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CONVERGENCE OF THE POINT VORTEX METHOD
FOR 2-D VORTEX SHEET

JIAN-GUO LIU AND ZHOUPING XIN

ABSTRACT. We give an elementary proof of the convergence of the point vor-
tex method (PVM) to a classical weak solution for the two-dimensional incom-
pressible Euler equations with initial vorticity being a finite Radon measure
of distinguished sign and the initial velocity of locally bounded energy. This
includes the important example of vortex sheets, which exhibits the classi-
cal Kelvin-Helmholtz instability. A surprise fact is that although the velocity
fields generated by the point vortex method do not have bounded local kinetic
energy, the limiting velocity field is shown to have a bounded local kinetic
energy.

1. INTRODUCTION

The dynamics of point vortices in an incompressible flow can be described by a
Hamiltonian system, which was known to Helmholtz [14]. When the initial vorticity
is approximated by a cluster of point vortices, this Hamiltonian system can be
used as a computation method for inviscid incompressible flow, known as the point
vortex method (PVM), and was first proposed by Rosenhead in 1932 [20]. This
method is particularly effective for the vortex sheet problem since the vorticity in
this problem is concentrated on a free curve, known as a vortex sheet, and the
PVM has little numerical viscosity. The computation is reduced to a 1-D problem
and the sheet is tracked by the Hamiltonian system. The vortex sheet problem
is an ill-posed problem, known as Kelvin-Helmholtz instability, and a curvature
singularity develops in finite time from an initial smooth vortex sheet [6] [19]. Tt
is observed both experimentally and numerically that the vortex sheet rolls up
immediately after the formation of curvature singularity. This peculiar roll-up
phenomena was successfully computed by Rosenhead in 1932 [20] with the point
vortex method (PVM). In the early 1960’s, G. Birkhoff performed a systematic and
careful computation with the PVM [3]. Nevertheless, the PVM is quite unstable in
general. A vortex blob was introduced by Chorin in 1973 [7] to replace the point
vortex, known as vortex blob method, and was successfully used in a computation
of the flow past cylinder along with two other seminal ideas: creation of vorticity
on the boundary to enforce the no-slip boundary condition and using random walk
to approximate the viscosity. Krasny performed careful studies for the vortex sheet
problem with the vortex blob methods [15].
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The purpose of this paper is to give a simple proof of the convergence of the PVM
for the vortex sheet problem. This is a very singular problem since the vorticity is
only a bounded Random measure in general. The velocity field corresponding to the
limiting vorticity generated by PVM is shown to be a classical weak solution to the
Euler equations. This generalizes the results obtained by the authors for the vortex
blob method in [16], where the main difficulty is the consistency analysis since the
flow may be extremely singular in the roll-up process. The new difficulties in the
analysis of the PVM mainly come from the fact that the velocity fields generated by
the PVM do not have bounded local kinetic energy. The interesting fact is that the
limiting velocity field does indeed have bounded local kinetic energy. It should be
noted that a similar result was presented in [21] with a different approach. However,
we are not able to follow some of the arguments in [21].

It should be noted that the convergence analysis of the PVM also proves the
hydrodynamic limit to the 2-D incompressible fluids of a Hamiltonian system of
interacting particles [11].

We recall that there are many works in the literature on the convergence theory
of the vortex methods; however, most results concern the smooth flows. Some of
the notable results for the vortex blob methods are due to Hald [13], Beale and
Majda [2], and Cottet [§], and the results for the PVM are due to Goodman, Hou,
and Lowengrub [I2]. For the discontinuous flows, we refer to Beale [I], Brenier
and Cottet [4], Caflisch and Lowengrub [5], Liu and Xin [I6] and Schochet [22].
The convergence for a discontinuous Galerkin method with L? vorticity data was
recently obtained by the authors in [I7].

