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TRANSPORT THEORY AND STATISTICAL PHYSICS, 25(3-5), 447-461 (1996) 

K I N E T I C  A N D  V I S C O U S  B O U N D A R Y  LAYERS 
FOR B R O A D W E L L  E Q U A T I O N S  

Jian-Guo Liu Zhouping Xin 

Dept of Mathematics Courant Institute 
Temple University 251 Mercer Street 
Philadelphia, PA 191 22 N ~ I V  Yo&, N Y  10012 

Abstract  

In this paper, we investigate the boundary layer behavior of solutions to the one dimen- 
sional Broadwet1 modet of the nonlinear Boltzrnann equation for small mean free path. 
We consider the analogue of Maxwell’s diffusive and the reflexive boundary conditions. 
I t  is found that even for such a simple model, there are boundary layers due to purely 
kinetic effects which cannot be detected by the corresponding Navier-Stokes system. It 
is also found numerically that a compressive boundary layer i s  not always stable in the 
sense that i t  may detach from the boundary and move into the int,erior of the gas as a 
shock layer. 

1. I N T R O D U C T I O N  

We investigate the boundary layer behavior of the solutions to the one dimensional 
Broadwell model [l] of the nonlinear Boltzinann equation with analogue of Maxwell’s 
diffusive and diffusive-reflexive boundary conditions at  small mean free path. The 
general Boltzmann equation of kinetic theory gives a statistical description of a gas 
of interacting particles. An important property of this  equation is its asymptotic 
equivalence to the Euler or Navier-Stokes equations of the compressible fluid dy- 
namics, in  the limit of small mean free path. One expects that away from initial, 
boundary, and shock layers, the Boltzmann solution should relax t,o its equilibrium 
state (local Maxwellian state) i n  the limit of small mean free path, and the gas 
should be governed by the macroscopic fluid equations as suggested by Hilbert and 
the Chapman-Enskog expansions [a]. Both the formal and rigorous mathematical 
justification of the fluid-dynamic approximations of Boltzmann solutions pose chal- 
lenging open problems i n  most physically interesting cases. Most of the work i n  
the literature concentrate on the initial layer problems for some models and general 
Boltzmann equation [3,4,5,6] with notable exceptions [7,8,9]. The asymptotic behav- 
ior at small mean free path of solutions to the Boltzmann equation in the presence of 
shocks or boundaries remains far from being well-understood (not even formally), 
but see ( [ l O , l l ] ) .  In particular, for the boundary layer problem, a qualitative theory 
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448 LIU AND XIN 

exists for some models of stea.dy Boltzma.nn equations [2], but very little is known 
for the unsteady problems. Since boundary layers are important due to the fact that 
they describe the interactions of the gas molecules with the molecules of the solid 
body, to which one can trace tlie origin of tlie drag exerted by the gas o n  the body 
and the heat transfer between the gas and the solid boundaries, it is very important 
to understand the asymptotic behavior of the microscopic quantities when there are 
interactions of the gas with solid boundaries. It is expected that the fluid approx- 
imation is still valid away from the boundary. One of tlie difficulties in  analyzing 
this problem is due to the complexity of the nonlocal collision operator in the Boltz- 
mann equation which makes it difficult to study the structures of the layer problems 
associated with the formal matched asymptotic analysis. Furthermore, even in the 
case that the structures of these layers are relatively easy to study as for the Broad- 
well model, the fluid dynamic approximation cannot be obtained easily due to the 
stiffness of the limit and weaker dissipation mechanism. 

