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L!-STABILITY OF STATIONARY DISCRETE SHOCKS

JIAN-GUO LIU AND ZHOUPING XIN

ABSTRACT. The nonlinear stability in the LP-norm, p > 1, of stationary weak
discrete shocks for the Lax-Friedrichs scheme approximating general m x m
systems of nonlinear hyperbolic conservation laws is proved, provided that the
summations of the initial perturbations equal zero. The result is proved by
using both a weighted estimate and characteristic energy method based on the
internal structures of the discrete shocks and the essential monotonicity of the
Lax-Friedrichs scheme.

1. INTRODUCTION

In this paper, we study the asymptotic stability of the Lax-Friedrichs scheme,

(1.1) Wt —ul + 5 (f(uyy) — fW)_)) = §(uf = 2uf +uf_y),
approximating general systems of nonlinear conservation laws,
(1.2) u+ f(u)x=0,
for a stationary shock solution,
u_ x<0
1.3a ulx,t) = ’ ’
(1.38) wo={i T

where u = u(x, t) € R™, f is a smooth nonlinear mapping from R™” to R™,
uy are two constant vectors in R™ satisfying the Rankine-Hugoniot condition,

(1.3b) Su-) = f(us),
and the Lax entropy condition,
(1.3¢c) Ar(uy) <0< Ag(u-),

for a genuinely nonlinear field & ; uj is an approximation of u(x;, t,), Xx; =
jAx and t, = nAt, with Ax and At being the spatial and temporal grid sizes;
v is a constant satisfying 0 < v < 1, and the temporal and spatial grid ratio
A = At/Ax satisfies a Courant-Friedrichs-Levy condition,

(1.4) Asup|A,(u)| <v.
u
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234 JIAN-GUO LIU AND ZHOUPING XIN

We shall assume that the system in (1.2) is strictly hyperbolic in the sense
that at each state ¥ € R™ the Jacobian V f(u) has m real and distinct eigen-
values, A1(u) < A(u) < -+ < Am(u), with corresponding left and right eigen-
vectors /,(u) and r,(u), respectively, and that each characteristic field is ei-
ther genuinely nonlinear or linear degenerate in the sense of Lax [5], i.e., for
u=1,..., m,the eigenvector r, satisfies VA,-r, =1 or Vi,-r, =0. In the
following, we normalize the eigenvectors so that /,(u)ri(u) = d, and define
the m x m matrices L(u), R(u) and A(u) by

L) =L@, .., @), R = (n@), ..., @),
A(u) = diag(A(u), ..., Am(u)).

The main goal of this paper is to show the following nonlinear stability result
on the stationary shock profile solution ¢; of (1.1), i.e.,

(1.5a) AMf(@js1) = f(dj-1)) = v(djs1 — 28) + dj—1)
(1.5b) d)j—»ui as j — +oo0,
which is called a stationary discrete shock. Its existence has been proved by

Majda and Ralston [8] and compressibility and asymptotic properties for it are
established in [7].

Theorem 1.1. Suppose that (1.2) is a strictly hyperbolic system and the k-
characteristic field is genuinely nonlinear. Let ¢; be the stationary discrete shock
profile (1.5) in k-field connecting u, to u_. We assume

(1.6a) > W-¢)=0,
Jj=—o00
(1.6b) e=u,—u_|<c,
and
(1.6c) S A+ -2 <ca,
Jj=—o00

for some (suitably small) positive constants c¢; and c,. Then, there exists a
unique global solution, u", to the Lax-Friedrichs scheme, (1.1) with initial data

Y, and it satisfies

oo

(1.7) lim > lup—¢;P =0
Jj=—o0

forall p>1 and

1.8 su u? — ¢i| < 0.

1 3 -

Remark 1.1. One would expect that stability estimate (1.8) in Theorem 1.1
implies the following error estimate for the Lax-Friedrichs scheme (1.1) ap-
proximating systems of conservation laws (1.2) with stationary shock solution
u(x, t) of form (1.3):

(1.9) u(-, t) = un(-, |, < Ch,
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where u,(x, t) is the approximate solution and C is a positive constant inde-
pendent of the grid size 4. The error estimate in (1.9) shall be optimal. It has
been achieved by Jennings in the scalar case [3]. It remains to combine some
initial-layer estimates with (1.8) to obtain (1.9). This is left for the future. The
L!'-norm is the natural norm in which to measure the stability of the shock
waves; it is of both mathematical and physical significance. So far as we know,
our L'-stability result in Theorem 1.1 is the first one in L!-stability of shock
waves for systems of conservation laws.

