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Abstract. A class of upwind flux splitting methods in the Euler equations

of compressible flow is considered in this paper. Using the property that

Euler flux F (U) is a homogeneous function of degree one in U , we reformulate

the splitting fluxes with F+ = A+U , F− = A−U , and the corresponding

matrices are either symmetric or symmetrizable and keep only non-negative

and non-positive eigenvalues. That leads to the conclusion that the first order

schemes are positive in the sense of Lax-Liu [18], which implies that it is L 2-

stable in some suitable sense. Moreover, the second order scheme is a stable

perturbation of the first order scheme, so that the positivity of the second

order schemes is also established, under a CFL-like condition. In addition,

these splitting methods preserve the positivity of density and energy.

1. Introduction. The general form of a system of hyperbolic conservation laws
can be written as

∂tU + ∂xF (U) + ∂yG(U) + ∂zH(U) = 0 , U ∈ Rn , (1.1)

such as the governing equations for compressible flow, MHD, etc. For example, the
1-D Euler equations for gas dynamics is given by

∂tU + ∂xF (U) = 0, U =


 ρ

m
E


 , F =


 m

ρv2 + p
v(E + p)


 , (1.2)

in which ρ, v,m = ρv and E stand for density, velocity, momentum and total energy,
respectively, with the state equation for the pressure p = (γ − 1)(E − 1

2ρv 2) (see
[13]). The solutions to these equations, as well as the physical phenomenon, are very
complicated. One of the distinguished futures is the appearance of discontinuous
solutions such as shock waves. This imposes a great difficulty in the design of
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numerical schemes for these systems and also for the mathematical analysis. A
scalar equation

ut + f(u)x = 0 , (1.3)

is usually used as a simple model to give the guideline in the corresponding al-
gorithm design and analysis. The concept of Total-variation-diminishing (TVD)
has played a crucial role in the development of modern shock capturing schemes,
although the concept of TVD is only valid in the analysis of the scalar equation.
Nevertheless, direct extension to general systems has been highly successful in the
computation of many complicated physical systems. See the relevant references,
such as the introduction of “Monotonic Upstream-centered Scheme for Conserva-
tion laws” (MUSCL) by Van Leer in [34, 35, 36, 37, 38], the corresponding analy-
sis in [16, 25], the discussion of the “essentially nonoscillatory” (ENO) scheme in
[8, 20, 24, 31], etc. A concept of positivity property, which was recently proposed
by X.-D. Liu and P. Lax in [18], is a natural extension of TV-stable property. In
the scalar case, any consistent scheme in which the numerical solution un+1 at the
time step tn+1 can be written as convex (positive) combination of un was proven to
be TVD. In the case of a hyperbolic system, the extension of a positive coefficient
(combination) to a positive symmetric matrix gives a positive scheme.

Let’s have a review of the TVD scheme and its extension to a general system by
positivity scheme, in the context of flux splitting. The idea can be easily explained
by the upwind scheme

un+1
j − un

j

�t
+ a+,n

j

un
j − un

j−1

�x
+ a−,n

j

un
j+1 − un

j

�x
= 0, (1.4)

applied for the scalar linear advect equation,

ut + aux = 0 , (1.5)

with the decomposition a = a+ + a− and a+ ≥ 0, a− ≤ 0. The upwind scheme
(1.4) can be reformulated so that un+1

j is a convex combination of the profile un,
namely,

un+1
j = a+,n

j

�t

�x
un

j−1 +
(
1 − a+,n

j

�t

�x
+ a−,n

j

�t

�x

)
un

j − a−,n
j

�t

�x
un

j+1 . (1.6)

As a result, the stability property of the scheme (1.4) follows directly from a CFL-
like condition (

a+,n
j − a−,n

j

) �t

�x
≤ 1 . (1.7)

For scalar nonlinear conservation laws

ut + f(u)x = 0 , (1.8)

the flux can be decomposed as

f = f+ + f− , in which f+′ ≥ 0 , f−′ ≤ 0 . (1.9)

The upwind scheme can be applied to (1.8) by naturally using flux splitting

un+1
j − un

j

�t
+

f+(un
j ) − f+(un

j−1)
�x

+
f−(un

j+1) − f−(un
j )

�x
= 0 . (1.10)
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It is obvious that the scheme (1.10) can be recast in the form of (1.6) with

a+,n
j =

f+(un
j ) − f+(un

j−1)
un

j − un
j−1

= f+′
(ξn

j ) ≥ 0,

a−,n
j =

f−(un
j+1) − f−(un

j )
un

j+1 − un
j

= f−′
(ηn

j ) ≤ 0 ,

(1.11)

in which ξn
j lies between uj−1 and uj , ηn

j between uj and uj+1, respectively. More-
over, we have

1 − a+,n
j

�t

�x
+ a−,n

j

�t

�x
≥ 0 , (1.12)

under the following assumption
�t

�x

(
max |f+′ | + max |f−′ |

)
≤ 1 . (1.13)

Therefore, the combination of (1.11), (1.12) and (1.6) shows that the first-order flux
splitting method (1.10) for scalar conservation law is TVD by using the argument
in [6], provided that the CFL-like condition (1.13) is satisfied.

In a second-order approximation, the positive and negative fluxes can be approx-
imated by piecewise linear function

f+,n(x) = f+,n
j + s+,n

j (x − xj) , f−,n(x) = f−,n
j + s−,n

j (x − xj) , (1.14)

for xj−1/2 < x < xj+1/2, where the notation f+,n
j = f+(un

j ), f−,n
j = f−(un

j ) is
used. The slopes are determined by a limiter function

s±,n
j =

f±,n
j − f±,n

j−1

�x
φ0

(f±,n
j+1 − f±,n

j

f±,n
j − f±,n

j−1

)
. (1.15)

In this paper, we only consider minmod limiter

φ0(θ) = max
(
0,min(1, θ)

)
, (1.16)

or V an Leer limiter (see [1])

φ0(θ) =
|θ| + θ

1 + θ
. (1.17)

Both limiters are symmetric, i.e., aφ0( b
a ) = bφ0(a

b ), so that we can write

φ0(a, b) = aφ0(
b

a
) = bφ0(

a

b
) , (1.18)

without ambiguity. Consequently, the second-order flux splitting scheme is given
by

un+1
j − un

j

�t
+

f+,n(xj+1/2−) − f+,n(xj−1/2−)
�x

+
f−,n(xj+1/2+) − f+,n(xj−1/2+)

�x
= 0 .

(1.19)

Using the notations in (1.14)-(1.18), we can rewrite the above scheme as

un+1
j − un

j

�t
+ ψ+n

j

f+,n
j − f+,n

j−1

�x
+ ψ−n

j

f−,n
j+1 − f−,n

j

�x
= 0 , (1.20a)



204 C. WANG AND J. LIU

with the two coefficients

ψ+n
j = 1 +

1
2
φ0

(f+,n
j+1 − f+,n

j

f+,n
j − f+,n

j−1

)
− 1

2
φ0

(f+,n
j−1 − f+,n

j−2

f+,n
j − f+,n

j−1

)
,

ψ−n
j = 1 +

1
2
φ0

(f−,n
j+2 − f−,n

j+1

f−,n
j+1 − f−,n

j

)
− 1

2
φ0

(f−,n
j − f−,n

j−1

f−,n
j+1 − f−,n

j

)
.

(1.20b)

As in (1.11), by applying the intermediate value theorem for f+, f−, the second-
order upwind scheme for the nonlinear problem can still be recast in the form of
(1.6), namely

a+,n
j = ψ+n

j f+′
(ξn

j ) , a−,n
j = ψ−n

j f−′
(ηn

j ) , (1.21)

in which ξn
j lies between uj−1 and uj , and ηn

j between uj and uj+1, respectively.
Both the minmod and V an Leer limiter functions satisfy

0 ≤ φ0(θ)
θ

≤ 2 and 0 ≤ φ0(θ) ≤ 2 , (1.22)

so that the two coefficients ψ+n
j and ψ−n

j are between 0 and 2, which results in the
positivity of a+,n

j and −a−,n
j . Furthermore, (1.12) is satisfied under the following

CFL-like condition

2
�t

�x

(
max |f+′ | + max |f−′ |

)
≤ 1 , (1.23)

due to the second property of φ0 in (1.22). Therefore, the stability and TVD
property of the scheme (1.20) follows directly from Harten’s argument [6]. As a
result, the numerical scheme converges to a weak solution. It can be observed that
the CFL-like assumption (1.23) is more strict than the first-order version (1.13),
due to the usage of a limiter function. In other words, the second-order scheme
(1.20) can be viewed as a stable perturbation of the first-order one (1.10), due to
the fact that both ψ+n

j and ψ−n
j are positive coefficients bounded by 2.

