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ABSTRACT. In this paper, we study the modified Camassa-Holm (mCH) equa-
tion in Lagrangian coordinates. For some initial data mg, we show that classical
solutions to this equation blow up in finite time Tiq2. Before Thaz, existence
and uniqueness of classical solutions are established. Lifespan for classical so-

lutions is obtained: Thaz . And there is a unique solution

> 1
= [Imollree[Imoll 1
X(&,t) to the Lagrange dynamics which is a strictly monotonic function of &
for any t € [0, Tmax): Xe(+,t) > 0. As t approaching Traz, we prove that the
classical solution m(+,t) in Eulerian coordinates has a unique limit m(:, Tmaz)
in Radon measure space and there is a point &g such that X¢ (€0, Tmaz) = 0
which means T4, is an onset time of collisions of characteristics. We also
show that in some cases peakons are formed at Tmae. After Timaz, We regu-
larize the Lagrange dynamics to prove global existence of weak solutions m in
Radon measure space.

1. Introduction. In this work, we consider the following nonlinear partial differ-
ential equation in R:

me + (v —u2)m], =0, m=u— Uz, zER,t>0, (1)

subject to an initial condition
m(x,0) = mo(x). (2)

This equation is referred to as the modified Camassa-Holm(mCH) eqaution with
cubic nonlinearity, which was introduced as a new integrable system by several
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different researchers [14, 16, 28, 29]. It has a bi-Hamiltonian structure [18, 28] and
a Lax-pair [29]. Equation (1) also has solitary wave solutions of the form [18]:

u(z,t) = pG(x — x(t)), m(x,t) =pd(z—z(t)), and x(t) = %th,

where p is a constant representing the amplitude of the soliton and G(x) = %e*m is
the fundamental solution for the Helmholtz operator 1—03,,. With this fundamental
solution G, we have the following relation between functions v and m:

u(z,t) = Gxm = /RG(QC —y)m(y, t)dy.

Moreover, global existence of N-peakon weak solutions of the following form was
obtained in [17]:

N N
uN(@,t) =) piGz — (1), m"N(z,t) =Y pid(a — zi(t)).
i=1 i=1

In the present paper, we study local well-posedness for classical solutions and
global weak solutions to (1) in Lagrangian coordinates. Below we introduce the
Lagrange dynamics for the mCH equation. To this end, we first review the Lagrange
dynamics for incompressible 2D Euler equation:

wi(z,t) + V- (u(z, t)w(z,t)) =0, (z,t) € R? x [0,00),
W(ﬁ, 0) = Wo(x)a
where the velocity u is determined from the vorticity w by the Biot-Savart law
u(z,t) = Ko(x — y)w(y, t)dy, =€ R?
R2

involving the kernel Ky(z) = (27|z|?) ™! (—z2,21). Assume X (£, t) is the flow map
generated by the velocity field u(z, t):

{ X(&,t) =u(X(&,t),1), £E€R? ¢>0,

X(£,0)=¢.
By the incompressible property V - u = 0, we know
W(X(gat)at) = bu'()(f)- (3)

The 2D Euler equation can be rewritten in the Lagrange dynamics

X(&,1) =u(X(&,1),1), X(§,0)=¢€R?, ¢>0,
W(X(£7t)vt) :w0(£)a
u(z,t) = (K * w)(x,t).

Comparing with the incompressible 2D Euler equation, assume X (§,t) is the
flow map for the mCH equation generated by the velocity field u? — u?:

X(&1) = (@ —u2)(X(&:8),1), X(£,0) =€ €R, t>0.
In contrast with (3), we have the following property for the mCH equation:
m(X(&,t),1) X (€, 1) = mo(§).

Combining the above two equalities, the mCH equation (1) can be rewritten in the
Lagrange dynamics:
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X(&t) = (u? —ud)(X(&,1),), X(§,0)=E€R, t>0,

m(X(§7t)’t)Xf(§7t) = m0(£)7 (4)
u(z,t) = (G xm)(z,1).

Changing of variable gives

u(z,t) = /RG(x —y)m(y,t)dy = /RG(JC — X(0,t))m(X(0,t))X(0,t)d0

= /RG(fo(H,t))mo(Q)dG.
Set
Uz, t): =u*(x,t) — ul(z,t)

2 2
= </ Gz — X(Q,t))m0(0)d9> — </ Gy(x — X(G,t))mo(O)dQ) . ()
R R
Then, Equation (4) can be rewritten as
X(f,t):U(X(f,t),t), (6)
X(£,00=¢€R.
When mgo € L*(R), the following useful properties can be easily obtained:

1 1 1
u(@, )] < gllmollzy,  fua(@, )] < Sllmollzs and [U(z,)] < Slmollzi. (7)

In the rest of this paper, we assume the initial mg satisfying supp{mo} C (=L, L)
for some constant L > 0. Next, we summarize our main results in four theorems.

Theorem 1.1. Suppose mg € C¥(—L,L) (k € N,k > 1). Then, there exists a
unique mazimum existence time Tpar < +00 such that Lagrange dynamics (6) has
a unique solution

X € OY™([~L, L] x [0, Trmas)),
which satisfies
Xe(&,t) >0 for (&,t) € [-L,L] x [0, Thnaw)-

(The solution space is defined by (13).) The mCH equation (1)-(2) has a unique
classical solution

u€ Of PR x [0, Tnaz)),  m € CF(R x [0, Tinas)),
which can be represented by X (€,t) as

u(z,t) = /L Gz — X(0,t))mo(0)dd and m(z,t) = /L o(x — X (0,t))mo(0)do.
L L )
Moreover, m satisfies:
supp{m(-,t)} C (=L, L) for t € [0, Trax)- (9)
If Thnaw < 00, then the following holds:
(i) We have

X e O{H_l([_LaL] X [OaTmaac])-
(ii) The following equivalent statements hold:
(a)

limsup ||m(-, t)|| L = 400,
t—=Tmax
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{Xf(fat) >0 fO?” (fvt) € [_LaL] X [Ovaax);

in X (€, Tonaa) = 0.
el ) Xe(& Tnoe)

lim inf { inf /Ot(mum)(X(f,s),s)ds} = —00,

t—=Tmaz \ E€[—L,L]

lim inf { inf (mum)(x,t)} = —00,

t—Tmae L ZER

limsup ||m(-, t)||wir = 00, forp>1,

t—=Tmax

Trmax
/ [|m(-, )| pedt = +o0.
0

(#ii) There exists a unique function u(-, Tmaz) such that
lim  w(z,t) = u(x, Thax), Im  wuy(x,t) = ug(z, Tinag) for every x € R.
t— max t_>Tmu1'

Moreover, for any t € [0, Thnaz] we have
u(+, 1), ug(-,t) € BV(R)
and
Tot.Var.{u(-,t)} < My, Tot.Var.{u,(-,t)} < 2M;.

Here, BV (R) is the space of functions with bounded variation (see definition 5.1).
(iv) There exists a unique m(-, Tinaz) € M(R) (Radon measure space on R) such
that

m(-,t) = m(-, Tnae) i M(R), as t = Thae.

(a) and (b) tell us that T4, is an onset time of collisions of characteristics. (9)
implies that the supports for classical solutions will not change.

Our another main theorem is about finite time blow-up behaviors and the lifespan
of classical solutions. Let T4 (mp) be the maximum existence time of the classical
solution to the mCH equation subject to an initial condition mg. Then we have the
following theorem about lifespan for classical solutions.

Theorem 1.2. Assume mg € C¥(R) (k € N,k > 1).
(i) We have

(10)

1
T mo Z .
maz(M0) 2 T ol

(ii) If there exists € € [—L, L] such that

— — 1
mo(§)Datio(€) <0, mo(©)](Du0(€))* > 5lImol[7:, (11)
then the classical solution to the mCH equation will blow up in finite time. Moreover,

for any € > 0 we have

1 1 < T ) < 1 1
Y em —— -
[[mollz=llmol[zr € = """ 0= o[, €2

(12)
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This theorem implies that there are smooth initial data with arbitrary small
support and arbitrary small C*(R)-norm, k& € N, for which the classical solution
does not exist globally.

Next, we give a theorem to show the formation of peakons at finite blow-up
time Tyq,. From Theorem 1.1, we know there is a point § € [—L, L] such that
Xe(o, Trnaz) = 0. Set

FTmaw = {X(ga Tmaa:) : g S [_L7 L]a X&(ga Tmaa:) = 0}

For any x € Fr,,,_, because X¢ (-, Trnaz) > 0, we know that X ' (2, T)44) is either

a single point or a closed interval. Denote
ﬁTmm ={r € Fr, . : X 2, Tha) = [€1,&)] for some & < &}

The figure below describe these singular points.

X = X(gaTmax)

i

i

T

N O
S

i

i

f4i _ P 2‘51
5 &1 &2 2 o5 ¢

FIGURE 1. At Thaz, Xe(-;Tmaz) > 0 and X¢(€, Thnae) = 0 for
€ € {&, &} U [, §22] U [631,€32)- P,y = {21, 22,23, 24} and
FTmaa: = {:L‘g,xg}.
For z € Fr,. and X (2, Tpas) = [£1,&)], we show that mg will not change
sign in [€1, &2] (see Proposition 3). Hence, féz mo(€)d¢ # 0. We have the following
theorem.

mas = {2 3N, (N < Ny). Let

X @i, Tnaz) = €1, &) and p; = [ mo(€)dE for 1 <i < N. Then

= {&;}, and Fr

max

Theorem 1.3. Assume Fr

N
m(x, Tae) = mi(x) + Zpi5($ — ;)

where my € LY(R) is given by (99).

At last, we give a theorem to show global existence of weak solutions (see Defi-
nition 6.3). Theorem 1.1 (iv) tells that classical solutions become Radon measures
when blow-up happens. After the blow-up time T},,,, we can extend our solution
m(z,t) globally in the Radon measure space. We have:
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Theorem 1.4. Let my € M(R) with compact support. Then there exists a global
weak solution to the mCH equation satisfying:

u € C([0,+00); HY(R)) N L>(0, +o00; WH(R)),

and
m=u— Uz € MR x[0,T)) forany T >0.

Now, we compare the mCH equation with the Camassa-Holm (CH) equation:
om 4 Oy (um) + mo,u =0, m=u—uz,, =R E>D0.

The CH equation was established by Camassa and Holm [6] to model the unidi-
rectional propagation of waves at free surface of a shallow layer of water (u(z,t)
representing the height of water’s free surface above a flat bottom). It is also a
complete integrable system which has a bi-Hamiltonian structure and a Lax pair
[6].

There are some different properties between the CH equation and the mCH
equation.

e Classical solutions and blow-up criteria. For alarge class of initial data, classical
solutions to the CH equation blow up in finite time (see [2] and references in it).
McKean [25] provided a necessary and sufficient condition for wave-breaking of the
CH equation. In 2012, Jiang et. al [22] gave a new and direct proof for McKean’s
theorem in [25]. Moreover, the only way that a classical solution of the CH equation
fails to exist globally is that the wave breaks [10] in the sense that the solution
u remains bounded while the spatial derivative u, becomes unbounded. For the
mCH equation, blow-up behaviors also happen for a large class of initial data (see
[8, 18, 24]). However, u,, (hence m) becomes unbounded when blow-up happens,
while v and wu, remain bounded.

e Lifespan for classical solutions. Comparing with (12), the lower bound for
lifespan of strong solutions to the CH equation with initial data eug(z) is given by
[13, 26]:

Tomaz > g for some C' = C(up).
€

e N-peakon weak solutions. Trajectories for N-peakon weak solutions to the CH
equation never collide [7, 9] provided that the initial datum mg(z) = vazl pid(z—c;)
satisfies p; > 0 and ¢; # ¢; for ¢ # j. However, the trajectories for N-peakon
solutions of the mCH equation may collide in finite time even if mg > 0 [17].
Moreover, for the CH equation, when blow-up happens at finite time 7T},,4,, we have
liminf; 7 wu.(z,t) = —oco (see [10, 26]). Peakon solutions u and its derivative u,
are in BV space, which are bounded functions. Hence, peakon solutions can not be
formed when blow-up happens (comparing with Theorem 1.3) for the CH equation.

e General weak solutions. In [17], the authors proved nonuniqueness of weak
solutions obtained by Theorem 1.4. Comparing with Theorem 1.4, there is a unique
global weak solution u € C([0,+00); H'(R)) and m € M4 (R) (see [9, 12]) to the
CH equation when vy € H*(R) and 0 < mg € M(R). For general initial data
ug € H'(R), global existence of weak solutions to the CH equation was obtained
by several different methods (see [4, 5, 19, 20, 31, 32]).

