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1. Introduction

The 2-D Navier-Stokes equations in vorticity-stream function formulation
read

(1.1)

∂tω + ∇·(uω) = ν∆ω ,
∆ψ = ω ,
u = −∂yψ , v = ∂xψ ,

whereu = (u, v) denotes the velocity field,ω = ∇ × u = −∂yu + ∂xv
denotes the vorticity. The no-penetration, no-slip boundary condition can be
written in terms of the stream functionψ

(1.2) ψ = Ci,
∂ψ

∂n
= 0 , at each boundary sectionΓi ,

whereCi is a constant for eachΓi. In the simply-connected domain,C0 can
be taken as 0.

In 2-D incompressible flow, the above formulation has the advantage
that it not only eliminates the pressure variable, but also enforces the in-
compressibility automatically. Thus it makes computation very convenient.
Yet, the main difficulties in the numerical simulation of (1.1), (1.2) are the
boundary conditions:

1. The implementation of the two boundary conditions for the stream
function in (1.2).

2. When the vorticity is updated in time (in the momentum equation),
there is no definite boundary condition for vorticity (see the detail in [15]).

3. Determining the constantsCi at each boundary of “holes”Γi if the
computational domain is multi-connected.

The methodology to overcome the first two difficulties is to solve for the
stream function using Dirichlet boundary conditionψ = 0 onΓ , and then to
calculate the vorticity at the boundary by a local formula, which is derived
from the kinematic relation∆ψ = ω, combined with no-slip boundary
condition ∂ψ∂n = 0. In otherwords, the vorticity boundary condition enforces
no-slip boundary condition. Some relatedwork can be found in [15], [4], [5].
The issue related to the third difficulty will be discussed in the forthcoming
paper [19].

The subject of vorticity boundary condition has a long history, going
back to Thom’s formula in 1933. See [6], [14], [17], [11], [15], [4]. In this
paper, we concentrate on the case of local vorticity boundary condition, thus
avoid biharmonic equation and coupling between the kinematic equation
and the vorticity boundary condition. This approach dramatically simplifies
the computation. In the second order scheme, Thom’s formula, Wilkes’
formula, or some other local formulas can be selected and coupled with
centered difference scheme at the interior points, as discussed in detail in
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[4]. The advantage of Thom’s formula lies in its simplicity: only one interior
point of stream function is involved in it. Thus the stability of it is very
straightforward, as argued in Sect. 3. Yet, it was always very confusing why
formulas like Thom’s, which seems hopelessly first order by formal Taylor
expansion on the boundary, is actually second order accurate. This mystery
can be explained byStrang-type high order expansions. It was proven in [16]
in 1964 that for nonlinear hyperbolic or parabolic equations, theL2-stability
for the linearized problem and the smoothness of the exact solution implies
that the scheme has full accuracy inL∞ norm. The main idea in the proof
is the construction of high order expansions with respect to the scheme. In
his thesis [10], Meth proved the stability for the linearized problem. The
theoretical convergence analysis of the second order scheme with Thom’s
formula on the boundary was given by Hou andWetton in [8]. It relied upon
Strang-type high order expansions, which resulted in much more regularity
assumption of the exact solution than needed. A technical assumption of
one-sided physical, one-sided periodic boundary condition was imposed.

To emphasize the main point of this paper, we should mention that the
stability of Thom’s formula cannot be applied to long-stencil formulas au-
tomatically, as Wilkes’ formula and other local formulas. It was a doubtful
question for a long time: are these long-stencil formulas stable? In this pa-
per, we answer this question by performing a simple, clean analysis of the
second order scheme using Wilkes’ formula to determine the vorticity on
the boundary. In fact, direct calculations and standard local estimates cannot
work it out. We overcome this difficulty, which comes from the boundary
term, by adopting a new technique: recasting the form of the formula in
terms of the second derivative ofψ near the boundary, e.g.D2

xψ, D
2
yψ,

whoseL2 norms can be controlled by theL2 norm of(D2
x+D2

y)ψ, which is
justω. Such bound can be viewed as elliptic regularity in the discrete level.
In other words, the stability of Wilkes’ formula is guaranteed by controlling
local terms by global terms, then applying elliptic regularity to control the
global terms by the diffusion term. Another crucial point is that Wilkes’
formula gives second order accuracy for the vorticity on the boundary by
formal Taylor expansion. Thus, the consistency analysis is easier than that
of Thom’s formula; no Strang-type expansion is needed. This fact leads
to almost optimal regularity assumption for the exact solution in the main
theorem.

The method used in the analysis of the second order scheme and the
corresponding vorticity boundary formulas is quite general. It can be applied
to fourth order scheme in a similar way. For example, E and Liu proposed
their Essentially Compact fourth order scheme (EC4) in [5], and proved the
fourth order convergence of the method. We will give an analysis of their
proposed fourth order scheme, using a 1-D model for the Stokes equations.



546 C. Wang, J.-G. Liu

The boundary condition for vorticity, such as Briley’s formula in [2], will
also be analyzed in detail. The advantage of this 1-D model is its simplicity
of illustration, both for stability and consistency analysis. Since Briley’s
formula indicates only third order accuracy on the boundary, by formal
Taylor expansion, the consistency analysis of it is accomplished by making
expansions which are implemented by a third order polynomial. That is
a Strang-type analysis. In addition, we should note that the consistency
analysis of the fourth order scheme is much more tricky than that of the
secondordermethod, since the fourth order scheme involves an intermediate
variable for vorticity. The technique used in the stability analysis is similar to
that of Wilkes’ formula: applying elliptic regularity for the stream function
at the discrete level, and then controlling these local terms induced from
the boundary by global terms. This shows that our analysis gives a general
methodology to deal with long-stencil formulas. The convergence analysis
of the EC4 scheme with Briley’s formula is given in this paper, illustrating
why fourth order scheme combined with third order boundary formula still
works. The complete analysis of the corresponding scheme for full nonlinear
NSE in 2-D will appear in [18].

In Sect. 2 we describe the second order scheme for 2-D NSE with a
[0, 1] × [0, 1] box as the domain. Then, the detailed stability analysis of
Wilkes’ formula in the case of linear Stokes equations is given in Sect. 3.
In Sect. 4, we show the convergence of the second order scheme combined
with Wilkes’ formula. In Sect. 5, we analyze the EC4 scheme using the
1-D model for Stokes equations. Stability and convergence analysis of the
method using Briley’s formula is presented, bywhichwe hope to explain the
ideas in our consistency analysis clearly, including Strang-type expansion
and the construction of the approximate profiles. In Sect. 6, the numerical
accuracy checks for both the second and fourth order schemes are presented.

2. Description of the second order scheme

Navier-Stokes equations in 2-D with no-slip boundary condition imposed
on both sides are taken into consideration. For simplicity of presentation,
we take the computation domain asΩ = [0, 1] × [0, 1] with grid size
∆x = ∆y = h. The no-slip boundary conditions are imposed at{y = 0, 1}
and{x = 0, 1}, denoted byΓx andΓy, respectively. The associated numer-
ical grids are denoted by{xi = i/N, yj = j/N, i, j = 0, 1, · · · , N}. At
these grid points, NSE can be discretized by standard centered difference
formulas:
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(2.1)


∂tω + D̃x(uω) + D̃y(vω) = ν∆hω ,

∆hψ = ω , ψ |Γ= 0 ,

u = −D̃yψ , v = D̃xψ ,

whereD̃x, D̃y are the centered difference operators

(2.2) D̃xui,j =
ui+1,j − ui−1,j

2h
, D̃yui,j =

ui,j+1 − ui,j−1

2h
,

and∆h is the standard 5-point Laplacian∆h = D2
x + D2

y, where

D2
xui,j =

ui−1,j − 2ui,j + ui+1,j

h2 ,

D2
yui,j =

ui,j−1 − 2ui,j + ui,j+1

h2 .

(2.3)

As pointed out in the introduction, there are two boundary conditions for
ψ. The Dirichlet boundary conditionψ = 0 onΓ is implemented to solve
the stream function via the vorticity as in (2.1). Yet the normal boundary
condition, ∂ψ∂n = 0, cannot be enforced directly. The way to overcome this
difficulty is to convert it into the boundary condition for vorticity. As can be
seen by the fact thatψ |Γ= 0, we have the approximation for the vorticity
on the boundary (say onΓx, j = 0)

(2.4) ωi,0 = D2
yψi,0 =

1
h2 (ψi,1 + ψi,−1) =

2ψi,1
h2 − 2

h

ψi,1 − ψi,−1

2h
,

where (i,−1) refers to the “ghost” grid point outside of the computa-
tional domain. Taking the approximation identityψi,1−ψi,−1

2h = 0, which
implies thatψi−1 = ψi,1, as a second order normal boundary condition for
(∂yψ)i,0 = 0, we arrive atThom’s formula

(2.5) ωi,0 =
2ψi,1
h2 .

We should mention here that by formal Taylor expansion, Thom’s for-
mula is only first order accurate forω on the boundary. More sophisticated
consistency analysis can guarantee that the scheme is indeed second order
accurate, which was first proven in [8].