2. EULER EQUATIONS

In the vorticity formulation, the 2-D incompressible Euler equations can be writ-
ten as

(1) Ow+V-(uw) =0,

where the vorticity w = 0y, us — 9z,u; is the curl of the velocity field u(x,t) and
satisfies the Biot-Swart Law

(2) u(z,t) = (Kxw)(x,t),
with the kernel K given by

) (@) = s (mn,m1) = 52
T oz P T e
which is the curl of the fundamental solution
1
(4) G(z) = 5-Inle]

to the 2-D Laplace equation.

3. INITIAL DATA
We will consider the Cauchy problem for (1) and (2) with initial data
(5) w(x,0) = wo(x) .
It will be assumed thoughout this paper that the initial vorticity satisfies the fol-

lowing conditions:
(1) wo Z 0.
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(il) wo has compact support or [ |z|?wo(x)dz < C.
(iii) wo € M (R?) N H,,

oL(R?), is a bounded Randon measure.
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One checks easily that vortex sheet data satisfy these three conditions, see [10].

4. GRIDS

We cover the support of the initial vorticity by nonoverlapping squares, R;, with
side length h and centered at o; = jh with j € Z x Z. Denote by &; the total

amount of the initial vorticity in Rj, i.e.,

(6) &= [ wi@)de.

R;

One can then verify the following lemma easily.

Lemma 1. The following properties hold:

(7) > &layl? < €
J

) B, h) = maxg; < Cllng) s

N

(9) == && (o —ay) <C.
i#£]

Proof. (1). (7) follows from the assumption (ii) on the initial vorticity that wg in

Section 3.

(ii). To prove (8), one chooses a nonnegative function y; € C§°(R?) which is

equal to one on the cell R; as follows:

1 if |z — x;] < hv/2,
2lo —&;|—log(h .
xj(®) = elE Tt b2 < | — ] < VD,

0 if |z — x| > Vh,

after some slight modification to fit into C§°(R?). Directly, computation gives
i 2
2 —2
Vx;|? de =2 — =i
/ IVl de = 2m /hﬁ rlog(2h) log(2h)
Thus we have
1.2

max ;i < Clln )

Hence

[N

1
maxg; < max [ x;(@un(@) dw < max |y m ol 2 < Clln )

due to the assumption that wo € M(R?*) N H,}(R?). Thus, (8) follows.
(ili). We now turn to (9). First we show that

//wo x)wo(y)G(x —y)dedy < C.
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Since the initial vorticity is assumed to have compact support and wy € H,
has

1
o s one

Jo=— /(G*wo)(w) wo(x)de < CHonHl:cl ||G>ku)0||Hl1Uc
< C1[|[VH(Gxwo)ll 1z, + Cil|Grwollpz, < Co.
In the last step above, we used the following simple estimate

[Gxwollrz < llwollr [Glirz, < C

loc

where and from now on, we use C to denote any generic positive constant indepen-
dent of h.
Next, it is not too hard to verify directly that

- > & (s — )

i |oi—ay]<1/2

Y ln(ai—aj)/R'/R.wo(:l:)wo(y)dwdy

i;éj,\a,-faj|§1/2

IN

o Y[ [ @iy dedy < C.

i, oi—ay|<1/2” Bi VB

On the other hand, (7) yields that
- Y Gg5G@i—z) < Y GG+l + ) < C.

|aj—a;[>1/2 loi—aj|>1/2
Collecting all the estimates gives (9). The proof of the lemma is complete. O

Remark 1. In our previous analysis of the vortex blob method in [I6], the condi-
tion on the computational grid size h < Ce, where € is the blob size, it can be
easily checked that this requirement can now be removed thanks to the estimate
(9). However, when ¢ = 0, the approximate solution generated by the PVM has
unbounded local kinetic energy. Thus the analysis in [16] cannot be applied directly
here. This is the main new difficulty. Nevertheless, we will show in Section 11 that
the limiting velocity indeed has bounded local kinetic energy.