For more results about local well-posedness and blow up behavior of strong so-
lutions to the Cauchy problem (1)-(2), one can refer to [8, 15, 18, 24]. For weak
solutions, one can refer to [17, 33].
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The rest of this article is organized as follows. In Section 2, we use contraction
mapping theorem to prove local existence and uniqueness of solutions X (&,t) to
the Lagrange dynamics (6). Then, we use X (&,t) to obtain (u(z,t), m(z,t)) and
prove that it is a unique classical solution to the mCH equation (1)-(2). Besides,
when sup,c(o 7y [[m(-,t)||1 is finite, we can extend this classical solution in time.
In Section 3, we show some blow-up criteria for classical solutions. In Section 4,
we prove that for some initial data classical solutions blow up in a finite time and
the estimates for blow-up rates are given. For small initial data, almost global
existence of classical solutions is obtained. In Section 5, we study classical solutions
at blow-up time Tyaz- w(', Tinae) and ug(+, Tinaz) are BV functions while m(-, )
has a unique limit m(+, T),q,) in Radon measure space as t — Typq.. Moreover, we
prove that in some cases peakons are formed at T},,,. In the last section, we use
regularized Lagrange dynamics to prove global existence of weak solutions in Radon
measure space.

2. Lagrange dynamics and short time classical solutions. In this section, we
study the existence and uniqueness of solutions to Lagrange dynamics (6). Then,
we prove (u(z,t), m(z,t)) defined by (8) is a unique classical solution to (1)-(2).

First, let’s introduce the spaces for solutions. For nonnegative integers k,n and
real number T > 0, we denote

Ur:=[-L,L] x[0,T]

and the function space

CEUr) =={u:Ur »>R: due CUr), 8| <k; 9pueC(Ur), |a| <n}.

(13)

Similarly, we can define C*(R x [0, TY).

We will present the results of this section in three subsections as follows.

1. In Subsection 2.1, when mqy € C*(—L, L), we prove local existence and unique-

ness of a solution X € CF ™ ([~L, L] x [0,#]) to (6) such that
mln{Xf(gat) : (é-at) € [7L3L] X [Ovtl]} > 0.

2. In Subsection 2.2, we prove u defined by (8) belongs to C¥™2(R x [0,]) and
(u,m) is a unique classical solution to the mCH equation.
3. In Subsection 2.3, we prove that whenever the classical solution m satisfies

sup |[[m(-,t)][Le < o0,
t€(0,T)

we can extend the classical solution in time.

2.1. Local existence and uniqueness of solutions to Lagrange dynamics.
In this subsection, we use the contraction mapping theorem to prove short time exis-
tence and uniqueness of solutions to the Lagrange dynamics (6), which is equivalent
to the following integral equation:

t
X(6.0) = ¢+ [ UX(E5). 9 (14)
where U is defined by (5). Set

Tx(&,t) = 5—1—/0 U(X(,s),s)ds. (15)
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For constants Cy; > C; > 0 and t; > 0, we define

Q1,(C1,C) = {X € C(UL) : Cal€ — m)? < (X(&8) = X(m, )(€ — 1)
< Ca(¢ — )2 for any &, € [~L, L] and t € [0,t2]}. (16)

Obviously, 9y, (C1,C5) is a closed subset of C(U;,). We will look for suitable
constants C, Cs, t; and then use the contraction mapping theorem in the set

94, (C1,Cy).
Before presenting the existence and uniqueness theorem, we give two useful lem-
mas.

Lemma 2.1. Assume g € L>°(—L,L) and X (§,t) € Q¢ (C1,Cy) for some constants
Cy>Ci1>0andt; >0. Let

L
Az, t) == [L G'(x— X(0,t))g(0)do.
Then, we have A € C(R x [0,¢41]).

Proof. According to (16), X (&,t) is monotonic about £. For given (z,t) € Uy,, we
separate the proof into three parts.

Step 1. Continuity at (z,t) € R x [0,¢;] when « > X (L, t).
For (y, s) closed to (z,t) and because X € C(Uy, ) is monotonic, we can assume
y > X(0,s) for § € (—L,L). A direct estimate gives

L L
IA@J)—A@JM=W/LGhrwﬂﬂﬁmwwﬁ—/;G%x—XWJDM@%
L

|Gz — X(0,1)) — Gy — X(0,5))] - [9(0)[d0

IA
—

-L
1 L
< glallim [ty =l + X (0.0) = X(6.5) 0.

Therefore, according to the uniform continuity of X, A is continuous at (z,t). The
proof of the case r < X (—L,t) is similar.

Step 2. Continuity at (z,t) € R x [0,¢1] when = X (&,t) for some £ € (=L, L).
Due to the continuity of X, for (y,s) closed to (z,t), there exists n € [—L, L]
such that X (n,s) = y. Without lose of generality, we assume £ > 7.

|A(y7 8) - A(Jf, t)|
L L
[, 008 - X000 [ @O - X00)0t0)9

—L

S[:W%ﬂm@—Xﬂﬂw%ﬂX@w—Xwﬁmﬂmw
§
+ [ 16 (X.5) = X(60,9)) = G/(X(6.1) = X(0.0) )]

L
+ /§ |G'(X(n,s) = X(0,5)) = G'(X(&,t) — X(6,1))]]9(0)|db.
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Then, the monotonicity of X (6,t) implies that

L
|A(y; s) — Az, )| < llgllz<1€ —nl + llgllz~ /_L |z =yl +[X(0,s) — X(0,1)|d6.
From the definition of Qy, (C1, C2), we have
|.’L‘ - y| = |X(€at) _X(”LS)‘ > |X(£78) _X(”LS)‘ - |X(§7t) _X(gvs)‘
> Cil€ —n| = [X(&,1) = X(& 9)]. (17)

Therefore, € —n| < C%(|a: —y| + | X (& t) — X (&, 8)]). Hence, A(x,t) is continuous
at (x,t).

Step 3. Continuity at (z,t) € R x [0,¢;] when x = X(L,t). The case v = X(—L,t)
is similar.

For (y, s) closed to (z,t), we have two cases. When y > X (L, s), we can use Step
1. When there exists £ € (—L, L) such that y = X(¢, s), we can use Step 2.

This is the end of the proof. O

Lemma 2.2. Assume mg € L>®(—L,L) and X € Q4 (C1,Cs) for some constants
Co>C1>0andty >0. Then, for —L <n < & < L, we have

[1— (Mi Mo + CoMP))(€ — 1) < Tx(€,1) — Tx (1, 1)
<[+ (MM + CoMP)B](E =), (18)
where My := ||mol|rr and My = ||mo]|Le-
Proof. Assume X € Qy, (C1,Cs) for some constants Cy > C; > 0 and ¢; > 0. For
—L<n<¢<L,te]0,t1], we have

Tﬂ&ﬂ—fﬂmﬂ=€—n+AUﬂXﬁéﬁ%—WXmJ%%%- (19)
By (7), we obtain

|U(X(€> 8)7 8) - U(X(n7 5)7 S)|
< | (X(€, ), 8) — u?(X (0, 5), 5)| + [uz (X (€, 5),8) — uz(X(n, 5), 5)]
< MI‘U(X(ga S)v S) - U(X(nvs)’s)‘ + M1|u1(X(£a 8)78) - uz(X(Tle)aS)\
= I]_ —‘rIQ

Because X € 9y, (Cy,C3), we have
[u(X (€, 8),5) — u(X(n,5),9)]

\/ ma(8) (G0N (E15) = X(6.5) - GEX(1.5) ~ X(6.9) )b
1

M (X(6,5) = X(1,5) < 5MCo(E — ).

o \

Thus,
1
I < SMPCa(§ — ).

Next, we estimate I5.
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When X € 9y, (Cy,C3), we have (X(&,s) — X(6,s))(X(n,s) — X(0,s
0 € [-L,n) N (&, L]. On the other hand, we know |G’ (a) — G'(b)| = |G(a) — G(b)| <
1la — b| when ab > 0. Therefore,

|uw(X(£’ 3)7 8) - UI(X(nv 3)7 S)'

< / mo(0)| G (X (€,5) — X (6, 5)) — G'(X (1, 5) — X(6,5))d0
[—L,n)N(&,L]

< (%Mlcz + M) (& —n)-

Thus .
I, < (§CQM12 + M1 M) (& —n).

Combining I; and I, gives
t
~(CaM} + MM (€~ ) < [ [U(X(6:8),9) = U(X (. 5),5)ds
0
< (CoM7 4+ My Moo )ty (€ —n).
Together with (19), we obtain (18). O

We have the following existence and uniqueness theorem.

Theorem 2.3. Assume mg € C¥(—L,L) (k € Nk > 1). Let My := ||mgl|p: and
Moo :=||mol|p~. Then, for any t; with

0<t < m, (20)
there exist constants Co > C1 > 0 satisfying
1Mty %\4]\?:‘1’“ <0y < LAt ]‘]é%]t‘f““, (21)
and
0<Cp<1—(MMy+CoMHty, (22)
such that (14) has a unique solution X € C¥Y(U,,) satisfying
Cr < Xe(61) < Cy (23)

fOT (€7t) € [_LaL] X [Oatl]'
Moreover, for any £ € N, 0 < ¢ < k + 1, there exists a constant Cy (depending
on ||mo||cr, |Imol|r:r and t1) such that

06X (&,1)] < Co. (24)

Proof. We separate this proof into two parts.
Part I.(Existence and Uniqueness) We use the contraction mapping theorem
to prove the existence of a unique solution X € CY(Uy,) to (14).

Step 1. When 0 < t; < m, we prove there are constants Cy > C7 > 0
such that when X € Qy, (C1,Cs), we have Tx € Q;, (C1,C5), where T'x is defined
by (15).
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When t; satisfies (20), we have
1
M1 tq < and MM, t; < 1. (25)

A simple computation shows that
14+ MyMaot, 11— M, Myt
1— Mty < M3ty
Hence, there is a constant Cy satisfying (21). Moreover, inequality (21) implies

1+ (My My + CoMP)t; < Cs, (26)

and
0<1— (MlMoo + CQMlz)tl
Therefore, we can choose C satisfying (22).
When X € 9, (C4,C3), combining (18), (22) and (26) gives

Tx € Q4 (C1,Cy)
and Step 1 is completed.

Step 2. We prove Tx is a contraction map on Qy, (Cy, Cs).
For X,Y € 9., (C1,Cs), combining (7) we have

ITx(€,8) — Ty (6,1)] < / U(X(E 5),5) — U(Y (€, 5), 5)[ds

<My [ Ju(X(E s),5) —u(Y (€, 5), 5)|ds + My / e (X (£, ), 8) — us (Y (€, 8), 5)|ds

0
= Jl + JQ. (27)
For the first term J;, we estimate
X(&s),8) —u(Y (&, 5),5)
/ mo(0) (G(X(&,5) = X(0,5) ~ G(Y(&,5) ~ Y (0,5)) ) o

< 5 [ @K€ ) Y€+ 1X(0,9) 0,9
-L
< M||X =Yllcw,,)- (28)
For the second term, due to (X (&,s) — X(6,5))(Y(&,s) — Y (6,s)) > 0, we obtain
X(&,5),8) —ux(Y(§,5),5)

/ mo(®)(G/(X(€,5) ~ X(8,5)) — G'(V(€,5) ~ Y(6,) ) db
< My|X — Y||C(Ut1)' (29)
Combining (27), (28), and (29), we have
ITx(&1) = Ty (&, 1) < Ji + Jo < 2MP||X = Ylow,,),

which implies
ITx — Ty |lcw,,) < 2MPt||IX = Ylew,,)-

Inequality (25) shows that T'x is a contraction map.
At last, by the contraction mapping theorem, the system (14) (or (6)) has a
unique solution in C'(Uy ).
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On the other hand, using Lemma 2.1 we can see U = u? —u2 € C(R x [0,t1]),
which means

X € C(U,,).

