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Abstract

In this paper, we study the fluid-dynamic limit for the one-dimensional
Broadwell model of the nonlinear Boltzmann equation in the presence of boundaries.
We consider an analogue of Maxwell’s diffusive and reflective boundary condi-
tions. The boundary layers can be classified as either compressive or expansive in
terms of the associated characteristic fields. We show that both expansive and
compressive boundary layers (before detachment) are nonlinearly stable and that
the layer effects are localized so that the fluid dynamic approximation is valid away
from the boundary. We also show that the same conclusion holds for short time
without the structural conditions on the boundary layers. A rigorous estimate for
the distance between the kinetic solution and the fluid-dynamic solution in terms of
the mean-free path in the ¸=-norm is obtained provided that the interior fluid flow
is smooth. The rate of convergence is optimal.

°°°1. Introduction

We study the boundary-layer behavior of the solutions to the one-dimensional
Broadwell model of the nonlinear Boltzmann equation with an analogue of
Maxwell’s diffusive and diffusive-reflective boundary conditions at small mean-free
path. This is one of the three connection problems in the fluid-dynamic approxima-
tion for a model Boltzmann equation proposed by BROADWELL [3].

The general Boltzmann equation of kinetic theory gives a statistical description
of a gas of interacting particles. An important property of this equation is its
asymptotic equivalence to the Euler or Navier-Stokes equations of compressible
fluid dynamics, in the limit of small mean-free path. One expects that, away from
initial layers, shock layers, and boundary layers, the Boltzmann solution should
relax to its equilibrium state (local Maxwellian state) in the limit of small mean-free
path, and that the gas should be governed by the macroscopic equations — the
fluid equations. This is predicted by the method of normal solutions (on normal



regions) based on the Hilbert expansion and the Chapman-Enskog expansions.
Thus, to validate the fluid-dynamical approximation, it is necessary to complete
the Hilbert expansion (or Chapman-Enskog expansion) with suitable initial data,
boundary conditions, or matching conditions across shocks even at the formal
level. Thus, one has to solve three connection problems across the layers within
which the Hilbert expansion fails: to relate a given initial distribution function to
the Hilbert (or Chapman-Enskog) solution which takes over after an initial transi-
ent (initial layer problem), to find the correct matching conditions for the two
Hilbert solutions prevailing on each side for shock layers (shock-layer problem),
and to relate a given boundary condition on the distribution function (for the
kinetic theory) to the Hilbert solution which holds outside the boundary layers
(boundary-layer problems). The rigorous mathematical justification of the fluid-
dynamic approximation of Boltzmann solutions poses a challenging open problem
in most important cases, in particular, in the case that there are shock layers and
boundary layers in the fluid flow. This has been extensively studied in the literature.
However, most of the previous works concentrate either on linearized Boltzmann
equations [10, 9], or on initial layers for some models of the nonlinear Boltzmann
equation [10, 7, 5, 6, 12, 15, 16] with notable exceptions [2, 17, 4, 18]. As for the
boundary-layer problem, a qualitative theory exists for some models of steady
Boltzmann equations [1], but very little is known for the unsteady problems. Since
boundary layers are important because they describe the interactions of the gas
molecules with the molecules of the solid body, i.e., the interaction between the
body and the gas, to which one can trace the origin of the drag exerted by the gas
on the body and the heat transfer between the gas and the solid boundaries, it is
very important to understand the fluid-dynamical approximation when there are
interactions of the gas with solid boundaries. It is expected that the fluid approxi-
mation is still valid away from the boundaries. The main difficulties in analyzing
this problem are due to the complexity of the nonlocal collision operator in the
Boltzmann equation, which makes it difficult to study the structures of the layer
problems associated with the formal matched asymptotic analysis. Even when the
structures of these layers are relatively easy to study as for the Broadwell model, the
convergence cannot be obtained easily because the fluid-dynamical limits are
highly singular, and the dissipative mechanisms are much weaker than those for the
Navier-Stokes equations.

In this paper, we address the boundary-layer problem for the much simpler
one-dimensional Broadwell model of the nonlinear Boltzmann equation with an
analogue of Maxwell’s diffusive and diffusive-reflective boundary conditions. The
boundary layers can be classified as either compressive or expansive in terms of the
associated characteristic fields. It turns out that this classification plays an impor-
tant role on our stability analysis. We prove that both expansive and compressive
boundary layers are nonlinearly stable (before detachment [14]) and the layer
effects are localized. Thus the fluid approximation is justified for this model and
a rigorous estimate of the convergence in the ¸=-norm in terms of the mean-free
path is obtained provided the interior gas flow is smooth. The rate of convergence
is optimal. We emphasize that the classification of layers is needed for long-time
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stability. In the case of short time, the convergence can be obtained quite easily
without using the structure of the boundary layer. See Theorem 3.2 and °5.3.

The outline of our approach is as follows. We consider the initial-boundary-
value problem for the Broadwell model with either diffusive or diffusive-reflective
boundary conditions. The appropriate boundary conditions for the corresponding
model Euler equations is formulated so that the initial-boundary-value problem
for the Euler equation is well-posed and its solution can be realized as the limit of
the corresponding Broadwell solution as the mean-free path goes to zero. This is
achieved by matching the fluid solution with the boundary-layer solutions though
conservation laws. This matched asymptotic analysis produces an approximate
solution for the Broadwell equation with detailed layer structures near the bound-
ary. Then the existence of the exact Broadwell solution and its convergence to the
fluid solution away from the boundary are reduced to a nonlinear stability analysis.
The main difficulty of the stiffness in the stability analysis is overcome by using
energy estimates which depend crucially on the structures of the underlying
boundary layers. In the case of compressive layers, this approach works before the
detachment of the boundary layers.

This paper is organized as follows. In °2, the Broadwell model and its corres-
ponding model Euler equations are introduced. Then we study the dynamic systems
associated with the leading-order boundary layers. It turns out that this system can
be integrated explicitly so that we can classify the layers as either compressive or
expansive in terms of the rate of change of the associated characteristic speeds. As
a consequence, we obtain suitable boundary conditions for the corresponding
Euler equation and the well-posedness is verified. In °3, we state our main
convergence theorems. The rest of the paper is devoted to the proof of the
convergence theorems by using the approach outlined in the previous paragraph.

°°°2. Broadwell Model and Its Boundary Layers

°2.1. The Broadwell Model and the Corresponding Fluid Equations

The Broadwell model describes a gas as composed of particles of only six speeds
with a binary collision law and spatial variation in only one direction. In one space
dimension, the model takes the form [3]

L
t
f `#L

x
f `"1e ( f 0 f 0!f `f ~),

L
t
f 0"1

2e ( f` f~!f 0 f 0), (2.1)

L
t
f ~!L

x
f ~"1e ( f 0 f 0!f `f ~),

where e is the mean-free path, f ,̀ f 0, and f~ denote the mass densities of gas
particles with speed 1, 0 and !1, respectively. In what follows, we use the vector
notation f"( f `, f 0, f ~). The fluid moments are defined as

o"f `#4 f 0#f ~, m"f`!f ~, u"
m

o
, (2.2a)
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which are hydrodynamical quantities: the mass density, momentum, and fluid
velocity respectively. We introduce another quantity z by

z"f `#f ~. (2.2b)

Then the system (2.1) can be rewritten in terms of h"(o,m, z) as

L
t
o#L

x
m"0,

L
t
m#L

x
z"0, (2.3a)

L
t
z#L

x
m"1e q (h, h ) ,

where

q(h
1
, h

2
)"1

8
(o

1
!z

1
) (o

2
!z

2
)#1

2
(m

1
m

2
!z

1
z
2
) . (2.3b)

The state h"(o,m, z) is said to be a local Maxwellian [3] if

o'0, Du D(c, z"op(u) , (2.4a)

where

p (u)"2
3
J1#3u2!1

3
. (2.4b)

By assuming the state to be in equilibrium, one can derive the following closed 2]2
system of conservation laws [3]:

L
t
o#L

x
(ou)"0,

(2.5)
L
t
(ou)#L

x
(op (u))"0,

which is called the model Euler equation which shares many properties of isen-
tropic gas dynamics when the macroscopic speed of the gas is relatively small
compared with the microscopic speed of the gas particles [3]. It has been shown by
CAFLISCH [4] that the system (2.5) is strictly hyperbolic and genuinely nonlinear
with characteristic speeds

j
1
"2

u!Jp(u)

3p(u)#1
, j

2
"2

u#Jp(u)

3p(u)#1
(2.6)

satisfying

!1(j
1
(u)(0(j

2
(u)(1 if Du D(1, (2.7)

dj
i
(u)

du
'0, i"1, 2. (2.8)

We study the initial-boundary-value problem for the Broadwell equations and the
boundary-layer behavior of its solutions for small mean-free path. To isolate the
effects of boundary layers, we assume that the initial state f

0
"( f `

0
, f 0

0
, f~

0
) is

a local Maxwellian and satisfies

0(c6f`
0

(x), f 0
0
(x), f ~

0
(x)6C (2.9)

for some given positive constants c and C.
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°2.2. Boundary Conditions and Well-Posedness of the Fluid Equations

Let the boundary be given by

x"!at"s(t) . (2.10a)

To simplify the presentation, we assume that 0(a(1. We remark here that the
cases a"0 and a"1 correspond to the uniform characteristic boundary condi-
tions for the Broadwell equations, in which there are no strong boundary layers, so
that the fluid-dynamic approximation can be easily justified by adapting our
following analysis.

We consider the Broadwell equations on the region

)
T
"M(x, t), s (t)6x(#R, 06t6¹ N. (2.10b)

with initial data

( f`, f 0, f~) (x, t"0)"( f`
0

, f 0
0
, f ~

0
) (x) (2.11)

satisfying (2.9), and two types of boundary conditions which are analogous to
Maxwell’s diffusive boundary conditions. One is the purely diffusive boundary
condition

f` (s(t), t)"f`
"

(t), f 0(s(t), t)"f 0
"
(t). (2.12)

Another type is the diffusive-reflective boundary condition

f ` (s(t), t)"a (t) f~ (s(t), t), 4 f 0 (s(t), t)"b (t) f~ (s(t), t) (2.13)

where a and b are positive functions.
The gas near the boundary in general is not in an equilibrium state. In order to

understand the leading-order behavior of the kinetic boundary layer, one can use
the stretched variable m"(x#at)/e and look for the solution to (2.1) of the form
f (m, t)"f ((x#at)/e, t). Simple calculations show that up to the leading order, the
solution is governed by the following system of ordinary differential equations in
which t is regarded as a parameter:

(a#1)
d f`

dm
"f 0f 0!f `f~,

!2a
d f 0

dm
"f 0f 0!f `f~, (2.14)

(a!1)
d f~

dm
"f 0f 0!f `f~.

Corresponding to (2.12), the boundary data for (2.14) at m"0 are given by

f` (0)"f`
"

, f 0 (0)"f 0
"
, (2.15)

while for (2.13), the boundary condition for (2.14) takes the form

f `(0)!af ~ (0)"0, 4 f 0(0)!bf~ (0)"0. (2.16)
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The state at m"#Ris in the fluid region, hence taken to be a local Maxwellian in
both cases

f
=
"( f `

=
, f 0

=
, f~

=
), f`

=
f~
=
"( f 0

=
)2 . (2.17)

One can solve (2.14) explicitly and obtain the appropriate boundary condition for
the model Euler equation (2.5) as follows.

We start with the case associated with the diffusive boundary condition (2.12).
It follows from (2.14) that there exist two functions c

1
(t) and c

2
(t) independent of

m such that

(a#1) f `#2a f 0"c
1
(t), (a!1) f ~#2a f 0"c

2
(t) . (2.18)

Using the boundary condition (2.15) leads to

c
1
(t)"(a#1) f `

"
#2a f 0

"
. (2.19)

On the other hand, the boundary condition (2.17) yields

c
1
(t)"

o
"

2
((a#1) (u

"
#p (u

"
))#a (1!p(u

"
))) , (2.20)

where we have rewritten (2.17) in terms of the fluid moments. Setting

B(o, u) (t),1
2
o (p(u)#(a#1) u#a) D

(s (t), t)
, (2.21)

we find the desired boundary condition for the Euler equations (2.5) to be

B(o, u) (t)"(a#1) f `
"

(t)#2a f 0
"
(t) . (2.22)

Next we derive the boundary condition for (2.5) corresponding to the diffusive-
reflective boundary condition (2.13). Instead of (2.19), one gets from (2.16) and (2.18)
that

2(a#1)a#ab

2(a!1)#ab
"

c
1

c
2

. (2.23)

Evaluating (2.18) at m"Rand using (2.17) in the macroscopic form, one can get

c
1
"(a#1) f `

=
#2a f 0

=
"

o
"

2
(a#u

"
#p (u

"
)#au

"
) ,

(2.24)

c
2
"(a!1) f ~

=
#2a f 0

=
"

o
"

2
(a#u

"
!p (u

"
)!au

"
) .