The vorticity on the boundary can also be determined by other approxi-
mations ofψi,−1. For example, using a third order one-sided approximation
for the normal boundary condition∂ψ∂n = 0

(2.6) (∂yψ)i,0 =
−ψi,−1 + 3ψi,1 − 1

2ψi,2

3h
= 0 ,
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which leads to

ψi,−1 = 3ψi,1 − 1
2
ψi,2 ,

and then plugging it back into the difference vorticity formulaωi,0 =
1
h2 (ψi,1 + ψi,−1) as in (2.4), we haveWilkes-Pearson’s formula

(2.7) ωi,0 =
1
h2

(
4ψi,1 − 1

2
ψi,2

)
.

See [13] for more details. This formula gives us second order accuracy for
the vorticity on the boundary.

2.1. Time discretization

The implementation of the time discretization of the scheme (2.1), along
with the vorticity boundary condition we mentioned above, either (2.5) or
(2.7), or other local formulas used in the earlier literature, was discussed
in detail in [4]. There are two main points: first, the vorticity profileω in
the interior points(xi, yj) 1 ≤ i, j ≤ N − 1 is updated by the momentum
equation, which is enough to solve for the stream function, since Dirichlet
boundary condition is imposed forψ; then, local boundary formulas for
vorticity, either (2.5) or (2.7), can be applied, since the stream function
values at the interior points have been obtained in the last step. Thus the
momentum equation can be updated again.

All the above procedure can be implemented very efficiently via ex-
plicit treatment of the diffusion term. That avoids the coupling between the
momentum equation and the kinematic equation, and therefore makes the
whole scheme very robust. This approach differs markedly from the global
boundary condition for vorticity described in earlier literature. To overcome
cell-Reynolds number constraint, high order Runge-Kutta time-stepping,
such as Rk3 or RK4, was suggested, as discussed in detail in [4]. We refer
to [9] for a finite element version of the above mentioned scheme to handle
the general domain.

3. Stability of Wilkes’ formula for Stokes equations

One of the main concerns in the computation of Navier-Stokes equations
is numerical stability. For simplicity, we only consider Stokes equations in
this section, where nonlinear terms are neglected. The second order scheme
applied to Stokes equations corresponding to (2.1) turns out to be

(3.1)

{
∂tω = ν∆hω ,

∆hψ = ω , ψ |Γ= 0 ,
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and either Thom’s formula (2.5) or Wilkes’ formula (2.7) can be chosen to
implement the system (3.1).

Now we introduce some notations.

Definition 3.1 The discreteL2-norm andL2-inner product are defined as

(3.2) ‖u‖ = 〈u , u〉1/2 , 〈u , v〉 =
∑

1≤i,j≤N−1

ui,j vi,j h
2 .

In the case thatu |Γ= 0, the notation‖∇hu‖ is introduced by

(3.3) ‖∇hu‖2 =
N−1∑
j=1

N−1∑
i=0

(D+
x ui,j)

2h2 +
N−1∑
i=1

N−1∑
j=0

(D+
y ui,j)

2h2 ,

whereD+
x u,D

+
y u are defined as

(3.4) D+
x ui,j =

ui+1,j − ui,j
h

, D+
y ui,j =

ui,j+1 − ui,j
h

.

Similar notations ofL2 norms and inner products, one-sided difference
norms in 1-D analogous to (3.2)-(3.4) can also be introduced. These 1-D
notations will be used in Sect. 5.

First, we look at the stability argument of Thom’s formula, which is
straightforward. For Stokes equations, the stability analysis can be described
as following: multiplying the momentum equation in (3.1) by−ψ, we have
−〈ψ, ∂tω〉 + 〈ψ,∆hω〉 = 0. The first term is exactly

(3.5) −〈ψ, ∂tω〉 = −〈ψ, ∂t∆hψ〉 =
1
2

d

dt
‖∇hψ‖2 ,

where in the second step we used the fact thatψ vanishes on the boundary.
The second term can be estimated via summing by parts

(3.6) 〈ψ,∆hω〉 = 〈∆hψ, ω〉 + B = ‖ω‖2 + B ,

where we used the fact that∆hψ = ω. The boundary termB is decomposed
into four parts:B = B1 + B2 + B3 + B4

(3.7)

B1 =
N−1∑
i=1

ψi,1ωi,0 ,B2 =
N−1∑
i=1

ψi,N−1ωi,N ,

B3 =
N−1∑
j=1

ψ1,jω0,j ,B4 =
N−1∑
j=1

ψN−1,jωN,j .

As can be seen, to ensure the stability of the scheme, an estimate to
control the boundary termB is required. For simplicity of presentation, we
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only considerB1 here. Thom’s boundary condition (2.5) is applied to recover
B1

(3.8) B1 =
N−1∑
i=1

ψi,1 · 2ψi,1
h2 =

N−1∑
i=1

2ψ2
i,1

h2 ≥ 0 .

The estimate for other three boundary terms can be obtained in the same
way. Then we haveB ≥ 0, whose substitution into (3.6), along with (3.5)
gives us the stability of the second order scheme (3.1) with Thom’s formula
(2.5). This observation was first made by Meth in [10]. It was also used in
[8] to prove the convergence of Thom’s formula.

It can be seen that Wilkes’ formula (2.7) involves more interior points
than Thom’s formula (2.5). A natural question arises: is Wilkes’ formula
stable?

We follow the sameprocedureasabove. The identities (3.5), (3.6) are still
valid. The only difference is the boundary termB, which is still represented
as in (3.7). Similarly, we only considerB1 here.Wilkes’ boundary condition
(2.7) is applied to recoverB1

(3.9) B1 =
N−1∑
i=1

ψi,1
h2

(
4ψi,1 − 1

2
ψi,2

)
.

However, a direct calculation cannot controlB1, since two interior points
ψi,1 andψi,2 of stream function are involved inWilkes’ formula. Therefore,
the straightforward argument (3.8) does not work here. To overcome this
difficulty, we can apply the property thatψ vanishes on the boundary and
then rewrite the term4ψi,1 − 1

2ψi,2 as

(3.10) 4ψi,1 − 1
2
ψi,2 = 3ψi,1 − 1

2
h2D2

yψi,1 .

This transformation is to control local terms by global terms, the purpose
of which can be seen later. NowB1 can be estimated via applying Cauchy
inequality forψi,1 ·D2

yψi,1

(3.11)

B1 =
N−1∑
i=1

ψi,1
h2

(
3ψi,1 − 1

2
h2D2

yψi,1

)

≥
N−1∑
i=1

(
3ψ2

i,1

h2 − 1
2h2

12

22ψ
2
i,1 − 1

2
|D2

yψi,1|2h2

)

≥ −
N−1∑
i=1

1
2
|D2

yψi,1|2h2 ,
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where we used the fact that3 − 1
2 · 12

22 ≥ 0 in the last step. Repeating the
same argument forB2, B3 andB4, we arrive at

(3.12)

B ≥ −1
2

N−1∑
i=1

(|D2
yψi,1|2 + |D2

yψi,N−1|2)h2

−1
2

N−1∑
j=1

(|D2
xψ1,j |2 + |D2

xψN−1,j |2)h2

≥ −1
2
‖D2

xψ‖2 − 1
2
‖D2

yψ‖2 .

As can be seen, the transformation (3.10) helps us to bound the boundary
term, which is a local term, by global terms‖D2

xψ‖2 and‖D2
yψ‖2. Our next

aim is to control the terms‖D2
xψ‖2 and‖D2

yψ‖2 by the diffusion term‖ω‖2.
The following lemma is necessary.

Lemma 3.2 For anyψ such thatψ |Γ= 0, we have

(3.13) ‖D2
xψ‖2 + ‖D2

yψ‖2 ≤ ‖(D2
x + D2

y)ψ‖2 = ‖ω‖2 .

Proof. Sinceψi,j is zero onΓ , we can take Sine transforms for{ψi,j} in
bothi-direction andj-direction, i.e.,

(3.14) ψi,j =
∑
k,�

ψ̂k,� sin(kπxi) sin(�πyj) .

Then Parserval equality gives

(3.15)
∑
i,j

(ψi,j)2 =
∑
k,�

∣∣∣ψ̂k,�∣∣∣2 .

If we introduce

(3.16) fk = − 4
h2 sin2

(
kπh

2

)
, g� = − 4

h2 sin2
(
�πh

2

)
,

we obtain the Fourier expansion ofD2
xψ andD2

yψ

(3.17)

D2
xψi,j =

∑
k,l

fk ψ̂k,l sin(kπxi) sin(�πyj) ,

D2
yψi,j =

∑
k,l

g� ψ̂k,l sin(kπxi) sin(�πyj) ,

which implies that

(3.18)
∑
i,j

|ωi,j |2 =
∑
i,j

|∆hψi,j |2 =
∑
k,�

|g� + fk|2 |ψ̂k,�|2 .
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Sincefk ≤ 0, g� ≤ 0, which indicates that(fk + g�)2 ≥ f2
k + g2

� , we arrive
at

(3.20)
∑
i,j

|ωi,j |2 ≥
∑
k,�

(f2
k + g2

� )|ψ̂k,�|2 =
∑
i,j

(|D2
xψi,j |2 + |D2

yψi,j |2) ,

which shows exactly (3.13). Lemma 3.2 is proven.��
The combination of Lemma 3.2 and the inequality (3.12) gives us that

B ≥ −1
2‖ω‖2. Plugging back into (3.6), along with (3.5), we have the sta-

bility estimate of the second order scheme withWilkes’ boundary condition

(3.20)
1
2

d

dt
‖∇hψ‖2 +

1
2
ν‖ω‖2 ≤ 0 .