In this paper, we address the boundary layer problem for the much simpler one 
dimensional Broadwell model of the nonlinear Boltzrnann equation. We will consider 
the analogue of the Maxwell’s diffusive and diffusive-reflexive boundary conditions. 
As a continuation of [12] i n  which we have classified the boundary layers as ei- 
ther expansive or compressive (see also ‘$2.3), and shown that tlie boundary layers 
are nonlinearly stable and the layer effects are localized so that the fluid-dynamics 
approximation is valid away from the boundary provided that the boundary layer 
exists, here first we report some numerical experiments which show surprisingly 
that for both diffusive and diffusive-reflexive boundary conditions, a compressible 
boundary layer is not always stable i n  tlie sense that it may detach from the bound- 
ary and move into the interior of the gas as a shock layer, which we call boundary 
induced shocks (see $3).  We will also show rigorously that even for such a simple 
model, there exist boundary layers due to purely kinetic effects which can not be 
detected by the Chapman-Enskog expansion on the viscous level. This phenomena 
was observed previously in  the steady problems for tlie GBK model 121. We should 
remark that the phenomena of detachment of a compressive boundary layer and the 
resulting induced shock layer is very surprising to us. It will be interesting to find 
out whether this happens for other more practical models of the Boltzmann equation 

The rest of the paper runs as follows. I n  $2, the initial boundary valued prob- 
lems for the Broadwell model and the corresponding model Euler equations are 
formulated. We then solve the boundary layer equations and classify the boundary 
layer in terms of the rate of change of the associated characteristic speeds. The 
numerical experiments which show the detachment of a compressive boundary layer 
is described in detail in 53. Finally, we show that there are Broadwell boundary 
layers which cannot be detected by the model Navier-Stokes equations derived by 
the Chapman-Enskog expansion. This is given i n  54. 

161 * 

2. BOUNDARY LAYERS FOR THE BROADWELL MODEL 

2.1. Initial-Boundary Value Problems for t h e  Broadwell  Model and the 
Corresponding Fluid Equations 
The Broadwell model describes a gas as composed of particles of only six speeds 
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KINETIC AND VISCOUS BOUNDARY LAYERS 449 

with a binary collision law and spatial variation in only one direction. In one space 
dimension, the model takes the following form [l] 

where E is the mean free path, f+,fo, and f- denote the mass densities of gas 
particle with speed 1, 0 and - 1 ,  respectively. In what follows, we will use the vector 
notation f = (f+, fo, f-). The fluid moments are defined as: 

m 
P 

p = f + + 4 f O + f - ,  m = f f - f - ,  u = -  (2.2) 

which are hydrodynamical quantities; the inass density, momentum, and fluid ve- 
locity respectively. The state f is said to be a local Maxwellian [13] if 

p > 0 ,  IuI < c ~ and f+ + f- = p o ( n )  , (2.3) 

where 

By assuming the state is in equilibrium, one has 

which is called the niodel Euler equation that shares many properties of the isentropic 
gas dynamics when the macroscopic speed of the gas is relatively small compared 
with the microscopic speed of the gas particles [13]. The system (2.5) is strictly 
hyperbolic and genuinely nonlinear with characteristic speeds, 

(2.6) 

satisfying 
-1 < X,(u) < 0 < X?(u)  < 1 ,  if JuI < 1 ,  ( 2 . 7 )  

and 
(2.8) 

Using the Chapman-Enskog expansion [13], one can derive that the first order ap- 
proximation of the Broadwell equations is the following model Navier-Stokes equa- 
tions 

8 f P  + aL(Pu) = 0 ,  
(2.9) 

al(P1L) + &(Pd . ) )  = E&(P(u)ax.U) 1 
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(2.10) 

We will consider the Broadwell equations on the region 

o T = { ( 2 , t ) ,  s ( t ) < x < + c o ,  o s t g } ,  (2.11) 

with the moving boundary given by 

2 = - 0 1  = s(l). (2.12) 

To simplify the presentation, we assume 0 < 01 < 1.  We rema,rk here that the cases 
CY = 0 and Q = 1 correspond to the uniform characteristic boundary conditions for 
the Broadwell equations, in  which there are no strong boundary layers so that the 
fluid dynamic approximation can be casily justified. 

