε(xi−1, t)|

≤
∫
R

∑
i

|Gε(xi −Xε(θ, t))−Gε(xi−1 −Xε(θ, t))|dm0(θ)

≤Tot.Var.{Gε}M1 = M1.

Hence, Tot.Var.{uε(·, t)} ≤M1. Similarly, we can obtain Tot.Var.{uεx(·, t)} ≤ 2M1.
(iii)∫
R
|uε(x, t)− uε(x, s)|dx ≤

∫
R

∫
R
|Gε(x−Xε(θ, t))−Gε(x−Xε(θ, s))|dm0(θ)dx.

By the definition of U ε and (105), we know

|Ẋε(ξ, t)| ≤ 1

2
M2

1 .

Hence,

|Xε(θ, t)−Xε(θ, s)| ≤ 1

2
M2

1 |t− s|.

[3, Lemma 2.3] gives∫
R
|Gε(x−Xε(θ, t))−Gε(x−Xε(θ, s))|dx

≤ Tot.Var.{Gε}|Xε(θ, t)−Xε(θ, s)| ≤ 1

2
M2

1 |t− s|.

Hence ∫
R
|uε(x, t)− uε(x, s)|dx ≤ 1

2
M3

1 |t− s|.

Similarly, we can obtain∫
R
|uεx(x, t)− uεx(x, s)|dx ≤M3

1 |t− s|.

The rest results can be obtained by using [3, Theorem 2.4,2.6].

6.2. Weak consistency and convergence theorem. In this subsection, we show
that uε defined by (102) is weak consistent with the mCH equation (1)-(2).

We rewrite (1) as equation of u,

(1− ∂xx)ut + [(u2 − u2
x)(u− uxx)]x

= (1− ∂xx)ut + (u3 + uu2
x)x −

1

3
(u3)xxx +

1

3
(u3
x)xx = 0.
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Now, we introduce the definition of weak solution in terms of u. To this end, for
φ ∈ C∞c (R× [0, T )), we denote the functional

L(u, φ) : =

∫ T

0

∫
R
u(x, t)[φt(x, t)− φtxx(x, t)]dxdt

− 1

3

∫ T

0

∫
R
u3
x(x, t)φxx(x, t)dxdt− 1

3

∫ T

0

∫
R
u3(x, t)φxxx(x, t)dxdt

+

∫ T

0

∫
R

(u3 + uu2
x)φx(x, t)dxdt. (107)

Then, the definition of the weak solution to (1) in terms of u(x, t) is given as follows.

Definition 6.3. For m0 ∈M(R), a function

u ∈ C([0, T );H1(R)) ∩ L∞(0, T ;W 1,∞(R))

is said to be a weak solution of (1)-(2) if

L(u, φ) = −
∫
R
φ(x, 0)dm0(x)

holds for all φ ∈ C∞c (R × [0, T )). If T = +∞, we call u(x, t) as a global weak
solution of the mCH equation.

For simplicity in notations, we denote

〈f(x, t), g(x, t)〉 :=

∫ T

0

∫
R
f(x, t)g(x, t)dxdt.

For any test function φ ∈ C∞c (R× [0, T )), we have

〈mε(x, t), φt〉+ 〈U εmε, φx〉

=

∫ T

0

∫
R
φt(x, t)mε(dx, t)dt+

∫ T

0

∫
R
U ε(x, t)φx(x, t)mε(dx, t)dt

=

∫ T

0

∫
R

[
φt(X

ε(θ, t), t) + U ε(Xε(θ, t), t)φx(Xε(θ, t), t)
]
dm0(θ)dt

=

∫ T

0

d

dt

∫
R
φ(Xε(θ, t), t)dm0(θ)dt = −

∫
R
φ(θ, 0)dm0(θ). (108)

On the other hand, combining the definition (102) and (107) gives

L(uε, φ) =

∫ T

0

∫
R
uε[φt − φtxx]dxdt− 1

3

∫ T

0

∫
R
(∂xu

ε)3φxxdxdt

− 1

3

∫ T

0

∫
R

(uε)3φxxxdxdt+

∫ T

0

∫
R

((uε)3 + uε(uεx)2)φxdxdt

= 〈φt, (1− ∂xx)uε〉+ 〈[(uε)2 − (∂xu
ε)2](1− ∂xx)uε, φx〉

= 〈mε, φt〉+ 〈Uεmε, φx〉.