Remark 3.3The purpose of Lemma 3.2 is to controlL2 norms ofD2
xψ and

D2
yψ by the discrete Laplacian ofψ, which enables us to control local terms

by the global diffusion term. In fact, it is a discrete version of the elliptic
regularity for (discrete) Poisson equation. This type of estimate was first
used in [5].

Remark 3.4Let’s review the stability analysis for Wilkes’ formula. The
main difficulty comes from the boundary term. Our trick is to rewrite it via
theboundary condition for vorticity, therefore to convert it into anexpression
in terms ofψ near the boundary. Next, we apply Cauchy inequality to bound
it by ‖D2

xψ‖2 and‖D2
yψ‖2. Then we can apply an estimate like (3.13), to

control ‖D2
xψ‖2 and‖D2

yψ‖2 by ‖ω‖2, which leads to the bound of the
boundary term by the diffusion term.

4. Analysis of second order scheme for 2-D NSE

We state our main theorem in this paper.

Theorem 4.1 Letue ∈ L∞([0, T ];C5,α(Ω)), ψe, ωe be the exact solution
of the Navier-Stokes equations (1.1), (1.2) anduh, ωh be the approximate
solution of the secondorder scheme (2.1)withPearson-Wilkes formula (2.7),
then we have

(4.1)

‖ue − uh‖L∞([0,T ],L2) +
√
ν‖ωe − ωh‖L2([0,T ],L2)

≤ Ch2‖ue‖L∞([0,T ],C5,α)
(
1 + ‖ue‖L∞([0,T ],C3)

)
· exp

{
CT

ν
(1 + ‖ue‖2

L∞([0,T ],C1))
}

.
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In the convergence proof, we follow the standard procedure of consis-
tency, stability anderroranalysis.Difficulty in theconsistencyanalysisarises
from the fact that centered difference is used at the interior points, while a
one-sided formula is used for the vorticity on the boundary. This difficulty
is overcome by our construction of an approximate vorticity through finite
differences of the exact stream function. All of the truncation errors are then
lumped into the momentum equation. Since Wilkes’ formula is second or-
der accurate on the boundary, Strang-type expansion can be avoided. This
results in an easy consistency analysis near the boundary, which shows that
the error function for the vorticity on the boundary is of orderO(h2). The
stability of Wilkes’ formula has already been established in Sect. 3, thus the
validity of the error analysis is guaranteed.

4.1. Consistency analysis

LetΨi,j = ψe(xi, yj) for −1 ≤ i, j ≤ N + 1, (here we extendψe smoothly
to [−δ, 1 + δ]2), and constructU , V ,Ω through the finite difference ofΨ to
maintain the consistency, especially near the boundary,

Ui,j = −D̃yΨ , Vi,j = D̃xΨ , Ωi,j = ∆hΨ ,

for 0 ≤ i, j ≤ N .(4.2)

Then direct Taylor expansion forψe up to the boundary gives us that at
grid points(xi, yj), 0 ≤ i, j ≤ N ,

(4.3)

U = ue − h2

6
∂3
yψe + O(h3)‖ψe‖C4 ,

V = ve +
h2

6
∂3
xψe + O(h3)‖ψe‖C4 ,

Ω = ωe +
h2

12
(∂4
x + ∂4

y)ψe + O(h4)‖ψe‖C6 .

It is obvious that at these grid points, (including boundary points),

(4.4) |U − ue| + |V − ve| + |Ω − ωe| ≤ Ch2‖ψe(·, t)‖C4 .

Now we look at the local truncation errors. We will show that the con-
structedU ,V ,Ω satisfy the numerical scheme (2.1), (2.7) up toO(h2) error.
First we look at the diffusion term. The estimate (4.3) indicates

(4.5) ∆hΩ = ∆hωe + O(h2)‖ψe‖C6 ,
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which along with Taylor expansion ofωe that

(4.6) ∆hωe = ∆ωe + O(h2)‖ωe‖C4 = ∆ωe + O(h2)‖ψe‖C6 ,

leads to the estimate of the diffusion term: at grid points(xi, yj), 1 ≤ i, j ≤
N − 1,

(4.7) ∆hΩ = ∆ωe + O(h2)‖ψe(·, t)‖C6 .

The nonlinear convection terms can be treated in a similar fashion. It is
implied by (4.3) that, at grid points(xi, yj), 0 ≤ i, j ≤ N ,

UΩ = ueωe − h2

6
ωe∂

3
yψe +

h2

12
ue(∂4

x + ∂4
y)ψe

+O(h3)‖ψe‖C6‖ψe‖C4 ,(4.8)

which leads to the estimate at interior grid points(xi, yj), 1 ≤ i, j ≤ N −1,

D̃x(UΩ) = D̃x(ueωe) − h2

6
D̃x(ωe∂3

yψe) +
h2

12
D̃x

(
ue(∂4

x + ∂4
y)ψe

)
+O(h2)‖ψe‖C4‖ψe‖C6

= D̃x(ueωe) + O(h2)(‖ωe∂3
yψe‖C1 + ‖ue(∂4

x + ∂4
y)ψe‖C1

+‖ψe‖C6‖ψe‖C4)

= D̃x(ueωe) + O(h2)‖ψe‖C4‖ψe‖C6 .(4.9)

Moreover, Taylor expansion forueωe gives

(4.10)
D̃x(ueωe) = ∂x(ueωe) + O(h2)‖ueωe‖C3

= ∂x(ueωe) + O(h2)‖ψe‖C5‖ψe‖C3 .

Then we arrive at

(4.11) D̃x(UΩ) = ∂x(ueωe) + O(h2)‖ψe‖C4‖ψe‖C6 .

The similar result can be obtained for̃Dy(V Ω):

(4.12) D̃y(V Ω) = ∂y(veωe) + O(h2)‖ψe‖C4‖ψe‖C6 .

Next, we deal with the time marching term∂tΩ. The strategy here is to
control the difference between∂tΩ and∂tωe byO(h2) of ‖∂tψe‖C4 :

∂tΩ − ∂tωe = ∆h∂tψe − ∆∂tψe = (∆h − ∆)∂tψe
= O(h2)‖∂tψe‖C4 .(4.13)
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Yet, to get an estimate of‖∂tψe‖C4 , we have to apply Schauder estimate to
the following Poisson equation

(4.14)

{
∆(∂tψe) = ∂tωe , in Ω ,

∂tψe = 0 , onΓ ,

which gives us that forα > 0,

‖∂tψe‖C4,α ≤ C‖∂tωe‖C2,α

≤ C(‖ψe‖C6,α + ‖ψe‖C5,α‖ψe‖C3,α) .(4.15)

In the second step, we applied the exact vorticity equation that∂tωe + ue ·
∇ωe = ν∆ωe. The combination of (4.13) and (4.15) gives us

(4.16) ∂tΩ − ∂tωe = O(h2)(‖ψe‖C6,α + ‖ψe‖C5,α‖ψe‖C3,α) .

Combining (4.7), (4.11), (4.12) and (4.16), and applying the original
PDE of the exact solution that∂tωe+∇·(ueωe) = ν∆ωe, we conclude that

∂tΩ + D̃x(UΩ) + D̃y(V Ω)
= ∆hΩ + O(h2)‖ψe‖C6,α(1 + ‖ψe‖C4) ,(4.17)

which verifies our claim.
Finally, we look at the constructedΩ on the boundary. Our aim is to

show thatΩ satisfies Wilkes’ formula applied toΨ up to anO(h2) error.
The verification of it is straightforward. We only considerΓx, j = 0 here.
The other three boundaries can be dealt with in the same way. One-sided
Taylor expansion forΨ in they-th direction near the boundary shows that

(4.18)

1
h2

(
4Ψi,1 − 1

2
Ψi,2

)
= ∂2

yψe(xi, 0) + O(h2)‖ψe‖C4

= ωe(xi, 0) + O(h2)‖ψe‖C4 .

On the other hand, (4.4) gives us that the difference betweenΩi,0 and
ωe(xi, 0) onΓx is also of orderO(h2)‖ψe‖C4 , then we arrive at

(4.19) Ωi,0 =
1
h2

(
4Ψi,1 − 1

2
Ψi,2

)
+ O(h2)‖ψe‖C4 .

Thus the consistency analysis is completed.
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4.2. Error estimate

For0 ≤ i, j ≤ N , we define

(4.20)
ψ̃i,j = ψi,j − Ψi,j , ω̃i,j = ωi,j − Ωi,j ,

ũi,j = ui,j − Ui,j , ṽi,j = vi,j − Vi,j .

Then the above consistency analysis gives the following system for the error
functions

(4.21)


∂tω̃ + D̃x(ũΩ + uω̃) + D̃y(ṽΩ + vω̃) = ν∆hω̃ + f ,

∆hψ̃ = ω̃ , ψ̃ |Γ= 0 ,

ũ = −D̃yψ̃ , ṽ = D̃xψ̃ , ũ |Γy= 0 , ṽ |Γx= 0 ,

where |f | ≤ Ch2‖ue‖C5,α(1 + ‖ue‖C3). On the boundary, (say atΓx,
j = 0) we have

(4.22) ω̃i,0 =
1
h2 (4ψ̃i,1 − 1

2
ψ̃i,2) + h2ei ,

where|ei| ≤ C‖ue‖C3 . The identity (4.22) comes from Wilkes’ formula
(2.7) and our estimate (4.19). In other words, the error function of vorticity
and the error function of stream function satisfy Wilkes’ formula up to an
O(h2) error.