Hence, X € C9(U;,) and Part I is finished.
Part II. (Regularity) We show X obtained in the first part belongs to C¥+!
(Utl )

From the first part, we can see solution X belongs to C9(Uy, ). For this solution
we have the following properties

X(,t)—X(0,t) >0, —-L<O<& X(&t)—X(0,t)<0, £<O<L.
On the other hand, G(x) = %e"x‘ satisfies:
G'(r)=G(x), <0; G'(r)=-G(z), z>0.
We obtain

3 £
/_ (X (E5) = X(0.5))mo(6)d0 = - / | GX(E9) = X(0.5)mo(0)db. (30)
/5 G/ (X(£,5) — X (6, 5))mo(0)d0 = /5 G(X(&,5) — X(0,5))mo(0)d0, (31)

Hence,

X(&,1),1)
/ G(X(E1) — wmmmmw+/%ﬂxmw—xw@mmmw
13

L
— [L G(X(&t) — X(0,t))mo(6)do +/E G(X(&,t) — X(6,t))mo(0)de.
We obtain

U<X(£at)vt) = uz(X(E,t)7t) - Ui(X(f,t),t)

13 L
—4 ( | e —Xw,t))mo(e)de) ( / G(X(@t)—xw,t))mo(e)do).
L 13

(32)
Thus

X(&.) s+4/ (/ G(X(E.) - X(O, >>mo<6>d6>
(/5 G(X(f,s)—X(G,s))mo(G)d9> ds. (33)

Because X (&,t) is monotonic about ¢, its derivative exists for a.e. ¢ € [—L, L].
Differentiating with respect to & shows that for a.e. £ € [—-L, L],

Xe(€,1) =14 4G(0) /(/ G(X (& 5) — X(0,5))mo(6)do

—/ ﬂX@Q—X@@Mﬂ@M»&
_L
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| Xel69) ( / i &' (X (¢, 5) — X(0. 3))m0(9)d9>
( /E " axes - x0. s))mo(e)de> ds
+4 [ xele) ( [ acies - xo s>>mo<e>d9)

< L G’(X(g,s)—X(e,s))mo(e)cw) ds, (34)

Due to (30) and (31), the sum of the last two terms in (34) is zero, which leads to

t
0

L
Xe(6,1) = 1+ 2mo(8) / ( /{ G(X(£,5) — X(6, 5))mo(0)d6

3
—/ G(X(&,s)— X(0, s))mO(H)d0> ds. (35)
-L
Because mg € C¥(—L, L), we have X¢ € C(Uy,) which means X € C{(Uy,).
From (35), we have
| Xe(&,t)] <1+ MMty =1+ ||mol|c||mol|zits for ¢ € [0,t]. (36)
Differentiating (35) with respect to £ shows that

t
0

L
Xee(eot) = 1+ 2004(9) | ( /E G(X (€, 5) - X(6, 5))mo(6)d
13
— /_L G(X(&,s) — X(a,s))mo(e)de) ds — 2m2 (&)t

¢ L
am©) [ Xeleos) [ G0~ X0 malo)dbds.  (31)
0 ~L
Hence, we obtain X¢¢ € C(Uy,) and

| Xee(€,8)] < 14 2|mollcr [Imoll ity + 2[lmol|Ets + 2|[mol|&[Imol|7: 7.

We have X € C(Uy,).
Similarly, taking derivative about & for k times on both sides of (35) gives that

X e Cyti(Uy,)
and (24) holds. O

Remark 1. Monotonicity of X(+,¢) plays an important role in our proof. Without
monotonicity, the vector field for the Lagrange dynamics may be not Lipschitz.
From (35), we know supp{X¢(-,t) — 1} C (—L,L). Hence, we can continuously
extend X¢(-,t) globally as

Xe(6,t)=1 for ¢ €R\[-L,LJ.
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2.2. Classical solutions to the mCH equation. Next, we prove the short time
existence and uniqueness of the classical solutions to (1)-(2).

The following lemma shows that we can construct classical solutions to the mCH
equation (1)-(2) from the solutions to the Lagrange dynamics (6). Moreover, we
show that the support of m(-,t) will not change.

Lemma 2.4. Let mg € C¥(—L,L) for some integer k > 1. Assume that X €

CrFY(Us) (for some 6 > 0) is the solution of (6) and strictly monotonic about

& for any fized time ¢t € [0,0]. wu(x,t), m(z,t) are defined by (8). And assume

u e CF2(R x [0,6]). Then, (u(z,t),m(x,t)) is a classical solution of (1)-(2).
Moreover, we have

supp{m(',t)} c(-L,L), te]0,d]. (38)

Proof. We denote (¢,1) = [, ¢( x)dx. For any test function ¢ € C°(R), we
have

L L
:/qu(x)/_Lmo(H)é(x—X(G,t))d@dx:/_Lmo(H)qb(X(Q,t))dH.

d L .
(6om) = Go(6.m) = [ ma(0)0/(X(0,0)X (6,009

L
:/ m0(0)¢'(X(9,t))U(X(Q,t),t)dG:/d)'(x)U(x,t)m(z,t)d:z:
L R

- /R (@) (U (2, ym(z, £))ada.

Since that ¢ is arbitrary, we have
me + (Um)y = my + [(u? — u2)m], = 0.
Next, we prove (38). Because X (&, t) is monotonic and G’ (x) = —G(z) for x > 0,
we obtain

L
f = /_L G/(X(L.1) — X (0, 8))mo(6)d0 = —u(X (L, 1),1).

Hence, we have
X(L,t) = u?(X(L,t),t) —u2(X(L,t),t) =0 for te[0,d],
which implies
X(L,t) = X(L,0) = L.
Similarly, we have X (—L,t) = X(-L,0) = —L.
For any ¢ € C(R), supp{¢} C R\ (=L, L) gives

/ mo(0)6(X (0, £))d6 = 0.
Hence, (38) holds. O

Remark 2. Consider the following general equation with a > 0,

my + [m(u? — o?u?)], = 0. (39)
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When supp{mo} C (=L, L), the support of the classical solution m(z,t) to (39
is also contained in (—L, L). Indeed, by scaling @(z,t) = u(az, at) and m(x,t) =
m(ax, at) = u(x,t) — Gze(z,t), @ and m satisfy

g + (@2 — @2)m], = 0.

Due to supp{mo} C (—alL,aL), by (38) we know supp{m(-,t)} C (—aL,al).
Hence, we have supp{m(-,t)} C (=L, L).

Next, we present a useful lemma which is similar to Lemma 2.1.

Lemma 2.5. Assume g € C(Uy,) and g(-,t) € C.(—L,L) for any fized time t €
[0,t1]. Let X € C}(Uy,) satisfy (23) for some constants Co > Cy > 0. Set

L
Az, 1) ::/ 5z — X(0,1))9(6, £)do.
-L
Then, we have A € C(R x [0,1]) and

L
/ G (2 — X(6,))g(0,)d8 € C(R x [0, t1]).
~L

Proof. From the proof of Lemma 2.4, we know [X(—L,t), X(L,t)] = [-L, L]. How-
ever, in order to make no confusion, we still use [X(—L,t), X (L, t)] in this proof.

By using the inverse function theorem, for any ¢ € [0,¢1], there is a continuously
differentiable function Z(-,t) € C1[X(—L,t), X(L,t)] such that

Z(X(0,t),t) = 0 for § € [~ L, L]

and
X(Z(z,t),t) = for x € [X(—L,t), X(L,1)].
Moreover, we have
1 1
— < Zy(x,t) < —.
Cy ™ (1) < &
Changing variable and using the property of Dirac measure, we have

L X(Lt)
Alwt)= [ sa = X@.0)960.08 = [ " 50— g(Zl).0) 2. (0. Oy
-L X(—L,t)
[0, forz>X(L,t)orxz<X(—L,t);
{ 9(Z(x,t),t) Zy(2,t), forxz e [X(—L,t),X(L,t)].

Next, we separate the proof into three parts, which is similar to the proof of Lemma
2.1.

Step 1. Continuity at (z,t) € R x [0,¢1] when > X (L,t). Then case for x <
X(—L,t) is similar.

In this case, we have A(x,t) = 0. For any (y,s) closed to (x,t) and because
X € C(Uy,), we can assume y > X(L,s). Because g(-,s) € Co(—L, L), we have
A(y, s) = 0. Hence, A is continuous at (x,t).

Step 2. Continuity at (x,t) € R x [0,%;] when z = X (&,t) for some & € (—L, L).
This means z € (X(—L,t), X(L,1)).

Due to the continuity of X, for (y, s) closed enough to (z,t), we can assume y €
[X(=L,s),X(L,s)]. In other words, there exists n € [—L, L] such that X(n,s) = y.
Because

(40)

|A(y78) - A('r’t)l = |g(Z(ac,t),t)Zw(x,t) - g(Z(y,s),s)Zw(y,s)L
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we only have to prove Z and Z, are continuous at (z,t). (17) shows that

1Z(2,t) = Z(y,s)| = |§ —n| < Cil(\x —yl+X(& 1) = X (& 9))), (41)

which means Z is continuous at (x,t).

Because Z,(x,t) = m and Z,(y, s) we have

_ 1
T Xe(mys)?
N 1

Xf(gvt) X&(%S)
From (41) we can see (n,s) — (£,t) as (y,s) — (z,t). Together with X € C}(Us,)
implies the continuity of Z,(xz,t) at (z,t).

Hence, A(x,t) is continuous at (z,t).
Step 3. x = X(L,t). The case © = X(—L,t) is similar.

For (y, s) closed to (z,t), we have two cases. When y > X (L, s), we can use Step
1. When there exists £ € (—L, L) such that y = X (¢, s), we can use Step 2.

Put Step 1,2,3 together and we can see A € C(R x [0,#1]).

At last, because G(z) is fundamental solution for Helmholtz operator 1 — Oy,
we have

\Zo(.1) — Za(y.9) < 5%|Xg<s,t> — Xe(n,9)].

/L G (z — X(0,1))g(0,t)do
—L

L L
_ / Gl — X(0,4))9(0,£)d0 — / 5z — X(0,8))9(6, £)d0.
—L —L

Hence, [*, G"(x — X(6,1))g(0,t)d6 € C(R x [0, 1)). O
Now we prove that u(z,t), m(z,t) defined by (8) is a unique classical solution of

(D-(2)-

Theorem 2.6. Assuming mg € CX(—L,L) (k € N,k >1). Then, for

1
1 <
2[[mol3. + [Imol|1[[mol| L=’

u given by (8) belongs to CFT2(R x [0,t1]) and m belongs to CF(R x [0,t1]). (u(z,t),
m(x,t)) is a unique classical solution to (1)-(2).

t

Proof. Let My :=||mg||rr and My = ||mol|r. For t; < m, by Theorem

2.3, we know there exist a solution X € CF1(U,,) to (6) satisfying (23) for Cy, Cy
given by (21) and (22).
Part 1. Regularity.

Step 1. When k = 1, we have X € C?(U;,) and we prove u € C3(R x [0,1]).
Taking derivative about ¢ for u(x,t) in (8) gives that

L
Opu(z,t) = —/ U(X(0,t),t)G' (x — X (0,t))mo(6)do.
-L
Because mo(0)U (X (0,t),t) € C(Uy,) and mo()U(X (-, t),t) € Ce(—L, L) for any fix

time ¢ € [0, ¢1], Lemma 2.5 shows that dyu € C(R x [0, ¢4]).
For the spatial variable z, integration by parts leads to

L L
Uy (z,t) = [L G'(z — X(0,t))mo(0)dd = [L G(JJ—X(H,t))69< mo(0) )d&,
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L
vt = [ o 0.0l ).

and

U (2, 1) = /_ G = X(0,0)0 < )?:(Eéei) ) do. (42)

Set g(0,t) := 89(%’2%%). Then, g(0,t) satisfies the assumption of Lemma 2.5.

Hence
Upee € C(R x [0,21]) and u € CF(R x [0,1]).

Step 2. When k = 2, we have X € C3(Uy, ). Integration by parts changes (42) into

U (1) = /_LL G'(x — X(0,1))0% (;989 (;Z?éez) ))de.

Hence

Au(z,t) = /LL G (z — X (6,1))9p (;989 ()?:Eéez‘) ))de.

And Lemma 2.5 shows that u € C{(R x [0,%1]).
Step 3. If k > 2, we can keep using integration by parts and Lemma 2.5 and obtain
u e CF2(R x [0,t]).