Remark 1.2. We also study the nonlinear stability of nonstationary discrete
shocks for the Lax-Friedrichs scheme approximating general m x m systems of
nonlinear hyperbolic conservation laws. Both single discrete shock and multiple
discrete shock are proved nonlinearly stable. This will appear in a forthcoming
paper [7]. Because of the complicated structure of nonstationary discrete shocks,
the analysis in [7] is technically much more involved. The main contribution of
this article is to present a different (and simpler) method in the case of stationary
discrete shock.

Remark 1.3. In the original Lax-Friedrichs scheme [5], v = 1. However, we do
not expect asymptotic stability of the discrete shock profiles in this case. In fact,
we can easily verify that stationary discrete shock profiles of the Lax-Friedrichs
scheme for the scalar equations are not asymptotically stable. We note that the
theorem of Jennings for the scalar equation also excludes the case v =1 [3].

Our stability analysis is strongly motivated by the nonlinear stability of vis-

cous shock waves for systems of viscous hyperbolic conservation laws of the
form
(1.10) U+ f(U)x =V txy, v>0.
They have been extensively studied in the last three decades. Recently, impor-
tant progress has been made by Goodman [1], Kawashima and Matsumura [4],
Liu [6], and Szepessy and Xin [13] in the study of asymptotic stability of viscous
shock profiles for a large class of viscous hyperbolic conservation laws. They
showed that a weak viscous shock profile is nonlinearly stable in the L2-norm
in the sense that a small initial disturbance, under suitable restriction, will die
out as time tends to infinity. In the scalar case, Osher and Ralston [10] proved
L!-stability for viscous shocks.

The study of existence and stability of discrete shocks is important in un-
derstanding the convergence behavior of numerical shock computations. Jen-
nings [3] proved the stability of discrete shock profiles for the general first-order
monotone schemes for the scalar conservation laws, see also [2]. The existence
of discrete shock profiles of first-order accurate finite difference methods for sys-
tems of conservation laws was established by Majda and Ralston [8] by means
of the center manifold theorem, see also [9]. Smyrlis [11] proved stability of
a scalar stationary discrete shock wave for the Lax-Wendroff scheme. Szepessy
[12] studied the existence and L2-stability of stationary discrete shocks for a
first-order implicit streamline diffusion finite element method for systems of
conservation laws.

2. STABILITY ANALYSIS

In this section we proceed to prove Theorem 1.1—the nonlinear stability
of stationary discrete shocks. We first use a weighted energy method to get
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an a priori estimate in the LZ-norm. In contrast with the scalar case, owing
to the coupling of waves from different characteristic families, even the linear
stability analysis in the L!-norm is very difficult. We overcome this difficulty
by carefully choosing weights so that propagation of waves in the principal
direction dominates waves in transversal wave directions. The former can be
estimated in the L!-norm by using the essential monotonicity of the scheme in
the principal direction. This, together with the L2-nonlinear stability analysis,
yields the desired result.

We first reformulate the problem as follows. Let uj bea solution of the Lax-
Friedrichs scheme (1.1) with initial data u? satisfying (1.6a), which is assumed
toexistup to n < n; < +oo. Denote by ¢; the stationary discrete shock profile
in the k-field whose existence has been proved in [8]. Setting