The initial data  for (2 .1)  is 

( f+ , fO, f - ) ( . , t=0)  = (f:,f:,9.fi,)(2) (2.13) 

One is a purely diffusive Two types of boundary conditions will be considered. 
boundary condition 

f+ (s(& t )  = f; ( t )  1 f0 (4% t )  = f:(t) . (2.14) 

The other type is a diffusive-reflexive boundary condition 

f + ( S ( t ) , t )  = a(t)f-(.v(t),t) 1 4f0(sP)J) = b ( t ) f - ( s ( t ) , t )  (2.15) 

where (I a.nd b are positive functions. I n  pa.rticula.r, the purely reflexive bounda.ry 
condition corresponds to taking a and B i n  (2.15) such that 

a + a ( l + a + b ) =  1 .  

I n  this case, the mays flux is conserved 011 the boundary. 

The gas near the bounda,ry i n  general is not i n  equilibrium sta.te. In order to 
understatid the leading order behavior of the kinetic bounda.ry layer, one can use the 
stretched varia.ble < = and look lor the solution to (2.1) of the form f(<, t )  = 
f ( y , t ) .  Simple calculations show that up to the leading order, the solution is 
governed by the following system of orclinary differential equations regarding t as 
parameter, 

Corresponding to (2.14), the boundary data  for (2 .16)  at [ = 0 is given by 

while for (2.15), the boundary condition for (2.16) takes the form 

f + ( O )  - a f - ( O )  = 0 ,  -IfO(0) - b J - ( O )  = 0 .  (2.18) 
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KINETIC AND VISCOUS BOUNDARY LAYERS 45 1 

The state at [ = +a is  in the fluid region hence taken to be a local Maxwellian in 
both cases, 

fa = ( f L  fL, f&) ! f X  = (fL)2. (2.19) 

(2.16) is  an integrable system, and the solutions can be found explicitly. As a 
consequence, one can obtain the appropriate boundary condition for the model Euler 
equation (2.5) as follows. 

We star t  with the case associated with the diffusive boundary condition (2.14). 
I t  follows from (2.16) that there exist two functions q ( t )  and q ( t )  independent of 

such that 

(a+ l)f+ + 2af0 = C l ( t ) ,  (a - 1)f- + 2af0 = C ? ( t ) .  (2.20) 

Using the boundary condition (2.17) leads to 

c1 ( t )  = (Q + 1 ) g -  + 2af: . 

On the other hand, the boundary condition (2.19) yields 

(2.21) 

where we have rewritten (2.19) in  terms of the fluid moments. Setting 

(2.23) 

we arrive at the desirable boundary condition for the Euler equations (2.5) as 

Similarly, in the case with diffusive-reflexive boundary condition (2.15), one can 
obtains the boundary condition for (2.5) as 

. ( 5 ( t ) , t )  = U b ( t ) .  (2.25) 

where u b  solves 

(a+ Ub)(l+ a - u(1 - u ) )  = ( C ( l l b )  + a u b ) ( l  - a  - cy(I + a +  B ) )  . (2.26) 

In particular, for the purely reflexive bouiidary condition, one has that 

21(s(1),  I )  = U L ( t )  = -a .  

The initial da t a  for the Euler equations (2.5) is given by 

( p , m ) ( s , O ) =  (f: +4f:,+fin,f: -fi;)b) (2.27) 
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452 LIU AND XIN 

It can be shown easily that the init.ia1-boundary value problems (2.5), (2.27) and 
(2.24) or (2.25) are well posed at least locally in  time. To see this, we first rewrite 
the fluid equations (2.5) in the characteristic form: 

&d+ + A+&++ = 0 , { a& + A-a& = 0, 

in which the functions q5* are the Riemann invariants of the form 

dw 1 { 1”(-) u ( w ) - w 2  

1 /? 

#+(p,.) = p2(u(u) - U?) esp f2 

Setting &(r , t )  = $* ( p ( r ,  t ) ,  U ( T ,  t ) ) ,  one obtains from direct computation that 

- > O .  w+ (2.28) 

Thus the implicit function theorem implies that the inflow d+ can be represented 
in terms of a smooth function of the outflow 4- and the given boundary values. 
Consequently, the initial value problems (2.5), (2.27) and (2.24) or (2.2.5) are well- 
posed. Furthermore, the unique solution is physical i n  the sense that the macroscopic 
density, p(z , t ) ,  is positive at least locally in  time. This follows from the positivity 
of p(z, 0) and the contraction argumeiit. 