5. POINT VORTEX METHOD

The classical point vortex method, approximating (1) and (2), is to look for
particle paths «;(¢) which solve the following problem:

d
(10) %) = > &K (mi(t) —xo(t), x;(0) =ay.
£
It is easy to show that the finite system of ordinary differential equations (10) has
a unique global solution. Furthermore, the system in (10) is a Hamiltonian system
with the Hamiltonian given by

(11) In(t) ==Y & &Gy —x).
J#L



POINT VORTEX METHOD FOR VORTEX SHEET 599

Indeed, one can show that
(12) Ih(t)EIh(O)EI()§C

for all ¢, where the first inequality can be verified directly by using the symmetry
properties of VG and K, and the trivial identity that Va-V+b = —V+a-Vb for any
smooth functions a and b, while the last inequality has been proved in the previous
lemma.

6. THE BIRKHOFF-ROTT EQUATION

In both theoretical and numerical analysis and engineering applications [3} 6l 19]
20)], the evolution of the vortex sheets is studied through the well-known Birkhoff-
Rott equation which is an integro-differential equation derived from the Euler equa-
tions using the fact that the vorticity vanishes except on the vortex sheet [3]. Direct
discretization of the Birkhoff-Rott equation gives exactly same approximation as
the one in (10) by discretizing the Euler equations except that the index j in (6) and
(10) are reduced to one-dimension and hence the computation is extremely efficient
[15]. It is noted that the validity of the Birkhoff-Rott equation after the formation
of a singularity is not well understood. The convergence result in [16] to a classical
weak solution for Krasny’s desingularization procedure of the Birkhoff-Rott equa-
tion gives an appropriate interpretation of this integro-differential equation even
past the formation of a singularity.

We refer to Caflisch [6] and Moore [19] for the analysis of the Birkhoff-Rott
equation in the class of analytic functions. Assuming the sheet is analytic and close
to horizontal, Caflisch and Lowengrub [5] show that the vortex blob approximation
to the sheet converges strongly for a time interval before the singularity formation.

7. WEAK FORM

In order to study the convergence of the PVM, we need a weak PDE formulation
of the Hamiltonian system (10). To this end, one defines the vorticity measure and
the corresponding velocity field and stream function, respectively, as

= ijé(w—wj(t)),
Zf} w—m] ))
Z§J :1:—:1:3 ))

(13)

It follows from (10) that for any ¢(x,t) € C3(R? x R,), one has

9(¢, w) :Zé}' (Org(a;(t), 1) + Vo(z; (1), t)Z;)

= Zejam )+ V()8 K (25 — 20)
J#L
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Denote by I the second-order term on the right-hand side of the above equation.
It is then easy to verify that

I = Z@&/Vcﬁ(:ﬂ) cK(x —x¢)d(x — x;) de
J#L

— 526 [ Ve Vo) K@ - 2) 0 K@ - o) da.
J#e

Define a matrix-valued function K(y, z;60) by

(15) K(y,z;w=/e<w>K<w—y>®K<w—z>dw, y#z,

for any 0(x) € C5°(R?). Then

I = —% > &k (’Cu(ﬂcj, 0, (05 — 07)9) + (a2 — K ) (5, 2, 3;cy¢)>
J#e
1

=-3 /y;ez wh(y)wh(z)(lcw(’yaza (07 — 95)0)

+ (ICQQ - Kll)(y7 z, a:cy(b)) dy dz.

Integrating in time leads to the following weak form of the point vortex method in
terms of only the vorticity field:

1
(Orp,wn) + 5 wh(Y)wn(2) | Ki2(y, 2, (07 — 82)9)
(16) 2 /Wz <

(Ko /Cn)(y,z,&xycﬁ)) dydz =0

It should be clear now from the weak formulation (16) that in order to study the
convergence of the PVM, it is necessary to estimate the singularities of the kernel
K and the concentration property of the vorticity measures involved in the second
term of (16). The weak form (16) was first formulated by Goodman, Hou, and
Lowengrub in [I2], and is analogous to the continuous counterpart in Diperna and
Majda [I0] and Delort [9] (see also [21]) where they established the theory for the
weak solution to the 2-D Euler equations.