This simple stability argument no longer holds for a general system of conserva-
tion laws

Ut + F (U)x = 0 , (1.24)

since no TV-stable property can be automatically applied to the analysis of a non-
linear system. Nevertheless, a direct extension of the above scheme enjoys a great
success. The flux vector splitting (FVS) method reconstructs the flux F as

F (U) = F+(U) + F−(U) , (1.25)

where the Jacobians of F+, F− have only non-negative and non-positive eigenval-
ues, respectively. To achieve high order accuracy, we apply the second-order flux
vector splitting scheme to each component

Un+1
j = Un

j − �t

�x
(F+n

j+1/2 − F+n
j−1/2) −

�t

�x
(F−n

j+1/2 − F−n
j−1/2) , (1.26a)
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where the p−th component of F±
j+1/2, F

±(p)
j+1/2 is given by

F
+n(p)
j+1/2 = F

+n(p)
j +

1
2
(F+n(p)

j − F
+n(p)
j−1 )φ0

(F
+n(p)
j+1 − F

+n(p)
j

F
+n(p)
j − F

+n(p)
j−1

)
,

F
−n(p)
j+1/2 = F

−n(p)
j+1 +

1
2
(F−n(p)

j+1 − F
−n(p)
j )φ0

(F
−n(p)
j+2 − F

−n(p)
j+1

F
−n(p)
j+1 − F

−n(p)
j

)
,

(1.26b)

and the limiter function φ0 is chosen as either (1.16) or (1.17). The approach of
the FVS scheme goes back to Van Leer [1]. See also [3]. The second order version
(1.26) is in fact the same as the convex ENO scheme discussed by Liu and Osher
in [19].

Meanwhile, a framework to provide some theoretical guides for the general sys-
tems of conservation laws has been proposed by P. Lax and X.-D. Liu in [18] with
the concept of positive scheme, which is motivated by the fact that the only func-
tional known to be bounded for solutions of linear hyperbolic equation is energy,
as proven by Friedrichs in [4]. A conservative scheme of the form

Un+1
j = Uj +

�t

�x

(
Fj+1/2 − Fj−1/2

)
, (1.27)

where F is a consistent numerical flux, is called positive, if Un+1 can be written as

Un+1
j =

∑
K

CKUn
j+K , (1.28)

so that the coefficient matrices CK , which themselves depend on all the Uj+K that
occur in (1.27), have the following properties:

each CK is symmetric and positive , i.e. , CK ≥ 0 ; (1.29a)∑
K

CK = I , (1.29b)

CK = 0 , except for a finite set of K . (1.29c)
Then they argued that, for positive schemes, the numerical solution Un is L 2 stable
in some suitable sense.

Note that for the case of a scalar equation (1.8), the positivity (1.29) is reduced
to the convex combination form (1.6), while the combination coefficients c−1, c1, c0

correspond to a+,n
j , a−,n

j , 1− a+,n
j

�t

�x
+ a−,n

j

�t

�x
, respectively. In the second-order

flux vector splitting scheme, the general form can be written as (3.15) in Section 3,
yet the form of the combination matrices CK depends on the concrete splitting.

It should be noted that the symmetry of the coefficient matrices CK plays an
important role in the L2-stability of the positivity scheme [18]. However, a sym-
metric Jacobian matrix can hardly be found for a system of hyperbolic conservation
laws in terms of physical variables. Instead, a symmetrizable system is taken into
consideration in [18]

B0(U)∂tU + B(U)∂xU = 0 , (1.30)

in which B is symmetric, B0 is positive and its symmetric square root is denoted
as S, i.e., B0 = S2. Multiplying (1.30) by B−1

0 gives

∂tU + A(U)∂xU = 0 , with A = B−1
0 B . (1.31)
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Moreover, it turns out that SAS−1 is symmetric. For such a symmetrizable system,
the numerical scheme is defined as positive if it can be recast in the form of (1.28)
and the matrices

DK(J) = S(J)CK(J)S−1(J) , (1.32)

satisfy the following conditions

DK differs by O(�t) from a symmetric matrix , (1.33a)

the symmetric part of DK has non-negative eigenvalues , (1.33b)∑
K

DK = I , (1.33c)

DK = 0 , except for a finite set of K . (1.33d)

The L2-stability of the positive scheme satisfying (1.33) was established in [18].
Due to the fact that the compressible Euler equations are not symmetric but sym-
metrizable, they constructed a second-order positive scheme in the article by using
Roe matrix decomposition, which was proven to be very efficient.

In this paper we show the positivity and weak stability of the second-order lim-
iter schemes with some well-known FVS in the computation of the compressible
Euler equation, including Steger-Warming and Van Leer splittings proposed in [32]
and [1]. We recall that the gas equation is symmetrizable only in terms of the
velocity, pressure and entropy variables. Its conservative form, which is comprised
of the dynamic equations for the density, momentum and the total energy, is not.
Yet, we have to keep the shock-capturing scheme in the conservative form (1.27)
consistent with the conservation laws to get correct shock speed, in view of Lax-
Wendroff theorem. The key point in this article is the reformulation of the positive
and negative fluxes in the Steger-Warming and Van Leer splitting so that the cor-
responding matrices are either symmetric or symmetrizable and keep non-negative
and non-positive eigenvalues, respectively. This fact is reported in Proposition 2.1
in Section 2 below. The basic idea is to use the property of Euler flux that it is a
homogeneous function of degree one in the variable. A direct consequence of it is
the positivity of the first order scheme, which comes from the rewritten forms of
the splitting fluxes F+, F−. It is shown in Section 3 that the second order limiter
scheme is a stable perturbation of the first order one. The corresponding second
order scheme using Steger-Warming or Van Leer splitting is proven to be posi-
tive under some CFL-like conditions in Section 4 and 5, due to the representation
formula that the numerical Un+1 is a positive combination of Un.

Furthermore, both splitting schemes preserve the positivity of density and en-
ergy variables. To achieve this, the fluxes F+ and F− need to be formulated in
another way so that the corresponding matrices A+, A− are diagonal with respect
to the first and third components. The diagonal elements are also bounded by fluid
velocity and sound speeds. Then the density and energy at time step tn+1 is shown
to be a positive combination of their values at time step tn, which indicates the
positivity preserving property of the scheme under a CFL-like condition. A variety
of formulations of F+ and F− are possible because of the nonlinearity of Euler flux.

Moreover, we note that condition (1.33b) is in fact a consistency requirement.
Since the system is nonlinear, we can write (1.27) in several different forms. To
simplify our presentation, by observing that all the flux splitting schemes we con-
sider here are in a consistent conservative form, we modify the condition (1.33c)
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by∑
K

CK = I + O(�t) , if Un is Lipschitz continuous at time step n . (1.34)

Note that in the scalar case, condition (1.29a) plus∑
K

CK = 1 + O(�t) , (1.35)

can ensure the TV-stable property of the numerical scheme. In this article, the
requirement of positivity is set to be

each CK is either symmetric or symmetrizable and CK ≥ 0 ,

up to O(�t) difference ; (1.36a)

∑
K

CK = I + O(�t) , if Un is Lipschitz continuous at time step n ; (1.36b)

CK = 0 , except for a finite set of K . (1.36c)

2. The compressible Euler equations and symmetrizable flux splitting.
The 1-D system of the Euler equations is given by

∂tU + ∂xF (U) = 0, U =


 ρ

m
E


 , F =


 m

ρv2 + p
v(E + p)


 , (2.1)

where ρ, v,m = ρv and E are density, velocity, momentum and total energy, respec-
tively, and the state equation for the pressure is given by p = (γ − 1)(E − 1

2ρv 2).
The eigenvalues of the Jacobian matrix of F (U) are

λ1 = v − c , λ2 = v , λ3 = v + c , (2.2)

with the sound speed c =
√

γp
ρ . The constant γ depends on the gas and usually

ranges from 1 to 3. For example, such constant can be taken as γ = 1.4 for the air.
Our analysis below is valid for any 1 < γ < 3.

2.1. Steger-Warming flux splitting. Through the similarity transformation on
the flux vector using the property, F (U) = A(U)U , A(U) = F

′
(U), due to the fact

that the flux vector is a homogeneous function of degree one, the Steger-Warming
splitting of F in [32] is given by

F (U) = F+(U) + F−(U) = Q−1Γ+QU + Q−1Γ−QU , (2.3)

where A = Q−1ΓQ and Γ± = diag(λ±
1 , λ±

2 , λ±
3 ), λ±

i = (λi ± |λi|)/2, i = 1, 2, 3.
The corresponding F+ and F− for the subsonic case 0 ≤ v ≤ c read

F+
SWS =

ρ

2γ


 2γv + c − v

2(γ − 1)v 2 + (v + c) 2

(γ − 1)v3 + 1
2 (v + c)3 + 3−γ

2(γ−1) (v + c)c 2


 ,

F−
SWS =

ρ

2γ


 v − c

(v − c) 2

1
2 (v − c)3 + 3−γ

2(γ−1) (v − c)c 2


 .

(2.4a)

In the supersonic case v > c,

F+ = F , F− = 0 . (2.4b)
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The subvectors F+, F− for other cases, including the subsonic case −c ≤ v ≤ 0 and
supersonic case v < −c, can be obtained in a similar way.

2.2. Van Leer Splitting (VLS). In [1] Van Leer developed the splitting which is
differentiable even at sonic points in terms of the local Mach number M , M = u/c.
For M ≥ 1, the eigenvalues of Jacobian of F are all positive and thus F+

V LS =
F, F−

V LS = 0. Similarly, F+
V LS = 0 and F−

V LS = F for M ≤ −1. The Van Leer
splitting is given as follows for −1 < M < 1,

F±
V LS =


 f±

1

f±
1 ((γ − 1)v ± 2c)/γ

f±
1 ((γ − 1)v ± 2c) 2/2(γ 2 − 1)


 , (2.5)

where f±
1 = ±ρc(M ± 1) 2/4. The Jacobian of the positive flux, (F+

V LS)
′

has two
positive and one zero eigenvalues, while (F−

V LS)
′

has two negative and one zero
eigenvalues.