As we can see, the system (4.21), (4.22) is very similar to the second
order scheme (2.1) along with theWilkes’ formula (2.7) except for the error
termsf andh2e. In other words, as we showed in the consistency part, the
constructed solutions satisfy the numerical scheme except for some local
truncation errors. We have already shown the stability of the scheme in
Sect. 3, so we can apply the same procedure to estimate the error functions.
The Cauchy inequality is used to deal with the error terms corresponding to
f ande.

Multiplying the vorticity dynamic error equation in (4.21) by−ψ̃, we
have

−〈ψ̃, ∂tω̃〉 + 〈ψ̃,∆hω̃〉
= 〈ψ̃, D̃x(ũΩ + uω̃)〉 + 〈ψ̃, D̃y(ṽΩ + vω̃)〉 − 〈ψ̃,f〉 .(4.23)

The first term, which corresponds to time evolution term, can be dealt with
in the same way as in (3.5) sincẽψ also vanishes on the boundary, i.e.

(4.24) −〈ψ̃, ∂tω̃〉 = −〈ψ̃, ∂t∆hψ̃〉 =
1
2

d

dt
‖∇hψ̃‖2 .
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The term−〈ψ̃,f〉 can be controlled by standard Cauchy inequality. Then
the rest of our work will be concentrated on the estimates of the diffusion
term and the convection terms. We will rely upon Lemma 4.2 and Lemma
4.3 as below.

Lemma 4.2 For sufficiently smallh, we have

(4.25) 〈ψ̃,∆hω̃〉 ≥ 1
2
‖ω̃‖2 − h4 .

Proof. Our proof of (4.25) follows the procedure of stability analysis in
Sect. 3. Summing by parts and using the fact thatψ̃ |Γ= 0 gives us

〈ψ̃,∆hω̃〉 = 〈ψ̃, (D2
x + D2

y)ω̃〉 = 〈D2
xψ̃, ω̃〉 + 〈D2

yψ̃, ω̃〉 + B
= ‖ω̃‖2 + B ,(4.26)

where the boundary termB can also be decomposed intoB = B1 + B2 +
B3 + B4 as in (3.7)

(4.27)

B1 =
N−1∑
i=1

ψ̃i,1ω̃i,0 ,B2 =
N−1∑
i=1

ψ̃i,N−1ω̃i,N ,

B3 =
N−1∑
j=1

ψ̃1,jω̃0,j ,B4 =
N−1∑
j=1

ψ̃N−1,jω̃N,j .

The estimate ofB1 is also similar to that in Sect. 3. The only difference here
is thatω̃i,0, the error of vorticity on the boundary as in (4.22), includes one
more error termh2ei, whoseL2 product withψ̃ can be estimated by Cauchy
inequality. By (4.22), we can expressB1 as

B1 =
N−1∑
i=1

ψ̃i,1ω̃i,0 =
1
h2

N−1∑
i=1

ψ̃i,1(4ψ̃i,1 − 1
2
ψ̃i,2)

+h2
N−1∑
i=1

ψ̃i,1ei ≡ I1 + I2 .(4.28)

Aswementioned justnow,I2 canbecontrolledbyCauchy inequalitydirectly

(4.29)

I2 =
∑
i

h2ψ̃i,1ei ≥ −1
2

N−1∑
i=1

ψ̃2
i,1

h2 − 1
2

N−1∑
i=1

h6e2
i

≥ −1
2

N−1∑
i=1

ψ̃2
i,1

h2 − Ch5‖ue‖2
C3 ,
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where in the last step we applied our estimate that|ei| ≤ C‖ue‖C3and the
fact thath = 1

N . The estimate ofI1 follows our stability analysis in Sect. 3.
First, we rewrite the term appearing in the parentheses as we did in (3.10):

(4.30) 4ψ̃i,1 − 1
2
ψ̃i,2 = 3ψ̃i,1 − 1

2
h2(D2

yψ̃)i,1 ,

which is still valid sinceψ̃ vanishes on the boundary. The purpose of this
transformation is still to control local terms by global terms as can be seen
later. Next, plugging (4.30) back intoI1

(4.31)

I1 =
1
h2

N−1∑
i=1

ψ̃i,1

(
3ψ̃i,1 − 1

2
h2(D2

yψ̃)i,1

)

=
3
h2

N−1∑
i=1

ψ̃2
i,1 − 1

2

N−1∑
i=1

ψ̃i,1(D2
yψ̃)i,1 ,

and applying Cauchy inequality to the second termψ̃i,1(D2
yψ̃)i,1, we arrive

at

(4.32)

I1 ≥ 3
h2

N−1∑
i=1

ψ̃2
i,1 − 1

8h2

N−1∑
i=1

ψ̃2
i,1 − 1

2

N−1∑
i=1

∣∣∣∣(D2
yψ̃)i,1

∣∣∣∣2h2

≥ 2
h2

N−1∑
i=1

ψ̃2
i,1 − 1

2

N−1∑
i=1

∣∣∣∣D2
yψ̃i,1

∣∣∣∣2h2 .

Finally, the combination of (4.29) and (4.32) gives that for sufficiently small
h,

(4.33) B1 ≥ 1
h2

N−1∑
i=1

ψ̃2
i,1 − 1

2

N−1∑
i=1

∣∣∣∣D2
yψ̃i,1

∣∣∣∣2h2 − 1
4
h4 .

The treatment of the other three boundary terms is essentially the same.Now
we recoverB by global terms‖D2

xψ̃‖2 and‖D2
yψ̃‖2

(4.34) B ≥ −1
2
‖D2

yψ̃‖2 − 1
2
‖D2

xψ̃‖2 − h4 .

It can be argued that, sincẽψ |Γ= 0, Lemma 3.2 is still valid for̃ψ andω̃,
i.e.

(4.35) ‖D2
xψ̃‖2 + ‖D2

yψ̃‖2 ≤ ‖(D2
x + D2

y)ψ̃‖2 = ‖ω̃‖2 .

Substituting (4.35) into (4.34), plugging back into (4.26), we obtain (4.25)
finally. Lemma 4.2 is proven.��
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Lemma 4.3 Assume a-prior that the error function for the velocity field
satisfy

(4.36) ‖ũ‖L∞ ≤ 1 ,

then we have

(4.37)
〈ψ̃, D̃x(ũΩ + uω̃)〉 ≤ 8C2

1
ν

‖∇hψ̃‖2 +
ν

6
‖ω̃‖2 ,

〈ψ̃, D̃y(ṽΩ + vω̃)〉 ≤ 8C2
1
ν ‖∇hψ̃‖2 + ν

6‖ω̃‖2 ,

whereC1 = 1 + ‖ue‖C1 .

Proof. We will only prove the first one of (4.37). The proof of the second
one is essentially the same. By the a-prior bound (4.36) and our construction
of U andΩ, we have

(4.38)

‖u‖L∞ ≤ ‖U‖L∞ + ‖ũ‖L∞

≤ ‖∂yψe‖C1 + 1 ≤ ‖ue‖C0 + 1 ≤ C1

‖Ω‖L∞ ≤ ‖∂2
xψe‖C0 + ‖∂2

yψe‖C0 ≤ ‖ue‖C1 ≤ C1 ,

whereC1 = ‖ue‖C1 +1. Summing by parts and applying (4.36), we obtain

〈ψ̃, D̃x(ũΩ + uω̃)〉 = −〈D̃xψ̃ , ũΩ + uω̃〉 ≤ C1‖∇hψ̃‖(‖ũ‖ + ‖ω̃‖)

≤ 8C2
1

ν
‖∇hψ̃‖2 +

ν

6
‖ω̃‖2 .(4.39)

We used the fact that the norms‖D̃xψ̃‖, ‖D̃yψ̃‖ are bounded by‖∇hψ̃‖,
i.e.

(4.40) ‖ũ‖ = ‖D̃yψ̃‖ ≤ ‖∇hψ̃‖ , ‖ṽ‖ = ‖D̃xψ̃‖ ≤ ‖∇hψ̃‖ ,

sinceψ̃ vanishes on the boundary. Lemma 4.3 is proven.��
Now we go back to the convergence analysis. First, we assume that (4.36)
holds. Plugging (4.37), (4.25) along with (4.24) back into (4.23), we obtain

(4.41)
1
2

d

dt
‖∇hψ̃‖2 ≤ C‖f‖2 +

16C2
1

ν
‖∇hψ̃‖2 − ν

6
‖ω̃‖2 + h4 .

In (4.41), we absorbed the termC‖ψ̃‖2 generated by Cauchy inequality:
|〈ψ̃,f〉| ≤ C‖ψ̃‖2 +C‖f‖2 into the coefficient of‖∇hψ̃‖2, which is valid
since we can apply Poincare inequality forψ̃ that

(4.42) ‖ψ̃‖2 ≤ C‖∇hψ̃‖2 ,
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by the fact that̃ψ vanishes on the boundary. Applying Gronwall inequality
to (4.42), we have

(4.43)

‖∇hψ̃‖2 +
ν

6

∫ t

0
‖ω̃‖2 dt

≤ C

(
exp

16C2
1 t

ν

)∫ t

0
(‖f(·, s)‖2 + h4) ds + CTh4

≤ Ch4exp

{
16C2

1 t

ν

}(‖ue‖2
C5,α(1 + ‖ue‖C3)2 + T

)
.