8. KERNEL ESTIMATE

The necessary estimates on the singular kernel I defined in (15) are provided in
the following lemma, and its proof can be found in [16], see also [9].

Lemma 2. For |y — z| < 1/2, it holds that

1
(17) |K11(y, 2 0)| + |Ka2(y, 2:0)| < Clnm ;

(18) |IC12(y,z;9)| + "C21(y7z§9)| <C,
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(19) }’Cll(yvz;g) - ,C22(yvz;9)| < Ca

where C' depends only on 6.

9. ESTIMATE ON MAXIMAL VORTICITY FUNCTION

As in [16], the local concentration behavior of the sequence of vorticity measures
wp, is analyzed by studying the maximal vorticity function M, (w) of DiPerna and
Majda [10], defined for any Radon measure w as

1
(20) M, (w) = sup / lw(y,t)| dy for0<r<—.
xeR2,0<t<T J|y—x|<r 2
Hence,
1
(21) M, (wp) = sup Z &, forO<r 5 :

wER2,0<t§T |z;—x|<r

Now we estimate the maximal vorticity function by using the special Hamiltonian
structure of the particle system (10), see (11) and (12). Indeed, it follows from (11)
and (12) that

- Z & & In(x; —xp) =1n(t)+ Z & & In(x; — xp)

JAL| X5 —Te|<1/2 ;=2 |>1/2

SO+ & & (L+ |z + |zel?) < Cs.
.l

Here we have also used Lemma 1 and the conservation of the second moment for
the discrete vorticity field, i.e. 35, & [x;(t)* = 32, & lay|?, which can be verified
directly. This gives

> gj@ln#gc.

AT~ <1/2 @ — @l

This, together with Lemma 1, shows that

> fjﬁeln% < > €g£eln +Zg ln

| —Te|<r JAL|T;—T|<r
(22) B
<C+CnY) i
- h r

As a direct consequence, we know that any two particles will never run into each
other. More importantly, (22) implies the following optimal decay estimate on the
maximal vorticity function:

177 1
(23) M, (wp) < CY/(In E) —— —0 asnr,h—0.

Inr
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10. CONVERGENCE ANALYSIS

We are now in the position to give the convergence analysis for the PVM. Since
wy, admits the uniform bound

<
(24) Jnax /}R2 wp(x,t)de < C,

there exists an w € L>([0,T], M (R?) N H,!(R?)) such that passing to a subse-

quence, which we still denote as {wp}, one has
(25) wp —w in M(R*xRy).

Furthermore, since wy, > 0, so w > 0. Choose a nonnegative function x € C§° (]RQ)
which is equal to one on the ball {x : || < r}, and equal to zero when |z| > 2r.
Then, one obtains that

(26) M (w) < / (r)w(x)der = 11m/ x)dx < hm Mgr(u}h) S

For any given 0 < r < 1/2, K12(y, 2, (92 — 02)¢) and (K11 — Ka2)(y, 2, 0zy¢) are
continuous bounded functions on the region |y — z| > r, as can be checked easily,
and they are bounded for |y — z| < r, which follows Lemma 2. Therefore, taking

the limit in (16) and using the estimates (23) and (26), one can show that for any
d(z,t) € C3(R? x R,), it holds that

(Orp,w // (’Clz(% (02— 02)9)

(27)
+ (K2 — K11)(y, 2, (%ycﬁ)) dydz =0.

Thus, in terms of weak formulation, we have shown that the limiting vorticity field
yields a weak solution to the 2-D incompressible Euler equations. To recover the
classical weak solution in terms of the velocity variables, we need an estimate on
local kinetic energy.

11. ESTIMATE ON LOCAL KINETIC ENERGY

The limiting velocity can be defined as
(28) u=Kx*w.
We will show that u is a classical weak solution in the sense which will be clear at

the end of this subsection, see also [L0} [16]. We first need show that u is bounded
in L120c' To this end, it suffices to derive the bound

1
(29) /y L S Elos oy dz <.
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Indeed, choosing a nonnegative function x € C§°(R?), which is equal to one on the
ball {z : || < R}, one may bound the local kinetic energy as

? 2
/w<R ) de/X(m) u(z, 1) dz
:// dydzw(y)w(z)/x(a:)K(gc_y),K(x_z)dm.