Step 4. Because m = u — g, from the above steps, we already know 9fm €
C(R x [0,t1]). In this step, we show dym € C(R x [0,1]). Due to (38), we only have
to show dym € C([—L, L] x [0,t1]). From (40), for x € (—L, L) and X (&,t) = x, we
have

_ _ _mo(§)
m(X (&.1).1) = mo(Z(x. 1) Zue,t) = s (43)
Taking derivative of both sides of (43), we have
%m(X(f, t)v t) = mm(X(gv t)v t)Xt(fv t) + atm(X(£7 t)? t)
= [mI(UQ - ui)](x7 t) +mu(z,t), (44)
and
d mO(g) o _2m0(§)mux(X(§7t)7t) — —2m2ux(x,t). (45)

dt Xe(6,1) Xe(€1)
Combining (43), (44) and (45), we obtain
my = —[m(u® —u2)], € C([-L, L] x [0,t,]).
From the above proof (or Lemma 2.4), we can see that u(x,t), m(z,t) is a classical
solution to (1)-(2).
Part II. Uniqueness of the classical solution to (1)-(2).
Assume there is another classical solution m; € C¥(R x [0,#1]) to (1)-(2). u; =

Gxmy € CFT2(Rx[0,1]). We prove that u; (z,t) can also be defined by the solution
X (&,t) to (6), which means

L
wr(z, 1) = [L Gl — X (0,1))mo(0)d0 = u(x,1). (46)
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To this end, define another characteristics Y (£, t) by
Y(f, t) = (u% - amu%)(y(ga t)v t)?

subject to
Y(6,0)=¢eR.
By standard ODE theory, we can obtain a solution Y € CFT(R x [0,1]).
Step 1. We prove
L
up(x,t) = / G(z =Y (0,t))mo(0)do.
-L
Taking derivative with respect to £ shows that
Ye(§,1) = 2(madaun) (Y (&,1), ) Ve (&, 1), (47)
Taking time derivative of mq (Y (§,t),t)Ye (&, t) gives that

%[ml (Y(&,1),1)Ye(&,1)] = [0ema (Y, £) + O (Y, 1)Yy]Ye +ma (Y, 1) Yer
= [0ym1 + (uf — Opul)0ema]Ye + 20,uymiYe
= [Oymy + [(u] — Opu)my.]Ye = 0.
This implies
ma1(Y(6,t),t)Ye(0,t) = mo(d), for 6 € [-L,L]. (48)

Hence, we can see

w2, 1) = /]R Gla — yyma(y, )dy = /R Glo — Y (6,1))my (Y(6,1), )Yz (6, )6

_ / " Gl — ¥ (0,0))mo(0)d6. (49)

-L
Step 2. We prove Y (£,t) = X(&, t).

From (49), we obtain

Y(&,1) = (uf — 0u?) (Y (&, 1), 1)

= (/_LL G(Y (1) —Y(97t))m0(9)d9>2 - (/_LL G'(Y(&,1) —Y(G,t))mo(e)d9>2’

which means that Y'(£,t) is also a solution to (6).

From Theorem 2.3 we know that the strictly monotonic solution to (6) is unique.
Therefore, to prove Y (&,t) = X(,t), we only have to prove Y (-, ) is strictly mono-
tonic for t € [0,t4].

Combining (47) and (48) gives that

Ye(§,t) = exp (2/0 (mlc')ggul)(Y(f,s),s)ds), (&, t) € [-L, L] x [0,t1].

Because ||Y|| oo ((=1,1]x[0,t:]) < +00, u1 € Cf”(Rx [0,¢1]) and my € CE(Rx0,t1]),
the minimum and maximum of (m19,u1)(Y (&, s), s) can be obtained on [—L, L] x
[0,¢1]. Hence

el <y (6,t) < e for t € [0,ty],
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where

K, = min m10,u1)(Y (€, 8), s
! (f,S)G[*L,L]x[O’tl]( 1 1)( (f ) )

and

Ky = max m101u1)(Y (€, 5),5).
’ (f,s)e[—L,L]x[o,tl]( 101u1) (Y (€, 5), 8)

Hence, Y (-, t) is strictly monotonic for ¢ € [0, ¢4].
Combining Step 1 and Step 2, we obtain (46). O

Remark 3. (48) also can be easily obtained by [30, Theorem 5.34]

The strictly monotonic property of X plays a crucial role in the proof of the
above Theorem. Whenever X is strictly monotonic, we can use integration by parts
to obtain the regularity of u(z,t). Conversely, if m(z,t) is a classical solution, then
the characteristics for the mCH equation is strictly monotonic.

For the convenience of the rest proof, we summarize the results in the proof of
Part IT of Theorem 2.6 and give a corollary.

Corollary 1. Let mg € C¥(—L,L) (k€ N,k > 1) and X € CFY([-L, L] x [0,T))
be the solution to (6). u € CF(R x [0,T]), m € CF(R x [0,T]) is a classical
solution to (1)-(2). Then, we have

Xe(6,1) = oxp (2 / <muz><X<£,s>,s>ds) for (€.) € [~L, L] x [0,T]  (50)

and

T < Xe(6,0) < T for (€.) € [~L.L] x 0.7, (51)
where
Kl = (€7S)E[EI%/1’I[1/]X[07T](mUz)(X(£a 5), 5)
and
K> = (575)6[3%2{]X[O7T](mUm)(X<§, S), S).
Moreover, we have
m(X(&,t),6)Xe(&,t) =mo(§) for (§,t) € (=L, L) x[0,T). (52)

Proof. The proof for (51) and (52) is the same as the proof for uniqueness in The-
orem 2.6. 0

Remark 4. From (52), we know that m(X(6,t),t) does not change sign for any
t € [0,T]. We present a precise argument here.
Set

At ={¢ e (~L,L):mo(€) >0}, A~ :=={€ e (~L,L) : mp(€) < 0},
and
A= {€ € (~L,L) : mo(€) = 0}.
Hence,
ATUATUAY = (-L,L).
For ¢ € [0,T], denote
AF = {X(E1) €R: €€ AT, A7 = {X(§, 1) €R: €€ A7),
and
A) = {X(&t)eR: £ € A}
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Then, we have AJ = AT, A7 = A~ and A = A°. Due to the monotonicity of
X (-,t), one can easily show that A and A; are open sets while A° is a closed set
for t € [0,T]. Also we have

AFUA; UAY = (X(=L,t), X(L,1))
and (by (52))

>0, for xz € Af
m(x,t){ =0, for z€ AY
<0, for z € A;.

Due to
Xe(&,t) = 2(mug) (X (&,),8) =0 for €€ A,

we obtain
Xe(&,t) = Xe(6,0) =1 for €€ A°) ¢t €0,T).
This can also be obtained by (35).

2.3. Solution extension. In this subsection, we will show that as long as classical
solutions to (1)-(2) satisfying ||m(-,t)||L~ < 0o we can extend the solutions X and
m in time.

Proposition 1. Assume mg € C*(—L,L) and X € C¥TY([=L, L] x [0,Ty)) is the
solution to (6). Let m € CF(R x [0,Ty)) be the corresponding solution to (1)-(2). If

sup [fm(- Bz~ < +oo,
tE[O,T[))

then there exists TD > Ty such that
X € CFTY([~L, L] x [0, Ty))
is a solution to (6), and
uwe CPP R x [0,Tp)), m e CFR x [0,T))
is a solution to (1)-(2).
Proof. There exists a constant ]Tjoo satisfies

sup [|m(-,t)|[ < M.
t€[0,70)

From Lemma 2.4, we know m(-,t) has a uniform (in ¢) support. Hence, there exists
a constant M; such that

sup ||m(-,t)||pr < M.
t€[0,To)
1
3(2M2+M Moo) '

i T . 1
solution can be extend to Ty := T} + 2@ATET P AT

Consider time 77 = Ty — Our target is to prove that the classical
> Ty. We will show this in two
steps.
Step 1. In this step we consider a dynamic system from time T7.

From (38) we know m(-,T1) € C¥(—~L,L). Set

mo(0) :=m(0,Ty) for 6 € [—L, L]
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Consider dynamics for X (&, t):

—Xft (/ G(X(£,1) — X(8, ))~0(§)d§)2

2
. . o 3
—( [ @@ - faopm@a),
X(&,0)=¢€€e[-L,L].
Because myg(-) = m(-,T1) € C*(—L, L), by Theorem 2.6, we know that for any

O<t1<4 )
2M + MM

there exists a solution X (&, ) to (53) and a classical solution (u(z, t), m(z,t)) to (1)
subject to initial condition

m(x,0) = mo(z) = m(z,T1).

Moreover,
X € CFY([~L, L] x [0, 1)),
€ CF2(R x [0,1]) and 7 € CF(R x [0,1]).
Choose t; = and set fo =T +t1. Thus Ty < TO.

2(2M2+M1 M)
Step 2. In this step we extend the solutions to [0, To].
Changing variable by £ = X (¢, T1), initial value X(X(g, ), 0) = X(¢,T1) allows
us to define
X(€7 Tl + t) = )?(X(fa Tl)v t) for 5 € [7La L]7t € [07 tl] (54)
and we have _
X e OV Y([~L, L] x [0, Tp)).
Similarly, because m(z,0) = m(z,T1), we can use u(x,t), m(x,t) to define
w(z,Th +t) :=u(x,t), m(z, 71 +1t):=m(x,t) for (z,t) € R x[0,]
and we have N _
u € CFP2(R x [0,Tp]), m € CF(R x [0,Tp)).
Moreover, we can see (u(z,t), m(z,t)) we defined is a classical solution to (1)-(2) in
[0, TO]. N
Next, we show X (¢, t) satisfies (6) in [0, Tp).
Actually, changing variable by 8 = X (6,T) and combining (54) and (52) lead to

L ~ o~ ~ ~
u(z, Ty +t) = u(z,t) = / Gz — X(0,t))mo(0)do

—L

= /L Gz — X(0,Ty +£))m(X(0,T1), T1 + )Xo (0, T1 + t)df
—L

L
= / Gz — X(6,T1 + t))mo(8)de.
~L
Similarly,
L ~ o~ ~ ~
/ G'(z— X (0,t))mo(0)d0 = u,(z, Ty +1).
-L
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Therefore, (53) turns into
{ X(ET+1t) = (X(&Ty+1), Ty + 1) —u2(X(§, T+ 1), Ty + 1),
X(§7T1 + 0) = X(X(SaTl)aO) = X(gle)a
for ¢ € [-L,L] and t € [0,t4].
Hence, X € Cf“([—L,L] x [0,Tp]) is a solution to (6). Corollary 1 ensures

the strictly monotonicity of X (-,t) for ¢ € [0,Tp]. Therefore, X (£,t) is the unique
solution which extends the solution to Tj. O

3. Blow-up criteria. In this section, we give some criteria on finite time blow-up
of classical solutions to the mCH equation.

Let T4 > 0 be the maximal existence time of classical solution to the mCH
equation. In other words, T},.. satisfies

||m('7t)”L°° < +o00, 0<t< Tmaz,

limsup |[|m(, t)||pe = +00.
t_)TnZa(E

Next lemma shows that the solution to Lagrange dynamics (6) can be extended
to the blow-up time T,qz-

Lemma 3.1. Let mg € CF(—L,L). Let Ty be the mazimal existence time for
the classical solution m(x,t) to (1)-(2) and X € CF (=L, L] x [0, Tynaz)) be the
solution to (6). Then we have

X € CY([~L, L] x [0, Trmaz))- (55)
Proof. Let t go t0 Traq in (33) and we obtain X (€, Tinaz ). Using (36) and Lipschitz
property of G(z) = %e’m, we can obtain that
X € C([-L, L] x [0, Tnaz))-
Let ¢t go t0 Tinae in (35) and (37). Similarly, combining (24) gives
X € C([~L, L] x [0, Tynaz))-
Keep doing like this and we can see
X € C¥Y([~L, L] x [0, Trnaz))-
At last, let t go to Tiney in (32) and combining (6), we have 0,X € C([-L, L] x
[0, Tnac))- O
We have the following blow up criteria.

Theorem 3.2. Let mg € C¥(—L,L) (k € NJk > 1). X(&,t) is the solution to
Lagrange dynamics (6). Assume Tpar < +00 is the mazimum existence time for
the classical solution to (1)-(2). Then, the following equivalent statements hold.
(4)

limsup ||m(-,t)||L= = +o0, (56)

t—=Tmax

(i)

min_ X¢ (&, Traz) = 0. (57)

Xe(€,t) >0 for (&,t) € [=L, L] X [0, Trmaz);
{ée[L,L]
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(iid)
t
R e o
(iv)
fgint { i m) 1) = o >9)
(v)
limsup ||m(-, t)||wrer = +00 forp>1, (60)
—Lmazx
(vi)
Trmaz
L It ollmdi = 4. (61)
0

Proof. We follow the following lines to prove this theorem,
(56) = (57) = (58) = (59) = (60) = (56)
and
(58) = (61) = (56).

Step 1. We prove (56) = (57).