Thus, we have proven

‖u(·, t) − u(t)‖L2 +
√
ν

(∫ T

0
‖ω̃‖2dt

) 1
2

≤ Ch2
(

‖ue‖C5,α(1 + ‖ue‖C3)exp
{
CT

ν
(1 + ‖ue‖C1)2

}
+ T

)
,(4.44)

which implies (4.1). Using the inverse inequality, we have

(4.45) ‖ũ‖L∞ ≤ Ch .

Now we can resort to a standard trick which asserts that (4.36) will never
be violated ifh is small enough. Theorem 4.1 is proven.

5. Analysis of EC4 scheme in a 1-D Stokes model

The methodology carried out in the second order scheme is quite general
and can be applied to fourth order scheme in a similar fashion. To explain the
idea of the fourth order method more clearly, in this section we consider a
simple1-Dmodel forStokesequations,wherenonlinear termsareneglected.
The purpose of the introduction of this model is to catch main features and
difficulties both in computation and analysis. This 1-D model reads

(5.1)


∂tω = ν(∂2

x − k2)ω ,

(∂2
x − k2)ψ = ω ,

ψ = ∂xψ = 0 , atx = −1, 1 ,

whose solution is thek-th mode solution of the unsteady Stokes equations
in the domain[−1, 1] × [0, 2π]

(5.2)

{
∂tω = ν∆ω ,

∆ψ = ω ,
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where the no-flow, no-slip boundary condition,ψ = ∂xψ = 0 , is imposed at
x = −1, 1 , and periodic boundary condition is imposed in they direction.
An exact solution of (5.1) is

(5.3) ωe(x, t) = cos(µx)exp
{−ν(k2 + µ2)t

}
,

whereµ satisfiesµtanµ + ktanhk = 0. See [12] and [4] for details. For
simplicity we takek = 1.

5.1. Description of fourth order scheme

Essentially compact fourth order scheme (EC4) for 2-DNavier-Stokes equa-
tions was proposed by E and Liu in [5]. We can use the similar idea to deal
with the 1-D model (5.1). As can be seen, the operator∂2

x − 1 can be ap-
proximated by compact difference operator

(5.4) ∂2
x − 1 =

(1 − h2

12 )D2
x − 1

1 + h2

12D
2
x

+ O(h4) .

Applying (5.4) to both the diffusion term in vorticity equation and the kine-
matic relation between stream function and vorticity in (5.1), and multiply-
ing both equations by1 + h2

12D
2
x, we obtain the following system

(5.5)


∂tω = ν

(
(1 − h2

12
)D2

x − 1
)

ω ,(
(1 − h2

12
)D2

x − 1
)

ψ = ω , ψ = 0 , onx = −1, 1 ,

where the auxiliary termω was introduced as

(5.6) ω = (1 +
h2

12
D2
x)ω .

As pointed out in Sect. 2, there are two boundary conditions forψ. The
situation here is similar. The Dirichlet boundary conditionψ = 0 on x =
−1, 1 can be implemented to solve the stream function via (5.5). Yet the
normal boundary condition∂xψ = 0, which cannot be enforced directly,
will be converted into the boundary condition for vorticity. For example,
Briley’s formula

(5.7) ω0 =
1
h2 (6ψ1 − 3

2
ψ2 +

2
9
ψ3) − 11

3h

(
∂ψ

∂x

)
0
,

was used in the EC4 scheme (see [2], [5]). It should be noted here that
Briley’s formula is only third order accurate for vorticity on the boundary
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by formal local Taylor expansion. Later we will show that it still preserves
fourth order accuracy. This fact was first proven in [5].

The system (5.5), (5.6), along with Briley’s formula (5.7), can be imple-
mented very efficiently via an explicit time stepping procedure introduced
by E and Liu in [5].

5.2. Stability analysis of the scheme and vorticity boundary condition

As can be seen, Briley’s formula (5.7) is also a long-stencil formula. One of
the main concerns is its stability. The technique used in Sect. 3 to deal with
Wilkes’ formula can be used here in a similar, yet more tricky way.

The first step here is to multiply (5.5) by−(1 + h2

12D
2
x)ψ

(5.8)

−〈(1 +
h2

12
D2
x)ψ, (1 +

h2

12
D2
x)∂tω〉

+
〈

(1 +
h2

12
D2
x)ψ ,

(
(1 − h2

12
)D2

x − 1
)

ω

〉
= 0 .

The first term, which corresponds to the time marching term, can be esti-
mated by the discrete kinematic relation betweenψ andω as in (5.5)

(5.9)

−〈(1 +
h2

12
D2
x)ψ, (1 +

h2

12
D2
x)∂tω〉

= −
〈

(1 + h2

12D
2
x)ψ , ∂t

(
(1 − h2

12 )D2
x − 1

)
ψ

〉
= −〈(1 +

h2

12
D2
x)ψ , ∂t(1 − h2

12
)D2

xψ〉 − 〈(1 +
h2

12
D2
x)ψ , −∂tψ〉

=
1
2
(1 − h2

12
)
d

dt
‖∇hψ‖2 − h2

24
(1 − h2

12
)
d

dt
‖D2

xψ‖2 +
1
2

d

dt
‖ψ‖2

−h2

24
d

dt
‖∇hψ‖2

=
1
2

d

dt

(
(1 − h2

6
)‖∇hψ‖2 + ‖ψ‖2 − h2

12
(1 − h2

12
)‖D2

xψ‖2
)

,

and the second term, which corresponds to the diffusion term, can be esti-
mated via summing by parts〈

(1 +
h2

12
D2
x)ψ ,

(
(1 − h2

12
)D2

x − 1
)

ω

〉
= 〈ψ̃ , (1 − h2

12
)D2

xω̃〉 + 〈ψ , −ω〉 + 〈h
2

12
D2
xψ , (1 − h2

12
)D2

xω〉

+〈h
2

12
D2
xψ , −ω〉
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= 〈(1 − h2

12
)D2

xψ , ω〉 +
1
h

(1 − h2

12
)(ψ1ω0 + ψN−1ωN )

+〈−ψ , ω〉 + 〈(1 − h2

12
)D2

xψ ,
h2

12
D2
xω〉 + 〈−ψ ,

h2

12
D2
xω〉

+
1
h

·h
2

12
(ψ1ω0 + ψN−1ωN )

=
〈(

(1 − h2

12
)D2

x − 1
)

ψ , (1 +
h2

12
D2
x)ω
〉

+
1
h

(ψ1ω0 + ψN−1ωN )

= ‖(1 +
h2

12
D2
x)ω‖2 +

1
h

(ψ1ω0 + ψN−1ωN ) .(5.10)

As can be seen in (5.10), the boundary term has to be controlled to ensure
stability. Herewedecompose the boundary term into two partsB = B1+B2,
whereB1 = 1

hψ1ω0 andB2 = 1
hψN−1ωN . For simplicity of presentation,

we only considerB1 here.B2 can be treated in the same way.
Briley’s formula (5.7) can be used to updateB1

(5.11) B1 =
ψ1

h3

(
6ψ1 − 3

2
ψ2 +

2
9
ψ3

)
.

Still, a straightforward calculation cannot guarantee a bound forB1. The
difficulty comes from the fact that three interior points of stream function
are involved in Briley’s formula. A similar technique used in Sect. 3, where
we dealt with second order scheme with Wilkes’ formula, can be applied:
the term(6ψ1 − 3

2ψ2 + 2
9ψ3) can be rewritten as

(5.12) 6ψ1 − 3
2
ψ2 +

2
9
ψ3 =

11
3
ψ1 − 19

18
h2D2

xψ1 +
2
9
h2D2

xψ2 ,

which is valid sinceψ0 = ψN = 0. The purpose of this transformation
is similar to that of (3.1): to control the local terms in (5.11) by global
quantities. Now (5.12), along with Cauchy inequalities applied toψ1·D2

xψ1
andψ2 ·D2

xψ2, gives the estimate ofB1

B1 =
ψ1

h3

(
11
3
ψ1 − 19

18
h2D2

xψ1 +
2
9
h2D2

xψ2

)
≥ 11ψ2

1
3h3 − 1

2h3
192

182ψ
2
1 − 1

2
|D2

xψ1|2h − 1
2h3

22

92ψ
2
1 − 1

2
|D2

xψ2|2h

≥ 2ψ2
1

h3 − 1
2
|D2

xψ1|2h − 1
2
|D2

xψ2|2h ,(5.13)
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where in the last step we used the fact that11
3 − 1

2(192

182 + 22

92 ) ≥ 2. The term
B2 can be estimated in a similar fashion. Now we arrive at

(5.14) B ≥ −1
2

∑
i=1,2N−1,N−2

h|D2
xψi|2 ≥ −1

2
‖D2

xψ‖2 .