2.3. Symmetrizable reformulation of the splitting fluxes F+ and F−. Note
that the positive and negative matrices Q−1Γ+Q, Q−1Γ−Q of the Steger-Warming
splitting are not symmetrizable in its original form. The same is for the Van Leer
splitting. The key observation in this section is that the representation form of
such matrices is not unique due to the nonlinearity of the fluxes. The matrices can
be reformulated to be symmetrizable and keep positive and negative eigenvalues,
respectively. The following proposition is crucial to the positivity argument of both
flux splittings presented in later sections.

Proposition 2.1. The fluxes F+, F− in either Steger-Warming splitting (2.4) or
Van Leer splitting (2.5) can be represented as

F+ = A+U , F− = A−U , (2.6a)

in which A+, A− are either symmetric or symmetrizable and

A+ ≥ 0 , A− ≤ 0 . (2.6b)

Moreover, A+ − A− is a diagonal matrix with non-negative elements.
A direct consequence of Proposition 2.1 is the positivity of the first order method

using either flux splitting.

Corollary 2.1. The first order flux splitting method

Un+1
j = Un

j − �t

�x
(F+n

j − F+n
j−1) −

�t

�x
(F−n

j+1 − F−n
j ) , (2.7)

with the positive and negative fluxes F+, F− given by either Steger Warming (2.4)
or Van Leer (2.5) is positive, under some CFL-like conditions, namely (2.21)-(2.22)
or (2.29) below.
Proof. The insertion of (2.6a) into the first order scheme (2.7) shows that

Un+1
j = Un

j − λ(A+n
j Un

j − A+n
j−1U

n
j−1) − λ(A−n

j+1U
n
j+1 − A−n

j Un
j )

= λA+n
j−1U

n
j−1 + (−λA−n

j+1)U
n
j+1 + (I − λA+n

j + λA−n
j )Un

j ,
(2.8)

with the constant λ = �t
�x . By taking the notation

C−1 = λA+n
j−1 , C1 = −λA−n

j+1 , C0 = I − λ(A+n
j − A−n

j ) , (2.9a)
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we arrive at
Un+1

j = C−1U
n
j−1 + C0U

n
j + C1U

n
j+1 . (2.9b)

It is indicated by Proposition 2.1 that both C−1 and C1 are either symmetric or
symmetrizable and keep non-negative eigenvalues. In addition, since A+ − A−

is a diagonal matrix with non-negative elements, C0 is also positive symmetric if
λ is bounded by the inverse of the eigenvalues, which is shown to be a CFL-like
condition, as can be seen in Remarks 1, 2 below. The property that C−1+C0+C1 =
I + O(�t) can be verified by the smoothness of the positive and negative matrices
A+, A− with respect to the physical variables, under the assumption that the
solution is Lipschitz continuous. �

The proof of Proposition 2.1 is a constructive one and is based on the following
lemma. Its proof is straightforward and we omit it.

Lemma 2.1. A matrix A =
(

a11 a12

a21 a22

)
is symmetrizable and keeps non-negative

eigenvalues if

a11 > 0 , a22 > 0 , a12a21 > 0 , a11a22 ≥ a12a21 ; (2.10a)

it is symmetrizable and keeps non-positive eigenvalues if

a11 < 0 , a22 < 0 , a12a21 > 0 , a11a22 ≥ a12a21 . (2.10b)

Proof of Proposition 2.1 for the case of Steger-Warming splitting:
(a) In the subsonic case 0 ≤ v < c, using the state equation E = 1

2ρv 2 + p
γ−1 ,

and p = 1
γ ρc 2, we can rewrite F+, F− as

F+ =




2γ−1
2γ ρv + 1

2γ ρc
2γ−1
2γ ρv 2 + 1

γ ρvc + 1
2γ ρc 2

2γ−1
4γ ρv3 + 3

4γ ρv 2c + 1
2(γ−1)ρvc 2 + 1

2γ(γ−1)ρc3




=




( 2γ−1
2γ v + 1

2γ c)ρ

( 5γ−2−γ 2

4γ v + 1
γ c)ρv + γ−1

2 E
3−γ
18 (v − c)2ρv + a+

3,3E


 ,

(2.11)

F− =




1
2γ ρv − 1

2γ ρc
1
2γ ρv 2 − 1

γ ρvc + 1
2γ ρc 2

1
4γ ρv3 − 3

4γ ρv 2c + 1
2(γ−1)ρvc 2 − 1

2γ(γ−1)ρc3




=




− 1
2γ (c − v)ρ

− 1
4γ

[
4c − (2 − γ 2 + γ)v

]
ρv − (−γ−1

2 )E
3−γ
18 (v − c)2ρv + a−

3,3E


 ,

(2.12)

so that F+, F− can be represented as F+ = A+U , F− = A−U , with

A+ =


 a+

1,1 0 0
0 a+

2,2
γ−1

2

0 3−γ
18 (v − c)2 a+

3,3


 , A− =


 a−

1,1 0 0
0 a−

2,2
γ−1

2

0 3−γ
18 (v − c)2 a−

3,3


 ,

(2.13)
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in which the coefficients have the following estimates

a+
1,1 =

2γ − 1
2γ

v +
1
2γ

c , a+
2,2 =

5γ − 2 − γ 2

4γ
v +

1
γ

c ,

a+
3,3 =

2γ−1
4γ ρv3 + 3

4γ ρv 2c + 1
2(γ−1)ρvc 2 + 1

2γ(γ−1)ρc3 − 3−γ
18 ρv(v − c)2

E
,

3 − γ

2γ
c ≤ a+

3,3 ≤ γ2 + 2γ − 1
2γ

v +
γ + 3
2γ

c ,

a−
1,1 = − 1

2γ
(c − v) , a−

2,2 = − 1
4γ

[
4c − (2 − γ 2 + γ)v

] ≤ − 1
γ

(c − v) ,

a−
3,3 =

1
4γ ρv3 − 3

4γ ρv 2c + 1
2(γ−1)ρvc 2 − 1

2γ(γ−1)ρc3 − 3−γ
18 ρv(v − c)2

E
,

1
γ − 1

(v − c) ≤ a−
3,3 ≤ 3 − γ

γ + 1
(v − c) < 0 .

(2.14)

The verification of the above estimates is straightforward by algebraic calculation
of the physical variables. The detail is omitted here. From (2.14), we have

a+
2,2a

+
3,3 ≥ 3 − γ

2γ2
c2 ≥ (γ − 1)(3 − γ)

36
c2 ≥ γ − 1

2
· 3 − γ

18
(v − c)2 ,

a−
2,2a

−
3,3 ≥ 3 − γ

γ(γ + 1)
(v − c)2 ≥ γ − 1

2
· 3 − γ

18
(v − c)2 ,

(2.15)

for 1 < γ < 3. The application of Lemma 2.1 shows that A+, A− are symmetriz-
able and keep non-negative and non-positive eigenvalues, since the criteria (2.10a),
(2.10b) can be verified by the usage of (2.15).

It can be seen that the matrix A+ − A− has the form

A+ − A− =


 a+

1,1 − a−
1,1 0 0

0 a+
2,2 − a−

2,2 0
0 0 a+

3,3 − a−
3,3


 , (2.16)

which is diagonal and keeps only non-negative eigenvalues. Moreover, the estimate
(2.14) leads to

a+
1,1 − a−

1,1 =
γ − 1

γ
v +

1
γ

c , a+
2,2 − a−

2,2 =
γ − 1

γ
v +

2
γ

c ,

a+
3,3 − a−

3,3 ≤ γ2 + 2γ − 1
2γ

v +
γ2 + 4γ − 3
2γ(γ − 1)

c ,
(2.17)

so that the eigenvalues are bounded by the linear combination of the velocity and
sound speed. This was used in the proof for the positivity of the first order method.

The other subsonic case −c < v ≤ 0 can be dealt with in the same manner. That
finishes the proof of Proposition 2.1 in the subsonic case of the Steger-Warming
splitting.

(b) In the supersonic region v ≥ c, the positive and negative fluxes are given by

F+ = F =




ρv
ρv 2+p

ρv ·m
v(E+p)

E ·E


 , F− = 0 = A−U , (2.18)
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where A− = 0. Then we can rewrite F+, F− in the same form as F+ = A+U ,
F− = A−U , with

A+ =


 a+

1,1 0 0
0 a+

2,2 0
0 0 a+

3,3


 , A− = 0 ,

a+
1,1 = v , a+

2,2 =
ρv 2 + p

ρv
, a+

3,3 =
v(E + p)

E
.

(2.19)

The following estimate for the components in F+ is also straightforward by the
algebraic calculation

0 ≤ a+
1,1 = v , 0 ≤ a+

2,2 =
ρv 2 + p

ρv
≤ v +

1
γ

c , 0 ≤ a+
3,3

v(E + p)
E

≤ v +
2
γ

c .

(2.20)

In this case, A+ − A− is exactly A+ presented in (2.19), which is diagonal and its
eigenvalue estimate is given in (2.20).