Assume m(x,t) blows up in finite time Ty,q,. We prove (57) by contradiction.
From Lemma 3.1, we know X € CZ([—L, L] X [0, Tynaz]). If (57) does not hold, then
we have

min { X¢(&,t) : (§,1) € [-L, L] x [0, Tpaa]} > C1 > 0.
Combining (52) and (38), we have

sup ||m(, Dllpewy = sup  [[m(X (1), )LL)
t€[0,Trmax) t€[0,Trmax)
mo(-) ||mol| o
= sup < —.
t€10, Thmaz) ‘XG('at) L>(—L,L) Gy

This is a contradiction to (56).
Step 2. We prove (57) = (58).
From (57), we have

1i 'f{ inf X ,t}:o.
Jiminf {  fof | Xe(&t)

Together with (50), we can see (57) = (58).
Step 3. We prove (58) = (59).
(58) implies that

th—%gg {ge[IE%,L](mum)(X(f’t)’t)} e (62)

Because of (38), for any t € [0, Tq.) We have

£E[iilgL](mugg)(X(f,t),t) = ze[iilgL] mug(x,t) = ig&muz(x,t).

Hence, we can see that (62) and (59) are equivalent.
Step 4. We prove (59) = (60).
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Assume (59) holds. We prove (60) by contradiction. For any 1 < p < +o0, if

limsup ||m(-, t)||wie < 400,
t_)TIYLCLIZ'

then

sup ||m(-,t)|[wrr < 4o00.
t€[0,Trmaxz)

WLP(R) C L*°(R) with continuous injection for all 1 < p < +oc implies that

sup ||m(-,t)||pe < +o0.

On the other hand, we have

m .
=9 0f[L

(63)

sup |[ug(,t)||Le < sup
t€[0.Tras) 1€[0. Tras)

' /LL G'(- = X(0,1))mo(0)do

Lo

Hence we obtain sup,¢(o r,,.,.) [[muz (-, )||L= < 400, which is a contradiction with
(59). Therefore, (60) holds.
Step 5. We prove (60) = (56).

Assume (60) holds. If sup,cjo p,,. ..y [Im(:,?)[|z < 400, by Proposition 1, there
exists T > Tpnae such that m € C1(R x [0, T]). Because m(-, ) has uniform compact
support for ¢t € [0, 7], we have

sup ||m(-, )||wrr < sup ||m(-,t)||wie < +o0,
te[0,Trmax) te(0,T]

which is a contradiction.
Step 6. At last, we prove
(58) = (61) = (56).
When (61) holds, one can easily obtain (56). So, we only have to prove (58) =
(61). (58) implies
¢
lim sup {sup/ |muz(x,s)ds} = +o0.
t=Tmaz \z€RJO
Due to (63), we obtain
t t Trmax
sup [ s (w,9)lds < C [ fmleollzmds <€ [t 0
zeR JO 0 0
and this gives (61). O
Remark 5. (57) shows that there is a & such that X¢(€o, Tinaz) = 0. This means

Tinae is an onset time of collision of characteristics. Now, we can conclude that if
m(x,t) blows up in finite time T},q., then we have

X € CHY([=L, L] X [0, Tjnae)) and m € CFR x [0, Thaz))-

The blow-up criterion (59) can also be found in [18]. Besides, (61) is similar to
the well known blow-up criterion for smooth solutions to 3D Euler equation [1].

Remark 6 (Other equivalent criteria). Because m(x,t) has compact support for
t € [0, Tynaz), by Poincaré inequality, (60) is equivalent to (for any 1 < p < +00)

lim sup ||my (-, t)||r = +00. (64)

t_> max
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Because m = u — Uy, and |u(z,t)| = ‘ ffL Gz — X (0,1))mo(0)db| < 5|Imol|, we
know that (56) is equivalent to

lim sup ||umm(7 t)HL‘X’ = +oo.
t—=Tmax
(63) tells us wu, is bounded. Hence the blow up behavior is different with the
Camassa-Holm equation, where u, becomes unbounded [10, 11].
When mg(z) > 0, equality (52) implies m(x,t) > 0 for any ¢ € [0, Tpqz). Then,
all the above blow-up criteria are equivalent to

lim sup { sup m(zx, t)} = +o0.

t—Tmaz -~ TER

4. Finite time blow up and almost global existence of classical solutions.
In the rest of this paper, we assume mg € C}(—L, L).

In this section, we show that for some initial data solutions to the mCH equation
blow up in finite time. Some blow-up rates are obtained. Moreover, for any € > 0
and initial data emg(z) € C}(R), we prove that the lifespan of the classical solutions
satisfies

Tmaw(emO) ~ €g27
where C'is a constant depends on mg(x).

Our finite time blow-up results are similar to the blow-up results in [8, 18, 24] but
with some subtle differences. All these three papers apply the idea from transport
equation and focus on the derivative of u? —u?2 which is 2mu,. Comparing with [18,
Theorem 5.2,5.3], we show finite time blow-up for mg which can change its sign.
Besides, our starting point do not have to be the maximum point of mq in contrast
with [24, Theorem 1.3]. The main idea of our proof is similar to [8, Theorem 1.5]
which shows blow-up for a sign-changing mg with the effect of the linear dispersion
term yu, (y > 0).

We have the following proposition.

Proposition 2. Suppose mg € CL(—L,L). Let Tpax be the mazimal time of the ex-
istence of the corresponding classical solution m(x,t) to (1)-(2). X € C?([-L, L] x
[0, Thnaz)) is the solution to (6).

(1) If & € [—L, L] satisfies mo(&o) # 0, then we have

t
Xf(&ht) =1+ 2m0(§0)/ u:z:(X<£Oa S)a S)dS fOT’ te [OaTmaz)~ (65)
0
(ii) We have the following lower bound for blow-up time
1

Tmam > . (66)

[Imo|Le<[mol| s

Proof. (i) The mCH equation (1) can be rewritten as
me + (u? — u)m, = —2m2u,. (67)

Therefore, we have

| =

m(X(&,),1) = —2(m*uy ) (X (§,1),1).

Y

t
By (52), when mq(&y) # 0 we know m(X (&,t),t) # 0 and it will keep sign (positive
or negative) for ¢t € [0, T,q4z). Hence
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e X6 0.) = 2 (X (60,0, (68)
This implies
a (1
dt \ m(X (&, 1),t)
Integrating from 0 to ¢ leads to
1

1 t
7m(X(§0,t),t) :/0 2ug (X (€0, 8), 8)ds + 777”60(50)7 (69)

):%Aﬂ&&ﬁ

and combining (52) gives (65).

(ii) If Tp, then (65) and (7) give that

ax < Mol poo [fmoll o1 ?
Xf(éO»Tmam) Z 1-— HmOHL“HmOHLleax > 07

which is a contradiction with the assumption of blow-up at T},4z- O

In view of equation (67), the most natural way to study blow-up behavior is
following the characteristics. This method was used for the Burgers equation and
the CH equation. Equality (69) reminds us the proof for finite time blow-up of
Burgers equation:

us +uu, =0, for z € R, t>0. (70)

Consider its characteries X (z,t) = u(X(x,t),t) and we have

d
%U(X(%t),t) =0.

Taking derivative of (70) gives

2
Uz + Uy + ULy, = 0.

Then we have

%uw(X(x,t),t) = (Ut ) (X (2,1), 1) + gt (X (2, 1), 1) = —u2 (X (,1), 1),

which implies

1 1
wX@ 00w ()
Hence, if there exists o € R such that ug.(xo) < 0, then u, goes to —oo in finite
time.
(69) is similar to (71). But we can not have direct estimate on the blow-up time
like the Burgers equation. Hence we need to give some estimate about u,. We have
the following lemma.

Lemma 4.1. Suppose mg € CH(—L,L) and My := ||mo||z1. Let Trax be the
mazimal time of existence of the corresponding classical solution m(x,t) to (1)-(2).
X € C¥([-L, L] x [0, Trnaz)) is the solution to (6). Then we have

3

(xe.0] < 5 (72)

'
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Proof. From (1), we obtain

up + (u? = u2)uy = —(1 = Op) " [2uem? + 6uzuzem + 2uim,). (73)

Taking derivative to (73) with respect to x and after some calculation we obtain
2 _ .2 2 oy, 2.3 2 3 r (13
Ugt + (u —ugﬂ)um:—uuz—G*(uuw)—i—gu —gG*(u ) — G’ x 3z
Combining Young’s inequality and (7) gives

|zt + (U2 - ui)um|

e L [P = e | %1 e P
< oM,
which implies (72). O
Next, we state and prove our main results in this section.
Theorem 4.2. Suppose mg € CL(—L,L) and My = ||mo|lp1. Let Tuax be

the mazimal time of existence of the classical solution m(xz,t) to (1)-(2). X €
C2([~L, L] X [0, Trmax)) is the solution to (6). If there is a & € [—L, L] such that
mo(&) > 0 and

M7
2mo(&o)’
then m(z,t) defined by (8) blows up at a time

—0zup(&o0) > (74)

Trae <t = Mlig ( — Oguo(§0) — \/[5zu()(ft))]2 - 2m]\04(13§0)>' (75)

Moreover, when Tp,q. = t*, we have the following estimate of the blow-up rate
form:

[[m(-, )]~ > CTomn =D fort €0, Trnaz), (76)
and for X¢ we have
Ee(iili,L) Xe(&,t) < Cmo(&)(Tmaz —t) fort € [0, Timaz), (77)
Where
2 M3
C = —0puo(&o) + \/{@:UO(EO)} - 2m0(1£0)-

Proof. Step 1.
Assume mg(&p) > 0. Combining (68) and (72) shows that

d 1 d d
a1 a _d N
dt <m2(X(§o,t),t) dtm<X(€0’t)’t)) 2dtuz(X(§0,t),t) > —M; (78)
Integrating (78) shows that

1 d

m&m(*’(@”»ﬂ > — Mt — 20,u0(&o) (79)
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where we used

1 d
XD i m(X (&o,t),t) . = —20,u0(&).

Integrating (79) gives

1 1 s 1
X (G, 0.8 = 2t 20eu(Co)t + e

If & satisfies (74) then we have

1
M1 32+ 20,u0(&0)t + fMl (t—t*)(t — t.),
2 mo(o) 2
where
2 2 M}
tr = 0 7] -1
M3 ( uo(éo) - \/ w10 fo 2m0(§0)>
and
2 2 WE
te = Ox Ox -1 )
M} < uoléo) + \/ o £o 2mo(§o)>
Hence
0 — 1 < Lapu_ -t (80)
m(X(&,t),t) 27 o
This implies that there is a time 0 < Ty,4, < t* such that
m(X (§o,1),t) = +00, as t = Tax
which means m(z,t) blows up at the time T},q4.
Step 2.
Assume T,q, = t*. From (80), we have
2
)| e > X t),t) >
||m(7 )HL —m( (507 )7 )— Mf)(t_t*)(t_t*)
2 1
> = .
T M3t (Toaz —t)  C(Tas — t)
Hence, we have (76).
From (52) and (80), we have
. mo (o) 1
fXe(61) < Xe(ot) = —mption < 5 M3(t—t*)(t —t,
{E(lPL,L) f(g ) = 5(50 ) m(X(fo,t), ) 2 (50) 1( )( )
1
§ (EO)MI (Tmaz - t) < CmO(&O)( mazx
Hence, (77) follows and this ends the proof. O
Similarly, we have the following theorem.
Theorem 4.3. Suppose mg € CL(—L,L) and My = ||mo|lz:. Let Tnax be
the mazimal time of existence of the classical solution m(xz,t) to (1)-(2). X €

C2([~L, L] X [0, Trmax)) is the solution to (6). If there is a & € [—L, L] such that

mo(§1) <0 and
M7

Opug (1) > To(&)7

(81)
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then m(x,t) defined by (8) blows up at a time

Traw <t := Y (&uo(&) - \/[335“0(51)} * 2mo(1€1)> '

Moreover, when Ty = t*, we have the following estimate of the blow-up rate
for m(z,t):

[Im (- )]l >

_— T,
e — for t €0, Tnaz),

and for X¢ we have

| g .
(o0 | Xe(€0) < Omo(€)(t = Tnaa) for t € [0, Taa),

Where

M}
2mo(&1)’

From conditions (74) and (81), if there exists £ € [—~L, L] such that (11) holds,
then the classical solution will blow up in finite time.
Now we can prove Theorem 1.2.