It follows from (2.23) and (2.24) that

(a#u
"
) (1#a!a(1!a))"(p(u

"
)#au

"
) (1!a!a(1#a#b)) . (2.25)

In particular, (2.25) yields

u
"
"!a (2.26a)

when

1"a#a (1#a#b) , (2.26b)
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which corresponds to the purely reflective boundary condition. In this case, the
mass flux is conserved on the boundary, i.e.,

(1!a) f~"(1#a) f`#4a f 0. (2.26c)

Let u
"
be the solution of (2.25). Then we have found the desired boundary condition

for the model Euler equations (2.5) to be

u (s(t), t)"u
"
(t). (2.27)

We now show that the problem (2.5), (2.22), or (2.5), (2.27), is well-posed at
least locally (in time). It is assumed that the boundary x"!at is non-character-
istic for (2.5), (2.22), or (2.5), (2.27). To show the local well-posedness, it suffices
to check that the boundary condition accounts for the inflow on the boundary.
To this end, we first rewrite the fluid equations (2.5) in the characteristic
form [13]:

L
t
/
`
#j

`
L
x
/
`
"0,

L
t
/
~
#j

~
L
x
/

~
"0,

in which the functions /
$

are the Riemann invariants of the form

/
$

(o, u)"o2 (p (u)!u2) expG$2
u
:
0
A

p (w)

1#3w2B
1@2 dw

p (w)!w2H .

Setting /
$

(x, t)"/
$

(o (x, t), u (x, t)), we obtain from direct computation that

LB
L/

`

"

o

12/
`
Jp (u)

((u(J1#3u2!1)#Jp(u) ) (2J1#3u2#(1#a)u#a!1)

#(2u#(1#a)J1#3u2) (2J1#3u2!u2!1))'0.

Thus the implicit-function theorem implies that the inflow /
`

can be repre-
sented in terms of a smooth function of the outflow /

~
and the given boundary

values. Consequently, the initial-value problem (2.5), (2.22) is well-posed.
The well-posedness of the initial-boundary-value problem (2.5), (2.27) follows
from the following lemma whose proof is very tedious and is given in the
Appendix A.

Lemma 2.1. Assume that a71/3, b62/3 and a61/J3. ¹hen there is a unique
solution u

"
to (2.25) which satisfies

Du
"
D(1, j

1
(u

"
)(!a . (2.28)

We remark here that the specific bounds for a, b, and a are chosen just for the
convenience of presentation of the proof, and can be relaxed somewhat. However,
it can be shown that (2.28) fails when either a or b is close to 1.
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°2.3. Classifications of the Boundary Layers

To determine the structure of the boundary layer, we now solve (2.14) with
boundary conditions (2.15), (2.17) or (2.16), (2.17). Substitute (2.18) into the second
equation in (2.14) to get

d f 0

dm
"

!(3a2#1)

2a(1!a2) A( f 0)2!
2a (c

1
#c

2
)

3a2#1
f 0#

c
1
c
2

3a2#1B . (2.29)

Since the Euler equation (2.5) with boundary data (2.22) or (2.27) and appropri-
ate initial data has a smooth solution, it follows from the matching condition
that

f 0
=
"

o
4

(1!p (u)) (s(t), t) , (2.30)

where f 0
=

is a root of the quadratic polynomial on the right side of (2.29). Define

f 0
~=

"!f 0
=
#

2a
3a2#1

(u
"
#a)o

"
. (2.31)

Here and in what follows, we use the notation o
"
"o(s (t), t), etc. It follows from the

definitions of c
1
(t) and c

2
(t) that

c
1
#c

2
"f`

=
!f ~

=
#a( f `

=
#4 f 0

=
#f~

=
)"(u

"
#a)o

"
, (2.32a)

c
1
c
2
"(3a2#1) f 0

=
f 0
~=

. (2.32b)

Consequently,

f 0
=
#f 0

~=
"

2a (c
1
#c

2
)

3a2#1
, f 0

=
f 0
~=

"

c
1
c
2

3a2#1
, (2.32c)

and so (2.29) becomes

d f 0

dm
"!ca ( f 0!f 0

=
) ( f 0!f 0

~=
) (2.33a)

where

ca"
3a2#1

2a(1!a2)
. (2.33b)

Solving (2.33a), we obtain that

f 0(m)!f 0
=
"

( f 0
"
!f 0

=
) ( f 0

=
!f 0

~=
) exp (!Ca ( f 0

=
!f 0

~=
)m )

( f 0
"
!f 0

~=
) ( f 0

"
!f 0

=
) exp (!Ca ( f 0

=
!f 0

~=
)m )

. (2.34)

Equations (2.34) and (2.18) give the corresponding formulas for f ` and f ~. Our
next lemma shows that the boundary layers approach the Maxwellian states
exponentially fast as the fast variable goes to infinity.
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Lemma 2.2. If j
~

(u)(!a, then f 0
~=

(f 0
=

. Furthermore, if f 0
"
'f 0

~=
, then

D f (m)!f
=

D6C D f 0
"
!f 0

=
D exp(!C( f 0

=
!f 0

~=
)m ) . (2.35)

The proof is given in Appendix A.
We remark here that for given boundary data, the condition that f 0

"
'f 0

~=
is

automatically satisfied if a is suitably small.
We now turn to the classification of boundary layers. Even though the gas near

the boundary is not generally in equilibrium, it is appropriate to use the mono-
tonicity of j

1
(u) to describe the kinetic boundary layers. We say that a boundary

layer is compressive if dj
1
/dm(0, and expansive if dj

1
/dm70.

Since the characteristic speeds are monotone functions of the macroscopic
velocity u (cf. (2.8)), it is clear that the classification of the boundary layer depends
on the monotonicity of u along the boundary-layer profile. Direct calculation using
(2.14) shows that

du

dm
"!

4o
"
(a#u

"
)

(1!a2)o2

d f 0

dm
. (2.36)

It follows from this that there are four different cases depending on the speeds of the
wall and the fluid:

d f 0

dm
(0

d f 0

dm
'0

compressive layer A
dj

1
(u)

dm
(0B u

"
(!a u

"
'!a

expansive layer A
dj

1
(u)

dm
70B u

"
7!a u

"
6!a

Remarks. (i) One can similarly study the boundary layers for the model Navier-
Stokes equations derived from (2.1) by the Chapman-Enskog expansion [4].
Viscous boundary layers can also be classified as either compressive or expansive.
However, one can prove that viscous boundary layers exist only when u

"
'!a

[14]. Thus the boundary layers corresponding to u
"
6!a are due purely to the

kinetic effects, which cannot be detected by the Chapman-Enskog expansions.
This phenomena was observed previously in the steady problems for the GBK
model (cf. [8]).

(ii) The compressible layers are not always stable and may detach from the boun-
dary and become shocks. This is shown numerically in our forthcoming paper [14].

°°°3. The Fluid-Dynamic Limit

In this section we state our convergence results, which demonstrate, roughly
speaking, that the boundary layers are nonlinearly stable before their detachment
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from the boundary, so that the fluid-dynamic approximation is still valid away
from the moving boundary, provided that underlying fluid flow is smooth. Define

X d
T
"M(x, t), s(t)#d6x(#R, 06t6¹ N .

Here ¹ is any finite positive number such that the initial-boundary-value problem
for the model Euler equations (2.5) and either (2.22) or (2.27) has a sufficiently
smooth solution (o,m) (x, t) on the region X

T
. In the case df 0/dm'0, we assume

further that the solution to the initial-boundary-value problem for the Euler
equations, (2.5) and (2.22) lies in a d

0
-neighborhood of a global Maxwellian state

(o*,m*, z*), as do the boundary data f `
"

and f 0
"
. In the compressible layers, we also

assume that the macroscopic speed is much slower than the microscopic speed.
Then our convergence theorem can be stated as follows.

Theorem 3.1. Assume that the boundary layer is either compressive or expansive for
all t3[0,¹ ]. ¸et u(x, t) be the microscopic density distribution associated with the
local Maxwellian (o,m) (x, t). ¹hen there exists an e

0
'0 such that for each

0(e6e
0
, the initial-boundary-value problem (2.1), (2.12) or (2.1), (2.13) has a unique

smooth solution fe (x, t) such that

fe (x#at, t)!u (x#at, t)3¸=([0,¹ ],H1(R
`

))WC([0,¹ ]: ¸2(R
`
)),

(3.1)
dfe
dt

(x#at, t)3¸=([0,¹ ]: ¸2(R
`

)) .

Furthermore, for any integer n'0, one can construct a bounded function uJ (x, t, e, n)
such that

sup
06t6T

E fe ( ·#at, t)!u( ·#at, t)!euJ ( ·#at, t, e, n)E
L=(R`)

6C
n
en`1. (3.2)

In particular, for any d'0, there exists a Cd'0 such that

sup
X d

T

E fe (x#at, t)!u (x#at, t)E6Cde . (3.3)

For short time, then, the strength of the boundary layer is weak. We can obtain
the following convergence result without taking into account the structure of the
underlying boundary layer.

Theorem 3.2. ¹here exist suitable small positive constants ¹
0

and e
0

such that the
conclusions in (3.1)—(3.3) are true with ¹ replaced by ¹

0
.

Remarks. 1. The rate of convergence in the theorem is optimal.
2. As indicated in (3.2), the principal asymptotic structure of the solution fe is

explicitly described by the function u#euJ which is constructed in detail by
matching a boundary-layer expansion with the Hilbert expansion away from the
boundary. This will be made clear in the proof of the theorem.
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3. In the theorems, we assumed that the initial state is in equilibrium; thus the
interesting problem of interaction of initial layers with boundary layers is com-
pletely ignored here. We also avoid the problem of interactions of boundary layers
with shock layers by assuming that the solution of the model Euler equations is
smooth. We are currently investigating these issues.

4. We present only the proof of the case n"0; other cases can be treated
similarly.

The rest of the paper is devoted to proving the theorems. As outlined in the
introduction, the proofs use ideas similar to those of STRANG and consists of two
major parts. First we construct an accurate approximate solution of the Broadwell
equations by matched asymptotic analysis. The constructions of the approxima-
tion solutions vary according to the properties of the boundary layers. In
particular, a linear hyperbolic wave is needed in the case of the compressive
layers to preserve the conservation of mass and momentum for the approximate
solutions, which turns out to be crucial in our subsequent stability analysis.
The dynamic systems associated with the boundary-layer expansions and the
initial-boundary-value problems for the system of hyperbolic partial differential
equations associated with the interior Hilbert expansions have to be solved
simultaneously order by order. Higher-order expansions must be obtained in
order to justify the validity of the lower-order expansions. The next main part
is to prove that the approximate solution constructed here is nonlinearly stable,
which implies the desired convergence results. We present the analysis for the
case of the diffusive boundary condition in great detail in the next two sections.
For the case of the diffusive-reflective boundary conditions, we sketch the
main steps and point out only the major differences with the previous case. In the
next section, we present the Hilbert and boundary-layer expansions and their
matching for both cases. The stability analysis for the diffusive boundary condition
is given in °5. Finally we deal with the case of diffusive-reflective boundary
condition in °6.