As mentioned earlier, the transformation (5.12) and the application of
Cauchy inequalities give us a bound of the boundary term, which is a local
term, by a global term‖D2

xψ‖2. Next, we need to control‖D2
xψ‖2 by the

diffusion term‖ω‖2, using the following lemma, which is analogous to
Lemma 3.2 in Sect. 3.

Lemma 5.1 For ψ0 = ψN = 0, we have
(5.15)

‖(1 − h2

12
)D2

xψ‖ ≤ ‖
(

(1 − h2

12
)D2

x − 1
)

ψ‖ = ‖(1 +
h2

12
D2
x)ω‖ = ‖ω‖ .

Proof. The boundary conditionψ0 = ψN = 0 indicates that we can Sine
transformψ,

(5.16) ψi =
∑
k

ψ̂k sin(kπxi) .

The Parserval equality gives that

(5.17)
∑
i

(ψi)2 =
∑
k

(ψ̂k)2 .

We let fk = − 4
h2 sin

2(kπh2 ), then we haveD2
xψi =

∑
k fkψ̂k sin(kπxi),

which in turn shows the Parserval equality for(1 − h2

12 )D2
xψ and ((1 −

h2

12 )D2
x − 1)ψ

(5.18)

∥∥∥∥(1 − h2

12

)
D2
xψ

∥∥∥∥2

= h
∑
k

(
1 − h2

12

)2

f2
k ψ̂

2
k ,∥∥∥∥((1 − h2

12
)D2

x − 1
)

ψ

∥∥∥∥2

= h
∑
k

(
(1 − h2

12
)fk − 1

)2

ψ̂2
k .

On the other hand,fk ≤ 0 implies that(1 − h2

12 )2f2
k ≤ ((1 − h2

12 )fk − 1)2.
Then we obtain (5.15). Lemma 5.1 is proven.��
Plugging (5.15) back into (5.14), we obtain

(5.19) B ≥ − 1
2(1 − h2

12 )
‖(1 +

h2

12
D2
x)ω‖2 ≥ −2

3
‖ω‖2 .
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Substituting (5.19) into (5.10), along with (5.9), and denoting “energy”E
as

(5.20) E =
(

1 − h2

6

)
‖∇hψ‖2 + ‖ψ‖2 − h2

12

(
1 − h2

12

)
‖D2

xψ‖2 ,

we finally arrive at

(5.21)
1
2
dE

dt
+

1
2
ν‖ω‖2 ≤ 0 .

This completes the stability analysis of the fourth order scheme (5.5), (5.6)
with Briley’s formula (5.7).

5.3. Convergence analysis of the fourth order scheme

In this section, we will give a convergence analysis of the fourth order
method. The stability of it has been been established in5.2. The consistency
analysis of it turns out to be quite technical, by which we hope to explain
the methodology of Strang-type expansion. Direct truncation error analysis
gives us fourth order accuracy for the momentum equation, but only third
order accuracy for the vorticity on the boundary, if Briley’s formula is used.
Below, amore careful truncation error analysis will be carried out by includ-
ingahigherorder term toconstruct approximatestream function. Inaddition,
the construction of the approximate vorticity needs some technique: an ap-
proximate intermediate vorticity variable is constructed via finite difference
of the approximate stream function and the approximate vorticity field is
constructed by solving a linear system through the approximate intermedi-
ate vorticity variable. The eigenvalues corresponding to the linear systemare
controlled. Moreover, anO(h4) correction term to the exact vorticity on the
boundary is added when its boundary condition is set. The purpose of that
correction term is to maintain higher order consistency for the approximate
vorticity. This makes the computation of its finite differences convenient.

5.3.1. Consistency analysis.Denoteψe, ωe as the exact solutions, extend
ψe smoothly to[−1−δ, 1+δ], andconstruct theapproximate stream function
Ψ = ψe + h4ψ̂ with

(5.22) ψ̂(x, t) =
1
4
α(t)(x + 1)(1 − x)2 − 1

4
β(t)(x + 1)2(1 − x) ,

whereα(t) = −30
11∂

5
xψe(−1), β(t) = −30

11∂
5
xψe(1). The choices ofα(t)

andβ(t)will guaranteeΨ to satisfy higher order truncation errors in Briley’s
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formula, which can be seen later. It is obvious that (say at the left boundary
x0 = −1)

(5.23) ψ̂(−1) = 0 , ∂xψ̂(−1) = −30
11

∂5
xψe(−1) .

To estimateψ̂, we can see that∂4
xψ̂ = 0, which implies that

(5.24) ‖ψ̂‖Cm = ‖ψ̂‖C3 ≤ C‖ψe‖C5 , if m ≥ 3 .

Moreover, our definition ofα(t) andβ(t) implies that|∂tα(t)|, |∂tβ(t)| ≤
C‖∂t∂5

xψe‖C0 . To have a good estimate of‖∂t∂5
xψe‖C0 = ‖∂5

x∂tψe‖C0 , we
see that∂tψe satisfies

(5.25)

{
(∂2
x − 1)∂tψe = ∂tωe , in [−1, 1] ,

∂tψe = 0 atx = −1, 1 ,

which implies that‖∂tψe‖C5 ≤ C‖∂tωe‖C3 . On the other hand,‖∂tωe‖C3

can be controlled by the order of‖ωe‖C5 from the original vorticity equation
that∂tωe = (∂2

x − 1)ωe. The combination of the above arguments indicates
that

(5.26)
|∂tα(t)|, |∂tβ(t)| ≤ C‖∂t∂5

xψe‖C0 ≤ C‖∂tωe‖C3

≤ C‖ωe‖C5 ≤ C‖ψe‖C7 .

By the fact that∂tψ̂ = 1
4(x+ 1)(1 − x)2∂tα(t) − 1

4(x+ 1)2(1 − x)∂tβ(t),
we have

(5.27) ‖∂tψ̂‖Cm = ‖∂tψ̂‖C3 ≤ C‖ψe‖C7 , if m ≥ 3 .

The construction of the approximate vorticity is quite tricky. First we
define

(5.28) Ωi =
(

(1 − h2

12
)D2

x − 1
)

Ψi , for 1 ≤ i ≤ N − 1 ,

and then recoverΩ by solving the following system

(5.29)

(
1 +

h2

12
D2
x

)
Ωi = Ωi .

We should mention that (5.29) always has a solution since the eigenvalues
of thematrix corresponding to1+ h2

12D
2
x are all non-zero. On the other hand,

the implementation of (5.29) requires the boundary value forΩ. Tomaintain
the higher order consistency needed in the truncation error estimate below
for the discrete derivatives of the constructed vorticity, we introduce

(5.30) ω̂ = ω̂1 + ω̂2 , whereω̂1 = − 1
240

∂6
xψe , ω̂2 = (∂2

x − 1)ψ̂ ,
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whereh4ω̂1 is theO(h4) truncation error of
(
(1 − h2

12 )D2
x − 1

)
ψe − (1 +

h2

12D
2
x)ωe,h

4ω̂2 is theO(h4) part ofh4
(
(1 − h2

12 )D2
x − 1

)
ψ̂ The boundary

condition forΩ (say atx0 = −1) is imposed as

(5.31) Ω0 = ωe(x0) + h4ω̂0 ,

andΩN can be determined similarly. The purpose of this choice can be seen
in the following lemma.

Lemma 5.2 We have on the grid pointsxi, 0 ≤ i ≤ N ,

(5.32) Ω = ωe + h4ω̂ + O(h6)‖ψe‖C8 .

Proof. First we note that(
1 +

h2

12
D2
x

)
Ω =

(
(1 − h2

12
)D2

x − 1
)

Ψ

=
(

(1 − h2

12
)D2

x − 1
)

ψe + h4
(

(1 − h2

12
)D2

x − 1
)

ψ̂ .(5.33)

The first term can be estimated via local Taylor expansion(
(1 − h2

12
)D2

x − 1
)

ψe = (1 +
h2

12
D2
x)ωe − 1

240
h4∂6

xψe + O(h6)‖ψe‖C8

= (1 +
h2

12
D2
x)ωe + h4ω̂1 + O(h6)‖ψe‖C8 ,(5.34)

whereω̂1 was introduced in (5.30). The second term appearing on the right
hand side of (5.33) can be treated as

(5.35)
h4
(

(1 − h2

12
)D2

x − 1
)

ψ̂ = h4(∂2
x − 1)ψ̂ + O(h6)‖ψ̂‖C4

= h4ω̂2 + O(h6)‖ψe‖C5 ,

where we applied (5.24) and̂ω2 was also introduced in (5.30). The combi-
nation of (5.33), (5.34) and (5.35) gives(

1 +
h2

12
D2
x

)
Ω = (1 +

h2

12
D2
x)ωe + h4ω̂1 + h4ω̂2 + O(h6)‖ψe‖C8

= (1 +
h2

12
D2
x)ωe + h4ω̂ + O(h6)‖ψe‖C8 .(5.36)

On the other hand, the fact that‖D2
xω̂‖C0 is bounded by the order of‖ψe‖C8

from our construction of̂ω indicates(
1 +

h2

12
D2
x

)
(ωe + h4ω̂)

=
(

1 +
h2

12
D2
x

)
ωe + h4ω̂ + O(h6)‖ψe‖C8 .(5.37)
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The combination of (5.36) and (5.37) shows that at interior grid pointsxi,
1 ≤ i ≤ N − 1,

(5.38)

∣∣∣∣(1 +
h2

12
D2
x

)
(Ω − ωe − h4ω̂)

∣∣∣∣ ≤ Ch6‖ψe‖C8 .