Combining the last two equalities, we define

Eε := 〈mε −mε, φt〉+ 〈Uεmε − U εmε, φx〉 = L(uε, φ) +

∫
R
φ(x, 0)dm0(x). (109)

We now state the main result of this section.
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Proposition 4. We have the following estimate

|Eε| ≤ Cε.

The constant C is independent of ε.

Proof. By the definition of mε and mε, the first term in (109) can be estimated as

〈mε −mε, φt〉 =

∫ T

0

(∫
R
φt(x, t)m

ε(x, t)dx−
∫
R
φt(x, t)mε(dx, t)

)
dt

=

∫ T

0

(∫
R

∫
R
φt(x, t)ρε(x− y)mε(dy, t)dx−

∫
R
φt(y, t)mε(dy, t)

)
dt

=

∫ T

0

(∫
R

∫
R

[
φt(x, t)− φt(y, t)

]
ρε(x− y)mε(dy, t)dx

)
dt

=

∫ T

0

(∫
R

∫
R

[
φt(x, t)− φt(Xε(θ, t), t)

]
ρε(x−Xε(θ, t))dm0(θ)dx

)
dt

≤M1||φtx||L∞Tε.

For the second term of (109), because ρε is an even function, by the definition of
U ε we can obtain

〈Uεmε − U εmε, φx〉

=

∫ T

0

∫
R

∫
R
Uε(x, t)φx(x, t)ρε(x−Xε(θ, t))dm0(θ)dxdt

−
∫ T

0

∫
R
U ε(Xε(θ, t), t)φx(Xε(θ, t), t)dm0(θ)dt

=

∫ T

0

∫
R

∫
R
Uε(x, t)φx(x, t)ρε(x−Xε(θ, t))dm0(θ)dxdt

−
∫ T

0

∫
R

∫
R
Uε(x, t)ρε(x−Xε(θ, t))φx(Xε(θ, t), t)dm0(θ)dxdt

≤M1||Uε||L∞ ||φxx||L∞Tε ≤
1

2
M3

1 ||φxx||L∞Tε.

This ends the proof.

Next, we state our main theorem in this section, which contains Theorem 1.4.

Theorem 6.4. Assume that initial datum m0 ∈M(R) satisfies (100). uε(x, t) and
mε(x, t) are defined by (102). Then, the limit function u given by Lemma 6.2 is a
global weak solution of the mCH equation (1)-(2) and

u ∈ C([0,+∞);H1(R)) ∩ L∞(0,+∞;W 1,∞(R)).

Furthermore, for any T > 0, we have

u ∈ BV (R× [0, T )); ux ∈ BV (R× [0, T )),

m := (1− ∂xx)u ∈M(R× [0, T )),

and there exists subsequence of mε (also labeled as mε) such that

mε ∗⇀m in M(R× [0, T )) as ε→ 0.
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Proof. Step 1. Global weak solution.
As it is shown in Lemma 6.2, we have u, ux ∈ BV (R× [0, T )) such that

uε → u, ∂xu
ε → ux in L1

loc(R× [0,+∞)).

Moreover, for any T > 0, the limit functions u, ux satisfy

u ∈ BV (R× [0, T )), ux ∈ BV (R× [0, T )),

|u(x, t)| ≤ 1

2
M1, |ux(x, t)| ≤ 1

2
M1

and∫
R
|u(x, t)− u(x, s)|dx ≤ 1

2
M3

1 |t− s|,
∫
R
|ux(x, t)− ux(x, s)|dx ≤M3

1 |t− s|

for t, s ∈ [0,+∞). Hence,

||u(·, t)− u(·, s)||2L2 =

∫
R
|u(x, t)− u(x, s)|2dx

≤M1

∫
R
|u(x, t)− u(x, s)|dx ≤ 1

2
M4

1 |t− s|.