°°°4. Matched Asymptotic Analysis

We now carry out the construction of approximation solutions by matched
asymptotic analysis. We first introduce some necessary notations for the Broad-
well equations in °4.1. The outer solutions away from the boundary are
obtained by the Hilbert expansions for both types of boundary conditions
in °4.2. We remark here that the boundary conditions needed for the outer
solutions must come from matching with the boundary-layer solutions; thus one
has to obtain the outer solutions and the boundary-layer solutions order by order
simultaneously. However, for simplicity of presentation, we carry out the expan-
sions separately. The boundary-layer solutions in the case of diffusive boundary
conditions are carried out in °4.3, and those in the case of diffusive-reflective
boundary condition are constructed in °4.4. This yields the desired approximate
solutions.
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°4.1. Preliminaries

We use the following notations introduced in [7]. Set

f"A
f`

f 0

f~ B , »"A
1 0 0

0 0 0

0 0 !1 B , (4.1)

q(u, h)"g0h0!1
2
(g`h~#g~h`), Q(u, h)"q (u, h) A

1

!1/2

1 B . (4.2)

Then the Broadwell equations (2.1) can be written as

(L
t
#»L

x
) fe"1eQ( fe , fe ) . (4.3)

The linearized collision operator at f is given by

¸
f
,2Q ( f, · )"!A

1

!1/2

1 B ( f~,!2f 0, f`). (4.4)

The left and right eigenvectors of ¸
f

may be chosen respectively as

tf
1
"(1, 4, 1),

tf
2
"(1, 0,!1), (4.5)

tf
3
"

1

f`#f 0#f~
( f ~,!2f 0, f`),

and (/f
1
, /f

2
, /f

3
) so that

Stf
i
, /f

j
T"d

ij
, i, j"1, 2, 3. (4.6)

The projection operator into the null-space of ¸
f
is denoted by P

f
and has the form

P
f

h"oh/f
1
#mh/f

2
. (4.7)

Denote the inverse of ¸
f

in the range of I!P
f

by K
f
, i.e.,

K
f

h"¸~1
f

(I!P
f
)h"

!Stf
3
, hT

f `#f 0#f ~
/
3
. (4.8)

°4.2. The Hilbert Expansions

Away from the boundary, it is expected that the Broadwell solution can be well
approximated by the regular expansion in the mean-free path:

fe&u#eu
1
#e2u

2
#e3u

3
#· · · . (4.9)
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Substituting this expansion into (2.1) and comparing the coefficients of equal
powers of e, one easily gets

Q (u, u)"0, (4.10a)

2Q(u, u
1
)"(L

t
#»L

x
) u , (4.10b)

2Q(u, u
2
)#Q (u

1
, u

1
)"(L

t
#»L

x
) u

1
, (4.10c)

2Q(u, u
3
)#2Q (u

1
, u

2
)"(L

t
#»L

x
) u

2
. (4.10d)

We now discuss the solvability of each equation in (4.10). We first observe from
(4.10a) that u"u (x, t) is a local Maxwellian state. The solvability condition for
(4.10b) yields

P
g
(L

t
#»L

x
) u"0. (4.11)

Setting

o"St
1
, uT, m"St

2
, uT , (4.12)

we have from (4.11) that

L
t
o#L

x
(ou)"0,

(4.13a)
L
t
(ou)#L

x
(op (u))"0.

These are exactly the model Euler equations (2.5). We solve system (4.13a) with
initial data

o (x, 0)"o
0
(x), m(x, 0)"m

0
(x) (4.13b)

subject to the boundary condition

B (o, u)"(a#1) f`
"

(t)#2a f 0
"
(t) , (4.13c)

or

u (s(t), t)"u
"
(t), (4.13c@)

corresponding to the diffusive and diffusive-reflective boundary conditions for the
Broadwell equations, respectively (see (2.22) and (2.27)). So the solution is taken to
be the given fluid solution. With u thus determined, the solution to (4.10b) can be
rewritten explicitly as

u
1
"uJ

1
#K

g
(I!P

g
) (L

t
#»L

x
) u, (I!P

g
) uJ

1
"0. (4.14)

To derive the differential equations governing u
1
, we set

o
1
"St

1
, uJ

1
T, m

1
"St

2
, uJ

1
T (4.15)

and obtain from the solvability condition for (4.10c) that

P
g
(L

t
#»L

x
) uJ

1
#P

g
DK

g
(I!P

g
) (L

t
#»L

x
) u"0, (4.16)
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which can be rewritten in terms of o
1

and m
1

in (4.16) as

L
t
o
1
#L

x
m

1
"0,

(4.17a)
L
t
m

1
#L

x
(o

1
(p(u)!up@ (u))#m

1
p@(u))"L

x
(k (u)L

x
u).

Note that the principal part of (4.17a) is the linearized part of the model Euler
equation at the Maxwellian u, and so (4.17) is a strictly hyperbolic system. We now
solve this system with initial data

o
1
(x, 0)"0, m

1
(x, 0)"0 (4.17b)

and the boundary condition

B
$
(o

1
,m

1
)"1

2
k (u) L

x
u!L

t

=
:
0

(h`#2h0) dm (4.17c)

corresponding to (2.12). Here k (u) is given by (2.8b), h` and h0 are the components
of the leading-order function in the boundary-layer expansion in the next section,
and the boundary operator is defined as

B
$
(o

1
, m

1
),

o
1
2 Aa#

1!p (u)

1#3p(u)B#
m

1
2 A1#a#

4u

1#3p(u)B . (4.18)

In the case of (2.13), the boundary condition takes the form

B
3
(o

1
,m

1
)"c

2
k (u)L

x
u#L

t

=
:
0

(h`#2(1#c
1
)h0#c

1
h~) dm , (4.17c@)

B
3
(o

1
,m

1
),

c
3
p (u)#c

4
3p (u)#1

o
1
#

c
5
p (u)#c

6
u#c

7
3p(u)#1

m
1
, (4.19)

where c
i
(16i67) are some constants given explicitly in terms of a, b, and a. The

derivations of (4.17c), (4.18), (4.17c@) and (4.19) will be given in the next two sections
as consequences of matching with boundary-layer expansions. Assuming this, we
show at the end of this section that the initial-boundary-value problems,
(4.17)—(4.19), are well-posed.

Following the same strategy, one can derive similar initial-boundary-value
problems for u

2
and u

3
. Details are omitted. Finally, setting

u
4
"K

g
(I!P

g
) ((L

t
#»L

x
) u

3
!2Q(u

1
, u

3
)!Q(u

2
, u

2
)) , (4.20)

we obtain a solution to (4.10e).
We now show that the initial-boundary-value problem (4.17) is indeed well-

posed provided that h in (4.17c) is given. Rewrite the system in (4.17) as

L
tA

o
1

m
1
B#A

0

p(u)!up@(u)

1

p@ (u)B L
x A

o
1

m
1
B#B (u)A

o
1

m
1
B"f (u) . (4.21)

The eigenvalues j
$

of this system are the same as those for the nonlinear Euler
equation (2.5), and so

!1(j
1
(0(j

2
(1.
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Let (/
`

,/
~
) be the characteristic variables for (4.21) so that

/
`
#/

~
"o

1
, j

2
/
`
#j

1
/
~
"m

1
.

Equation (4.21) then becomes

L
tA

/
`

/
~
B#A

j
2
0

0

j
1
B L

x A
/
`

/
~
B#B(u)A

/
`

/
~
B"f (u) .

It follows from the boundary condition and direct calculations that

LB
$

L/
`

"

2

a
(1#g`)#

g0#j
2
(2g`#g0)

2(g`#g0#g~)
'0.

Consequently, by the implicit-function theorem one can represent the inflow /
`

as
a smooth function of the outflow /

~
and the boundary value B

$
. Thus the

initial-boundary-value problem (4.17) is well-posed.

°4.3. Boundary-Layer Expansion I

Next, we derive the boundary-layer solutions in the case of diffusive boundary
conditions (2.12) for the Broadwell system (2.1). Near the boundary, the deviation
of the Broadwell solution from the Euler solution is approximated by the singular
expansion

h(m, t)#eh
1
(m, t)#e2h

2
(m, t)#e3h

3
(m, t)#e4h

4
(m, t)#. . . , (4.22)

where

m(x, t, e)"
x!s(t)

e
. (4.23)

One can derive the governing equations for the boundary-layer solutions by
requiring that the expression

fe (x, t)&u(x, t)#eu
1
(x, t)#e2u

2
(x, t)#e3u

3
(x, t)#e4u

4
(x, t)#. . .

#h(m, t)#eh
1
(m, t)#e2h

2
(m, t)#e3h

3
(m, t)#e4h

4
(m, t)#. . . (4.24)

be a uniformly valid asymptotic solution for the initial-boundary-value problem of
the Broadwell system. Substituting (4.24) into (2.1) yields the equations for each
order of boundary-layer solutions:

(»#a) Lmh"Q(h, h)#2Q(u, h), (4.25a)

(»#a) Lmh
1
"2Q(h#u, h

1
)#2Q(h

1
#mL

x
u, h)!L

t
h, (4.25b)

(»#a) Lmh
2
"2Q(h#u, h

2
)#Q(h

1
, h

1
)#2Q(u

1
#mL

x
u, h

1
)

#2Q(u
2
#mL

x
u
1
#1

2
m2L2

x
u, h)!L

t
h
1
, (4.25c)
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with similar equations for h
3

and h
4
. The corresponding boundary conditions are

g`(s(t), t)#h`(0, t)"f`
"

(t),

g0(s(t), t)#h0 (0, t)"f 0
"

(t),
(4.26)

g`
k

(s(t), t)#h`
k

(0, t)"0, k"1, . . . , 4,

g0
k
(s(t), t)#h0

k
(0, t)"0, k"1, . . . , 4,

h
k
(m, t)P0 uniformly as mPR, k"0, 1, . . . , 4. (4.27)

The Hilbert and boundary-layer solutions can be obtained order by order separ-
ately. We start with the leading order term h, which in °2 was shown to be

h0 (m)"
( f 0

"
!g0) (g0!gJ 0)

f 0
"
!gJ 0!( f 0

"
!g0) exp (!Ca (g0!gJ 0)m )

exp (!Ca (g0!gJ 0 )m ) ,

h`(m)"
!2a
a#1

h0(m) , (4.28)

h~(m)"
!2a
a!1

h0(m) .

where

gJ 0,!g0#
2a

3a2#1
o (u#a), ca,

3a2#1

2a(1!a2)
. (4.29)

Note that to simplify the notations, we use g0,o, u to represent their corresponding
values at the boundary (s(t), t) in (4.29).

With h so determined, one can derive the boundary condition (4.17c), (4.18) for
the first-order Hilbert solution and prove that this condition is a consequence of
the matching conditions. Indeed, the solvability condition for (4.25b) with (4.27)
yields

(a#1)h`
1
#2ah0

1
"L

t

=
:
m
(h`#2h0) dm . (4.30)

It follows from this and boundary condition (4.26) that

(a#1)g`
1
#2ag0

1
"!L

t

=
:
0

(h`#2h0) dm . (4.31)

On the other hand, one can write the first equation in (4.14) explicitly as

u
1
"o

1
/g

1
#m

1
/g

2
!1

2
k (u)u

x
/
3
. (4.32)

This and direct calculations show that

(a#1) g`
1
#2ag0

1
"

o
1
2 Aa#

1!p (u)

1#3p(u)B#
m

1
2 A1#a#

4u

1#3p(u)B!
1

2
k(u) L

x
u .

(4.33)

76 JIAN-GUO LIU & ZHOUPING XIN



It should be noted that the first two terms on the right-hand side of (4.33) were
defined to be the boundary operator in (4.18). Collecting (4.31) and (4.33) gives the
desired boundary condition (4.17c). We note that the boundary condition (4.17c)
only involves the leading-order Hilbert and boundary-layer solutions which have
been completely determined, so that (4.17c) is well-defined.

Next we solve for the first-order boundary-layer solutions. Since h and u
1

are
given, integrating (4.25b) gives

h0
1
(m)"!g0

1
expA!Ca

m
:
0

(g0!gJ 0#2h0) dmB
#

m
:
0

expA!Ca
m
:
m{

(g0!gJ 0#2h0) dmB d
0
(m@) dm@ ,

h`
1

(m)"
!2a
a#1

h0
1
(m)#

1

a#1
L
t

=
:
m

(h`#2h0) dm , (4.34)

h~
1

(m)"
!2a
a!1

h0
1
(m)#

1

a!1
L
t

=
:
m

(h~#2h0) dm ,

where

b
0
(m)"

1

1!a2
(h0#g0) L

t

=
:
m
(h`#4h0#h~) dm!

1

a
q (u

1
#mL

x
u, h)!

1

a
L
t
h0 .