On the boundary (say ati = 0), (5.32) indicates

(5.39) Ω0 − (ωe + h4ω̂)0 = 0 .

Since the matrixI + h2

12D
2
x is uniformly diagonally dominant, we obtain

(5.32) from (5.38) and (5.39). Lemma 5.2 is proven.��
Next we look at the truncation error of the diffusion term. By Lemma 5.2
and the fact that̂ω and its divided differences up to second order are bounded
by the order of‖ψe‖C8 , we have

(5.40) |D2
x(Ω − ωe)| ≤ Ch4‖ψe‖C8 ,

which along with (5.32) gives us(
(1 − h2

12
)D2

x − 1
)

Ω =
((

1 − h2

12

)
D2
x − 1

)
ωe

+O(h4)‖ψe‖C8 .(5.41)

Meanwhile, local Taylor expansion ofωe shows that(
(1 − h2

12
)D2

x − 1
)

ωe =
(

1 +
h2

12
∂2
x

)
(∂2
x − 1)ωe

+O(h4)‖ωe‖C6 .(5.42)

The combination of (5.41) and (5.42) implies that((
1 − h2

12

)
D2
x − 1

)
Ω =

(
1 +

h2

12
∂2
x

)
(∂2
x − 1)ωe

+O(h4)‖ψe‖C8 .(5.43)

Now we estimate the time marching term. As we can see, at the interior
grid pointsxi, 1 ≤ i ≤ N − 1,

(5.44)
∂tΩ = ∂t

(
(1 − h2

12 )D2
x − 1

)
Ψ

= ∂t

(
(1 − h2

12 )D2
x − 1

)
ψe + h4∂t

(
(1 − h2

12 )D2
x − 1

)
ψ̂ ,
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where the first term can be treated via local Taylor expansion and the kine-
matic relation betweenψe andωe

∂t

(
(1 − h2

12
)D2

x − 1
)

ψe =

∂t(1 +
h2

12
∂2
x)ωe + h4∂t(

1
360

∂6
xψe − 1

144
∂4
xψe)

+O(h6)‖∂tψe‖C6 ,(5.45)

and the second term can also be controlled by

(5.46) h4∂t

((
1 − h2

12

)
D2
x − 1

)
ψ̂ = h4∂t(∂2

x−1)ψ̂+O(h6)‖∂tψ̂‖C4 .

Again, by (5.25), we have the following estimate

(5.47) ‖∂tψe‖C6 ≤ C‖∂tωe‖C4 ≤ C‖ωe‖C6 ≤ C‖ψe‖C8 ,

where the original PDE that∂tωe = ν(∂2
x − 1)ωe was applied in the second

step. The term‖∂tψ̂‖C4 appearing in (5.46) can be controlled by (5.27). The
combination of (5.44)-(5.47) shows that

(5.48) ∂t

(
1 +

h2

12
D2
x

)
Ω − ∂t

(
1 +

h2

12
∂2
x

)
ωe = O(h4)‖ψe‖C8 .

Combining (5.48) and (5.43), the estimates for time marching term and
diffusion term respectively, and applying the original vorticity equation,
which implies that(1 + h2

12∂
2
x)
(
∂tωe − ν(∂2

x − 1)ωe
)

= 0, we arrive at

(5.49) ∂t

(
1 +

h2

12
D2
x

)
Ω − ν

(
(1 − h2

12
)D2

x − 1
)

Ω = O(h4)‖ψe‖C8 ,

at grid pointsxi, 1 ≤ i ≤ N − 1.
Finally we look at the boundary condition forΩ. We will show thatΩ

satisfies Briley’s formula applied toΨ up toO(h4) error. To verify it, first
we have a look at the expression appearing in Briley’s formula (say near the
left boundaryx0 = −1)

6Ψ1 − 3
2
Ψ2 +

2
9
Ψ3 =(

6ψe(x1) − 3
2
ψe(x2) +

2
9
ψe(x3)

)
+ h4

(
6ψ̂1 − 3

2
ψ̂2 +

2
9
ψ̂3

)
.(5.50)
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The first term can be estimated via Taylor expansion ofψe, keeping in mind
thatψe(x0) = ∂xψe(x0) = 0

(5.51)
6ψe(x1) − 3

2
ψe(x2) +

2
9
ψe(x3) =

h2∂2
xψe(x0) +

1
10

h5∂5
xψe(x0) + O(h6)‖ψe‖C6 .

The estimate of the second term appearing in (5.50) can also be carried out
via Taylor expansion and our construction ofψ̂

(5.52)
h4
(

6ψ̂1 − 3
2
ψ̂2 +

2
9
ψ̂3

)
= 11

3 h5∂xψ̂(x0) + O(h6)‖ψ̂‖C2

= − 1
10h

5∂5
xψe(x0) + O(h6)‖ψe‖C5 ,

where we used (5.23) and (5.24). As we can see, theO(h5) terms appearing
in (5.51) and (5.52) cancel each other if we put them into a combined term
6Ψ1 − 3

2Ψ2 + 2
9Ψ3 because of our special choice ofα(t) andβ(t). The reason

of thechoicecanbeseenmoreclearlyhere.Thecombinationof (5.50), (5.51)
and (5.52), along with the fact thatωe(x0) = (∂2

x − 1)ψe(x0) = ∂2
xψe(x0)

sinceψe vanishes on the boundary, gives us

(5.53) 6Ψ1 − 3
2
Ψ2 +

2
9
Ψ3 = h2ωe(x0) + O(h6)‖ψe‖C6 .

In other words,

(5.54) ωe(x0) =
1
h2

(
6Ψ1 − 3

2
Ψ2 +

2
9
Ψ3

)
+ O(h4)‖ψe‖C6 .

Meanwhile, our definitionofΩ0 in (5.32), combinedwith the fact that|ω̂0| ≤
C‖ψe‖C6 , implies that the difference betweenΩ0 andωe(x0) is of order
O(h4)‖ψe‖C6 . Then we obtain the boundary condition forΩ:

(5.55) Ω0 =
1
h2

(
6Ψ1 − 3

2
Ψ2 +

2
9
Ψ3

)
+ h4e0 ,

where|e0| ≤ C‖ψe‖C6 .

5.3.2. Error estimate. For0 ≤ i ≤ N , we define

(5.56) ψ̃i = ψi − Ψi , ω̃i = ωi − Ωi ,

and the error function forω is defined at interior grid pointsxi, 1 ≤ i ≤
N − 1,

(5.57) ω̃i = ωi − Ωi =
(

1 +
h2

12
D2
x

)
ω̃i .
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Our consistency analysis above gives a closed system for error functions

(5.58)


(

1 +
h2

12
D2
x

)
∂tω̃ = ν

(
(1 − h2

12
)D2

x − 1
)

ω̃ + f ,(
(1 − h2

12
)D2

x − 1
)

ψ̃ =
(

1 +
h2

12
D2
x

)
ω̃ , ψ̃0 = ψ̃N = 0 ,

where the local truncation errorf satisfies|f i| ≤ Ch4‖ψe‖C8 . On the
boundary, (say at the left boundary pointx0 = −1)

(5.59) ω̃0 =
1
h2

(
6ψ̃1 − 3

2
ψ̃2 +

2
9
ψ̃3

)
+ h4e0 ,

where|e0| ≤ C‖ψe‖C6 . The identity (5.59) comes from Briley’s formula
(5.7) and the estimate forΩ0 in (5.55). In other words, the error function of
vorticity and the error function of stream function satisfy Briley’s formula
up toO(h4) error.

The systemof theerror functions (5.58), alongwith (5.59), is very similar
to the fourth order scheme (5.5) with Briley’s formula (5.7), except for local
truncation error termsf , h4e0. The procedure of stability analysis carried
out in5.2can be implemented here similarly.

Multiplying (5.58) by−(1 + h2

12D
2
x)ψ̃ gives〈

−
(

1 +
h2

12
D2
x

)
ψ̃, (1 +

h2

12
D2
x)∂tω̃

〉
+
〈(

1 +
h2

12
D2
x

)
ψ̃,

((
1 − h2

12

)
D2
x − 1

)
ω̃

〉
= 〈−

(
1 +

h2

12
D2
x

)
ψ̃,f〉 .(5.60)

The termcorresponding to local truncationerror canbecontrolledbyCauchy
inequality

(5.61) 〈−
(

1 +
h2

12
D2
x

)
ψ̃,f〉 ≤ C‖ψ̃‖2 + C‖f‖2 ,

and the results corresponding to the time marching term and diffusion term
are analogous to (5.9) and (5.10)

(5.62)

−
〈(

1 +
h2

12
D2
x

)
ψ̃ ,

(
1 +

h2

12
D2
x

)
∂tω̃

〉
=

1
2

d

dt

((
1 − h2

6

)
‖∇hψ̃‖2

+‖ψ̃‖2 − h2

12

(
1 − h2

12

)
‖D2

xψ̃‖2
)

,
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(5.63)

〈(
1 +

h2

12
D2
x

)
ψ̃ ,

((
1 − h2

12

)
D2
x − 1

)
ω̃

〉
=∥∥∥∥(1 +

h2

12
D2
x

)
ω̃

∥∥∥∥2

+
1
h

(ψ̃1ω̃0 + ψ̃N−1ω̃N ) .