For another supersonic case v ≤ −c, F+ = 0 and F− can be similarly represented
and an analogous estimate to (2.20) can be obtained. Then we finish the proof of
Proposition 2.1 for the Steger-Warming splitting. �

Remark 1. As can be seen in both the subsonic and supersonic cases, the matrix
C0 = I −λ(A+ −A−) is diagonal and its diagonal elements are non-negative under
the constraint

�t

�x

(
a+

i,i − a−
i,i

)
≤ 1 , i = 1 , 2 , 3 . (2.21)

With the usage of the estimates (2.17), (2.20), the constraint (2.21) is satisfied
provided that

�t

�x
max

(γ2 + 2γ − 1
2γ

,
2
γ

,
γ2 + 4γ − 3
2γ(γ − 1)

)
(|v| + |c|) ≤ 1 . (2.22)

As a result, the first order Steger-Warming splitting method is positive under the
CFL-like condition (2.22).
Proof of Proposition 2.1 for the case of Van Leer splitting:
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In the subsonic case 0 ≤ M < 1, F+ and F− can be represented as

F+ =




ρc(M 2 + 2M + 1)/4
ρcM 2+2M+1

4 · (γ−1)v+2c
γ

ρcM 2+2M+1
4 · [(γ−1)v+2c] 2

2(γ 2−1)




=




( 1
2v + M 2+1

4 c)ρ
γ−1
4γ (M + 2)ρv 2 + 1

2γ ρv 2 + γ+3
4γ ρvc + 1

2γ ρc 2

ρcM 2+2M+1
4 · [(γ−1)v+2c] 2

2(γ 2−1)




=




( 1
2v + M 2+1

4 c)ρ[
γ+3
4γ c +

(
γ−1
4γ (M + 2) + 1

2γ − γ−1
4

)
v
]
ρv + γ−1

2 E

(3−γ)2

72 (v − c)2 + a+
3,3E




= A+U ,

(2.23)

F− =




−ρcM 2−2M+1
4

−ρcM 2−2M+1
4

(γ−1)v−2c
γ

−ρcM 2−2M+1
4

[(γ−1)v−2c] 2

2(γ 2−1)




=




[− c
4 + 1

4 (2 − M)v
]
ρ

γ−1
4γ (2 − M)ρv 2 + 1

2γ ρv 2 − γ+3
4γ ρvc + 1

2γ ρc 2

−ρcM 2−2M+1
4

[(γ−1)v−2c] 2

2(γ 2−1)




=




[− c
4 + 1

4 (2 − M)v
]
ρ

−
[

γ+3
4γ c −

(
1
2γ + γ−1

4γ (2 − M) − γ−1
4

)
v
]
ρv − (−γ−1

2 )E
(3−γ)2

72 (v − c)2ρv + a−
3,3E




= A−U .

(2.24)

in which the matrices A+, A− have the form

A+ =




a+
1,1 0 0
0 a+

2,2
γ−1

2

0 (3−γ)2

72 (v − c)2 a+
3,3


 ,

A− =




a−
1,1 0 0
0 a−

2,2
γ−1

2

0 (3−γ)2

72 (v − c)2 a−
3,3


 ,

(2.25a)
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a+
1,1 =

1
2
v +

M 2 + 1
4

c , a+
3,3 =

F+(3) − (3−γ)2

72 (v − c)2ρv

E
,

a+
2,2 =

γ + 3
4γ

c +
(γ − 1

4γ
(M + 2) +

1
2γ

− γ − 1
4

)
v ,

a−
1,1 = −1

4
c +

1
4
(2 − M)v , a−

3,3 =
F−(3) − (3−γ)2

72 (v − c)2ρv

E
,

a−
2,2 = −

[
γ + 3
4γ

c −
( 1

2γ
+

γ − 1
4γ

(2 − M) − γ − 1
4

)
v

]
.

(2.25b)

The following estimates can be verified by a careful calculation. The detail is
omitted.

0 ≤ a+
1,1 ≤ 1

2
(|v| + c) ,

γ + 3
4γ

c − 3 − γ

4
|v| ≤ a+

2,2 ≤ 4γ − 1 − γ 2

4γ
|v| + γ + 3

4γ
c ,

1
24

c ≤ a+
3,3 ≤ γ(γ2 + 2γ − 3)

2(γ + 1)
|v| + 2γ

γ + 1
c , −1

4
(c + 3|v|) ≤ a−

1,1 ≤ 0 ,

−
(4γ − 1 − γ 2

4γ
|v| + γ + 3

4γ
c
)
≤ a−

2,2 ≤ −
(γ + 3

4γ
c − 3 − γ

4
|v|

)
,

−
[
γ(γ 2 + 2γ − 3)

2(γ + 1)
|v| +

( 2γ

γ + 1
+

(3 − γ)2

6

)
c

]
≤ a−

3,3 ≤ − (3 − γ)2

4(γ + 1)2
c(1 − M)2 .

(2.26)
Similarly, the estimate (2.26) results in

a+
2,2a

+
3,3 ≥ 1

24

(
γ+3
4γ − 3−γ

4

)
c2 ≥ (3 − γ)2)(γ − 1)

144
c2

≥ γ − 1
2

· (3 − γ)2(γ − 1)
72

(v − c)2 ,

a−
2,2a

−
3,3 ≥ (3 − γ)2

4(γ + 1)2
(γ + 3

4γ
− 3 − γ

4

)
c2(1 − M)2 ≥ γ − 1

2
· (3 − γ)2

72
(v − c)2 ,

(2.27)
for 1 < γ < 3. Moreover, by applying Lemma 2.1 and using the estimate (2.27), we
conclude that A+, A− are symmetrizable and keep non-negative and non-positive
eigenvalues, respectively.

It can be seen that the matrix A+ − A− has the form

A+ − A− =


 a+

1,1 − a−
1,1 0 0

0 a+
2,2 − a−

2,2 0
0 0 a+

3,3 − a−
3,3


 , (2.28)

which is diagonal and keeps only non-negative eigenvalues. The eigenvalues are
bounded by the linear combination of the velocity and sound speed

a+
1,1 − a−

1,1 ≤ 1
4
v +

3
4
c , a+

2,2 − a−
2,2 ≤ γ − 1

2γ
v +

2
γ

c ,

a+
3,3 − a−

3,3 ≤ γ(γ 2 + 2γ − 3)
γ + 1

v +
( 4γ

γ + 1
+

(3 − γ)2

3

)
c .

(2.29)
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For another subsonic case −1 < M ≤ 0, F+ and F− can be similarly represented
and an analogous estimate to (2.25) can be obtained.

In the supersonic case, either M ≥ 1 or M ≤ −1, the representation and the
estimates (2.18), (2.19) are also valid. Then we finish the analysis of the Van Leer
splitting, thus complete the proof of Proposition 2.1. �

Remark 2. In both the subsonic and supersonic cases, the matrix C0 = I−λ(A+−
A−) is diagonal and its diagonal elements are non-negative under the constraint
(2.21), which is assured to be satisfied if

�t

�x
max

(
1,

γ(γ 2 + 2γ − 3)
γ + 1

,
2
γ

,
4γ

γ + 1
+

(3 − γ)2

3

)
(|v| + |c|) ≤ 1 , (2.30)

with the usage of the estimates (2.29), (2.20). As a result, the first order Van Leer
splitting method is positive under the CFL-like condition (2.30).

3. Analysis of second-order flux splitting. In this section we give a general
analysis for the second-order FVS scheme (1.26) applied to a system of conservation
laws (1.24). We need to rewrite the scheme for the convenience of the positivity
proof in the following sections. Substituting (1.18) into (1.26b) gives

φ0(F+(p)
j+1 − F

+(p)
j , F

+(p)
j − F

+(p)
j−1 ) = (F+(p)

j+1 − F
+(p)
j )φ0

(F
+(p)
j − F

+(p)
j−1

F
+(p)
j+1 − F

+(p)
j

)

= (F+(p)
j − F

+(p)
j−1 )φ0

(F
+(p)
j+1 − F

+(p)
j

F
+(p)
j − F

+(p)
j−1

)
,

(3.1a)

φ0(F−(p)
j+1 − F

−(p)
j , F

−(p)
j − F

−(p)
j−1 ) = (F−(p)

j+1 − F
−(p)
j )φ0

(F
−(p)
j − F

−(p)
j−1

F
−(p)
j+1 − F

−(p)
j

)

= (F−(p)
j − F

−(p)
j−1 )φ0

(F
−(p)
j+1 − F

−(p)
j

F
−(p)
j − F

−(p)
j−1

)
,

(3.1b)
in which F±n(p) denotes the p-th component of the positive (negative) flux F±n.
Consequently, the positive flux terms F+n

j+1/2, F+n
j−1/2 can be rewritten as

F+n
j+1/2 = F+n

j +
�x

2
φ0

(F+n
j+1 − F+n

j

�x
,
F+n

j − F+n
j−1

�x

)

= F+n
j +

1
2
φ0(F+n

j+1 − F+n
j , F+n

j − F+n
j−1)

= F+n
j +

1
2
Φ+

j+1/2(F
+n
j − F+n

j−1) ,

(3.2)

where Φ+
j+1/2 = diag(φ+(1)

j+1/2, φ
+(2)
j+1/2, ...φ

+(m)
j+1/2), and

φ
+(p)
j+1/2 = φ0

(F
+n(p)
j+1 − F

+n(p)
j

F
+n(p)
j − F

+n(p)
j−1

)
, for 1 ≤ p ≤ m . (3.3)
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Similarly, we can express F+n
j−1/2 as