(4.35)

From the simple fact that

=
:
m
h0 dm"

1

ca
ln

f 0
"
!gJ 0

f 0
"
!gJ 0!( f 0

"
!g0) exp (!Ca (g0!gJ 0) m )

it follows that the boundary-layer solutions exponentially decay as mPR.
Similarly, the solvability condition for (4.25c) and the matching conditions yield

the desired boundary condition (4.23c), which in turn determines u
2
, and so the

second-order boundary-layer solutions are given by

h0
2
(m)"!g0

2
expA!Ca

m
:
0

(g0!gJ 0#2h0) dmB
#

m
:
0

expA!Ca
m
:
m{

(g0!gJ 0#2h0) dmBb
1
(m@ ) dm@ ,

h`
2

(m)"
!2a
a#1

h0
2
(m)#

1

a#1
L
t

=
:
m

(h`
1
#2h0

1
) dm , (4.36)

h~
2

(m)"
!2a
a!1

h0
2
(m)#

1

a!1
L
t

=
:
m

(h~
1
#2h0

1
) dm ,
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where

b
1
(m)"

1

1!a2
(h0#g0) L

t

=
:
m
(h`

1
#4h0

1
#h~

1
) dm!

1

2a
q (h

1
, h

1
)

!

1

a
q (u

1
#mL

x
u, h)!

1

a
q (g

2
#mL

x
u
1
#

1

2
m2L2

x
u, h)!

1

a
L
t
h
1
. (4.37)

It should be clear now that the higher-order solutions can be obtained in exactly
the same way. In particular, one can compute h

3
and h

4
in detail. We note that all

the higher-order boundary-layer solutions decay exponentially fast away from the
boundary.

°4.4. Boundary Layer Expansion II

In the case of the diffusive-reflective boundary condition (2.13), the governing
equations for the boundary-layer solutions are the same as in (4.25). The corres-
ponding boundary conditions become

g̀
k
(s(t), t)#h`

k
(0, t)"a (t) (g~

k
(s(t), t)#h~

k
(0, t)), k"0, 1, . . . , 4,

(4.38)
4g0

k
(s(t), t)#4h0

k
(0, t)"b (t) (g~

k
(s(t), t)#h~

k
(0, t)), k"0, 1, . . . , 4,

h
k
(m, t)P0, uniformly as mPR, k"0, 1, . . . , 4. (4.39)

The boundary-layer solutions of different orders can be obtained in a similar
way as in the previous subsection. For example, the leading-order boundary-layer
solutions are given by (4.28) and (4.29) with f 0

"
defined in our case as

f 0
"
"

b

2

(a#1) g`#2ag0

a#2(1#a)a
, (4.40)

and the first-order boundary-layer solutions have the same forms as in (4.34) and
(4.35) provided that one can justify the boundary conditions (4.17c@) and (4.19). This
can be derived as follows. Note that the solvability condition for (4.25b) with (4.27)
yields

(a#1)h`
1
#2ah0

1
"!L

t

=
:
m

(h`#2h0) dm ,

(4.41)

(a!1)h~
1
#2ah0

1
"!L

t

=
:
m

(h`#2h0) dm .

Set

c
1
"

2a#2aa#ab

2!2a!ab
.
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It follows from (4.41) that

(a#1)h`
1
#2(1#c

1
) ah0

1
#c

1
(a!1)h~

1
"!L

t

=
:
m
(h`#2(1#c

1
)h0#c

1
h~) dm

or

(a#1) (h`
1
!ah~

1
)#

a
2
(1#c

1
) (4h0

1
!bh~

1
)"!L

t

=
:
m

(h`#2(1#c
1
)h0#c

1
h~) dm .

Combining this with the boundary condition (4.38) yields

(a#1) (g`
1
!ag~)#

a
2
(1#c

1
) (4g0

1
!bg~

1
)"!L

t

=
:
m

(h`#2(1#c
1
)h0#c

1
h~) dm .

(4.42)

Denoting the left-hand side of (4.42) as LHS, and using the expansion

u
1
"o

1
/g

1
#m

1
/g

2
!1

2
k (u) u

x
/

3
, (4.43)

we compute that

4(g`#g0#g~) LHS"o
1
(2(a#1) (1!a) g0#a (1#c

1
) (2g`!bg0#2g~))

#m
1
(2(a#1) (2g`#(1#a) g0#2ag~)

#a (1#c
1
) (!2g`#bg0#2(1#b)g~))

!k (u)u
x
(2(a#1) (1!a)!a (2#b) (1#c

1
))

](g`#g0#g~).

In terms of macroscopic moments, this formula becomes

LHS"
c
3
p (u)#c

4
3p(u)#1

o
1
#

c
5
p(u)#c

6
u#c

7
3p(u)#1

m
1
!c

2
k (u) u

x
, (4.44)

where c
2
, . . . , c

7
are appropriate constants involving only a, b, and a. Combining

(4.42) with (4.44) gives the desired boundary conditions (4.17c@ ) and (4.19). It can be
verified very easily that all the boundary-layer solutions constructed above decay
exponentially provided that f 0

"
'gJ 0, which holds true trivially for suitably small a.

°°°5. Stability Analysis I

In this section we prove the validity of the fluid-dynamic limit as stated in
Theorems 3.1 and 3.2 in the case of diffusive boundary conditions for the Broadwell
equations. The convergence analysis is done according to the structures of the
boundary layers. The easier case, corresponding to the boundary layers satisfying
d f 0/dm(0, is treated in °5.1. The main difficulty of stiffness across the boundary
layer is overcome by making use of the nonnegative-definiteness of the normalized
collision operator linearized around a carefully constructed approximate solution.
The complementary case, corresponding to the boundary layer satisfying
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d f 0/dm70, is more subtle and difficult. The method we are going to use is similar
to that used in [11] and [18]. However, since a boundary does not satisfy an
entropy condition as the shock layers do and, furthermore, since no smallness of
the strength of boundary layers is assumed in our case, a more refined version of
this method has to be used. This is carried out in °5.2. Finally, we study the
fluid-dynamic limit for short time in °5.3.

°5.1. Convergence Analysis for d f 0/dm(0

To carry out the program outlined after Theorem 3.1, we use a truncation of the
series (4.24) as our approximate solution to the initial-boundary-value problem
(2.1), (2.11), and (2.12), so that we can decompose the solution fe (x, t) into the sum of
the approximate solution with an error term e2eJ e (x, t), i.e.,

fe (x, t)"u (x, t)#eu
1
(x, t)#e2u

2
(x, t)#e3u

3
(x, t)#e4u

4
(x, t)

#h(m, t)#eh
1
(m, t)#e2h

2
(m, t)#e3h

3
(m, t)#e4h

4
(m, t)#e2eJ e (x, t),

(5.1)

where m is defined in (4.23). By construction, we have

(L
t
#»L

x
) eJ e"1e¸eJ e#eQ (eJ e , eJ e)# 3̧

1
eJ e#e2rJ e ,

eJ e (x, 0)"0, (5.2)

eJ `e (!at, t)"eJ 0e (!at, t)"0,

where

¸"¸
u`h"2Q(u#h, · ) ,

(5.3)
3̧
1
"2Q(u

1
#h

1
#e (u

2
#h

2
)#e2(u

3
#h

3
)#e3(u

4
#h

4
), · ),

rJ e"2Q(mL
x
uJ
4
#1

2
m2L2

x
uJ
3
#1

3!m3L3
x
uJ
2
#1

4!m4L4
x
uJ
1
#1

5!m5L5
x
uJ , h)

#2Q(mL
x
uJ
3
#1

2
m2L2

x
uJ
2
#1

3!m3L3
x
uJ
1
#1

4!m4L4
x
uJ , h

1
)

#2Q(mL
x
uJ
2
#1

2
m2L2

x
uJ
1
#1

3
m3L3

x
uJ , h

2
)

#2Q(mL
x
uJ
1
#1

2
m2L2

x
uJ , h

3
)#2Q(mL

x
uJ , h

4
)

#Q(2(u
1
#h

1
)#2e (u

2
#h

2
)#2e2(u

3
#h

3
)#e3(u

4
#h

4
), u

4
#h

4
)

#Q(2(u
2
#h

2
)#e (u

3
#h

3
), u

3
#h

3
). (5.4)

It follows from the structures of the Hilbert and boundary-layer solutions that
rJ e are bounded in ¼1,=.

Let P be the diagonal matrix defined by

P"diag(Jg~#h~, 2Jg0#h0, Jg`#h`) . (5.5)
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One can symmetrize the system in (5.2) by reformulating the problem in terms of
the new variables

ee(x, t)"(PeJ e) (x#at, t), (5.6)

as

L
t
ee#(a#» )L

x
ee"1e 3̧ ee#aeh0mBeee#eC(ee , ee)#¸

1
ee#ere ,

ee (x, 0)"0, (5.7)

e`e (0, t)"e0e (0, t)"0,

where

C ( f, h)"PQ(P~1f, P~1h), (5.8a)

re"PrJ e , (5.8b)

3̧ "P¸P~1, (5.8c)

¸
1
"P 3̧

1
P~1

#

1

2
diagA

(L
t
#»L

x
)g~#L

t
h~

g~#h~
,
(L

t
#»L

x
)g0#L

t
h0

g0#h0
,
(L

t
#»L

x
)g`#L

t
h`

g`#h` B
(5.8d)

Be"diagA
1#a
1!a

1

g~#h~
,

1

2(g0#h0)
,
1!a
1#a

1

g`#h`B . (5.8e)

It should be noted that the main advantage of the new error equations (5.7) over
(5.2) is that

3̧ 60, Be'0. (5.9)

Since (5.7) is a hyperbolic system, it is straightforward to prove the local existence
and uniqueness for the initial-boundary-value problem (5.7) and (5.8) for fixed
e'0 in the space

¸=([0, q],H1 (R
`
))WC([0, q],¸2(R

`
)). (5.10)

To obtain global existence and the desired convergence estimate, one needs only to
derive an appropriate a priori estimate on the solutions to (5.7). Let ee be such
a solution in the space defined in (5.10), and let ee satisfy

sup
06t6t0

EeeEL=6C, (5.11)

where t
0
6¹, and the positive constant C is independent of e. We now proceed to

derive an a priori estimate. Taking the inner product of both sides of (5.7) with ee ,
integrating by parts, noting that the boundary layer satisfies Lmh0(0, and assum-
ing (5.9), the boundary conditions, and estimate on re , and the a priori bounds
(5.11) on ee , we arrive at the basic energy inequality

L
t
EeeE2L2#(1!a) (e~(0, t))26CEeeE2

L2#O (e)EeeEL2 . (5.12)
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Consequently, by the Gronwall inequality, we get

sup
06t6t0

EeeEL26O(e). (5.13)

To justify the a priori bounds (5.11) and obtain the rate of convergence, we need to
estimate the higher-order derivatives. It turns out to be convenient to estimate the
time derivative first. Set

eN e"L
t
ee . (5.14)

Differentiating (5.7) with respect to t gives

L
t
eN e#(a#» )L

x
eN e"1e 3̧ eN e#ae h0mBeeN e#2eC (eN e , ee)#¸

1
eN e#eL

t
re

#1e ( 3̧ #ah0mBe#e¸
1
)
t
ee#eP

t
Q(P~1ee ,P~1ee)

#2ePQ (P~1
t

ee , P~1ee), (5.15)

eN e (x, 0)"ere ,

eN `e (0, t)"eN 0e (0, t)"0,

where the initial data for eN e are obtained by using the equations in (5.7). Noting that
time is a slow variable in (5.15) and taking into account the estimate (5.13), we
obtain that

L
t
EeN eE2

L26O(e)#CEeN eE2
L2#CEeN eEL2 . (5.16)

It follows that

sup
06t6t0

EeN eEL26C. (5.17)

This and the equations in (5.7) yield

sup
06t6t0

EL
x
eeEL26C sup

06t6t0

(EeN eEL2#1e EeeEL2#eEreEL2)6C. (5.18)

Therefore, by the Sobolev inequality, we get the desired super-norm estimate, i.e.,

sup
06t6t0

EeeEL=6 sup
06t6t0

JEeeEL2EL
x
eeEL26O (Je), (5.19)

which not only justifies the a priori assumption (5.11), but also gives the desired
convergence result. Hence the theorem is proved in this case.

°5.2. Stability Analysis for d f 0/dm70

In this case, a simple modification of the previous analysis does not suffice. We
need a careful modification of the analysis used for the shock layer in [18, 11]. We
assume in the rest of this section that the solution to the initial-boundary-value
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problem for the Euler equations (2.5), (2.22) lies in a d
0
-neighborhood of a global

Maxwellian state (o*,m*, z*), as do the boundary data f`
"

and f 0
"
.