J
(2.1) Z ul — i)

we obtain after subtracting (1.5a) from (1.1), summing up the resulting expres-
sion from —oco to j and using some manipulations that

ot — o ‘Vf(¢j+1)(17,+1 0}) + in(db‘)("" - 0j_y)
(2.2) %Q(¢j+1 , 0 — 07+ 50(8;, 07 —0]_))
= 5(0}, - 207 + 27;"1—1) )
where
(2.3a) Q(p, u—¢) = f(u) - f(¢) = Vf(#)(u - ¢)
satisfies the estimate
(2.3b) 10(¢, u—¢)| < O(1)|u— |

for u on any bounded set. Using the notations
Li=L(¢j), Aj=A;), R;j=R(;), 6]=0(¢;,7}-1/,),

we may rewrite system (2.2) in terms of characteristic variables

vi = L0}
as
(2.4) vJ"lH_UJ"l"'%AHl( T~ V) + AA( — v ) = 50 — 207 + v 1)
= 4Aj(Ljs1 — Li-1))Rjv) +ef ,
where
e,'-’=§( jr1 =N (Ljyi = L) Rv} = S Lj (Rjs1 — Rj) Aju1 (V] —v])
L; (Rj1 — Rj)Aj1 (Lj1 — Lj)Rjvy
2.5) ALy = L) Rim (0 = v)
Aj(Li—Lj_1)(R, - R;— 1)1) + 45 Lj(Rj41 — R)(’UHI U")
L;(Rj — Rj_y) (v} j—1)+§LJ(RJ+l 2Rj + Rj_1) v}

L; (6] +0)).
Before we derive our energy estimate, we first state the following theorem on
compressibility and asymptotic behavior of stationary discrete shocks.
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Theorem 2.1 [7]). Suppose that u_ and u, satisfy (1.3b—c) and |u_u,| = ¢ is
small. Then there is a stationary discrete shock profile to (1.5) which satisfies,
forall j =0, £1,

(2.6a) Ak(9)) > A (@j+1)
(2.6b) il — bjr1| < (@) — Ae(djs1) < 2|dj — djna| 5
(2.6¢) |Pjs1 —2¢; + dj_1| < c3e|Pjp1 — &)l ,

where ¢, ¢y, and c3 are positive constants independent of ¢ and j.

We choose weights

(273) Wj=diag{w1,j,wz,j,...,wm,j},
as
. o Me i — ki
(2.7b) wu,j = 2 [ (1—cz,ﬂw), u#k
|/1u J| = lu,i
and
(2.7C) 'LUk,j =1 ,
where ¢;,, and ¢, , are suitable positive constants to be chosen. We denote

V7 = (v -Wyvr)' 2.

The specific choice of weights in (2.7) is made to insure that waves propagating
in the transversal directions can be dominated by waves propagating in the
principal direction, which is controllable owing to the compressibility of the
discrete shock profiles (2.6a). More precisely, we have the following lemma.

Lemma 2.1. Let W, be the weights defined by (2.7). Then we can choose c; ,
and ¢, , appropriately so that

AWsiAjsr = WiA;) = AWiA;(Ljss — Li-)R;
+ 5(Wjp1 = 2W + Wi_1) < —4(Ak,j — Ak, js) W,

provided that ¢ is suitably small.

(2.8)

We delay the proof of Lemma 2.1 until the end of this section. Assuming
Lemma 2.1, we can estimate the solution to (2.4) as follows. Taking the scalar
product of system (2.4) with 207w, and using summation by parts, we obtain

Yo = D i + 5 D =) (W + W) (] — )
J J J
=Y AW A = WiA)) + 5 (W1 = 2W + Wi_y)

29) + AWjAj(Ljs1 — Li—1)R))v!
+ DM0fT = 0l =22 07 0% = Wi Ay (0 = )

+22v” We
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where we have used the identities
23 v W],y = 207 +v)) = Z(vm ) (W + W) (0fy = 0))
J

+Zv Wit = 2W + W )u"

and
IS = [0F L = 207 - Wi — o) + ot — vt 2

Taking into account Lemma 2.1, we obtam from (2.9) that
P Uy D S
J J
+ % Z(}'k J A-k j+1 I'U |1.u 2 Z |Uj+1

J

(2.10)
< Z o+t — o2 - sz (W) = Wia)Ajpa (0, — 07)
+ 2Zvj Wier.
J
Set
1/2
(2.11) M(n;) = sup (Z |v;.'|2)
n<n; I
and assume that M(n;) is small. Clearly, we have
(2.12) sup [v}| < M(ny).
n,j