F+n
j−1/2 = F+n

j−1 +
1
2
φ0(F+n

j − F+n
j−1, F

+n
j−1 − F+n

j−2)

= F+n
j−1 +

1
2
Φ+

j−1/2(F
+n
j − F+n

j−1) ,
(3.4)

with the diagonal matrix Φ+
j−1/2 = diag(φ+(1)

j−1/2, φ
+(2)
j−1/2, ...φ

+(m)
j−1/2), and

φ
+(p)
j−1/2 = φ0

(F+n
j−1 − F+n

j−2

F+n
j − F+n

j−1

)
for 1 ≤ p ≤ m . (3.5)

It is obvious from the TVD property (1.22) that

0 ≤ φ
+(p)
j+1/2, φ

+(p)
j−1/2 ≤ 2 , for 1 ≤ p ≤ m . (3.6)

Therefore, a combination of (3.2) and (3.4) gives

F+n
j+1/2 − F+n

j−1/2 = (F+n
j − F+n

j−1) +
1
2
Φ̄(F+n

j − F+n
j−1) , (3.7)

where Φ̄ = diag(φ̄+(1), φ̄+(2), φ̄+(3)), and

φ̄+(p) = φ
+(p)
j+1/2 − φ

+(p)
j−1/2 , p = 1, 2, ...,m . (3.8)

Clearly we have −2 ≤ φ̄+(p) ≤ 2, p = 1, 2, ...,m. Now (3.7) becomes

F+n
j+1/2 − F+n

j−1/2 = (I +
1
2
Φ̄+)(F+n

j − F+n
j−1) = Ψ+(F+n

j − F+n
j−1) , (3.9)

where Ψ+ = (I + 1
2 Φ̄+) = diag(ψ+(1), ψ+(2), ψ+(3)), and

ψ+(p) = 1 +
1
2
φ̄+(p) , p = 1, 2, ...,m . (3.10)

Combining the results of (3.6), (3.8), (3.10) shows that 0 ≤ Ψ+ ≤ 2I.
A similar procedure can be applied to rewrite F−, which gives

F−n
j+1/2 = F−n

j+1 −
1
2
φ0(F−n

j+2 − F−n
j+1, F

−n
j+1 − F−n

j )

= F−n
j+1 −

1
2
Φ−

j+1/2(F
−n
j+1 − F−n

j ) ,
(3.11a)

F−n
j−1/2 = F−n

j − 1
2
φ0(F−n

j+1 − F−n
j , F−n

j − F−n
j−1)

= F−n
j − 1

2
Φ−

j−1/2(F
−n
j+1 − F−n

j ) ,
(3.11b)

with
Φ−

j+1/2 = diag(φ−(1)
j+1/2, φ

−(2)
j+1/2, ...φ

−(m)
j+1/2) ,

Φ−
j−1/2 = diag(φ−(1)

j−1/2, φ
−(2)
j−1/2, ...φ

−(m)
j−1/2) ,

(3.11c)

and for p = 1, 2, ...,m,

φ
−(p)
j+1/2 = φ0

(F
−n(p)
j+2 − F

−n(p)
j+1

F
−n(p)
j+1 − F

−n(p)
j

)
, φ

−(p)
j−1/2 = φ0

(F
−n(p)
j − F

−n(p)
j−1

F
−n(p)
j+1 − F

−n(p)
j

)
. (3.12)
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Furthermore, a similar argument shows that 0 ≤ Φ−
j±1/2 ≤ 2I. As a result, we

arrive at

F−n
j+1/2 − F−n

j−1/2 = F−n
j+1 − F−n

j +
1
2
(Φ−

j−1/2 − Φ−
j+1/2)(F

−n
j+1 − F−n

j )

= Ψ−(F−n
j+1 − F−n

j ) ,
(3.13)

with the diagonal matrix

0 ≤ Ψ− = I +
1
2
(Φ−

j−1/2 − Φ−
j+1/2) ≤ 2I . (3.14)

Finally, the combination of (1.26), (3.9), (3.14) leads to

Un+1
j = Un

j − �t

�x
(F+n

j+1/2 − F+n
j−1/2) −

�t

�x
(F−n

j+1/2 − F−n
j−1/2)

= Un
j − �t

�x
Ψ+(F+n

j − F+n
j−1) −

�t

�x
Ψ−(F−n

j+1 − F−n
j ) ,

(3.15)

where 0 ≤ Ψ± ≤ 2I.
The above derivation shows that the second-order FVS method (3.15) is also a

stable perturbation (with the addition of Ψ± between 0 and 2I) of the first-order
scheme in the case of a nonlinear system. Its positivity comes from the splitting of
the flux and the CFL-like conditions stated below.

4. Positivity property of Steger-Warming splitting (SWS). Applying the
flux splitting F+, F− into (1.26), we get the second-order Steger-Warming splitting
scheme:

Un+1
j = Un

j − �t

�x
(F+n

j+1/2 − F+n
j−1/2) −

�t

�x
(F−n

j+1/2 − F−n
j−1/2) , (4.1a)

F+n
j+1/2 = F+n

j +
�x

2
φ0

(F+n
j+1 − F+n

j

�x
,
F+n

j − F+n
j−1

�x

)
,

F−n
j+1/2 = F−n

j+1 +
�x

2
φ0

(F−n
j+2 − F−n

j+1

�x
,
F−n

j+1 − F−n
j

�x

)
,

(4.1b)

where F+ and F− are given by (2.4). Here φ0 is the minmod limiter or V an Leer
limiter, and φ0(a, b) for each component.

Theorem 4.1. The second-order Steger-Warming splitting scheme (4.1a), (4.1b)
is positive under a CFL-like condition

�t

�x
max

(
a|vn

j | + b|cn
j |

)
≤ 1 , (4.2a)

where

a =
γ2 + 2γ − 1

γ
+

2γ − 2
γ

, b =
4
γ

+
γ2 + 4γ − 3

γ(γ − 1)
. (4.2b)

Proof of Theorem 4.1 First, applying the argument in Section 3 gives

Un+1
j = Un

j − �t

�x
(F+n

j+1/2 − F+n
j−1/2) −

�t

�x
(F−n

j+1/2 − F−n
j−1/2)

= Un
j − �t

�x
Ψ+(F+n

j − F+n
j−1) −

�t

�x
Ψ−(F−n

j+1 − F−n
j ) ,

(4.3)
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where 0 ≤ Ψ± ≤ 2I, as indicated in (3.15).
The rewritten forms of F+ and F− as given in Proposition 2.1 can be used

to substitute into (4.3). For conciseness and without loss of generality, we only
consider the three cases: (1) subsonic region with the assumption 0 ≤ vn

i < cn
i , i =

j − 1, j, j + 1; (2) supersonic region with the assumption vn
i ≥ cn

i , i = j − 1, j, j + 1;
(3) sonic transient region with the assumption vn

j−1 ≥ cn
j−1, and 0 ≤ vn

i < cn
i for

i = j, j + 1. The other subsonic, supersonic or transient regions can be dealt with
in the same manner, due to the detailed reformulation of F+, F− given in Section
2.

4.1. Subsonic region. Substitution of (2.11)-(2.14) into (4.3) gives

Un+1
j = Un

j − λΨ+(A+n
j Un

j − A+n
j−1U

n
j−1) − λΨ−(A−n

j+1U
n
j+1 − A−n

j Un
j )

= λΨ+A+n
j−1U

n
j−1 + (−λΨ−A−n

j+1)U
n
j+1 + (I − λΨ+A+n

j + λΨ−A−n
j )Un

j

= C−1U
n
j−1 + C0U

n
j + C1U

n
j+1 ,

(4.4a)
where in the last step we denoted

C−1 = λΨ+A+n
j−1 , C1 = −λΨ−A−n

j+1 , C0 = I − λΨ+A+n
j + λΨ−A−n

j . (4.4b)

Then the remaining work is to confirm that the matrices C−1, C0, C1 satisfy the
positivity property given by (1.36a), (1.36b), (1.36c).

It can be seen that

C−1 =


 c−1

1,1 0 0
0 c−1

2,2 c−1
2,3

0 c−1
3,2 c−1

3,3


 , (4.5a)

c−1
1,1 = λψ+(1)(

2γ − 1
2γ

vn
j−1 +

1
2γ

cn
j−1) ,

c−1
2,2 = λψ+(2)(

5γ − 2 − γ 2

4γ
vn

j−1 +
1
γ

cn
j−1) , c−1

2,3 = λψ+(2) γ − 1
2

,

c−1
3,2 = λψ+(3) 3 − γ

18
(vn

j−1 − cn
j−1)

2 , c−1
3,3 = λψ+(3)(a+

3,3)
n
j−1 ,

(4.5b)

which is symmetrizable and has only non-negative eigenvalues, by the estimates
(2.14), (2.15) and Lemma 2.1.