As mentioned before, in order to exploit the property that d f 0/dm70 in the
boundary layer, it is desirable to conserve the mass and momentum for the error
terms. To this end, as in the case of the shock layer [18], we construct a linear
hyperbolic wave in addition to the Hilbert and boundary-layer solutions in the
approximate solution. The hyperbolic wave is defined to be the solution of

(L
t
#»L

x
) d"!(L

t
#»L

x
) u

4
!L

t
h
4
,

d(x, 0)"0, (5.20)

d`(s(t), t)"d0(s(t), t)"0,

where u
4

and h
4

are defined in (4.10) and (4.25), respectively. Since this system is
linear, the solution can be obtained explicitly by integration along characteristic
lines.

The approximate Broadwell solution and the decomposition of the exact
solution to the initial-boundary-value problem (2.1), (2.11) and (2.12) can be defined
in terms of the microscopic distributions in exactly the same way as in °5.1 with the
term e4d(x, t) added. However, it turns out to be more convenient to work with the
macroscopic variables. Thus, we define the approximate solution as

h
6 e

(x, t)"h (x, t)#eh
1
(x, t)#e2h

2
(x, t)#e3h

3
(x, t)#e4(h

4
(x, t)#d )

#H (m, t)#eH
1
(m, t)#e2H

2
(m, t)#e3H

3
(m, t)#e4H

4
(m, t), (5.21)

where h
k
"(o

k
, m

k
, z

k
) and H

k
"(P

k
,M

k
,Z

k
) are the Hilbert and boundary-layer

solutions, respectively, which are constructed in °4, but written in terms of macro-
scopic variables. Substitute h

6
"(o

6
, m

6
, z

6
) into (2.3) to get

L
t
o
6
#L

x
m
6
"0,

L
t
m
6
#L

x
z
6
"0, (5.22)

L
t
z
6
#L

x
m
6
"1e q (h

N
, h
6
)#e4rN e ,

where

rN e"2q(hL
x
h
4b
#1

2
h2L2

x
h
3b
#1

3!h3L3
x
h
2b
#1

4!h4L4
x
h
1b
#1

5!h5L5
x
h
"
,H)

#2q(hL
x
h
3b
#1

2
h2L2

x
h
2b
#1

3!h3L3
x
h
1b
#1

4!h4L4
x
h
"
,H

1
)

#2q(hL
x
hI
2b
#1

2
h2L2

x
h
1b
#1

3
h3L3

x
h
"
, H

2
)

#2q(hL
x
h
1b
#1

2
h2L2

x
h
"
,H

3
)#2Q(hL

x
h
"
,H

4
)

#q(2(h
1
#H

1
)#2e (h

2
#H

2
)#2e2(h

3
#H

3
)#e3(h

4
#H

4
#de), h4#H

4
#de)

#q(2(h
2
#H

2
)#e(h

3
#H

3
), h

3
#H

3
) . (5.23)

Let he"(oe ,me , ze) be the solution of (2.1), (2.11), and (2.12). We write

he (x, t)"h
6 e

(x, t)#e2gJ e (x, t) , (5.24)
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where gJ "(/I ,t3 ,uJ ). The error equation is then reduced to

L
t
/I e#L

x
tI e"0,

L
t
tI e#L

x
uJ e"0,

L
t
uJ e#L

x
tI e"2e q (h

6
, gJ e)#eq (gJ e , gJ e)#e2re , (5.25)

gJ e (x, 0)"0,

tI e (!at, t)#uJ e (!at, t)"/I e (!at, t)!uJ e (!at, t)"0.

Setting

Ae"1
4
(o
6
!z

6
), Be"1

4
(o
6
#3z

6
), (5.26)

we can transform the third equation of (5.25) into

Ae/I #m
6
tI !BeuJ "eL

t
uJ e#eL

x
tI e!e2q (gJ e , gJ e)!e3re . (5.27)

We reformulate the problem by using the substitutions

/I e"/M
x
, tI e"tM

x
, uJ e"uN . (5.28)

In terms of gJ "(/M ,tM ,uN ), we have

L
t
/M #L

x
tM "0,

L
t
tM #uN "0,

BeLttM #m
6
L
x
tM #AeLx

/M "e (L
xx

tM !L
tt
tM )!e2q(/M

x
,tM

x
,!tM

t
)!e3re , (5.29)

gN (x, 0)"0,

tM
x
(!at, t)#uN (!at, t)"/M

x
(!at, t)!uN (!at, t)"0.

Equation (5.29) can be further simplified by introducing the scalings

/M (x, t)"e/ (y, q), tM (x, t)"et(y, q), y"
x#at

e
, q"

t

e
. (5.30)

We obtain

¸
1
(/,t),/

r
#a/

y
#t

y
"0,

¸
2
(/, t),(t

r
#at

y
)
r
#a(t

r
#at

y
)
y
!t

yy
#A/

y
#(m#aB)t

y
#Bt

r

"!e2q(/
y
, t

y
,!(t

r
#at

y
))#e3r,

/ (y, 0)"t (y, 0)"t
r
(y, 0)"0, (5.31)

/
y
(0, q)#t

y
(0, q)"0,

/(0, q)#t (0, q)"0,

Our remaining task is to estimate the solution of (5.31). In what follows, we use
H l (R

`
) (l71) to denote the usual Sobolev space with the norm E · E

l
, and E E

denotes the usual ¸
2
-norm. Also we use k’s to denote any positive constants which

are independent of e, y and q.
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Define the solution space for (5.31) by

X (0, q)"M(/,t) : (/,t)3C (0, q :H2 (R
`
)),tq3C(0, q :H1(R

`
))N (5.32)

with 0(q(¹/e. Suppose that for some 06q
0
(¹/e, there exists a solution (/,t)

to (5.31), such that (/,t)3X(0, q
0
). We assume a priori that

sup
06s6q0

(E(/,t)E
2
#EtqE1)6C. (5.33)

Then the main result in this subsection is the following a priori estimate.

Proposition 5.1 (A priori estimate). ¸et (/, t)3X(0, q
0
) be a solution to (5.31)

satisfying (5.33). ¹hen, there is an e
0
'0 such that

sup
06q6q0

(E(/,t) (q)E2
2
#Etq (q)E2

1
#

q0
:
0

(E/
y
,t

y
) ( · , q)E2

1
#Et

r
( · , q)E2

1
) dq6Ke

(5.34)

for 0(e6e

The proof of this proposition occupies the rest of this subsection. We first list
some properties of the approximate Broadwell solution h

6 e
, which play important

roles in our energy analysis later on. For any vector e"(e
1
, e

2
, e

3
) satisfying

e2
3
'e2

2
, define

i
1
(e)"1

4
(e

1
#e

3
!2Je2

3
!e2

2
) , i

2
(e)"1

4
(e

1
#e

3
#2Je2

3
!e2

2
) . (5.35)

Also set ie
1
"i

1
(h
6 e
) and ie

2
"i

2
(h
6 e
).

Lemma 5.1. ¹here exists a positive constant e
1

such that if e6e
1
, then

(1) k
1
(ze(K

1
, k

2
(Ae(K

2
, k

3
(Be(K

3
,

(5.36)

k
4
(oe(K

4
, Dme D(oe

for some positive constants k and K, independent of t, e, and x,

(2) max
e,y,q

Ae6max
e,y, q

ie
1
(min

e,y, q
i e
2
6min

e,y, q
B e , (5.37)

(3)
!aA~1

y
"

a(1!a2)

4( f 0)2
P

0y
#O(e) . (5.38)

Proof. Note that

L
y
f 0"

1!a2

4
L
y
P
0
, (5.39)

which follows from (2.14). The proof of the lemma is now similar to that in
[18]. K
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We now proceed to derive the main estimate (5.34). We carry out the detailed
analysis for the expansive layers, i.e., u

"
#a60; the analysis for the case of the

compressive layer is similar to that of the shock layer in [18], which we sketch at
the end of this section for completeness. We start with the basic ¸

2
estimate. Set

I
1
,!t

y
¸
1
#A~1(tq#at

y
)¸

2
"e2A~1(tq#at

y
) (er!q),

(5.40)
I
2
,/¸

1
#A~1t¸

2
"e2A~1t(er!q).

Let j be an appropriate constant to be determined later. Compute the expres-
sion I

1
#jI

2
to get

Lq (E1
#E

2
#E

3
)#E

4
#E

5
#E

6
#E

7
#L

y
E
8
"e2A~1(t

r
#at

y
#jt) (er!q),

(5.41)

where

E
1
"1

2
A~1 (jA/2!2A/t

y
#t2

y
),E

1
(/,t

y
) ,

E
2
"1

2
A~1 (jBt2#2jt(tq#at

y
)#(tq#at

y
)2)

,E
2
(t,tq#at

y
),

E
3
"!j

2
(A~1q #aA~1

y
)t2,E

3
(t),

E
4
"A~1((B!j) (tq#at

y
)2#m(tq#at

y
)t

y
#(j!A)t2

y
)

,E
4
(tq#at

y
, t

y
),

E
5
"j

2
t2 ((1#a2)A~1

yy
!(A~1(m#aB))

y
),E

5
(t),

E
6
"!A~1

y
(a (tq#at

y
)2#2(tq#at

y
)t

y
!at2

y
)#2aA~1

y
tt

y
(5.42)

,E
6
(t,t

y
, tq#at

y
).

E
7
"j

2
t2(A~1qq #2aA~1

yy
!(BA~1)q!1

2
A~1q ((t

r
#at

y
)2#(t2

y
)!2A/t

y
)

,E
7
(/,t, t

y
, tq#at

y
),

E
8
"a

2
A~1(tq#at

y
)2!A~1tqty

!a
2
A~1t2

y
#tq/

#jaA~1t(tq#at
y
)!jA~1tt

y
#j

2
a/2#j/t

#j
2
t2 (A~1(m#aB)!(1#a2)A~1

y
!aA~1q )

,E
8
(/,t, tq,ty

, tq#at
y
).

Each term can be estimated by using Lemma 5.1 as follows. First, by (5.37), one
can choose j so that

max
e,y, q

A6max
e,y, q

i
1
(j(min

e,y, q
i
2
6min

e,y, q
B . (5.43)

Hence,

A2!jA(0, j2!Bj(0, m2!t (B!j) (j!A)(0. (5.44)
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Consequently, there exist positive constants k, K such that

k (/2#t2
y
)6E

1
6K(/2#t2

y
),

k[t2#(tq#at
y
)2]6E

2
6K[t2#(tq#at

y
)2], (5.45)

k[t2
y
#(tq#at

y
)2]6E

4
6K[t2

y
#(tq#at

y
)2].

Next, it follows from (5.38) that

E
3
7k

5
DP

0y
Dt2!O(1)et2 . (5.46)

To compute E
5
, one computes

(1#a2)A
1

f 0B
yy

!(A~1(m#aB))
y

"(1#a2)
2( f 0

y
)2!f 0f 0

yy
f 3
0

!A
f `!f ~#a ( f `#f 0#f ~)

f 0 B
y

. (5.47)

First, direct calculation using (2.33) gives

2( f 0
y
)2!f 0 f 0

yy
"ca(( f 0

=
#f 0

~=
) f 0!2 f 0

=
f 0
~=

) f 0
y
.

Next, using (2.18) yields

A
f `!f ~#a ( f`#f 0#f ~)

f 0 B
y

"A
c
1
#c

2
f 0

!3aB
y

"!

(c
1
#c

2
) f 0 f 0

y
( f 0)3

.

Thus,

(1#a2) (2( f 0
y
)2!f 0f 0

yy
)#(c

1
#c

2
) f 0"

2(c
1
#c

2
)

1!a2
( f 0!f 0

=
)#2ca ( f 0

=
)2

where we have used

ca( f 0
=
#f 0

~=
)"

c
1
#c

2
1!a2

,

2ca f 0
=

f 0
~=

"!2ca(1!a2) ( f 0
=

)2#
c
1
#c

2
1!a2

f 0
=

,

which follow from (2.31) and (2.32). Consequently,

(1#a2) A
1

f 0B
yy

!(A~1(m#aB))
y
"2f 0

y

(c
1
#c

2
) ( f 0!f 0

=
)#ca(1!a2) ( f 0

=
)2

(1!a2) ( f 0)3
.