It follows from equation (2.4) that
0]~ ]|y < 3 (AL + v + O(e) + M(n1)) (|0],; = 0]l + [0) = v |u)
+ O(I)I(;Lk,j - 1k,j+1)vf|w )
where we have used the bound (see (2.3))
(2.13) 1071 < O() (jv] = v}y * + (i, j = Aej1)* [V P)
Consequently, we have

2
Dot =l < ES (A, — Ak ) I
J J

(2.14) + ((AA|L +v)* + O(e) + O(1) M (ny))
X Z |vj"1+1 - 'U]n|12u s
J

where we have used Theorem 2.1.
Next, using (2.5), (2.13), and Theorem 2.1, one can get after some careful

manipulations that

dolopWiell <> (i, = A, j) 0P
(2.15) J J
+(0(e) + O(1) M(ny)) Y " vl — w2,
J
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In fact, two typical terms involved in establishing (2.15) can be estimated as
follows:

V] - WiL; (Rjs1 = R) Ajir (Vg = UJ")I
< O(1) 0 = hi, o) [0 - Wy Wy = 0]
< L, = A, )V + O, — 0TI,
and
v} - WiL;07| < O()|Wjvf|[v] — v}y |2 + O(e) (A, = Ak, j41)I0] 13
<O(1) M(ny)|v} — U}'+1|2w +0(e)(Ak,j — Ak, 1) V13, -
Finally, we collect the estimates (2.10), (2.14), and (2.15) to obtain

DI =S TR A (ke = Ak en) 071
J J J
(2.16) + (v = (A= +v)* = O(e) - O(1) M(n)) Y o, — 7|3
J

<O M(my) > (Ak,j = e, 1) 0713 -
J
Since v < 1 and our weights are bounded both above and below by some
positive constants, and by taking & and A suitably small, we have proved the
following basic a priori estimate.

Proposition 2.1 (A priori estimate). Let v} be a solution of (2.4) for n < n;.
Then there exists a positive constant C independent of n; and e such that for

all n < ny
Zlv”|2+ oD -
(2.17) mEn J
DR AR PP < CY R,
n<n j J

provided that ¢, A, and M(n,) are suitably small.

Since (2.4) is a uniform discrete parabolic system, it follows from Propo-
sition 2.1 and a standard continuity argument that the following proposition
holds.

Proposition 2.2. Assume that ¢ and M(0) are suitably small. Then the problem
(2.4) has a unique global solution v} satisfying, for any n >0,
(2.18) supZ|'U P+Y 10 = v P+ 1A, — Akl VP2 < CM(0),
Jsn Jj.,n
where C is a positive constant independent of n and j .

We now turn our attention to the L'-stability analysis. We first rewrite (2.4)
as

(2.19) oIt — ot + A (0 — ) + AN (0 — vl ) = S (v — 200 + o)
= 3Aj(Ljs1 = Li-1)Rjv} + B} (v}, —v]) + C}(v] —v])) + €],
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where B} and C7 are matrices given by
(2.20a) B; = LL;j(Rjs1 —R))(v —AAj41) , Cj=i(W+AA)L;i(R;—Rj_y),

and e} is a vector given by

7 = fla_( j+l Aj))(Ljsr = )RJJU_;'
+4Lj(Rjs1 — Rj)Aji1(Ljsy — Lj)Rjv}
= 3A(Lj = Li-)(R; = Rj-)v]
+5Lj(Rjs1 — 2R + Rj_y)v] — $L;(07,, + 67).

(2.20b)

In the rest of this section, abusing notations a little bit, we will denote by |4|
the matrix (vector) whose components are the absolute values of the correspond-
ing components of a given matrix (vector) A, and by diag(A4) the diagonal
matrix consisting of the diagonal elements of a given matrix 4, i.e.,

|A| = (la;,j|) , and diag(4) = diag(aiy, ..., amm) for A= (a; ).
We now rewrite (2.19) as
vt — 1 (v +AA; — 2diag Cj)v]_ | — 3 (v — AAj1 + 2diag B)v],
— (1 =v+4(Ajs1 — A)) — diag(B; - C))) v}

= 5A;(Ljs1 — Li-1)Rjv} + (B; — diag B)) (v}, — v})
+ (Cj — diag Cj) (v} —vj_|) + &7 .