2.2. Classifications of the Boundary Layers 
To determine the structure of the boundary layer, we now solve explicitly the system 
of first order ordinary differential equations (2.16) with boundary condition (2.17) 
and (2.19) or (2.18) and (2.19). Substitute (2.20) into the second equation in  (2.16) 
to get 

Define 
2cu 

(2.30) 0 f-05 = -.f& + :lu?+l(Ub + a)pb, 

where (Pb, Ub) = (p ,  u ) ( s ( t ) ,  t ) .  1)ircct calculation shows that 

(2.31) 

and so, (2.29) becomes 

where C, = &. Solving above equation, we obtain that 
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KINETIC AND VISCOUS BOUNDARY LAYERS 453 

(2.33) and (2.20) give tlie corresponding formulas for f+ and f-. Our next lemma 
shows that the boundary layers approach the Maxwellian states exponentially fast 
as the fast variable goes to infinity. 

Lemma. If X ~ ( P L ~ )  < -0, then f!, < f$. Furthermore, zf fz > f!,,, then toe 
have 

If(c) - f,l 5 clft - f ~ l e - ~ ( J ~ - ~ ~ = ) ~ .  (2.34) 

The proof follows direct computation. 

We remark here that for a given boundary data, the condition that ft > f!, is 
automatically satisfied if (Y is suitably small. 

We now turn to the classification of boundary layers. Even though the gas near 
boundary is not i n  equilibrium i n  general, it is appropriate to use the monotonicity 
of Xl (u )  to describe the kinetic boundary layers. We will say that a boundary layers 
is compressive if % < 0; and it is ezpansiue if % 2 0. 

Since the characteristic speeds are monotone functions of the macroscopic veloc- 
ity u (c.f. (2.8)), it is clear that the classification of the boundary layer depends 
on the monotonicity of u along the boundary layer profile. Direct calculation using 
(2.16) shows that 

(2.35) 

It follows from this that there are four different cases depending on the speeds of 
the wall and the fluid: 

Similarly one can study tlie boundary layers for the Navier-Stokes equations (2.9). 
Viscous boundary layers can also be classified as either con1 pressive or expansive. 
However, one can prove that viscous boundary layers exist only when ub > -a, see 
$4. It is very interesting to note that boundary layers, corresponding to Ub 5 -a, are 
purely due to the kinetic effects, which cannot be detected by the Chapman-Enskog 
expansions. This phenomena was observed previously in the steady problems for 
the GBK model (cf. [2]). 

3. BOUNDARY INDUCED SHOCKS 

Now we describe an interesting observation on the bifurcation of boundary layers 
for the Broadwell model. By numerical experiments, we show that the compressive 
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454 LIU AND XIN 

Figure 1. Compressive Boundary Layer. The evolution of the microscopic distribution 
off’ from time t = 0 to t = 0.6. The mean-free-path and the wall speed are taken to 
be ,002 and -0.2, respectively. The boundary data is given by (3.1) .  

boundary layers may detach from the boundary wall at some time and move into the 
gas as fluid shocks, which we will call boundary induced shocks. This  demonstrates 
that  the compressive boundary layers may not be stable and furthermore they may 
affect the gas flow through compressive shocks. On the formal level, the bifurcation 
time is when the boundary data ft approaches f!!- defined in (2.30). 

In the following we expiam the set up for the numerical experiments to demon- 
strate the formation of the compressive boundary layers and their bifurcation into 
shocks moving into the fluid region. The program can be easily reproduced on a 
small PC. 