This and (5.38) lead to

E
5
7k

6
DP

0y
Dt2!O(1)et2. (5.48)

Next, it follows from the construction of h
6 e

, (2.33), and the assumption that the
Euler solution lies in a small d

0
-neighborhood of the Maxwellian state (o*,m*, z*)

that

DE
6
D6

k
6
2

DP
0y

Dt2#K (d2
0
#e) ((tq#at

y
)2#t2

y
)#O (e)t2 (5.49)
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where K is a positive constant independent of d
0

and e. Finally,

E
7
7!O(e) ((tq#at

y
)2#t2

y
#/2#t2). (5.50)

Now integrate (5.41) over R
`
][0, q], and use estimates (5.45)—(5.50) to show that

E/(q)E2#Et(q)E2
1
#Etq#at

y
E2#

=
:
0

DP
0y

Dt2dy

#

q
:
0

E(t
y
,tq#at

y
)E2 ds#

q
:
0

=
:
0

DP
0y

Dt2 dy ds!E
8
(0)

6O(e)
q
:
0

E(/,t,t
y
,tq#at

y
)E2 ds

#K(d2
0
#e)

q
:
0

E(t
y
, tq#at

y
)E2 ds

#Ke3
q
:
0

=
:
0

(Dtq#at
y
D#DtD) Dr D dy ds

#Ke3
t
:
0

=
:
0

(Dtq#at
y
D#DtD) Dq D dy ds. (5.51)

It remains to deal with the boundary terms. As a consequence of the boundary
conditions in (5.31), we find that

/
y
(0, q)#t

y
(0, q)"0,

/ (0, q)#t (0, q)"0,
(5.52)

/q (0, q)#tq (0, q)"0,

/q (0, q)#a/
y
(0, q)#t

y
(0, q)"0.

It follows that

!E
8
(0)"(1!a)A~1/

y
(0)2#(1!a) (1#jA~1)/

y
(0)/ (0)

#j
2
(2!a!A~1(m#aB)#(1#a2)A~1

y
#aA~1q )/(0)2

"(1!a)A~1/
y
(0)2#(1!a) (1#jA~1)/

y
(0)/ (0)

#j
2
(2#2a!A~1o(u#a)#(1#a2)A~1

y
#aA~1q )/ (0)2

,!E
8
(/(0),/

y
(0)). (5.53)

This is a positive quadratic form for (/(0),/
y
(0)) provided that jA~1 is close to 1,

which is the case under our assumption that the macroscopic speed is much smaller
than the microscopic speed.

88 JIAN-GUO LIU & ZHOUPING XIN



The last two integrals on the right-hand side of (5.51) can be estimated as
follows. First, by the Cauchy inequality and the structure of the approximate
solution, we have

e3
q
:
0

: (Dtq#at
y
D#DtD) Dr D dy ds

6e3
q
:
0

E(t,tq#at
y
)E2 ds#e3

q
:
0

ErE2 ds

6e3
q
:
0

E(t,tq#at
y
)E2 ds#O(e)

for all q3[0, q
0
]. Next, Sobolev’s inequality gives

e3
q
:
0

: (DtD#Dtq#at
y
D) Dq D dy ds

6O(e2)
q
:
0

E(/
y
,t

y
,tq#at

y
)E2 ds, (5.54)

which yields the estimate on the nonlinear terms. We thus conclude from
(5.51)—(5.54) that

E/(q)E2#Et(q)E2
1
#E(tq#at

y
)E2#

=
:
0

DP
0y

Dt2 dy

#

q
:
0

E(t
y
,tq#at

y
)E2 ds#

q
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0

: DP
0y

Dt2 dy ds

6O (e)
q
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0

(E/E2#EtE2
1
#E(tq#at

y
)E2) ds

#O(e2)
q
:
0

E(/
y
, t

y
, tq#at

y
)E2 ds#O (e) (5.55)

for suitable small e and d
0
.

The next step is to estimate /
y
. Calculate the identity

I
3
,(tq#at

y
#/

y
) L

y
¸
1
#/

y
¸

2
"e2/

y
(er (y, q)!q(/

y
,t

y
,!(/q#at

y
)))

(5.56)

to get

Lq (12a2/2
y
#(tq#at

y
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y
!1

2
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y
)#A/2

y
#/

y
(Btq#(m#aB)t

y
)#L

y
E

9
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y
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y
q, (5.57)

where

E
9
"1

2
a(/2

y
#t2

y
)#tqty

#a/
y
(tq#at

y
),E

9
(/

y
, tq ,ty

) . (5.58)
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Integrate (5.57) by parts over R
`
][0, q] to show that

E/
y
(q)E2#

q
:
0

E/
y
E2 ds!E

9
(0)

6O(1)E(t
y
,tq#at

y
)E2#O (1)

q
:
0

E(t
y
, tq)E2 ds

#O(e2)
q
:
0

E(/
y
, t

y
, tq#at

y
)E2 ds#O(e3)

q
:
0

ErE2 ds. (5.59)

It follows from the boundary relations (5.52) that

!E
9
(0)"(1!a) (/

y
(0))2,!E

9
(/

y
(0))70. (5.60)

Combining (5.55) with (5.59) and using them successively, one finds that

E/(q)E2
1
#Et(q)E2

1
#E(tq (q)E2#

=
:
0

DP
0y

Dt2 dy

#

q
:
0

E(/
y
,t

y
,tq)E2 ds#

q
:
0

: DP
0y

Dt2 dy ds

6O(e)
q
:
0

(E/,tE2
1
#EtqE2) ds#O(e) (5.61)

for some positive constant K. Applying Gronwall’s inequality yields

E/(q)E2
1
#Et(q)E2

1
#E(tq#(q)E2#

=
:
0

DP
0y

Dt2 dy

#

q
:
0

E(/
y
, t

y
, tq)E2 ds#

q
:
0

: DP
0y

Dt2 dy ds6O(e) (5.62)

for all q3[0, q
0
], q

0
6¹/e.

To justify the a priori assumption (5.33), it is necessary to estimate the higher-
order derivatives of (/,t). This can be done in a way similar to that for the basic ¸2

estimate. For completeness, we outline it here. Set

I
4
,!t

yqLq¸1
#A~1Lq(tq#at

y
)Lq¸2

"e2A~1Lq (tq#at
y
) (erq!qq),

I
5
,/qLq¸1

(/,t)#A~1tq¸2
(/,t)"e2A~1tq (erq!qq), (5.63)

I
6
,Lq (tq#at

y
#/

y
) Lqy¸1

(/, t)#/qyLq¸2
(/,t)"e2/qy(erq!qq) .

As in (5.40), (5.41), lengthy calculations show that the expression I
4
#jI

5
becomes

Lq (E1
(/q , tqy)#E

2
(tq ,tqy)#E

3
(tq))

#E
4
(tqq#atqy ,tqy)#E

5
(tq)#E

6
(tq , tqy ,tqq#atqy)

#E
7
(/q,tq, tqy ,tqq#atqy)#L

y
E

8
(/q,tq,tqq ,tqy ,tqq#atqy)

"e2A~1(tq#at
y
#jt)q(erq!qq)!E

10
(/

y
, tq,ty

,tq#at
y
), (5.64)
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where

E
10
"A~1Aq(tq#at

y
)q/y

#A~1(m#aB)q (tq#at
y
)qty

#A~1Bq (tq#at
y
)tq

#jA~1Aqtq/y
#jA~1(m#aB)qtqty

#jA~1Bqtqtq
,E

10
(/

y
, tq,ty

,tq#at
y
), (5.65)

and where the constant j is chosen as before. Similarly, we compute I
6

to get

Lq (12/2
yq#(tqq#at

yq)/yq!1
2
t2

yq)#A/2
yq

#/
yq (Btqq#(m#aB)t

yq)#L
y
E
9
(/

yq ,tqq ,tyq)

"e2/
yq(erq!qq)!E

11
(/

y
, /

yq , tq ,ty
), (5.66)

where

E
11
"Aq/y

/
yq#(m#aB)q/yqty

#Bq/yqtq,E
11

(/
y
, /

yq,tq , ty
). (5.67)

Now integrating (5.64) and (5.66) over R
`
][0, q], one can derive as in (5.51) and

(5.59) that

E(/q (q)E2#Etq (q)E21#Etqq#at
yqE#

`=
:
0

DP
0y

Dt2q dy

#

q
:
0

E(t
yq ,tqq#at

yq)E2 ds#
q
:
0

: DP
0y

Dt2q dy!E
8
(0)

6K (d2
0
#e)

q
:
0

E(t
yq, tqq#at

yq)E2 ds

#O(e)
q
:
0

E(/q,tq)E2 ds

#e3
q
:
0

: Dtqq#at
yq#jtqD Drq D dy ds

#e2
q
:
0

: Dtqq#at
yq#jtqD Dqq D dy ds#

q
:
0

DE
10

D dq, (5.68)

E/
yq(q)E2#

q
:
0

E/
yqE2 ds!E

9
(0)

6KE(tqq,tyq) (q)E2#O(e2)
q
:
0

=
:
0

D/
yqD(eDrq D#DqqD) dy ds#

q
:
0

DE
11

D dq.

(5.69)

As before, the boundary terms satisfy

E
8
(0)"E

8
(/q (0), /qy(0))60, (5.70)

E
9
(0)"E

9
(/qy (0))60. (5.71)
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The integrals involving rq in (5.68) and (5.69) can be estimated as follows:

e3
q
:
0

: Dtqq#at
yq#jtq D DrqD dy ds

6e
q
:
0

Etqq#at
yqE2 ds#O(e)

q
:
0

EtqE2 ds#O(e5)
q
:
0

ErqE2 ds

6e
q
:
0

Etqq#at
yqE2 ds#O(e)

q
:
0

EtqE2 ds#O(e2). (5.72)

Similarly,

e2
q
:
0

: D/
yqD Drq D dy ds6e

q
:
0

E/
yqE2 ds#Ke2. (5.73)

Using the structure of q and Sobolev’s inequality leads to

e2
q
:
0

: Dtqq#at
yq#jtq D Dqq D dy ds#

q
:
0

: D/
yqD Dqq D dy ds

6O(e2)
q
:
0

(E/,/q, t,tq)E21#EtqqE2) ds. (5.74)

Collecting (5.68)—(5.74), we have

E/q (q)E21#Etq(q)E2
1
#Etqq(q)E2#

q
:
0

(E/q, tq)E2
1
#EtqqE2) ds#

q
:
0

: DP
0y

Dt2q dy ds

6O(e)
q
:
0

(E/q,tq)E2
1
#EtqqE2) ds#O(e2)#K

q
:
0

(DE
10

D#DE
11

D) dq. (5.75)

On the other hand, simple calculation shows that

K
q
:
0

DE
10

D dq61
2

q
:
0

Etqq#at
yqE2 dq#O(1)

q
:
0

E/
y
, t

y
, tqE2 dq,

K
q
:
0

DE
11

D dq61
2

q
:
0

E/qyE2 dq#O (1)
q
:
0

E(/
y
, t

y
, tq)E2 dq.

We finally arrive at

E/q(q)E21#Etq (q)E21#Etqq (q)E2

#

q
:
0

(E/q ,tq)E21#EtqqE2) ds#
q
:
0

: DP
0y

Dt2q dy ds6Ke (5.76)

for all q3[0, q
0
], q

0
6¹/e.

It follows from this and the equations in (5.31) that

E(/,t) (q)E2
2
#Etq (q)E216Ke (5.77)

for all q3[0, q
0
], q6¹/e.
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This proves Proposition 5.1 in the case of the expansive layers, i.e., u
"
#a60.

For the compressive layers, i.e., u
"
#a70, the previous analysis has to be com-

bined with that for the shock layers in [18]. The major modification is that the
E
5

and E
8

in (5.42) must be redefined as

E
5
"!j

2
t2(A~1(m#aB))

y
,E

5
(t),

E
8
"a

2
A~1(tq#at

y
)2!A~1tqty

!a
2
A~1t2

y
#tq/#jaA~1t(tq#at

y
)

!jA~1tt
y
#j

2
a/2#j/t#j

2
t2(A~1(m#aB)!aA~1q )

,E
8
(/,t,tq ,ty

,tq#at
y
). (5.78)

with corresponding changes in E
8
(0). Then the desired estimate can be obtained for

suitably small a by imitating the previous analysis and that in [18]. Details are
omitted. Thus the proof of Proposition 5.1 is completed.