The matrix C1 has a similar form to that of C−1

C1 =


 c1

1,1 0 0
0 c1

2,2 c1
2,3

0 c1
3,2 c1

3,3


 , (4.6a)

c1
1,1 = λψ−(1) 1

2γ
(cn

j+1 − vn
j+1) ,

c1
2,2 = λψ−(2) 1

4γ

[
4cn

j+1 − (2 − γ 2 + γ)vn
j+1

]
, c1

2,3 = −λψ−(2) γ − 1
2

,

c1
3,2 = −λψ−(3) 3 − γ

18
(vn

j+1 − cn
j+1)

2 , c1
3,3 = λψ−(3)(a−

3,3)
n
j+1 ,

(4.6b)

Again, the estimates (2.14), (2.15) and Lemma 2.1 indicate that C1 is symmetrizable
and has only non-negative eigenvalues.
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The matrix C0 can be represented as

C0 =


 c0

1,1 0 0
0 c0

2,2 c0
2,3

0 c0
3,2 c0

3,3


 , (4.7a)

where

c0
1,1 = 1 − λψ+(1)

(2γ − 1
2γ

vn
j +

1
2γ

cn
j

)
− λψ−(1) 1

2γ
(cn

j − vn
j ) ,

c0
2,2 = 1 − λψ+(2)

(5γ − 2 − γ 2

4γ
vn

j +
1
γ

cn
j

)
− λψ−(2) 1

4γ

(
4cn

j − (2 − γ 2 + γ)vn
j

)
,

c0
2,3 = λ

γ − 1
2

(
−ψ+(2) + ψ−(2)

)
, c0

3,2 = λ
3 − γ

18
(vn

j − cn
j )2

(
−ψ+(3) + ψ−(3)

)
,

c0
3,3 = 1 − λψ+(3)(a+

3,3)
n
j − λψ−(3)(a−

3,3)
n
j .

(4.7b)
The three diagonal elements of C0: c0

1,1, c0
2,2, c0

3,3 can be controlled by the following
argument with the usage of the preliminary estimate (2.17)

c0
1,1 ≥ 0 , if max

j,n
λ
(2(γ − 1)

γ
vn

j +
2
γ

cn
j

)
≤ 1 ,

c0
2,2 ≥ 0 , if max

j,n
λ
(2(γ − 1)

γ
vn

j +
4
γ

cn
j

)
≤ 1 ,

c0
3,3 ≥ 0 , if max

j,n
λ
(γ2 + 2γ − 1

γ
vn

j +
γ2 + 4γ − 3

γ(γ − 1)
cn
j

)
≤ 1 .

(4.8)

In addition, we note that both ψ−(3) − ψ+(3) and ψ−(2) − ψ+(2) are O(�x) so
that c0

2,3, c0
3,2 are O(�t), if some suitable continuity assumption for the numerical

solution is satisfied. Then we conclude that C0 differs O(�t) from a diagonal
positive matrix under such condition. In the general case, we can still get the
positivity and symmetrizable property of C0 by adjusting the coefficients in c0

3,2.
The technical detail is omitted.

Next we verify (1.36b). The direct calculation shows that

C−1 + C0 + C1 =


 s1,1 0 0

0 s2,2 0
0 s3,2 s3,3


 , (4.9a)
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in which the diagonal elements have the following form

s1,1 = 1 + λψ+(1)
(F

+n(1)
j−1

ρn
j−1

− F
+n(1)
j

ρn
j

)
+ λψ−(1)

(F
−n(1)
j

ρn
j

− F
−n(1)
j+1

ρn
j+1

)
,

s2,2 = 1 + λψ+(2)
(
(a+

2,2)
n
j−1 − (a+

2,2)
n
j

)
+ λψ−(2)

(
(a−

2,2)
n
j − (a−

2,2)
n
j+1

)
,

s3,2 = λ
3 − γ

18
ψ+(3)

(
(vn

j−1 − cn
j−1)

2 − (vn
j − cn

j )2
)

,

+λ
3 − γ

18
ψ−(3)

(
(vn

j − cn
j )2 − (vn

j+1 − cn
j+1)

2
)

,

s3,3 = 1 + λψ+(3)
(F

+n(3)
j−1

En
j−1

− F
+n(3)
j

En
j

)
+ λψ−(3)

(F
−n(3)
j

En
j

− F
−n(3)
j+1

En
j+1

)
.

(4.9b)

Since F+, F− are smooth functions of the fluid variables ρ,m,E, it can be concluded
that C−1 + C0 + C1 = I + O(�t) if the numerical solution is Lipschitz continuous
at time tn, thus (1.36b) is satisfied. In addition, Ck = 0 except for K = −1, 0, 1,
which gives that the scheme with the flux splitting (3.1) is positive in the subsonic
region.

4.2. Supersonic case. Substitution of (2.18), (2.19) into (4.3) gives the formula
(4.4) with the same notation of C−1, C0, C1 except that the form of F±, A± has
been changed. Since F−n = 0, A−n = 0, we actually have

Un+1
j = C−1U

n
j−1 + C0U

n
j , (4.10a)

where

C−1 = λΨ+A+n
j−1 , C0 = I − λΨ−A+n

j . (4.10b)

In more detail,

C−1 =




λψ+(1)vn
j−1 0 0

0 λψ+(2) F
+n(2)
j−1

ρn
j−1vn

j−1
0

0 0 λψ+(3)(a+
3,3)

n
j−1


 , (4.11)

C0 =




1 − λψ+(1)vn
j 0 0

0 1 − λψ+(2) F
+n(2)
j

ρn
j vn

j
0

0 0 1 − λψ+(3)(a−
3,3)

n
j


 . (4.12)

The estimate (2.20) and the fact that 0 ≤ Ψ± ≤ 2I ensure the positivity of C−1

and C0 if

λ max
j,n

(
2vn

j +
4
γ

cn
j

)
≤ 1 , (4.14)

which implies that the CFL-like assumption (4.2) is a sufficient condition for (1.36a).
For the verification of (1.36b), a careful computation shows that

C−1 + C0 =


 s1,1 0 0

0 s2,2 0
0 0 s3,3


 , (4.15a)
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with the diagonal elements

s1,1 = 1 + λψ+(1)
(F

+n(1)
j−1

ρn
j−1

− F
+n(1)
j

ρn
j

)
,

s2,2 = 1 + λψ+(2)
( F

+n(2)
j−1

ρn
j−1v

n
j−1

− F
+n(2)
j

ρn
j vn

j

)
,

s3,3 = 1 + λψ+(3)
(F

+n(3)
j−1

En
j−1

− F
+n(3)
j

En
j

)
.

(4.15b)

Therefore, C−1 + C0 = I + O(�t) if Un
j is Lipschitz continuous with respect to x.

Thus the condition (1.36b) is guaranteed.
The condition (1.36c) is obvious since CK = 0 except for K = −1, 0. Then we

finish the proof of the positivity property in the supersonic region.

Remark 3. We observe that both C−1 and C0 are diagonal, hence symmetric pos-
itive, in the supersonic region.

4.3. Sonic transient region. We consider the case such that vn
j−1 ≥ cn

j−1, and
0 ≤ vn

i < cn
i for i = j, j + 1. The previous argument shows that

F
+n(1)
j−1

ρn
j+1

= vn
j−1 ,

F
+n(1)
j

ρn
j

=
2γ − 1

2γ
vn

j +
1
2γ

cn
j ,

F
+n(1)
j+1

ρn
j+1

=
2γ − 1

2γ
vn

j+1 +
1
2γ

cn
j+1 , 0 ≤ F

+n(2)
j−1

mn
j−1

≤ vn
j−1 +

1
γ

cn
j−1 ,

F
+n(2)
j =

(5γ − 2 − γ 2

4γ
vn

j +
1
γ

cn
j

)
mn

j +
γ − 1

2
En

j ,

F
+n(2)
j+1 =

(5γ − 2 − γ 2

4γ
vn

j +
1
γ

cn
j

)
mn

j+1 +
γ − 1

2
En

j+1 ,

F
+n(3)
j =

3 − γ

18
(vn

j − cn
j )2 + (a+

3,3)
n
j En

j ,

F
+n(3)
j+1 =

3 − γ

18
(vn

j+1 − cn
j+1)

2 + (a+
3,3)

n
j+1E

n
j+1 ,

0 ≤ F
+n(3)
j−1

En
j−1

≤ vn
j−1 +

2
γ

cn
j−1 ,

3 − γ

2γ
cn
j ≤ (a+

3,3)
n
j ≤ γ2 + 2γ − 1

2γ
vn

j +
γ + 3
2γ

cn
j ,

3 − γ

2γ
cn
j+1 ≤ (a+

3,3)
n
j+1 ≤ γ2 + 2γ − 1

2γ
vn

j+1 +
γ + 3
2γ

cn
j+1 ,

(4.16a)
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F
−n(1)
j = − 1

2γ
(cn

j − vn
j )ρn

j , F
−n(1)
j+1 = − 1

2γ
(cn

j+1 − vn
j+1)ρ

n
j+1 ,

F
−n(2)
j = − 1

4γ

[
4cn

j − (2 − γ 2 + γ)vn
j

]
mn

j +
γ − 1

2
En

j ,

F
−n(2)
j+1 = − 1

4γ

[
4cn

j+1 − (2 − γ 2 + γ)vn
j+1

]
mn

j+1 +
γ − 1

2
En

j+1 ,

F
−n(3)
j =

3 − γ

18
(vn

j − cn
j )2 + (a−

3,3)
n
j En

j ,

F
−n(3)
j+1 =

3 − γ

18
(vn

j+1 − cn
j+1)

2 + (a−
3,3)

n
j+1E

n
j+1 ,

1
γ − 1

(vn
j − cn

j ) ≤ (a−
3,3)

n
j ≤ 3 − γ

γ + 1
(vn

j − cn
j ) < 0 ,

1
γ − 1

(vn
j+1 − cn

j+1) ≤ (a−
3,3)

n
j+1 ≤ 3 − γ

γ + 1
(vn

j+1 − cn
j+1) < 0 ,

F−n
j−1 = 0 .