Our first numerical experiment is the detachment of the compressible boundary 
layer with the purely diffusive boundary conditions. To avoid the complications 
due to interactions among initial, boundary, and shock layers, and concentrate on 
the effects of boundary layers, we will use the Maxwellian state f f ( x , O )  = 0.95, 
fo(z,o) = 0.2, f - (z ,o)  = f o ( z , ~ ) * / j + ( ~ , ~ ) ,  for o < z < 1 as initial microscopic 
distributions. The mean-free-path is taken to be 0.002 and the wall speed is taken 
to be a = 0.2. The boundary data f: and 1,” are taken to be 
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456 LIU AND XIN 

0.55 

0.5 

0.35 

0.3 ,! / / 
0 0.005 0.01 0.015 lime 

Figure 3. Compressive Boundary Layer with diffusive-reRexive boundary condition. 
The evolution of the microscopic distribution of fo from time t = 0.3 to t = 0.4. 
The mean-free-path and the wall speed are taken to be .001 and -0.3, respectively. The 
boundary data is given by (3.2). 

fb+(t) = 0.988 - 0.038e-50t2 , f : ( t )  = 0.01 + 0.19e-50t2 , (3.1) 

for the diffusive boundary condition. We note that the boundary da ta  in (3.1) is 
chosen to be compatible with the initial data  up to first order derivatives, so that 
there is no singularity formation at the corner. 

The evolution from time t = 0 to t = 0.6 of the microscopic distribulation o f f +  is 
displayed in Figure 1. The formulation of the boundary layer and the detachment of 
the boundary layer can be seen clearly. The approximate solution to the Broadwell 
model is computed by a upwind scheme with space grid-size = 0.0005 and CFL 
number 0.7. The  numerical boundary conditions at the right end are  implemented 
by depleting the end values at every time step. The plots is in the moving coordinate. 

To see this more clearly, we take two snapshots at time t = 0.16 and t = 0.6 and 
plot the distributions to,  f+, and f- i n  Figure 2(a-b),  respectively. These figures 
show that the compressible boundary layer has formed at time 0.16 (see Figure 2(b)) 
I t  is seen from Figure 2(d) that  at the time = 0.6 the boundary layer has become a 
well resolved entropy shock and propagated into the fluids. 

These phenomena also occur i n  the diffusive-reflexive boundary condition. Figure 
3 displays the evolution the distribution f f  from time t = 0 to t = 0.7 with the a ( t )  
and b ( t )  i n  (2.15) taken as 
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KINETIC AND VISCOUS BOUNDARY LAYERS 457 

Figure 4. Expansive Boundary Layer. The solid, dashed, and dashdot lines represent 
the microscopic distributions, fo, f+ , and f- , respectively. Figure 4(a)-4(d) correspond 
to time t = 0, 0.16, 0.28, 0.6, respectively. 

a ( t )  = a = 4.5918 + 200(1 - e - 5 t 3 )  , b ( t )  = 0.4357 + 0.1e-5tz . (3.2) 

The initial data is taken to a Maxwellian state f(z,O) = (0.75,0.35,0.1633), for 
0 < I < 1, the mean-free-path is taken to be 0.0001, and a = 0.3, the space grid- 
size = 0.0001, and CFL number 0.7. 

In Figure 4, we demonstrate the formation and stability of the expansive bound- 
ary layer through a n  example. I n  the numerical calculation, the mean-free path and 
the wall speed a.re taken to be 0.002 and -0.2, respectively, the initial data. a.re 
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458 LIU AND XIN 

f+(ztO) = 0.55 + 0 .035~0~(1002)  - 0.22, 

fO(z, 0) = 0.45 - O.O2cos(lOOz) + 0.042,  

f- (z, 0) = fob, O ) ? / f +  (I, 0) , 

and the boundary data  are given by 

fb+(t) = 0.25 + 0.33e-'00t2 , f : ( t )  = 0.8G - 0.43e-100t2 

Then Figure 4(a)-4(d) show the devclopinent of the boundary layer a t  the time 
sequence: t = O , O . l G ,  0.28 and 0.6, respectively. It should be clear that the boundary 
layer is attached to the boundary at all the time. 