C = 0puo(&1) + \/|:8mu0(£1):|2 +

Proof of Theorem 1.2. (i) (10) follows from (66).
(ii) Let myq satisfies the assumptions in Theorem 4.2. Then, for any ¢ > 0 we
know emy also satisfies the assumptions. Hence, from (75) we have

2 o 1 1
Tmaw(emO) S ||€ux|‘§ S 9 9
[lemol[z, — llmollz: e
where (7) was used. Together with (10) we can obtain (12). O

5. Solutions at blow-up time and formation of peakons. In this section, we
study the behavior of classical solutions at blow-up time T4 -

First, we show that u and w, are uniformly BV function for ¢ € [0, Tynqez] (in-
cluding the blow-up time T},,.) and m(-,t) has a unique limit in Radon measure
space as t approaching T}, 4.

Let us recall the concept of the space BV (R).

Definition 5.1. (i) For dimension d > 1 and an open set @ C RY, a function
f € LY(Q) belongs to BV (Q) if

Tot.Var{f}:=sup {/ f(@)V - p(x)dz : ¢ € CHOQRY), ||¢]| L~ < 1} < 0.
Q

(ii) (Equivalent definition for one dimension case) A function f belongs to BV (R)
if for any {z;} C R, x; < x;41, the following statement holds:

Tot.Var{f}:= ?uli {Z |f(z;) — f(xl_1)|} < 0.

Remark 7. Let Q C R? ford > 1 and f € BV(Q). Df := (Dy, fy--.,Da,f)
is the distributional gradient of f. Then, Df is a vector Radon measure and the
total variation of f is equal to the total variation of |Df|: Tot.Var.{f} = |Df|().
Here, |Df] is the total variation measure of the vector measure D f ([23, Definition

(13.2)]).
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If a function f : R — R satisfies Definition 5.1 (ii), then f satisfies Definition (i).
On the contrary, if f satisfies Definition 5.1 (i), then there exists a right continuous
representative which satisfies Definition (ii). See [23, Theorem 7.2] for the proof.

We have the following theorem about u and u, at Ty,qz.

Theorem 5.2. Let mg € CL(—L, L) and My := ||mo||p1. Let Trnaz be the mazimal
existence time for the classical solution m(z,t) to (1)-(2) and X € C?([~L, L] x
[0, Tnaz]) be the solution to (6). Then, the following assertions hold:
(i) There exists a function w(x, Tmas) such that

lim  wu(z,t) = w(x, Thax), , lim  wg(x,t) = ue (@, Trnaz) for every x € R.

t—=Tmaa max

(82)
(#3) For any t € [0, Tynaz] we have
u(+,t), uz(-,t) € BV(R)
and
Tot.Var.{u(-,t)} < My, Tot.Var.{uz(-,t)} <2M;. (83)

Proof. We use three steps to prove (i) and (ii) together.
Step 1. We prove u € C(R x [0, Tynqz])-

Due to (55) and u(z,t) = [*, G(z — X(6,))mo(8)d for t € [0, Trmaz), let ¢ go
to Tinax and we obtain

(@, Tonas) = /_ Gl = X(0.Tr) o 0)d0.

Moreover, we have u € C'(R x [0, Tyaz])-

Step 2. For 0 <t < T,40, we prove (83).
For G = e I*|, we know G, G, € BV(R) and the following holds

Tot.Var.{G} =1, Tot.Var{G,} = 2.
When t € [0, Thhaz), for any {z;} C R, x; < z;41, we have

L
Zlu(xi,t) —u(wi-1,t)] < /_LZ|G(%‘ = X(0,1)) — G(xi—1 — X(6,1))|[mo(60)|d6

< Tot.Var.{G}||mo||1 = M,

which means Tot.Var.{u(-,t)} < M. Similarly, we can obtain Tot.Var.{u,(-,t)} <
2M1 for t € [OaTmax)-

Step 3. We prove (82) and show that u(x, Tinee) satisfies (83).

The first part of (82) is deduced by u € C(R X [0, Tinaz]). To prove the second
part, we have to do a little more job.

Combining (7), step 2, and [3, Theorem 2.3], we know that there exists a conse-
quence {ti}(— Timaz) and two BV functions u(x),v(x) such that

lim w(z, tr) = u(z), Um u,(z, ty) =v(x) for every z € R,
k—00 k—o00
and

1 1
Tot.Var.{u} < My, |u| < §M1 and Tot.Var.{v} < 2M;, [v] < §M1.
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Because

lim  wu(x,t) = u(z, Tnaee) for every z € R,
t_>T'le(l(1‘r

we know u(z) = u(z, Tinaz)-
For any test function ¢ € C2°(R), we have

—/u(m,TmM)d)z(m)dx: —/ﬂ(x)gbm(x)dx: — lim [ u(z,ty)d.(x)dz
R R

k—o0 R
= lim uz(;v,tk)qb(ac)dx:/'17(;10)¢>(:v)alx7
which means v(x) is the derivative of u(x,Te,) in distribution sense. Define
Ug (T, Tinag) = V() for every z € R and we obtain

klim U (X, tg) = Uy () = Uy (2, Tinas) for every z € R.
—00

Because ug(z,t) is continuous in [0, Tyqy ), we know

lm  ug(x,t) = Up () = ug(x, Tinas) for every z € R.
t—=Tmax

This is the end of the proof. O

Next we give a theorem to prove that m(-,t) has a unique limit in Radon measure
space M(R) as t approaching T,q.. Before this, let’s recall the definition A, and
A; in Remark 4 and denote

At = {X(E, Trae) ER:E€ AT}, AL = {X(§, Trnas) ER: E€ A}

T’IYLG(E :
Because X (&, Tinae) may not be strictly monotonic, it is not obvious to see that
A; and A7~ are open sets. We give a lemma to show this.

max

Lemma 5.3. A} and A, are open sets.
max max

Proof. We only deals with A;ﬁm and the proof for A s similar.
For zg € Aj , there exist £ € (—L,L) such that mg(¢) > 0 and zp =
X (&, Trnaz)- Set

& =min{{ € [-L,L] : mo(§) >0 and X (&, Tmaz) = o}
and
g :=max{f € [-L,L] : mo(§) >0 and X (&, Thaz) = To}-
By continuity of mg and X (&, Trnaz), &1 and & can be obtained.
1. If & = &9, then there is only one point & = &; such that mg(&) > 0 and
o = X (&0, Trnaz)- In this case, set

m = max{€ :mo(§) =0 and £ <&}
and
ne :=min{€ : mp(§) =0 and £ > &}.
Because mg(&y) > 0, we know 11 < o < 12 and mg(€) > 0 for £ € (11, 72). Hence
X(&Tmaaﬂ) € A;maxv for 5 € (7717772)~
Because X (&, Tinaz) is nondecreasing, we obtain
To = X(£O7 Tmaw) S (X(’I]l, Tmaw)a X(T]% Tnmw)) C A;mam .
2. If & < &, we have
X(£7Tma:r) = 2o, for 5 € [51752]- (84)
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By definition we know mg(&;) > 0 for ¢ = 1,2. When mqg(&) =0 fori=1ori =2,
from Remark 4 we know X¢(&;, Tnaz) = 1. This implies that X (&, Thas) is strictly
monotonic in a neighborhood of & which is a contradiction with (84). Hence, we
have

mo(&) >0, for i=1,2.
Hence, there exist £3 < & and &4 > &5 such that
mo(§) >0 for €€ (&3,6).

Therefore, we have

X(&BaTmaz) < X(glaTma:c) =To = X(&QaTmaz) < X(£4,Tma:c)7
and
X(€, Tonaz) € Af,  for € € (&,60),

which imply
To = X(gla Tmam) S (X(ffia Tmax)a X(féla Enar)) (- A}_

max

O

For any Radon measure p and measurable set A, we use p|4 to stand for the
restriction of p on the set A. We have the following Theorem.

Theorem 5.4. Let the assumptions in Theorem 5.2 holds. Then there exists a
unique Radon measure m(-, Tpnaz) such that

m(-t) > m(, Tonae) i MR), as t = Trax. (85)

Moreover, m(-, Tynaz) has the following properties:
(i) Compact support:

supp{m (-, Tmaz)} C (=L, L). (86)
(i) Denote
M e =M Tnao)|, and mp o= Tonas)|
Tm,az T’VYLG/(L‘

Then m; is a positive Radon measure and m,, is a negative Radon measure.
maz maz

Besides, we have

m('7 Tmaac) = m;

max

My, . (87)
(#i1) The following equality holds:

L
/R|m|(dx,Tmm) :/R\m(x,tﬂdx: [L |mo(x)|dz, t € [0, Thaz)- (88)

Proof. Step 1. Proof of (85).
Because g (-, Tinaz) is @ BV function, its derivative u,y (-, Tinas) is @ Radon mea-
sure. We know

m('7 Tmaa:) = u('7 Tmaa:) - uzz('y Tmaa:)
is a Radon measure and for any test function ¢ € C°(R), we have

/ d(@)m(dz, Trae) = / (2, Trnaz) () + (T, Trnaw ) b (z)de. (89)
R R
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Then, we have

lim m(x,t)p(x)de = lim u(z, )od(x) + ug(z, t) oy (z)dx

t—=Tmaz JR t—=Tmaz JR

*/ w(@, Tnax )P(2) + v (T, Trnaa ) Pz (7)dx
= [ stimide. T

This proves (85).

Step 2. Proof of (i).
For any test function ¢ € C2°(R), we have

/qS m(dze, Taz) = lim m(x,t)p(x)dx

t_>T7na.n R

= dim [ m(X(E.0). DO (E ) Xe(E, e

t—=Tmax
:tJ%nl/ mo(§)P(X (&,1))dE
:/ mo f Tmax))d§7 (90)

where (52) was used. Because X(L,t) = L and X(—L,t) = —L for t € [0, Thnaz),
we have X (-, Tnez) € (—L, L). Let test function ¢ satisfy supp{¢} C R\ (—L, L).
Then we obtain

/¢ m(dz, Tonas) /7m V(X (€, Ty )E = 0,

which implies (86).
Step 3. Proof of (ii).
Due to (90), we know
My Trmaz) = X (4, Trmaz ) #mo-
For ¢ € C2°(R) and ¢ > 0, by the definition of AT we have

[ otwmi, = [ omde T

T’VTLG/‘T
= m0(€)¢(X(§v Tmaz))df > 0.
A+
Hence, m} .. is a positive Radon measure. With the same argument, we can see
that mz ~ is a negative Radon measure.
On the other hand, by using (90), we have

/QS Trmazx +meaI) :A+ UA- (i)(x)m(dmvaam)

Tmaa Tmax

= /AWA_ mo(§)(X (€, Tinaz))dé = mo(&)D(X (€, Thaz))dE

ATUA-UAOC

/7% X6, Tynar) )6 = /¢ m(dz, Tynas),
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which implies (87).
Step 4. Proof of (iii).
From (52), we have
Im(X (&, 1), )| Xe (&, 8) = [mo(E)],

which implies

L
[ e tlds = [ m(x(€ 0, 01Xe(e. 01 = [ ma(€)lde for ¢ € 0. T
R R -L
For any test function ¢ € C2°(R), we have

[ o@imi@eTw) = [ ot@mide Tuw) = [ dlymide. Ts)

= [ m0(©)B(X (€. Toa))d — / 10(E)S(X (€, Tonar) ).
At A—
Choose ¢ € C2°(R) satisfying
p(r)=1, ze€ (X(—L,Thaez) X (L, Trmaz))-

Hence, we have

L
/R | (A, Tynae) = /A mo€)ds — [ mo(e)de = / mo(6)lde

P
This ends the proof. O

Remark 8. In Section 6, we will prove the global existence of weak solutions to
the mCH equation when initial datum mg belongs to M(R). Hence, we can extend
m globally in time after blow up time. Similar results can be found in [17], where
a sticky particle method was used.

Next, we introduce another two sets to study solutions at T},q.. Assume mg €
CHR) and X € C2([~L,L] x [0, Timaz]) is the solution to the Lagrange dynamics
(6). Set

F = {f € (_LvL) : X§(£7Tmam) = 0}
and

0:= {5 € (_L7L) : Xf(gaTmax) > O}’
Then, F' is a closed set and O is an open set. Moreover, we have

FUO=(-L,L).

Because the classical solution blows up in finite time 7}, 4., we know F' is not empty.
On the other hand, due to mo(£L) = 0, Remark 4 tells that X¢(£L, Tnes) = 1
which implies O is not empty.