Similarly, we have

||ux(·, t)− ux(·, s)||2L2 ≤M4
1 |t− s|.

These two inequalities imply

||u(·, t)− u(·, s)||2H1 ≤ 2
(
||u(·, t)− u(·, s)||2L2 + ||ux(·, t)− ux(·, s)||2L2

)
≤ 3M4

1 |t− s|.

Therefore

u ∈ C([0,+∞);H1(R)) ∩ L∞(0,+∞;W 1,∞(R)).

For each φ ∈ C∞c (R × [0,+∞)), there exists T = T (φ) such that φ ∈ C∞c (R ×
[0, T )) We now consider convergence for each term of L(uε, φ),

L(uε, φ) =

∫ T

0

∫
R
uε[φt − φtxx]dxdt− 1

3

∫ T

0

∫
R

(∂xu
ε)3φxxdxdt

− 1

3

∫ T

0

∫
R

(uε)3φxxxdxdt+

∫ T

0

∫
R
((uε)3 + uε(∂xu

ε)2)φxdxdt.

For the first term, because supp{φ} is compact, we can see∫ T

0

∫
R
uε[φt − φtxx]dxdt→

∫ T

0

∫
R
u[φt − φtxx]dxdt (ε→ 0).

The second term can be estimated as follows∫ T

0

∫
R

[(∂xu
ε)3 − u3

x]φxxdxdt

=

∫ T

0

∫
R

(∂xu
ε − ux)[(∂xu

ε)2 + u2
x + ∂xu

εux]φxxdxdt

≤ 3

4
M2

1 ||φxx||L∞
∫

supp{φ}
|∂xuε − ux|dxdt→ 0 (ε→ 0).
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Similarly, we obtain∫ T

0

∫
R

[(uε)3 − u3]φxxxdxdt→ 0 (ε→ 0),∫ T

0

∫
R

[(uε)3 − u3]φxdxdt→ 0 (ε→ 0),

and ∫ T

0

∫
R

[uε(∂xu
ε)2 − uu2

x]φxdxdt

=

∫ T

0

∫
R

[(uε − u)(∂xu
ε)2 + u((∂xu

ε)2 − u2
x)]φxdxdt

=

∫ T

0

∫
R

[(uε − u)(∂xu
ε)2 + u(∂xu

ε + ux)(∂xu
ε − ux)]φxdxdt

→ 0 (ε→ 0).

Combining the above estimates and Proposition 4 gives

L(u, φ) = −
∫
R
φ(x, 0)dm0(x).

This proves that u is a global weak solution to the mCH equation.

Step 2. Now we prove that

mε ∗⇀m in M(R× [0, T )) (ε→ 0).

For any test function φ ∈ C1
c (R × [0, T )), integrating by parts and using the

relationship mε = (1− ∂xx)uε imply that∫ T

0

∫
R
φ(x, t)dmε(x, t) =

∫ T

0

∫
R
φ(x, t)(1− ∂xx)uε(x, t)dxdt

=

∫ T

0

∫
R
φ(x, t)uε(x, t) + φx(x, t)∂xu

ε(x, t)dxdt.

Taking ε→ 0, the right hand side of the above equality converges to∫ T

0

∫
R
φ(x, t)u(x, t) + φx(x, t)ux(x, t)dxdt =

∫ T

0

∫
R
φ(x, t)m(dx, dt).

Hence, mε ∗⇀m in M(R× [0, T )). This ends the proof.

Remark 9. In [17], the authors also prove the total variation stability of m(·, t).
That is

|m(·, t)|(R) ≤ |m0|(R).

The weak solution is unique when u ∈ L∞(0,∞;W 2,1(R)). Moreover, examples
about nonuniqueness of peakon weak solutions can also be found in [17]. Notice
that peakon solutions are not in the solution class W 2,1(R).
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