Since the system in (5.31) is hyperbolic, it is standard to prove the local (in time)
existence and uniqueness of the solution to the initial-boundary-value problem
(5.31) in the space X (see (5.32)) [18]. From this and the a priori estimate
Proposition 5.1, one may conclude, by using the standard continuous induction
argument for hyperbolic equations, that the unique solution to problem (5.31)
exists up to ¹/e, and, furthermore, that the estimate (5.34) holds for all q

0
6¹/e.

Consequently, Theorem 3.1 follows from this, from the structures of our approxim-
ate solutions, and from the reformulation (5.24), (5.28), and (5.30).

°5.3. Convergence Analysis for Short Time

Finally we turn to the proof of Theorem 3.2 in the case of diffusive boundary
condition (2.12). Since for short time, the boundary layer has not fully developed
yet, its structure is not important. We can prove Theorem 3.2 by modifying the
analysis given in °5.2. Since the strategy is exactly the same as in °5.2, we only
sketch the necessary different estimates here. The crucial step is to show that the
a priori estimate (5.24) holds for only q

0
(¹

0
/e with ¹

0
suitably small without

conditions on the structure of the boundary layer and d
0
. It follows easily by

checking the proof of Proposition 5.1 that one has only to estimate
E
6
(t,t

y
,tq#at

y
), E

6
(tq, tqy, tqq#atqy), and : DP

0y
D (t2#t2

y
) dy. It follows from

(5.42) that

DE
6
(t,t

y
,tq#at

y
) D6O(1) DP

0y
Dt2#O (1) (DP

0y
#e) ((tq#at

y
)2#t2

y
),

(5.79)

DE
6
(tq, tqy,tqq#atqy) D6O(1) DP

0y
D DtqD2#O(1) (DP

0y
#e) ((tqq#atqy)2#t2qy)

#O(1)et2q . (5.80)

Let d (t) denote the strength of the boundary layer, i.e., d(t)"D f 0
"
!f 0

=
D. Then by

the structure of the boundary layer (2.35) and compatibility condition, we have

d(0)"0, DP
0y

(y, t)D6O(1)d (t),
=
:
0

DP
0y

(y, t) D y dy(O(1)d (t). (5.81)
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Consequently, max
06t6T0

d (t) is sufficiently small if ¹
0

is suitably small. Using
(5.81) and the simple inequality

Dt(y, q)D6Dy D1@2Et ( · , q)E
L2(R`)

,

we have

=
:
0

DP
0y

Dt2 dy6
=
:
0

DP
0y

(y, t) D Dy D Et
y
( · , q)E2

L2 dy

6O(1)d (t)Et
y
(q)E2

L2 , (5.82)

=
:
0

DP
0y

Dt2q dy6O (1)d(t)Et
yq(q)E2

L2. (5.83)

Using (5.79), (5.81), (5.82), and the derivation of (5.62), one concludes that there
exists a constant ¹

0
'0 (suitably small) such that

E/,t, tq) (q)E21#
q
:
0

E(/
y
, t

y
, tq) (q)E2L2 ds6O(e) (5.84)

for all q3[0, q
0
], q

0
6¹

0
/e. Similarly, it follows from (5.80), (5.81), (5.83), and the

derivation of (5.76) that

E/q(q)E2
1
#Etq (q)E2

1
#Etqq (q)E2#

q
:
0

(E/q,tq)E21#EtqqE2) ds6Ke (5.85)

for all q3[0, q
0
], q

0
6¹

0
/e with suitably small ¹

0
'0. Combining (5.84) with

(5.85) yields the desired a priori estimate — Proposition 5.1 for all q
0
3(0,¹

0
/e).

Theorem 3.2 now follows easily as in the previous subsection.

°°°6. Stability Analysis II

In this section we treat the case of the diffusive-reflective boundary conditions.
Since the stability analysis follows the same basic line of reasoning as for the case of
purely diffusive boundary conditions except for the treatment of boundary terms,
we only point out the main differences in the analysis and provide the key estimates
involving the boundary terms.

°6.1. Stability Analysis for df 0/dm60

The strategy is same as in °5.1. We only sketch the slight change involving the
boundary conditions. In our case, instead of (5.7), the difference between the
approximate and the exact solution of the Broadwell equations becomes

L
t
ee#(a#» ) L

x
ee"1e 3̧ ee#aeh0m Beee#eC(ee , ee)#¸

1
ee#ere ,

ee (x, 0)"0, (6.1)

e`e (0, t)!a (t)e~e (0, t)"4e0e (0, t)!b (t)e~e (0, t)"0.
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In the same way as for (5.13), one can show that

L
t
EeeE2L2#((1!a) (e~(0, t))2!(1#a) (e`(0, t))2!a (e0(0, t))2)

6CEeeE2
L2#O (e)EeeEL2 . (6.2)

It follows from the boundary conditions in (6.1) that the second term on the
left-hand side of this inequality becomes

(1!a) (e~(0, t))2!(1#a) (e`(0, t))2!a (e0(0, t))2

"(1!a2!a(1#a2# 1
16

b2)) (e~(0, t))2, (6.3)

which is positive provided that

17a2#a (1#a2# 1
16

b2). (6.4)

We note that inequality (6.4) is a consequence of our assumption that the macro-
scopic speed of the gas is suitably small compared with the microscopic speed of the
gas particles. Indeed, in the case of the compressive layer, for which u

"
#a60,

(6.4) holds since a6Du
"
D is suitably small in this case. For the expansive layers, the

inequality u
"
#a70 implies that

a (1#a#b)#a61.

Consequently, (6.4) holds without any assumption. We thus obtain the desired
basic energy estimate (5.14). Note also that (6.2) yields

t
:
0

(e~(0, s))2 ds6O(e2). (6.5)

The equations for the time derivative of the error

eN e"L
t
ee (6.6)

are the same as in (5.16), while the boundary conditions change to

eN `e (0, t)"a(t)eN ~e (0, t)#a@(t)e~e (0, t),
(6.7)

4eN 0e (0, t)"b(t)eN ~e (0, t)#b@(t)e~e (0, t).

Thus an estimate like that used before gives

L
t
EeN eE2L2#I6O(e)#CEeN eE2L2#CEeN eEL2 , (6.8)

where I represents all the terms involving boundary conditions:

I"(1!a) (eN ~ (0, t))2!(1#a) (eN ` (0, t))2!a (eN 0(0, t))2

"(1!a2!a(1#a2# 1
16

b2)) (eN ~(0, t))2

!((1#a)a2# 1
16

ab2)@eN ~e~!((1#a) (a@)2# 1
16

a(b@ )2 (eN )2.

It follows from (6.4) and some easy manipulations that

I7!C (e~)2. (6.9)
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Collecting (6.5), (6.8), and (6.9) yields

sup
06t6t0

EeN eEL26C. (6.10)

Now the theorem can be proved in the same way as in °5.1.

°6.2. Stability Analysis for d f 0/dm'0.

The analysis in °5.2 can be repeated with the following notable exceptions.
First, instead of (5.21), the linear hyperbolic wave is defined to be the solution of

(L
t
#»L

x
) d"!(L

t
#»L

x
) u

4
!L

t
h
4
,

d (x, 0)"0,
(6.11)

d`(s(t), t)"a (t)d~(s (t), t),

4d0(s(t), t)"b (t)d~(s(t), t).

The approximate and exact solutions to the problem (2.1), (2.11), and (2.13) are
constructed exactly as in °5.2 (see (5.25)—(5.29)), while problem (5.30) becomes

L
t
/M #L

x
tM "0,

L
t
tM #uN "0,

BeLt
tM #m

6
L
x
tM #AeLx/M "e (L

xx
!L

tt
tM )!e2q(/M

x
,tM

x
,!tM

t
)!e3re , (6.12)

gN (x, 0)"0,

(1#a (t))tM
x
(!at, t)#(1!a(t))uN (!at, t)"0,

2/M
x
(!at, t)#b (t)tM

x
(!at, t)!(2#b (t))uN (!at, t)"0.

We reformulate problem (6.12) by rescaling the problem as in (5.31). One needs to
derive the boundary conditions for (/,t) corresponding to those in (5.32). It follows
from the boundary conditions in (6.12) that at the boundary y"0,

(1#a)tM
x
#(1!a)uN "0,

(6.13)
2/M

x
#btM

x
!(2#b)uN "0.

Eliminating u gives

(1#a) (2#b)tM
x
#(1!a) (2/M

x
#btM

x
)"0

or

(1!a)/M
x
#(1#a#b)tM

x
"0.

In terms of / and t, we have

(1!a)/
y
#(1#a#b)t

y
"0. (6.14)
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Now, substituting uN "!(tq#at
y
) into (6.13) yields

(1#a)t
y
!(1!a) (tq#at

y
)"0.

This, together with

/q#a/
y
#t

y
"0

leads to

A
0

a
1#a!a(1!a)

1 BA
/
y

t
y
B#A

0

1

a!1

0 BA
/q
tqB"0.

Combining this with (6.14) implies that

(1#a!a (1!a))/q#(1!a!a (1#a#b))tq"0. (6.15)

For simplicity of presentation, we assume that a and b do not depend on the time q.
Then it follows from (6.15) and the initial data that the

(1#a!a (1!a))/#(1!a!a (1#a#b))t"0 (6.16)

holds at the boundary. In particular, for the purely reflective boundary, u"!a,
and so /"0 at the boundary. Hence the counterpart of (5.32) now becomes

¸
1
(/,t),/q#a/

y
#t

y
"0,

¸
2
(/,t),(tq#at

y
)q#a(tq#at

y
)
y
!t

yy
#A/

y
#(m#aB)t

y
#Btq

"!e2q(/
y
, t

y
,!(tq#at

y
))#e3r,

(6.17)
/ (y, 0)"t (y, 0)"tq(y, 0)"0,

(1#a!a (1!a))/ (0, q)#(1!a!a (1#a#b))t (0, q)"0,

(1!a)/
y
(0, q)#(1#a#b)t

y
(0, q)"0.

The a priori estimate on the solution of (6.17), as in Proposition 5.1, can be derived
as in °5.2, except for the treatment of the boundary terms, which are described by

E
8
"a

2
A~1 (tq#at

y
)2!A~1tqty

!a
2
A~1t2

y
#tq/#jaA~1t(tq#at

y
)

!jA~1tt
y
#j

2
a/2#j/t#j

2
t2 (A~1(m#aB)!(1#a2)A~1

y
!aA~1q ).

To estimate E
8

at the boundary, we note that

tq#at
y
"

1#a

1!a
t
y
,

tq"
1#a!a(1!a)

1!a
t
y
, (6.18)

/"

a(1#a#b)#a!1

1#a!a (1!a)
t .
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Hence,

E
8
(0)"

a
2
A~1"

(1#a)2

(1!a)2
t2

y
!

1#a!a (1!a)

1!a
A~1t2

y
!

a
2
A~1t2

y

#

1#a!a(1!a)

(1!a)

a (1#a#b)#a!1

1#a!a (1!a)
tt

y
#jaA~1

1#a

1!a
tt

y

!jA~1tt
y
#

j
2
aA

a (1#a#b)#a!1

1#a!a(1!a) B
2
t2

#j
a (1#a#b)#a!1

1#a!a(1!a)
t2

#

j
2
t2 (A~1(m#aB)!(1#a2)A~1

y
!aA~1q ). (6.19)

Set

k
0
"a#a (1#a#b)!1,

k
1
"a(1#a)!1#a, (6.20)

k
2
"1#a!a (1!a),

and also use the notations:

I
1
"A~1

1!a!a2 (1#a)

(1!a)2
,

I
2
"

j
2 A

!k
0

k2
2

(a (3a!3#a (1#a#b))#2(1#a))

!A~1o (u#a)#3a!(1#a2)A~1
y

!aA~1q B. (6.21)

We now rewrite (6.19) as

!E
8
(0)"I

1
t2
y
#

k
0
#jA~1k

1
1!a

tt
y
#I

2
t2, (6.22)

which can be regarded as a quadratic form for t
y

and t. To show that this is
positive-definite, we need to check the positivity of I

1
, I

2
, and the determinant of

the quadratic form defined as

I
3
"2jA~1(1!a!a2(1#a))

]A3a#
!k

0
k2
2

(a(3a!3#a(1#a#b))#2(1#a))

!A~1o (u#a)!(1#a2)A~1
y

!aA~1q B!(k
0
#jA~1k

1
)2. (6.23)
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There are two cases. First we treat the expansive boundary layer. Then k
0
60 (see

(2.26) and (2.35)), so that

1!a!a2(a#1)"!(1#a)k
0
#a (2a#ab#b)'0, (6.24)

a(3a!3#a(1#a#b))#2(1#a)"(1!a) (2!a)#a(1#a) (2#a)#ba2'0.