Set

Or,.. ={X( Thaz): £ €0} and Fr, . ={X( Thaz): & € F}. (91)
Then, we have

OT U-FT = (X(_Lvaaz)vX(L»Tmaz))~

max max

is also an open set and Fr

max

X (-, Tinaz) is strictly monotonic in O. Hence, Or,, .
is a closed set. Moreover, we claim that

OT = [X(_LaTmaa:>7X(L7Tmaa:)]' (92)

max
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To show (92), we only have to prove Fr, . C Or,,.. For any € Fr,  _, there
exists & such that @ = X (&0, Tmaz) and Xe(§o, Tmaz) = 0. Let & = max{¢ :
X (&, Trnaz) = x}. Ve > 0, there is & € (&§1,&1 + €) such that Xe(&c, Tnaz) > 0 and
X (&, Trmaz) € Or,,,.. Hence, lime_,0 X (&c, Trnaz) = X (&1, Trmaz)-

We have the following theorem.

Theorem 5.5. Let assumptions in Theorem 5.2 hold. Then we have

u(+, Tynaz) € C}(R\ Fr.

max )

and
m<'7 Tmaw) € Cl(OT

max

)N LYOr,,,.).
Moreover, the following holds

m(X(gaTmaat)aTmax)Xﬁ(gaTmax) = mO(g) fOT’ g € 0.

Proof. Step 1. We first consider the cases when © & (X(—L, Traz), X (L, Trnaz))-
Because mo(L) = 0, from Remark 4 we know X¢(L,T)nq,) = 1, which means
X (&, Tinaz) is strictly monotonic in a small neighborhood of L. Hence,
X(LuTmax) > X(fvaaz) for 5 € [_L7L)

From this we know, if > X (L, T)nas), we have © — X (€, Tynaz) > 0 for € € (=L, L).
From Theorem 5.2, we know

L

w(x, Trnae) = / Gz — X (0, Thaz))mo(0)do.
L

Thus

L
e (2, Tons) = [ G = X0, Tyae) o (0)d0

L
_ [ Gl = X0, Tye)mo()d0 = (. Tyr)

This shows
w(@, Trnaz) = WX (L, Trnaz), Tnaz Je~ X 5 Tmaz),

Hence, u(-, Thae) € CP[X (L, Thas), +00).

Similarly, we can show u(-, Tyez) € C°(—00, X (=L, Tinaz)]-
Step 2. We only left the case for z € O7,, .

When z € O, , there exists a n € O such that X(n, Tye.) = 2. Because
Xe(M, Trnaz) > 0, we know 7 is the unique point satisfying X (1, Tinee) = =. Rewrite
w(x, Tnaw) as

L
(@, Tonas) = / GIX (1, Tonas) — X (6, Ty Yo (6)d0

+ /77 G(X(U,Tmar) - X(‘gaTmam»mO(a)dG'
L

Using X, (1, Tnaz) > 0, we can obtain

1
Uy xaTma:c = ———uy(X nmiaz 7Tmaz
(5 Toax) = ey oK ), T
1 /L
TN Y G/(X(naTmam) = X(0, Tinaz)) X (1, Trnaz )mo(0)do
Xn(n7Tma:r)( n K
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= g+ gma() + [ 6K Tar) = X0 T X, 0 T na(6)a8 ).

L
ux(xaTmaa:) :/ G(X(anmam) - X(G;Tmar))mO(e)dG

n
_ / G(X (1, Trnaw) — X (8, Tnas) 0 (6)d6. (93)
—L
Taking derivative again shows that

mo(n) /L
U (2, Tomas) = — ——20) [ (X (1, Toaw) — X (0, T ) )0 (0)d
(# Tas) = = o+ [ GOE0 T) = X (0, Ty mofd)

mo(n) "
- m + /—L G(X(T]’ Tm‘“:) - X(ev Tmaz))mo(e)de

mo(1)
— MO Tosa). 94
Xﬂ(naTmax) ( ) ( )
Because mg € C(R) and X¢(+, Tpaz) € C1(—L, L), which implies
u(+, Trnaz) € C3(Or,

ma.:c)'

Together with Step 1 and Step 2, we obtain
u(-, Traz) € C*(R\ Fr,,,.. ).

Step 3. Because R\ Fr, . is an open set, for any ¢ € C°(R\ Fr,,,. ) we have
/¢($)m(dxaTmax) = / (@, Tinaz)9(2) + Uz (@, Tinas) 9z (2)dx
R R

= / w2, Tinaz)0() + vz (2, Tinag) 9z (2)dz
R\F1yy 00

= / (u(l‘, Tmax) — ngc(x, Tmax))¢($)d$,
R\FTp 04

where (89) was used. Because ¢ is arbitrary and u(-, Trhez) € C3(R\ Fr,

max ) ’ we
obtain

m('aTmam) = u(';Tmam) - umz('7Tmaz) S Cl(R \ FT

m,a.:c)'

(95)
From Theorem 5.4, we know m(-, Trq.) has compact support in (—L, L). Hence,

m(-, Tmam) S CI(OT

mazx ) .

Because the Radon measure m(-, Ty,q.) has finite total variation, we obtain

m(-, Trnaz) € L*(Or,,..).
From (94), we know
mo (1)

X77 (777 Tmaa:)
where x € O, . and X (1, Tnee) = @. This means (52) holds in the set O:

m(X(é-v Tmaz)7 Tmam)Xé(é-a Tma:}c) - mO(g) for 5 €O.
This finishes our proof. O

m(:c, Tmaz) =
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Because u(+, Tinaz) and ug (-, Thnae) are BV functions, their discontinuous points
are countable. We give a proposition to show discontinuous points of (-, Trnaz)-
First, let us introduce two subsets of Fr

ﬁTnlam = {x e FTrnam : X_l(x7Tmlll') = {g} fOI" some g 6 [_L? L]}7

and
Fr,. ={zeFr,  : X '(&,Tha) = [€1,6)] for some & < &Y. (96)
Proposition 3. Let the assumptions in Theorem 5.2 hold. Then, uy (-, Tmaz) €

C(R\ Fr,.. ) and ug(-, Tyas) is not continuous at y € Fr, .

Proof. Step 1. Assume y € ﬁTmz and we prove uy (-, Tinaz) is continuous at y.

By definition of Fr, ., we know there is only one point & € F', such that
X (&, Timaz) = y. Due to (92), there exist two sequence {7, } and {y,} such that
the following hold:

{9,} COr,,.., m Yy, =y, U, isincreasing

li
n——+oo
and
{yn} € Or,,.., lim yp=1y, U, isdecreasing.
n——+oo

there is a unique &, € O such that X(€,, Trnaz) = Ty
Similarly, we have a unique &, € O such that X (&,, Timaz) = Un- (Uniqueness is
because X (&, Tynqaq) is strictly monotonic in O.) Moreover, we have

En <£0 <ZTL7

Because 3,, € Or,,

vax )

and

lim & =& = lim &,.
n—-+oo gn 60 n—-+oo gn

Because formula (93) holds for « € Or,

max )

we know

L
Ug @m Tmam) = /f G(X(gna Tmaz) - X(Q, Tmam))mo (9)d9

13
- G(X(EnaTmaw) - X(H,Tmam))mo(e)de
—L

Let n goes to infinity and we obtain

L
Uy (y*, Tmax) = / G(X(fo, Tmaw) - X(aa Tmax))mo(e)de

o
- G(X(é.OaTmaa:) - X<97Tmaw))m0(9)d9
Similarly, we have
L

Uy (:/y\"“ Tmam) = g G(X(gna Tma;r) - X(97 Tmam))mo(ﬁ)dG
& .
- G(X(ganmaw) - X(Q,Tmaz))mo(e)de
—L

and

L
Uy (er, TmaT) = / G(X(f(), Tmaz) - X(@, Tmar))mo(e)do
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£o
7/ G(X (&0s Trmaz) — X (0, Tinaz))mo(0)d0.

-L
This 1mphes Ug (yfa Tmaz) = Uy (y+, Tmam)~ For any y € ﬁTm{m, define
L
e (Y, Trnaz) = | G(X €0y Trnaz) — X (0, Traz))mo(0)do
o
o
- G(X(§0aT7rLax) - X(H,Tmax))mo(ﬁ)dﬂ.
—L

Then using similar argument for any sequence R \ Fr,.. > Yn — Y, we know

uw(';Tmaw) S C(R \ ﬁT

maa:)'

Step 2. Assume y € ﬁTmm
Set

& =min{ € F: X(§ Thae) =y} and & =max{€ € F: X (&, Thnax) =y}
By definition of ﬁTmaz we know ¢ < &. Moreover, we know
X(&Tmaz) =Y, X{(&Tmaz) =0 for f € [51;52]~

Claim. mg will not change sign in [£1, &s].
If this is not true, then we have 7 € [€1, &) such that mg(n) = 0. Remark 4 tells
us that X¢(n, T)nez) = 1 and we obtain a contradiction.

and we prove Uy (+, Tinae) is discontinuous at y.

Similar to Step 1, we have four sequences ,,, En, /yA\n and Zn which satisfy

lim §, =y= lim g
n~>+ooyn Y n~>+ooyn’

Y, € Or, .. increasing, ¥, € O, .. decreasing,

max

and

lim En :Elv lim én :fg.

n—-+o0o n—-+o0o

From (93), we know
L _
Uy (?na Tmaw) = % G(X(fn, Tmaa:) - X(G, Tmaw))mo (9)d9
&n
E'Vl

-/ ex @ Tonaw) — X (0, Tnaz)ymo(6)do.

Let n go to +00 and we obtain

L
Uy (yfa Tmaz) = / G(X(gla Tmam) - X(O, Tmaz))mO(g)da

&1
- L G(X(Elv Tmaw) - X(e, Tmm))mo(Q)dH
= LG(?/ = X(0: Tz ))mo(0)df — i Gy — X (9, Trmaz))mo(0)do.
&1 L

Similarly, we also have

&2

L
U (Y+, Trnaz) = / Gy — X(0, Trhaz))mo(0)do — [L Gy — X(0, Trnaz))mo(0)d0.
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Hence, using the above claim, we have

&2
uw(y—, Tmaa;) - u:v(y+a Tmaa:) =2 G(y - X(97 Tmaw))mo(a)de
&1
&2
= [ mo(6)do #0 (97)
&1
which shows that (-, Tmaez) i Dot continuous at y. O

Next, we prove Theorem 1.3. Let’s give some notations first.

Assume Fr, = {z;}) and2; < z5... < zn,. Let Fr. ={z;}Y, (N <Ny).
From the proof (97), we know that for each 1 <4 < N there exist €z1 < &2 such
that

Ug (zi_y Tmaac) — Uy (Ii+7 Tmax) = Di

where

iz
pi= [ mao)as. (98)

Set

| m(z,Thez), € O0m,,,;
ml(a:)—{ 0, zeR\Oq (99)

mazx *

Proof of Theorem 1.53. For any text function ¢ € C2°(R), we have

/d’ d-T Tmaac) :/ (I7Tmax)¢(x) +ux(xaTmax)¢x(x)dx

Ni—1

(/. +Z/ /m) (402, T )0(2) + 1 (2, Tonan) (1) v

Because Uy (-, Trnaz) € CFT2(R\ Fr,, .
/¢ dl’ Tmaz)

Ni—1

— </“ + Z /wm /+°°> w(@, Trnaz) — Uzz(fE»Tmaz)M(x)]dx

+ Z uz i maz) - um(xi+vaaI))¢(xi)

), integration by parts leads to

= / m(lL’,Tmam di)’] + Z 'UJx [ mar) - uz(x2+7Tma$))¢(zl)
O

Tmax

Because g (-, Tinaz) is continuous at x; for ¢ > N+ 1, combining (95) and (98) gives
that

[ o@mide T = [ (e Ty O(a)dz + 3 / o 0)d ()

Tmax =1 il

- /o m(z, Trmaz)¢(x)dx + Zpi¢($i)

Tmazx =1
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= [ (i + épiau -5 ) o)

This theorem tells us that peakons are exactly the points in the set ﬁTmaz . Hence,
a peakon is formulated when some Lagrangian labels in a interval [£;, £5] aggregate

into one point at T},q, and the weight of the peakon is the integration of mg(z) on

[€1,62].

6. Solutions after blow-up. At the blow up time, the solution to the mCH equa-
tion m becomes a Radon measure. In this section, we assume initial datum mg be-
longs to the Radon measure space M(R) and use the Lagrange dynamics to prove
that weak solution to (1)-(2) exists globally in Radon measure space.

m(z, Taz)o(x)dx + Z /Rpié(x —x;)¢(x)dx

6.1. Regularized Lagrange dynamics and BV estimate. Let mg € M(R)
satisfies

supp{mo} C (=L, L) and M; := |mp|(R) < 4o0. (100)

G’ is not continuous and may not be integrable with respect to Radon measure my.
(6) can not be used directly. Hence, a regularization is needed.
Let’s give the definition of mollifier.