(2.21)

By the definition of the matrices B; and C;, each component in these matri-
ces has a bound of order O(e), by virtue of Theorem 2.1. Consequently, the
matrices on the left-hand side of (2.21) are all diagonal and positive for small
¢ and A. This implies immediately that

|v”+‘| 3(v+AA; - 2diag C))|v]_| - 3 (v v — AAj,1 + 2 diag B;)[v], |
- (1—=v+%(Ajs1 — Aj) — diag(B; — C)))|v]|
< 4|Aj(Ljs1 — Lj—1)R;||v}| + |B; — diag Bj| [v], | — |
+|Cj — diag C;| [v] — v} | + [é]],

(2.22)

which can be rewritten as
07+ = 7] + 41 (00| = [071) + A5 (1071 = ] ])
7(|vj+1| = 2Jv}| + Ivj—ll)
(2.23) — diag B;(|v],,| — |v}) + diag C; (|v}| — [v]_,])
< 4|Aj(Ljs1 = Lj-1)R;| |v]| + |B; — diag B;| (|v},,| + [v]])
+|Cj — diag C;| (Jv]| + [v_, ) + 1€} ,

where the vector inequality is understood componentwise. Multiplying both
sides of (2.23) by W, defined in (2.7), summing up with respect to j, and
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using summation by parts, we obtain

S5 (wy, jlort = w10 1)
Jj K

< Z D (MW, j1Au, 1 = Wy, Ay, 5)

(2.24) s
+5(v = Ay, ) (Wy, a1 = 2wy, + Wy, j-1)
=4 (wy, o1 = Wy, j) Ay, jr1 = A, )|V
+(1Dj1 v} 1] + [Wjlerl],
where
Dj = %I/I/}IAJ‘(L]‘+1 — Lj_l)Rj|+VVj_1 diag(Bj_l - Bj)
(2.25) + W, diag(Cjs1 — Cj) + Wj_1|Bj_1 — diag B ]|

+ VVJIBJ — dlagBj| + VVJICJ - d1agC,| + VVj+1|Cj+1 - diang+1| .
Now our main task is to bound the terms on the right-hand side of (2.24).

This is achieved by choosing appropriate weights W} ; more precisely, we have
the following lemma.

Lemma 2.2. Let W; be the weights defined by (2.7). Then we can choose c\,,
and c,,, appropriately so that

D AWy, jerAy, jr1 = Wa A, )
M

+3(V = Ay, )Wy, jrt — 2Wy, j + Wy, j-1)
—A(wy a1 = W, ), 1 — A )NV |+ (1D V] ]

< —%(/lk,j —).k,j+1)zwll,jlvl'tl,jl ’
P

(2.26)

provided that & is suitably small.
Assuming the lemma for a moment, we have from (2.24) and (2.26) that

SN (wp, ot = wa, s v )
Jj K
+ 23 (e = A, jat) Do w10t 51 S O(1) D 18]
j u i

J

(2.27)

Direct computation using Theorem 2.1 shows that
187] < O(e) Ak, j = Ak, j+1) [0] | + O(1) 0] = v}y 2,

which, together with (2.27), implies that
sup » Y wy jlvg |+ > (k. j — ke, 1) D Wy Vg
S T” I 1
<SP+ 0() Y v —vfalP
J Jj.n

But Proposition 2.2 shows that the last term on the right-hand side of (2.28) is
bounded above by O(1) M(0)?. Thus, we have shown

(2.28)
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Proposition 2.3. Assume that ¢ and M (0) are suitably small. Then the problem
(2.4) has a unique global solution v} satisfying, for any n >0,

(229)  supd ]I+ Ay, = Ayl 1071 < O 3 (1071 + [0]1P) -
J J.n J

With Propositions 2.2 and 2.3 at hand, we can obtain the nonlinear stability
result quite easily.
Proof of Theorem 1.1. First, it is not difficult to verify that condition (1.6)
implies M (0) being small. Thus, the hypotheses in Propositions 2.2 and 2.3
are fulfilled under the conditions (1.6). It follows from Proposition 2.2 that
there exists a unique global solution, uj, to the Lax-Friedrichs scheme (1.1),
owing to the relation

n_ 4. Y]
ui =¢;+0j —0j_y,

which follows from (2.1), and

oo
5 (10— 0pl?) < +oe.
n=1 Jj

which implies

lim 3 |07 — 0,2 =0.
Using (2.1) again, we have ]
(2.30) lim 3 juf — ¢, = lim ) 7|07 — 0, > = 0.
J J
From Proposition 2.3 and (2.1), we have