It follows that both I
1

and I
2

are positive since u#a60, and (5.39) and (5.40)
hold. To show that I

3
'0, one computes that at the boundary

A~1o (u#a)"
4

b
k
0
, (6.25)

and so

I
3
"2(!k

0
(1#a)#a (2a#ab#b))

]A3a#
4

b
k
0
#

!k
0

k2
2

((1!a) (2!a)#a(1#a) (2#a)#ab

!(1#a2)A~1
y

!aA~1q )B!(2k
0
#ab)2.

Note that

(1#a)
8

b
u2
0
78k2

0
,

2a (2a#ab#b) (3a)76a2b72a2b2.

Consequently,

I
3
'0. (6.26)

This completes the boundary estimate in the case of the expansive boundary
layer. Next we turn to the study of the compressive boundary layer, in which case
we have k

0
70. For technical reasons, we assume further that k

0
6ab/4 and a61

4
.

Then

!a(u6!a!
ab

4(1#a#b)
. (6.27)

It is easy to see that the numerator of I
1

is estimated by

!(1#a)k
0
#a(2a#ab#b)7(ab!k

0
) (1#a)73

4
ab(1#a)'0. (6.28)

Since k
0
70 and a61

4
, we have

a71!a (1#a#b)71!3a7
a

a#1
.
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This implies that k
2
71 in our case. The sum of the first three terms in I

2
is then

bounded from below by

j
2A3a!

4k
0

b
!k

0
(a (3a!3#a (1#a#b))#2(1#a))B

7

j
2A2a!

1

4
ab(3a2#2#2a)B7

3

8
ja'0, (6.29)

so that I
2

is positive. Arguing in a similar way, we obtain that

2jA~1(1!a!a2(1#a))72ab,

3a#
!k

0
k2
2

(a(3a!3#a (1#a#b))#2(1#a))

!A~1o (u#a)!(1#a2)A~1
y

!aA~1q 73
2
a,

(k
0
#jA~1k

1
)2"(k

0
#jA~1(k

0
!ab))261

4
a2b2.

This immediately yields

I
3
73a2b!1

4
a2b2'0. (6.30)

In summary, we have shown that E
8
(0)60 in all the cases. Since the boundary

estimates for the higher-order derivatives can be obtained in exactly the same way,
the rest of the analysis for the derivation of the priori estimate for the solution of
(6.17), as described in Proposition 5.1, can be carried out in the same way as in °5.2
with a few slight modifications, so that the proof of Theorem 3.1 in this case is
similar to those in °5.2. Details are omitted.

Finally, one can prove Theorem 3.2 in the case of diffusive-reflexive boundary
conditions as in °5.3 combined with the modification in this subsection. We note
that all the conditions on the structure of the boundary layer and the technical
assumption made in the previous analysis can be avoided by using the fact that the
boundary layers are weak for short time. Thus the proof of Theorem 3.2 is
complete.

Appendix A. Proof of Lemmas 2.1 and 2.2

Proof of Lemma 2.1. Assume that a71/3, b62/3, and a61/J3. We show that
there is a unique solution u

"
to

(a#u
"
) (1#a!a(1!a))"(p (u

"
)#au

"
) (1!a!a(1#a#b)) (A.1)

such that

Du
"
D(1, j

1
(u

"
)(!a. (A.2)

Since j
1
(u) is monotone in u, it is easy to check that (A.2) is equivalent to

!1(u(ua , (A.3a)
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where

ua"
!4a#J16a2#(1!3a2)3(1#a2)

(1!3a2)2
, (A.3b)

which is the solution of j
1
(ua)"!a satisfying DuaD(1.

Setting

a
1
"1!a!a (1#a#b),

a
2
"a(1!a!a(1#a#b))!(1#a)#a(1!a), (A.4)

a
3
"a(1#a!a(1!a)),

we can then rewrite (A.1) as

a
1
p (u

"
)#a

2
u
"
"a

3
,

or equivalently,

2a
1
J1#3u2"a

1
#3a

3
!3a

2
u. (A.5)

Squaring (A.5) leads to

(9a2
2
!12a2

1
)u2!6(a

1
#3a

3
)a

2
u#(a

1
#3a

3
)2!4a2

1
"0. (A.6)

Equation (A.6) has real roots if and only if

122a2
1
(a2

2
#2a

1
a
3
#3a2

3
!a2

1
)70, (A.7)

and the two roots are

u
$
"

a
2
(a

1
#3a

3
)$2 Da

1
DJa2

2
#2a

1
a
3
#3a2

3
!a2

1
3a2

2
!4a2

1

. (A.8)

We now show that u
`

satisfies both (A.3a) and (A.5). First, we check (A.7). Since

a
2
"aa

1
!

1

a
a
3
, (A.9)

we have

a2
2
#2a

1
a
3
#3a2

3
!a2

1
"

1

a2
(a2

3
!a2a2

1
#3a2a2

3
#a4a2

1
).

On the other hand,

a2
3
!a2a2

1
"4a2(1!a2)a!a4b2#2a3b(1!a!a(1#a))

"4a2(1!a2)a#b2a4#2a3ba
1

74a2(1!a2)a#b2a4!a2b2!a4a2
1

"a2(1!a2) (4a!b2)!a4a2
1

7!a4a2
1
,
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where we have assumed that b62
3

and a71
3
. It follows that

a2
2
#2a

1
a
3
#3a2

3
!a2

1
73a2

3
70, (A.10)

which proves (A.7). In the following argument, we use the fact that

a
2
(0. (A.11)

In fact, due to (A.9) this is trivial in the case a
1
(0. For a

1
'0, one has

a
2
"aa

1
!

1

a
a
3
6

3a2!1

a
a
3
(0

provided that 3a
3
!a

1
70. When 3a

3
!a

1
(0, it follows from

a2
2
#2a

1
a
3
#3a2

3
!a2

1
"a2

2
#(a

1
#a

3
) (3a

3
!a

1
)70 (A.12)

that a
2
O0. Moreover, at a"0, we have

a
2
"!1!a(0, 3a

3
!a

1
"a!1(0.

Note further that 3a
3
!a

1
is an increasing function of a on the interval (0, 1/J3).

Consequently (A.11) holds.
To show (A.3) for u

`
, we rewrite u

`
as

u
`
"

(a
1
#a

3
) (3a

3
!a

1
)

a
2
(a

1
#3a

3
)!2 Da

1
DJa2

2
#(a

1
#a

3
) (3a

3
!a

1
)
. (A.13)

One checks easily that the denominator in (A.13) is always negative. Indeed, when
either (i) a

1
'0, or (ii) a

1
(0 with a

1
#3a

3
70, this follows trivially since a

2
is

negative. The case that a
1
#3a

3
(0 never occurs for a3(0, 1/J3), which follows

by a simple calculation.
We now show that !1(u

`
. Since the denominator in (A.13) is negative, it

suffices to show that

(a
1
#a

3
) (3a

3
!a

1
)(Da

2
D (a

1
#3a

3
)#2 Da

1
DJa2

2
#(a

1
#a

3
) (3a

3
!a

1
) . (A.14)

There are two cases:
Case 1: a

1
'0. In this case, it is sufficient to prove (A.14) for 3a

3
!a

1
70.

Assuming that 3a2(1, we compute that

3a
3
!a

1
(

1

a
(3a

3
!a

1
)(

1

a
(3a

3
!3a2a

1
)"3 Da

2
D . (A.15)

Consequently, we obtain the estimate

(a
1
#a

3
) (3a

3
!a

1
)(3 Da

2
D (a

1
#a

3
)"Da

2
D (a

1
#3a

3
)#2a

1
Da

2
D , (A.16)

which yields (A.14).
Case 2. a

1
(0. When a

1
#a

3
60, (A.14) holds trivially. To deal with the case that

a
1
#a

3
'0, we observe that

Da
2
D (a

1
#3a

3
)#2 Da

1
DJa2

2
#(a

1
#a

3
) (3a

3
!a

1
)

7Da
2
D(a

1
#3a

3
)#2 Da

1
D Da

2
D"!a

2
(3a

3
!a

1
). (A.17)
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Thus (A.14) follows provided that

a
1
#a

3
(!a

2
. (A.18)

However, inequality (A.18) is a direct consequence of a
1
(0 and a(1.

Next we show that u
`
(ua . Consider first the simpler case: a

1
(0. Observe

that ua'0 for a(1/J3. Furthermore, we can easily check that the numerator in

(A.13) vanishes at a
1
#a

3
"0 which occurs only for a'1/J3, and hence u

`
(0.

Thus the conclusion follows in this case. Next, we deal with the case a
1
'0. It can

be easily seen that we need only consider 0(a(a*, where a*3(0, 1
6
) is the only

root of 3a
3
!a

1
"0 on (0, 1). Note that ua71

2
at a"1

6
. It thus suffices to verify for

a3(0, a*) that

u
`
61

2
, (A.19)

which is equivalent to

a(2#a)a2
1
6(1#4a!3a2)a

1
a
3
#(6a#3)a2

3
. (A.20)

Observe that 2aa
1
(a

3
for 1'a'1

3
. It follows that

!3a2a
1
a
3
#(6a#3)a2

3
'0,

a (2#a)a2
1
(1

2
(1#a)a

1
a
3
((1#4a)a

1
a
3
.

This ensures (A.20), and hence (A.19) follows.
Finally, it remains to show that u

`
is a solution of (A.5). Thus we must verify

that

a
1
#3a

3
!3a

2
u
`
70. (A.21)

Simple manipulation shows that (A.21) is equivalent to

3a
2
(a

1
#a

3
) (3a

3
!a

1
)

7(a
1
#3a

3
) (a

2
(a

1
#3a

3
)!2 Da

1
DJa2

2
#(a

1
#a

3
) (3a

3
!a

1
) . (A.22)

As before we separate the two cases according to a
1
'0 or a

1
(0. In the case

a
1
'0, it need to be clear that we need only prove (A.22) for 3a

3
!a

1
70. Then

3a
2
(a

1
#a

3
) (3a

3
!a

1
)73a

2
(a

1
#3a

3
) (a

1
#3a

3
)

"(a
1
#3a

3
) (a

2
(a

1
#3a

3
)!2a

1
Da

2
D)

7(a
1
#3a

3
) (a

2
(a

1
#3a

3
)!2a

1
Ja2

2
#(a

1
#a

3
) (3a

3
!a

1
)),

which ensures (A.22). Consider now the complementary case a
1
(0. Our assump-

tion then implies that when a
1
#a

3
'0,

3a
2
(a

1
#a

3
) (3a

3
!a

1
)7a

2
(a

1
#a

3
) (3a

1
!a

1
)

"(a
1
#3a

3
) (a

2
(a

1
#3a

3
)!2 Da

1
D Da

2
D)

7(a
1
#3a

3
) (a

2
(a

1
#3a

3
)!2Da

1
DJa2

2
#(a

1
#a

3
) (3a

3
!a

1
)).
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If a
1
#a

3
(0, then (A.13) shows that u

`
'0. Hence, since a

1
#3a

3
'0 remains

valid for a3(0, 1/J3), it follows that (A.21) holds. The proof of the lemma is
completed.

Proof of Lemma 2.2. It follows from the structure of the boundary layers (2.33) that
we only need to prove the first statement in the lemma. Equation (2.30) implies
that f 0

~=
(f 0

=
can be written in the form

2a
1#3a2

o (u#a)(2f 0
=
"

1

2
o (1!p(u)),

or equivalently,

(1#3a2)J1#3u2(2(1!3au). (A.23)

On the other hand, the assumption that j
~

(u)(!a yields

u#aJ1#3u2(Jp (u) . (A.24)

In the case that

u#aJ1#3u270,

we obtain from (A.24) that

(1#3a2) (1#3u2)(2(1!3ua)J1#3u2,

which immediately gives (A.23). For the complementary case

u#aJ1#3u2(0,

we estimate directly that

2(1!3au)'2#6a2J1#3u2

'(1!3a2)J1#3u2#6a2J1#3u2

"(1#3a2)J1#3u2,

where we have used the inequality

27J1#3u27(1!3a2)J1#3u2

which follows from Du D61. This completes the proof of the lemma.
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