(4.16b)

The formula for Un+1
j in (4.4a) involves F+n

j−1, F+n
j , F−n

j and F−n
j+1. At the

supersonic point j − 1 and the subsonic point j + 1, F+ and F− can be expressed
as

F+n
j−1 = A+n

j−1U
n
j−1 , F−n

j+1 = A−n
j+1U

n
j+1 , (4.17)

in which A+n
j−1, A+n

j+1 have the same form as in (2.19), (2.13), respectively, so that
the estimates in (4.16) can be applied. At the transient point j, we assume that
1 − ε ≤ vn

j

cn
j
≤ 1 if the solution is Lipschitz continuous. To facilitate the positivity

argument below, we express F−n
j in a similar form as that of F−n

j+1, F+n
j in a similar

form as that of F+n
j−1, i.e.,

F+n
j = A+n

j Un
j , F−n

j = A−n
j Un

j , (4.18)

in which An
+j , An

−j take the form of

An
+j =


 (a+

1,1)
n
j 0

0 (a+
2,2)

n
j 0

0 0 (a+
3,3)

n
j


 ,

An
−j =


 (a−

1,1)
n
j 0 0

0 (a−
2,2)

n
j

γ−1
2

0 3−γ
18 (vn

j − cn
j )2 (a−

3,3)
n
j


 ,

(4.19a)

(a+
1,1)

n
j =

2γ − 1
2γ

vn
j +

1
2γ

cn
j , (a+

2,2)
n
j =

F
+n(2)
j

mn
j

, (a+
3,3)

n
j =

F
+n(3)
j

En
j

,

(a−
1,1)

n
j = − 1

2γ
(cn

j − vn
j ) , (a−

2,2)
n
j = − 1

4γ

[
4cn

j − (2 − γ 2 + γ)vn
j

]
,

1
γ − 1

(vn
j − cn

j ) ≤ (a−
3,3)

n
j ≤ 3 − γ

γ + 1
(vn

j − cn
j ) < 0 .

(4.19b)
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The estimates in (4.16) are valid to control the above terms except for (a+
2,2)

n
j . The

assumption of Lipschitz continuity of the solution shows that

F
+n(2)
j

mn
j

=
F

+n(2)
j−1

mn
j−1

+ O(h) , which leads to 0 ≤ F
+n(2)
j

mn
j

≤ vn
j +

1
γ

cn
j + O(h) .

(4.20)
Similar to the subsonic and supersonic cases, we have

Un+1
j = C−1U

n
j−1 + C0U

n
j + C1U

n
j+1 , (4.21)

if we denote

C−1 = λΨ+A+n
j−1) , C1 = −λΨ−A−n

j+1 , C0 = I − λΨ+A+n
j + λΨ−A−n

j . (4.22)

In more detail, the matrices C−1, C0, C1 take the following forms

C−1 =




λψ+(1)vn
j−1 0 0

0 λψ+(2) F
+n(2)
j−1

ρn
j−1vn

j−1
0

0 0 λψ+(3)(a+
3,3)

n
j−1


 , (4.23)

C1 =


 c1

1,1 0 0
0 c1

2,2 c1
2,3

0 c1
3,2 c1

3,3


 , (4.24a)

c1
1,1 = λψ−(1) 1

2γ
(cn

j+1 − vn
j+1) ,

c1
2,2 = λψ−(2) 1

4γ

[
4cn

j+1 − (2 − γ 2 + γ)vn
j+1

]
, c1

2,3 = −λψ−(2) γ − 1
2

,

c1
3,2 = −λψ−(3) 3 − γ

18
(vn

j+1 − cn
j+1)

2 , c1
3,3 = λψ−(3)(a−

3,3)
n
j+1 ,

(4.24b)

C0 =


 c0

1,1 0 0
0 c0

2,2 c0
2,3

0 c0
3,2 c0

3,3


 , (4.25a)

with

c0
1,1 = 1 − λψ+(1)

(2γ − 1
2γ

vn
j +

1
2γ

cn
j

)
− λψ−(1) 1

2γ
(cn

j − vn
j ) ,

c0
2,2 = 1 − λψ+(2)

F
+n(2)
j

mn
j

− λψ−(2) 1
4γ

[
4cn

j − (2 − γ 2 + γ)vn
j

]
,

c0
2,3 = λψ−(2) γ − 1

2
, c0

3,2 = λψ−(3) 3 − γ

18
(vn

j − cn
j )2 ,

c0
3,3 = 1 − λψ+(3)

F
+n(3)
j

En
j

− λψ−(3)(a−
3,3)

n
j .

(4.25b)

Using a similar argument as in the subsonic and supersonic regions, we conclude
that C1, C0, C1 are symmetric or symmetrizable and keep non-negative eigenvalues,
and C−1 + C0 + C1 = I + O(�t) if Un

j is Lipschitz continuous. Thus, the scheme
(4.1) with Steger-Warming flux splitting is also positive in the transient region
provided the CFL-like condition (4.2) is satisfied. Theorem 4.1 is proven. �
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4.4. Positivity of density and total energy. In this subsection we prove the sec-
ond order Steger-Warming splitting method preserves positivity of hydrodynamic
variables, including density and total energy. To achieve this, we need to formulate
F+, F− so that the corresponding matrices A+, A− are diagonal with respect to
the first and third components. At a supersonic point, the form of A+, A− is still
the same as (2.19) and the estimate (2.20) is valid. At a subsonic point 0 ≤ v < c,
the corresponding matrices can take another form

A+ =


 a+

1,1 0 0
0 a+

2,2
γ−1

2

0 0 a+
3,3


 , A− =


 a−

1,1 0 0
0 a−

2,2
γ−1

2

0 0 a−
3,3


 , (4.26)

where a±
1,1, a±

2,2 are the same as in (2.14). The third diagonal element a±
3,3 reads

a+
3,3 =

F+(3)

E
=

2γ−1
4γ ρv3 + 3

4γ ρv 2c + 1
2(γ−1)ρvc 2 + 1

2γ(γ−1)ρc3

E
,

a−
3,3 =

F−(3)

E
=

1
4γ ρv3 − 3

4γ ρv 2c + 1
2(γ−1)ρvc 2 − 1

2γ(γ−1)ρc3

E
,

(4.27)

and the following estimate can be derived

0 ≤ a+
3,3 =

F+(3)

E
≤ γ2 + 2γ − 1

2γ
v+

γ + 3
2γ

c , −1
2
c ≤ a−

3,3 =
F−(3)

E
≤ 0 . (4.28)

Then the numerical scheme can be written in the form of either (4.4), (4.10)
or (4.21)-(4.22), at subsonic, supersonic or transient region, respectively. An im-
portant fact we should mention is that in all three cases, subsonic, supersonic or
transient, the three matrices C−1, C0 and C1 are diagonal with respect to the first
and third components. As a result, ρn+1

j and En+1
j can be written as positive

combinations of ρn
j−1, ρn

j , ρn
j+1, and En

j−1, En
j , En

j+1, respectively, i.e.

ρn+1
j = λ−1,1ρ

n
j−1 + λ0,1ρ

n
j + λ1,1ρ

n
j+1 , (4.29)

En+1
j = λ−1,3E

n
j−1 + λ0,3E

n
j + λ1,3E

n
j+1 , (4.30)

where
λ−1,1 = λψ+(1)(a+

1,1)
n
j−1 , λ1,1 = −λψ−(1)(a−

1,1)
n
j+1 ,

λ0,1 = 1 − λψ+(1)(a+
1,1)

n
j + λψ−(1)(a−

1,1)
n
j , λ−1,3 = λψ+(3)(a+

3,3)
n
j−1 ,

λ1,3 = −λψ−(3)(a−
3,3)

n
j+1 , λ0,3 = 1 − λψ+(3)(a+

3,3)
n
j + λψ−(3)(a−

3,3)
n
j .

(4.31)

It can be observed that λi,1, i = −1, 0, 1 and λi,3, i = −1, 0, 1 are non-negative
provided the CFL-like condition

�t

�x
max

(
a|vn

j | + b|cn
j |

)
≤ 1 , (4.32a)

a = max
(2γ − 1

γ
,
γ2 + 2γ − 1

γ
, 2

)
, b = max

( 4
γ

, 2 +
3
γ

)
, (4.32b)

with the usage of the estimates (2.14), (2.20) and (4.28). Then the positivity of
ρn

j and En
j implies the positivity of ρn+1

j and En+1
j . In other words, the numerical

scheme preserves the positivity of density and total energy. However, preservation
of positivity for the pressure is not so obvious. It is an inferior result to [28], [5], in
which the positivity of both the density and the internal energy was established.
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Remark 4. We note that a variety of formulations of F+ and F− are possible
because of the nonlinearity of Euler flux. The matrices A+ and A− as shown in
(4.26) in the subsonic case are not symmetrizable by Lemma 2.1 so that they cannot
be used in the proof of Proposition 4.1. However, such a formulation is very useful
in the proof of the positivity preserving property for the density and energy variables
since the matrices are diagonal with respect to the first and third components, and
the diagonal elements are also bounded by fluid velocity and sound speeds as shown
in (4.27).