Definition 6.1. (i) Define the mollifier 0 < p € C¥(R), k > 2 satisfying
[ @iz =1, plo) = pllel) and supp{p} < {o € R fa] < 1)

(ii) For each € > 0, set

With this definition, we define

G*(z) := (pe * G) ().
Hence, G¢ € C*(R) for k > 2. By Young’s inequality we have

€ 1 € 1
IG I < IGlle~ = 5, 1IGElle~ < lIGallz~ = 5 (101)

and
G < |Gl =1, [IGEller < [|Golle =1,
Because G, (z) = G(x) when x # 0, we have

[ rtGesta =] = | [ 5166 - ay
On the other hand, because G¢, € C[—e, €], there is a constant ¢ > 0 such that

G, (z) < L° for = € [—¢, €.

Hence, G¢(x) is a global Lipschitz function. For any measurable function X (¢,t),
we define

Ud(w; X) = (/R Gz — X(0,t))dm0(9)>2 - (/R G<(z — X(o,t))dmo(o))2

1
Goa(@)] = < 3 for |z| > e.
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and
U(x; X) := [pe x Uc](w; X).
The regularized Lagrange dynamics is given by

{ X (&) =U(X(&:1); X),
X(£0)=¢e[-L, L]

Consider this equation in the Banach space C[—L, L] with sup norm. One can easily
show that the vector field is globally Lipschitz. Hence, by the Picard theorem for
ODEs in a Banach space, we obtain a unique global solution

X(&,t) € C([-L, L] x [0,+00)) for any € > 0.
Define

u(z,t) == /RGG(J: — X(0,t))dmo(0), m(x,t) :=u(x,t) — ul,(x,t) (102)
and

me(,t) := X(-, t)#mo(-). (103)
By the definition, we have

(2, 1) = /R G (@ — X°(6, 1))dmo (6) = /]R G — y)me (dy. 1).

Hence, we have the following relation between m* and m.

m(e.t) = (1= 00,) [ @ —pmeldnt) = [ pila=pmldnt). (104
In the following of this paper, we denote
Ud(z,t) := (u)?(z,t) — (u$)*(x,t) and US(x,t) := [p. * Uc(z,1).
Hence, we have
XE(&,1) = US(X(&:1),1). (105)
From Definition 5.1 we can easily obtain
Tot.Var.{G} =1, Tot.Var{G,} =2
and
Tot.Var.{G} =1, Tot.Var.{G,} = 2. (106)
We have the following Lemma about u€.

Lemma 6.2. Let mg € M(R) satisfy (100). Fore > 0, u®(z,t) is defined by (102).
Then, the following statements hold:

(4)

1
[|ul| e < §M1 and ||ug]|pe < =My uniformly in e.

N | =

(i)
Tot. Var.{u®(-,t)} < My and Tot.Var.{u(-,t)} <2M; wuniformly in e.

(iii) For any t, s € [0,00), we have

1
/ |u(z,t) — u(x, s)|dz < §Mf|t —s| and / |ul (z,t) —ul (, s)|de < M|t — s|.
R R
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Moreover, for any T > 0, there exist subsequences of u¢, uS (also denoted as uc,
us,) and two functions u, u, € BV (R x [0,T)) such that

ut = u, uS = u, in L, (R x[0,+00)) as € =0
and u, u, satisfy all the properties in (1), (i) and (iii).

Proof. (i) From (101) and the definition of u¢, we can easily obtain (i).
(ii) For any {z;} C R, x; < z;41, (106) yields

Z|u Tt (xl lvt)|
/ D16 (as = X(0.0) = s = X(0.0)fdmo(0)

STOt.VaI‘.{GE}Ml = M1~

Hence, Tot.Var.{u¢(-,t)} < M;. Similarly, we can obtain Tot.Var.{u$(-,t)} < 2M;.

(i)

/ |u(x,t) — u(z, s)|dx < / / |G (z — X(0,t)) — G (z — X°(0, 5))|dmo(0)dx.

R R JR

By the definition of U€ and (105), we know
. 1
[X(&,)] < S M.
Hence,
1
|X€(05t) - Xe(eas)‘ < §M12‘t - 5|

[3, Lemma 2.3] gives

/ |G (z — X(0,t)) — G(xz — X°(0, 9))|dx
1
< Tot.Var.{G} X(0,t) — X(0,s)| < 5M12|t — 5.
Hence
1
/ |u(z,t) — u(x, s)|dx < = M|t — 5.
R 2
Similarly, we can obtain
/ |ul (z,t) — u(x, s)|dx < M|t — s|.
R
The rest results can be obtained by using [3, Theorem 2.4,2.6]. O

6.2. Weak consistency and convergence theorem. In this subsection, we show
that u¢ defined by (102) is weak consistent with the mCH equation (1)-(2).
We rewrite (1) as equation of u,

(1 = Opa)us + [(u - UQ)(U - uzz)]w

) 1, . 1
= (1 — Ops)us + (u‘3 + uui)T - g(ud)Tm + g(ui)m =0.
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Now, we introduce the definition of weak solution in terms of u. To this end, for
¢ € C*(R x[0,T)), we denote the functional

/ / u(z, t)[pe(x, t) — Pro(x, t)|dadt

i 3 _ = 3
3/0 /Ruz(%tmm(x,t)d;vdt 3/0 /Ru (2, ) Prae (z, t)dadt

T
+ / /(u3 + uu?) g, (z, t)dadt. (107)
o Jr
Then, the definition of the weak solution to (1) in terms of u(x, t) is given as follows.
Definition 6.3. For mo € M(R), a function
u € C([0,T); H'(R)) N L>(0,T; W (R))

is said to be a weak solution of (1)-(2) if

/qi)x()dmo

holds for all ¢ € CX(R x [0,7)). If T = 400, we call u(z,t) as a global weak
solution of the mCH equation.

For simplicity in notations, we denote

(f(x,1),9(x,1)) //f:z:t (z,t)dxdt.

For any test function ¢ € C°(R x [0,T)), we have
<m€ (J?, t)7 ¢t> + <U€m€7 ¢m>

_A?A@@@mﬂmoﬁ+Aé@wmﬁ%@ﬁm4MDﬁ

:/(;T/R|:¢t(XE(67t)’t>+UE(X€(07t)7t)¢I(XE(97t)7t) dmo(0)dt

T
:/)%/MXWﬁJWm@ﬁ:—/¢@mmmm (108)

On the other hand, combining the definition (102) and (107) gives

/(/ oy — @mwm—f/‘/au 3pypdrdt
_,/t/ %MMﬁ+/l/ u)?) o dadt

<¢t7 (1 - acac ) ((9 u’ ) ¢x>
= <m 7¢t> <U€m 7¢m>

Combining the last two equalities, we define
E.:=(m —me, ¢y + (Uem® — Ume, ¢p) = /gb x,0)dmo(z). (109)

We now state the main result of this section.
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Proposition 4. We have the following estimate
|E| < Ce.
The constant C' is independent of €.

Proof. By the definition of m¢ and m,, the first term in (109) can be estimated as

(m® —me, ¢,) = /0 (/d)t:ct xtd:r—/(;stl«tme(dx t)>dt

:/ (//‘b”’tpe(x— pmeldy. )t = [ . tim(dy, ))dt
/ (// Ge(,1) = d1(y, )] pe(w — y)me(dy. t)dw )d

- /0 (/]R/]R [6e(2:8) = (X (6:1), )] pel(x = X6(97t))dmo(9)da:> dt

< M|l |~ Te.

For the second term of (109), because p is an even function, by the definition of
U€ we can obtain

(Uem® — Ume, ¢y)
/ // (,t) P (x,t)pe(x — X(0,1))dmo(0)dzdt
- /O /R U(X(0, 1), £) b (X (0, 1), t)dmo (0)dt
T
:/ //Ue(a:,t)qu(x,t)pe(xfXE(H,t))dmo(G)d:vdt
0 R JR
T
<[] [ vt~ x40 0)0n (X7(6.0), )imo(0) o
0 RJR

1
< Mi||Uellpell@aallooeTe < 5 M7||gu|[ 1o Te.
This ends the proof. O

Next, we state our main theorem in this section, which contains Theorem 1.4.

Theorem 6.4. Assume that initial datum mo € M(R) satisfies (100). u(x,t) and
m&(x,t) are defined by (102). Then, the limit function u given by Lemma 6.2 is a
global weak solution of the mCH equation (1)-(2) and

u € C([0,+00); HY(R)) N L>(0, +o00; WH(R)).
Furthermore, for any T > 0, we have
ue BV(Rx[0,T)); wu, e BV(RxI0,T)),
m = (1 — dpp)u € M(R x [0,7)),
and there exists subsequence of m® (also labeled as m©) such that

m® = m in M(R x [0,T)) ase— 0.



LAGRANGE COORDINATES FOR THE MCH 2589

Proof. Step 1. Global weak solution.
As it is shown in Lemma 6.2, we have u, u, € BV(R x [0,T')) such that

uf = u, Oput — uy in L}, (R x [0,400)).
Moreover, for any T > 0, the limit functions u, u, satisfy

ue BV(Rx[0,T)), u, € BV(Rx[0,T)),

1 1
|'U/(.fL‘7t)| S §M17 |ux(x7t)| S §M1

and
/R|u(:r,t) —u(z,s)|dr < %Mﬂt — s, /R|ur(:c,t) — ug(z, 8)|de < M3|t — s
for t,s € [0,400). Hence,
llu(-,t) = ul- 8)|[22 = /R [u(z,t) — u(z, 5)*de
<M /R (1) — u(z, 5)|dz < %Mﬂt 4

Similarly, we have
lua (-,t) = wa (-, 8)l[72 < Mift = s|.
These two inequalities imply
(-, 8) = uls9)l s < 2(luCst) = ul )l + e, 8) = ol 5)l 13 )
< 3MMt — s|.

Therefore
u € C([0, +00); H'(R)) N L>(0, +-00; WH>(R)).

For each ¢ € C2°(R x [0,4+00)), there exists T' = T'(¢) such that ¢ € C°(R x
[0,T)) We now consider convergence for each term of L(u¢, ¢),

o) = | ' [ wlon = bunildsar 3 [ ' R

T T
_ %/0 /R(UE)S(i)mmdxdt+ /0 /R((“Ef’+u€(amu6)2)¢>mdwdt-

For the first term, because supp{¢} is compact, we can see

/OT/Rue[th — Prao|drdt — /OT/RU[Q% ~ buaa]drdt (e 0).

The second term can be estimated as follows
T
/ / [(0,u)® — ud)¢ppdrdt
o Jr
T
= / /(awu6 — ) [(0pu)? 4 uZ + Opuus]Pppdudt
o Jr

3
< iMfH(bmHLoo/ |0pu¢ — ugldzdt - 0 (e — 0).
supp{¢}
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Similarly, we obtain

/ / 3 — ) ppendadt — 0 (€ 0),
// 8 _ugudrdt =0 (e 0),

/oT/]R — wu|ppdudt

and

T
= / / uf — ) (0pu)? 4+ u((0pu)? — u2)] ¢ drdt
o Jr
T
= / (1€ — u)(0pu)? + u(Dpu + uy) (0put — uy)|pdrdt
o Jr
—0 (e—0).

Combining the above estimates and Proposition 4 gives

——/¢wmwmm
R

This proves that u is a global weak solution to the mCH equation.

Step 2. Now we prove that
m® = min M(Rx [0,T)) (e 0).

For any test function ¢ € C}(R x [0,7T)), integrating by parts and using the
relationship m® = (1 — 0,, )u® imply that

/OT/R‘ZS(””’t)dme(x’t) = /()T/Rﬁﬁ(w,t)(l — Oy )z, t)ddlt
= [ ] ot 4 6t D00,
0 R

Taking € — 0, the right hand side of the above equality converges to

/OT/RWx,t)u(x,t)+¢m(x,t)ugg(x,t)dxdt:/OT/R¢(J:,t)m(dx,dt).

Hence, m¢ =~ m in M(R x [0,T)). This ends the proof. O

Remark 9. In [17], the authors also prove the total variation stability of m(-,t).
That is

[m(-, )[(R) < |mo|(R).

The weak solution is unique when u € L°°(0,00; W*(R)). Moreover, examples
about nonuniqueness of peakon weak solutions can also be found in [17]. Notice
that peakon solutions are not in the solution class W2 (R).
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