4. THE NAVIER-STOKES BOUNDARY LAYERS 

In this section we will show that the boundary layers of Broadwell equations with 
property ub 5 -0 are due to the kinetic effects only, which can not be detected by 
the first order viscous systems (2.9). Consider the Cauchy problem for (2.9) with 
initial data  

p e ( z , 0 )  = p ' " ( a )  nz,(z,O) = d ' ( 2 ) ,  (4.1) 

(4.2) 

and boundary conditions 

p c ( - O t , t )  = pbL"(f), nz,(-at, t )  = 711 bd ( t ) .  

Here the boundary data can be given explicitly i n  terms of those of the Broadwell 
equations and the solution to tlrc init ial-boundary value problem for the model Euler 
equations (2.5), (2.24). However, the speciiic form of the boundary data  is irrelevant 
to our following analysis. 

To study the boundary layer behavior of the solutions to the above viscous prob- 
lem, we use the same stretched variable as before, i.e., < = y, and look for the 
solutions to (4.1) of the form ( p ,  u)(z, t )  = (p, u)(<, t ) .  Then up to the Ieading or- 
der, the boundary layer solutions should satisfy the following system of ordinary 
differential equations: 

The initial value of the boundary layer solution at < = 0 is given in (4.2),  and its 
value at < = 00 is 

(pt u)(mt t )  = k b r  ub)(t) t (4-4) 

where (pb,ub) is the boundary value of the solution to the model Euler equations 
(2.5). 

Theorem. There is no soliition fo the above problem (4.2)- (4.3) and (4.4), if 
ub 5 -0. 
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Figure 5. 

Proof. Otherwise, one ca.n integrate (4 .3)  to get that for some functions c ~ ( t )  and 
~ ( t )  independent of < such that 

P(. + a) = c3 1 

p(au + 4.)) = P ( U ) 8 < .  - c4 9 

(4.5) 

Set 

h(u) = c 3 ( c y u + u ( u ) ) + ~ ~ ( ~ ~ + a ) .  (4.7) 

One then integrates (4.5) to obtain that 

It thus suffices to show that i n  the case 'ub + (Y < 0, there exists no solution to the 
integral equation (4.8) such that 

To this end. one not,es that 

and 
h( -a )  = (.3(Cr(o) - 2) < 0 ,  
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since c3 is negative. It is then clear that h ( u )  h a s  at most two roots. Now if we 
aSsume that there exist solutions to (4.8) with property (4.9), then both of the roots 
of h(u)  must lie on the left of -a. Now we claim that 

h(-1) = (1 - a ) ( c g  - c.!) > 0 (4.10) 

so that there exists only one simple root i n  (-1, -a). In  fact, if (4.10) fails, then 
h(-1) 5 0. This implies that c3 5 c.!, i.e., 

c 3 ( 0 u b  + u(ub)) 
CJ = 2 c3 - (a  + Plb) 

where one has used (4.6). Due to c3 < 0, the above inequality is equivalent to 

(Yub + U ( 7 1 b )  + n + ub 5 0 .  (4.11) 

Set 
f(u) = a t c + u ( u ) + a +  u. 

Easy computation shows that 

f(-1) = 0 ,  j ' (- l)  = o > 0 ,  f"(u) = u"(u )  > 0 .  

It follows that 
f ( u )  > 0 ,  for - 1 < u < -0, 

which contradicts to (4.11). Finally, we show that the fact that there is one simple 
root in (-1,-a) gives the desired contradiction. Note that i n  o u r  case that the 
simple root must be ub. Then if uLd < u b ,  the integral on the left hand side of (4.8) 
is negative due to the fact that h(rr) must be positive i n  (-1, l i b )  which contradicts 
(4.8). Similarly one treats the c u e  that ubd > ub. This completes the argument. 
We remark here that it is easy to check that our analysis also works for the case 
ub + o = 0. The proof of the Theorem is coniplete. 
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