5. Positivity of Van Leer Splitting (VLS). The main theorem in this section
is stated below.

Theorem 5.1. The second-order scheme (4.1a),(4.1b) using Van Leer splitting
(2.5) is positive under a CFL-like condition

�t

�x
max

(
a|vn

j | + b|cn
j |

)
≤ 1 , (5.1a)

where

a = max
(
1,

γ − 1
γ

+
γ(2γ 2 + 4γ − 6)

γ + 1

)
, b =

4
γ

+
8γ

γ + 1
+

2(3 − γ)2

3
. (5.1b)

Proof of Theorem 5.1 A similar analysis as in Section 4 can be carried out,
using the same notation, except for the difference of F+, F−. The solution Un+1

j is
expressed as

Un+1
j = Un

j − �t

�x
Ψ+(F+n

j − F+n
j−1) −

�t

�x
Ψ−(F−n

j+1 − F−n
j ) , (5.2)

with 0 ≤ Ψ± ≤ 2I. Denote

C−1 = λΨ+A+n
j−1 , C1 = −λΨ−A−n

j+1 , C0 = I − λΨ+A+n
j − λΨ−A−n

j , (5.3)

then we have
Un+1

j = C−1U
n
j−1 + C0U

n
j + C1U

n
j+1 . (5.4)

The positivity of the second order scheme is based on the rewritten forms of
F+, F− as established in Proposition 2.1. Similar to the presentation in Section
4, we consider the following three cases: (1) subsonic region with 0 ≤ vn

i < cn
i , i =

j − 1, j, j + 1; (2) supersonic region with vn
i ≥ cn

i , i = j − 1, j, j + 1; (3) sonic
transient region with vn

j−1 ≥ cn
j−1, and 0 ≤ vn

i < cn
i for i = j, j + 1. The other

subsonic, supersonic or transient regions can be treated in the same way.

5.1. Subsonic region. In this case, the matrices C−1, C0, C1 read

C−1 =




λψ+(1)(a+
1,1)

n
j1

0 0
0 λψ+(2)(a+

2,2)
n
j−1 λψ+(2) γ−1

2

0 λψ+(3) (3−γ)2

72 (vn
j−1 − cn

j−1)
2 λψ+(3)(a+

3,3)
n
j−1


 ,

(5.5)

C1 =




λψ−(1)(a−
1,1)

n
j+1 0 0

0 λψ−(2)(a−
2,2)

n
j+1 −λψ−(2) γ−1

2

0 λψ−(3) (3−γ)2

72 (vn
j+1 − cn

j+1)
2 λψ−(3)(a−

3,3)
n
j+1


 ,

(5.6)
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C0 =


 c0

1,1 0 0
0 c0

2,2 c0
2,3

0 c0
3,2 c0

3,3


 , (5.7a)

with
c0
1,1 = 1 − λψ+(1)(a+

1,1)
n
j − λψ−(1)(a−

1,1)
n
j ,

c0
2,2 = 1 − λψ+(2)(a+

2,2)
n
j − λψ−(2)(a−

2,2)
n
j ,

c0
2,3 = −λψ+(2) γ − 1

2
+ λψ−(2) γ − 1

2
,

c0
3,3 = 1 − λψ+(3)(a+

3,3)
n
j − λψ−(3)(a−

3,3)
n
j ,

c0
3,2 = −λ

(3 − γ)2)
72

(vn
j − cn

j )2(−ψ+(3) + ψ−(3)) ,

(5.7b)

in which a±
i,i, i = 1, 2, 3 are given by (2.25b).

Using the same argument as in Section 4 and applying the estimate (2.26), we
conclude that

C−1 , C0 , C1 are diagonal or symmetrizable and CK ≥ 0 ,

up to O(�t) difference ,
(5.8)

C−1 + C0 + C1 = I + O(�t) , if Un
j is Lipschitz continuous , (5.9)

under the following conditions

max
j,n

λ
(1

2
|vn

j | +
3
2
cn
j

)
≤ 1 , max

j,n
λ
(γ − 1

γ
|vn

j | +
4
γ

cn
j

)
≤ 1 ,

max
j,n

λ

[
γ(2γ 2 + 4γ − 6)

γ + 1
|vn

j | +
( 8γ

γ + 1
+

2(3 − γ)2

3

)
cn
j

]
≤ 1 , ,

(5.10)

which can be assured by the CFL-like assumption (5.1b). Thus the positivity is
proven.

5.2. Supersonic region. In this case, the splitting flux F+, F− have exactly the
same form as in the Steger-Warming splitting scheme. Therefore, the argument in
Section 4 can be applied here. We omit the detail.

5.3. Sonic transient region. Without loss of generality, we assume vn
j−1 ≥ cn

j−1,
and 0 ≤ vn

i < cn
i for i = j, j +1. Using a similar argument as in the analysis of this

case in Section 4, we can represent C−1, C0 and C1 as the following

C−1 =


 λψ+(1)vn

j−1 0 0
0 λψ+(2)(a+

2,2)
n
j−1 0

0 0 λψ+(3)(a+
3,3)

n
j−1


 , (5.11)

C1 =




λψ−(1)(a−
1,1)

n
j+1 0 0

0 λψ−(2)(a−
2,2)

n
j+1 −λψ−(2) γ−1

2

0 −λψ−(3) (3−γ)2

72 (vn
j+1 − cn

j+1)
2 λψ−(3)(a−

3,3)
n
j+1


 ,

(5.12)

C0 =


 c0

1,1 0 0
0 c0

2,2 c0
2,3

0 c0
3,2 c0

3,3


 , (5.13a)
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with

c0
1,1 = 1 − λψ+(1)

F
+n(1)
j

ρn
j

− λψ−(1)(a−
1,1)

n
j ,

c0
2,2 = 1 − λψ+(2)

F
+n(2)
j

mn
j

− λψ−(2)(a−
2,2)

n
j , c0

2,3 = λψ−(2) γ − 1
2

,

c0
3,3 = 1 − λψ+(3)

F
+n(3)
j

En
j

− λψ−(3)(a−
3,3)

n
j , c0

3,2 = λψ−(3) (3 − γ)2

72
(vn

j − cn
j )2 .

(5.13b)
It is straightforward to verify that (5.8) and (5.9) are valid under the CFL-like

assumption (5.1b). Therefore, Theorem 5.1 is proven. �

5.4. Positivity of density and total energy. Once again, we have to rewrite
the fluxes F+, F− to make the corresponding matrices A+, A− are diagonal with
respect to the first and third components, in the proof of the property that the
second order Van Leer splitting method preserves positivity of density and total
energy. At a supersonic point, the form of A+, A− is still the same as (2.19) and
the estimate (2.20) is valid. At a subsonic point 0 ≤ v < c, the corresponding
matrices can take the same form as in (4.26) and we have the following estimates

0 ≤ a+
1,1 ≤ 1

2
(|v| + c) , −1

4
(c + 3|v|) ≤ a−

1,1 ≤ 0 ,

0 ≤ a+
3,3 =

F+(3)

E
≤ γ(γ2 + 2γ − 3)

2(γ + 1)
|v| + 2γ

γ + 1
c ,

−
(γ(γ 2 + 2γ − 3)

2(γ + 1)
|v| + 2γ

γ + 1
c
)
≤ a−

3,3 =
F−(3)

E
≤ 0 .

(5.14)

As a result, the numerical scheme can be recast in the form of either (4.4), (4.10)
or (4.21)-(4.22). We note that the three matrices C−1, C0 and C1 are diagonal with
respect to the first and third components, in all three cases: subsonic, supersonic or
transient. Consequently, ρn+1

j and En+1
j can be written as positive combinations

of ρn and En, respectively, i.e.,

ρn+1
j = λ−1,1ρ

n
j−1 + λ0,1ρ

n
j + λ1,1ρ

n
j+1 , (5.15)

En+1
j = λ−1,3E

n
j−1 + λ0,3E

n
j + λ1,3E

n
j+1 , (5.16)

with

λ−1,1 = λψ+(1)(a+
1,1)

n
j−1 , λ1,1 = −λψ−(1)(a−

1,1)
n
j+1 ,

λ0,1 = 1 − λψ+(1)(a+
1,1)

n
j + λψ−(1)(a−

1,1)
n
j , λ−1,3 = λψ+(3)(a+

3,3)
n
j−1 ,

λ1,3 = −λψ−(3)(a−
3,3)

n
j+1 , λ0,3 = 1 − λψ+(3)(a+

3,3)
n
j + λψ−(3)(a−

3,3)
n
j .

(5.17)

The combination coefficients λi,1, i = −1, 0, 1, λi,3, i = −1, 0, 1 are non-negative
under the following CFL-like condition

�t

�x
max

(
a|vn

j | + b|cn
j |

)
≤ 1 , (5.18a)
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a = max
(4γ − 1 − γ 2

γ
,
γ(2γ 2 + 4γ − 6)

γ + 1
,
5
2

)
, b = max

( 4
γ

,
8γ

γ + 1
,
γ + 3

γ
,
3
2

)
,

(5.18b)
with the usage of the estimate (5.14). Then the scheme preserves the positivity
of density and energy. Once again, the positivity of internal energy (henceforth
the pressure field) cannot be obtained from the above derivation, thus the result
reported in this section is inferior to that in [28], [5].
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