The estimate of the boundary termB = B1 + B2, whereB1 = 1
h(ψ̃1ω̃0)

andB2 = 1
h(ψ̃N−1ω̃N ) is similar to that in5.2. The boundary condition for

ω̃0 in (5.59) gives

(5.64) B1 = ψ̃1

(
1
h3

(
6ψ̃1 − 3

2
ψ̃2 +

2
9
ψ̃3

)
+ h3e0

)
.

Analogous to (5.12), the term6ψ̃1 − 3
2 ψ̃2 + 2

9 ψ̃3 can be rewritten as
11
3 ψ̃1 − 19

18h
2D2

xψ̃1 + 2
9h

2D2
xψ̃2. Then the procedure in (5.13), combined

with Cauchy inequality, can be repeated to estimateB1

(5.65)

B1 =
ψ̃1

h3

(
11
3
ψ̃1 − 19

18
h2D2

xψ̃1 +
2
9
h2D2

xψ̃2

)
+ h3ψ̃1e0

≥ 11ψ̃2
1

3h3 − 1
2h3

192

182 ψ̃
2
1 − 1

2
|D2

xψ̃1|2h − 1
2h3

22

92 ψ̃
2
1

−1
2
|D2

xψ̃2|2h − 1
4
ψ̃2

1
h3 − h9e2

0

≥ ψ̃2
1

h3 − 1
2
|D2

xψ̃1|2h − 1
2
|D2

xψ̃2|2h − h9e2
0 ,

Similar to (5.14), we arrive at

B ≥ −1
2

∑
i=1,2N−1,N−2

h|D2
xψ̃i|2 − h9(e2

0 + e2
N )

≥ −1
2
‖D2

xψ̃‖2 − h8 ,(5.66)

if h is small enough since|e0|, |eN | ≤ C‖ψe‖C8 .
Sinceψ̃0 = ψ̃N = 0, we can use the same argument as in Lemma 5.1 to

conclude that∥∥∥∥(1 − h2

12

)
D2
xψ̃

∥∥∥∥ ≤
∥∥∥∥((1 − h2

12
)D2

x − 1
)

ψ̃

∥∥∥∥
=
∥∥∥∥(1 +

h2

12
D2
x

)
ω̃

∥∥∥∥ .(5.67)
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Substituting (5.67) into (5.66) and (5.63), we obtain

(5.68)

〈(
1 +

h2

12
D2
x

)
ψ̃ ,

((
1 − h2

12

)
D2
x − 1

)
ω̃

〉
≥ −h8 .

Combining (5.68), (5.63) and (5.62), denotingẼ as

(5.69) Ẽ =
(

1 − h2

6

)
‖∇hψ̃‖2 + ‖ψ̃‖2 − h2

12

(
1 − h2

12

)
‖D2

xψ̃‖2 ,

and using the Poincare inequality forψ̃, which states that‖ψ̃‖ ≤ C‖∇hψ̃‖,
we arrive at

(5.70)
1
2
dẼ

dt
≤ C‖f‖2 + C‖ψ̃‖2 + h8 ≤ C‖f‖2 + C‖∇hψ̃‖2 + h8 .

Integrating in time, we obtain

(5.71) Ẽ ≤ C

∫ T

0
‖f‖2 dt + C

∫ T

0
‖∇hψ̃‖2 dt + 2Th8 + O(h8) ,

whereO(h8) is the initial term ofẼ(·, 0). By our construction ofΨ , we
have ψ̃(·, 0) = h4ψ̂(·, 0). Moreover, we getO(h8) ≤ Ch8‖ψe‖2

C8 . The

application of the inequality13‖∇hψ̃‖2 ≤ Ẽ, implied by the fact that

‖D2
xψ̃‖2 ≤ 4

h2 ‖∇hψ̃‖2, into (5.71) results in

(5.72) ‖∇hψ̃‖2 ≤ C

∫ T

0
‖f‖2 dt +C

∫ T

0
‖∇hψ̃‖2 dt+CTh8+O(h8) .

By Gronwall inequality, we have

‖∇hψ̃‖2 ≤ C

∫ T

0
‖f(·, s)‖2 ds + CTh8 + O(h8)

≤ Ch8(‖ψe‖2
C8 + T ) .(5.73)

Thus, we have proven the following theorem for EC4 scheme:

Theorem 5.3 Letψe ∈ L∞([0, T ];C8(Ω)), ωe be the exact solution of the
1-D Stokes equations (5.1) andψh, ωh be the approximate solution of the
EC4 scheme (5.5) with Briley’s formula (5.7), then we have

(5.74) ‖∇h(ψe − ψh)‖L∞([0,T ],L2) ≤ Ch4(‖ψe‖C8 + T ) .
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Table 1. Errors and order of accuracy for stream function and vorticity att = 1 when the
second orderschemes withThom’s formula for the vorticity at the boundary are used.
CFL=1, where CFL= 2ν�t

�x2 . We take�t = 1
2�x whenN = 16, 32

N L1 error L1 order L2 error L2 order L∞ error L∞ order
16 1.86e-02 1.54e-02 1.71e-02
32 4.71e-03 1.98 3.88e-03 1.99 4.30e-03 1.99

ψ 64 1.18e-03 2.00 9.72e-04 2.00 1.07e-03 2.00
128 2.95e-04 2.00 2.43e-04 2.00 2.69e-04 2.00
256 7.37e-05 2.00 6.08e-05 2.00 6.72e-05 2.00
16 2.24e-02 2.77e-02 5.25e-02
32 7.41e-03 1.60 9.47e-03 1.55 2.02e-02 1.38

ω 64 2.03e-03 1.87 2.55e-03 1.89 5.30e-03 1.93
128 5.29e-04 1.94 6.62e-04 1.95 1.34e-03 1.98
256 1.35e-04 1.97 1.67e-04 1.99 3.32e-04 2.01

Table 2. Errors and order of accuracy for stream function and vorticity att = 1 when
thesecond orderschemes withWilkes formula for the vorticity at the boundary are used.
CFL=1, where CFL= 2ν�t

�x2 . We take�t = 1
2�x whenN = 16, 32

N L1 error L1 order L2 error L2 order L∞ error L∞ order
16 1.47e-02 1.31e-02 1.52e-02
32 3.85e-03 1.94 3.36e-03 1.96 3.88e-03 1.97

ψ 64 9.85e-04 1.97 8.54e-04 1.98 9.81e-04 1.98
128 2.49e-04 1.98 2.15e-04 1.99 2.47e-04 1.99
256 6.27e-05 1.99 5.40e-05 2.00 6.18e-05 2.00
16 2.27e-02 2.61e-02 4.77e-02
32 4.65e-03 2.28 4.85e-03 2.43 9.25e-03 2.36

ω 64 9.46e-04 2.30 8.93e-04 2.44 1.58e-03 2.55
128 2.02e-04 2.22 1.79e-04 2.32 2.88e-04 2.46
256 4.64e-05 2.12 3.93e-05 2.19 5.83e-05 2.30

Table 3. Errors and order of accuracy for stream function and vorticity att = 1 when
the fourth order schemes withBriley’s formula at the boundary are used. CFL=1

2 , where
CFL= 2ν�t

�x2 . We take�t = 1
2�x whenN = 32

N L1 error L1 order L2 error L2 order L∞ error L∞ order
32 4.01e-06 3.22e-06 3.75e-06

ψ 64 2.60e-07 3.95 2.17e-07 3.90 2.67e-07 3.81
128 1.67e-08 3.96 1.43e-08 3.92 1.77e-08 3.91
256 1.06e-09 3.98 9.18e-10 3.96 1.14e-09 3.96
32 6.15e-05 8.75e-05 1.81e-04

ω 64 3.41e-06 4.17 4.71e-06 4.21 9.60e-06 4.23
128 1.96e-07 4.12 2.66e-07 4.14 5.30e-07 4.18
256 1.16e-08 4.07 1.56e-08 4.09 3.06e-08 4.11
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6. Numerical test and accuracy check

Finally we present accuracy check for the schemes, including the second and
fourth ordermethodmentioned above. The exact solution (5.3) of the system
(5.1) withk = 1, the viscosityν = 0.01, andµ = 2.88335565358979 will
be used for comparison in our numerical experiments. The final time is
taken to beT = 1.0. Explicit treatment of the diffusion term and the fourth
order Runge-Kutta time stepping were used (see E and Liu [4] for detail).
The errors in the tables are all absolute errors between the numerical and
exact solutions. As can be seen in the tables, the second order method with
Thom’s boundary condition achieves second order accuracy for the stream
function, and is only slightly less accurate for the vorticity on coarse grids.
As the grid is refined, the accuracy order is closer and closer to two. The
second order scheme with Wilkes formula on the boundary also achieves
second order accuracy for the stream function, and gets more than second
order accuracy for the vorticity. In other words, the orders of accuracy of
these two formulas for the stream function are almost the same, yet Wilkes
formula performs better than Thom’s formula in the accuracy of vorticity.
Table 3 lists the numerical results of the fourth order scheme. The EC4
method with Briley’s boundary condition achieves fourth order accuracy
for the stream function, and gets more than fourth order accuracy for the
vorticity. That shows both profiles have full fourth order convergence.
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