Yo ut— ¢l <2) |0]] < o0,
J

j
which, together with (2.30), yields the desired estimates (1.7) and (1.8). This

completes the proof of Theorem 1.1. O
Finally, we turn to the proofs of Lemma 2.1 and Lemma 2.2.
Proof of Lemma 2.1. Tt can be easily verified, by using (2.7), that
Wi = Wj=001) (A, j — 4, j+1)Wj,
Wit = 2W;+ Wj_1 = O(e) (Ak,j — Ak, j+1) W .

Let ¢; , =1 and C, denote the diagonal matrix

(2.31)

C, =diag{c,1,¢2,2, ", C2,m}-
Then our weights in (2.7) are a solution to the following difference equation:
(2.32) WiAj = s) = Wis1(Ajs1 = 8) = (A j — A, j+1) C:2 W

As a consequence of (2.31) and (2.32), the left-hand side of (2.8) becomes
(2.33) Ak, =, j+1) CoWj =3 Wi (L1 =Li-1)R;+0() (e, j=hic, j+1 )W -
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We now choose ¢, ,, suitably large so that the matrix inequality
(2.34) — Mk j = e, j1) LWy — WA (Ljy — Li-1)R;
+0(&) (i, j = M, j+1)Wj < =3 (e j = Ae, jr) W

holds for suitably small ¢, where we have used Theorem 2.1 and the fact that
Ak, j = O(1)e. Combining (2.33) and (2.34) proves Lemma 2.1. O

Proof of Lemma 2.2. The definition of our weight, (2.7), implies that

D (W, jA,j = Wy, jr1du, 1) 10
u

— Gaj = A ga1) (|v;:,,»| ; Zcz,uwu,j|v:,,|) .
u#tk

Thus, the right-hand side of (2.26) becomes

= MAk,j = Ak, j+1) <|U£,j| + ZCZ,uw/t,jWﬁ,ﬂ)
(2.35) K7k
+ O0(&) (k. j —'1k,j+1)z loi i1+ 1DV} -
u

Now, we estimate D; of (2.25). Since the (k, k)-element of the matrix

Aj(Ljy1 = Lj—1)R;

is of order O(e)(A ;j — Ax j+1) and the remaining elements are of order
O(1)(Ak,j — Ak, j+1)» we have

WilAj(Ljs1 — Li-1)R;| v}
2.36
( ) S0(1)<8+ch,”,j)(llk,j_Ak,j+l)2|vﬁ,j|’
u#tk u
where we have used
Sup Wy, j = O(l)cy,y.-
J,n
In view of (2.20a), we obtain
©(2.37) diag(Bj_l - Bj) + diag(Cj+1 - C]) = 0(¢) (/lk,j - /1](,14_1) .

As a consequence of (2.20a) and the fact that the diagonal elements of the
matrices

W;|B; — diagB;| and Wj|C; — diag Cj|
are zero and the remaining elements of the matrices are of order
0(1)(/1](,1' - A'k,j+1) , W€ have

(2.38) |ID;|[v71] < O(1) (ke — Ak,,-m((e n ch,ﬂ)wz,ﬂ s |v;:,,-|) .

u#k u#tk
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Collecting all the estimates (2.35) and (2.38), we may conclude that the left-
hand side of (2.26) is bounded by
1)

= 2,5 = 2, (1084 3 2.t
u#tk
+O(M) (A, j = Ak, j+1) ((8 + ch,ﬂ) g 1+ IU:JI)
u#k u#tk

< =5k, = A, jen) YWy jl0g ]
u

for suitably large ¢, ,, u # k, and suitably small ¢; ,, u # k. The proof of
Lemma 2.2 is complete. O
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