:// dydzw(y)w(z)(lCn +IC22)(y,Z,X)

= </|y_z<r+/|y—zzr> dy dzw(y)w(z) <IC11 +IC22>(1'J,Z;X)

=L +1I.

For I, since there is no singularity in the kernel for |y — z| > r, it is evident that
I, < C. As for I, one may use Lemma 2 to obtain

L <C w(y)w(z)In

ly—z|<r ly — 2|

where (17) and (29) have been used.
It remains to prove (29). Denote the measure p = dw(y)dw(z). For any § > 0
fixed, one has that

1 1
1og7du:/ w(y)w(z)log ————— dy dz
Jywe s = o, e o

dydz < C.

dydz < C,

1
= lim wh(Y)wr(z)log ————
h=0 Jjy—z|<r () ly — 2| +¢

It follows from
lim M, (w) — 0
r—0

that the subset {(y, z) |y = z} has zero measure in p. Hence
1 .
— log —— a.e. in p.
ly — 2|
Note also that log m is monotonically increasing as § — 0. So Levi’s lemma
implies that

lim log —————
0 BTy — 2+

lim [ lo L / lo 1
- - .
5—0 g|y—z|+6u g|y—z|u
Consequently, (29) follows by taking limit of § — 0 in (30).
Thus, we have shown that the limiting velocity field u has local finite energy,

ie.,

(31) u(x,t) € L}

loc *

It should be noted that (31) is a remarkable fact since the approximating velocity
fields wp,(x,t) themselves are unbounded in L? . It is now easy to verify that
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u(x,t) € L12OC is a classical weak solution to the 2-D incompressible Euler equation
in the sense that

(i) for all test functions 6(x,t) € C§°(R? x (0, 7)),

//(VLQV“‘L (Ve Vh): (U®u)> da dt = 0,

(i) div w = 0 in the sense of distribution,
(iii) w(x,t) € Lip([0,T), H;;J"(R?)) for some m > 0 and u(x,0) = uo(x),
provided that the condition in (iii) is satisfied, which will be verified in the next

section.

12. ESTIMATE IN TIME

It remains to prove that u(z, t) € Lip([0,T), H,3(R?)). It suffices to show that

loc
up(z,t) € Lip([0,T), Hy,?(R?)) uniformly (see [T6]). Let § = 6(z) € C§°(R?). One
then has

/ V0 0pup, dx = —0:(0 wp)

L 2 a2 _
— 5/y;éz wh(y)wh(z)<lC12(y7z,(8x 92)0) + (Kaz /Cn)(y,z,(‘)xye)) dy dz

1
g | el (Kaly, 202 - 810) + 06 — Ky, 2,00,0) ) dy iz,
y#2

as h — 0. It follows from the Sobolev’s embedding lemma that

‘/VLga{uh dx < CHVJ‘gHWl,m(RQ) < CHVLQHHs(H@).

Taking the limit in the above estimate, we have

(32) ‘/v%)atudm < C|V0| 3 ge) -

Since wu is divergence free, (32) implies that

(33) (| Orul] ) <C.

Lo= ([0.7), H 2 (B2)
Consequently, one has u(x,t) € Lip([O,T),ngf(RQ)), and so u(x,t) is a desired
classical weak solution.

13. CONVERGENCE THEOREM

Now we can summarize the above analysis into a theorem.

Theorem 1. Suppose wy > 0, compactly supported, and bounded in M(R?) N

HI;} (R?%). Let wy, be the vorticity measures generated by the point vortex method.

Then subsequence wy, converges weakly to w € M(R?). Furthermore, let u = K * w.
Then w € L>([0,T), L} .(R?)) N Lip([0,T), H;;2(R?)) and is a classical weak solu-

loc loc
tion to the Euler equation with the same initial data.
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