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Nonlinear Stability of Discrete Shocks 
for Systems of Conservation Laws 
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Abstract 

In this paper we study the asymptotic nonlinear stability of  discrete shocks 
for the Lax-Friedrichs scheme for approximating general m •  systems of 
nonlinear hyperbolic conservation laws. It is shown that weak single discrete 
shocks for such a scheme are nonlinearly stable in the LP-norm for all p __> 1, 
provided that the sums of the initial perturbations equal zero. These results 
should shed light on the convergence of the numerical solution constructed by 
the Lax-Friedrichs scheme for the single-shock solution of  system of  hyper- 
bolic conservation laws. If  the Riemann solution corresponding to the given 
far-field states is a superposition of  m single shocks from each characteristic 
family, we show that the corresponding multiple discrete shocks are nonlinearly 
stable in L p (p >= 2). These results are proved by using both a weighted 
estimate and a characteristic energy method based on the internal structures 
of  the discrete shocks and the essential monotonicity of  the Lax-Friedrichs 
scheme. 

1. Introduction 

We investigate the asymptotic stability of the numerical approximation of  
the following Riemann problem for general systems of  nonlinear conservation 
laws 

/ -  

ut + f ( U ) x  = 0, u(x, O) = Uo(X) = ~u_,  x < 0, (1.1) 
k u+, x > 0  

where u = u(x,  t) E R m, f is a smooth nonlinear mapping from R m to R m, 
and u .  are two constant vectors in R m. We assume that the system (1.1) is 
strictly hyperbolic in the sense that at each state u ~ R m the Jacobian V f ( u )  
has m real and distinct eigenvalues 

~l(U) < /~2(U) < . . .  < Am(U) 
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with corresponding left and right eigenvectors l~(u) and r~(u), respectively, 
and that each characteristic field is either genuinely nonlinear or linearly 
degenerate in the sense of  LAX [14], i.e., for a = 1 , . . . ,  m, the eigenvector rf, 
satisfies V2u. r u = 1 or V)~ u- ru --- 0. We normalize the eigenvectors so that 
lu(u) r~(u) = Ouk and denote the m x m  matrices L(u) ,  R(u)  and A ( u )  by 

L(u)  = ( l l ( U )  r . . . . .  lm(u)T)  T, R ( u )  = ( r l ( U )  . . . . .  rm(bl)) , 

A ( u )  = diag(2l(U) . . . .  , Zm(u)). 

LAX [14] showed that the Riemann problem (1.1) has a solution consisting of 
at most (m + 1) constant states separated by shock waves, centered rarefaction 
waves, and contact discontinuities, provided that the shock strength lu + - u _  I 

�9 is small. 
We focus mainly on two special cases, the single shock and the multiple- 

shock. In the first case, the Riemann problem (1. l) has a k-shock wave solution 

= f u _ ,  x < s t ,  
u ( x ,  t) (1.2a) ( U+, X > s t ,  

corresponding to the k-th genuinely nonlinear field. Here the constant states 
u• and shock speed s satisfy the Rankine-Hugoniot condition 

f ( u _ )  - f (u+ ) = s(u_ - u+ ), (1.2b) 

and the Lax entropy condition 

~k(U+) < s < )~k(U-). (1.2C) 

In the second case, the Riemann problem (1.1) has a multiple shock solution 

i 
r UO, X < S l t ,  

~t!, S i t  < X < s2t  , 

u(x, t) = i : (1.3a) 

I blm-1, S m - l t < X < S m t ,  

k. Urn, Smt < X. 

Here the constant states ~0 = u_, ~1 . . . . .  ~ - 1 ,  ~m = u+ and shock speeds 
S l , . . . ,  Sm satisfy the Rankine-Hugoniot conditions 

f ( ua -1 )  - - f (uv )  = sa(ua-1 -- u~), U = 1 . . . . .  m, (1.3b) 

and the Lax entropy conditions 

~/z(~/~) <: S/~ < ~/~(~/~--1), ]./ = 1 . . . . .  m. (1.3C) 

The multiple shock is generic in the sense that it is preserved under small per- 
turbations of the left and right constant states u_ and u+. 

We approximate (1.1) with the difference schemes (consistent and conser- 
vative) of  the form 

u; +1 = G(u]_ r . . . . .  u ; , . . . ,  u]+t) (1.4) 
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where G ( u _  r . . . . .  ut) : R  (r+t+l)m ~ R m is a smooth function. In particular, we 
take the Lax-Friedrichs scheme as the approximation scheme [13] 

2 v n 
u; +1 - u/  + 2 (f(u~+l) - f ( u ; - 1 ) )  = ~ (U/+x -- 2uj n + uj-1) (l .5a) 

where u ;  is a approximation of u(xj ,  tn), xj = j Ax and tn = n At, and Ax and 
A t are the spatial and temporal grid sizes; v is a constant satisfying 0 < v < 1, 
and the temporal-spatial grid ratio 2 = At /Ax  satisfies a Courant-Friedrichs- 
Lewy condition 

2 sup ])Lu(u) [ __< v. (1.5b) 

A solution ~b/ of 

2 v 
~;+1 _ 07 + 2 (f(Ojn+l) - f ( r  = 2 (0Jn+l - 2~bjn + q5~-1)' (1.6a) 

4~j nq = ~b~ (1.6b) 

r ~ u• as j ~ • c~ (1.6c) 

is called a traveling-wave solution. It is referred to as a single discrete shock. 
Its existence has been proved by MAJDA & RnJ~S~N [18] provided that 
(u_, u+) satisfies condition (1.2). Here, its = p / q  for some relatively prime 
integers p and q. 

The first main theorem of this paper is the following; it gives the asymp- 
totic LZ-stability and Ll-stability of single discrete shock waves for the Lax- 
Friedrichs scheme. 

Theorem 1.1. Suppose that (1.1) is a strictly hyperbolic system and that the k- 
characteristic field is genuinely nonlinear. Let 4p~ be the single discrete shock pro- 
file (1.6) in the k-field connecting u+ to u_. Assume that 

o o  

(u o _ ~o) = 0, (l.7a) 
j~--oo 

e = lu+ - U-I -< cl, (1.7b) 
oo 

E (1 +j2)  lu~176 2 (1.7c) 
j~--oo 

for some (suitably small) positive constants c 1 and c2. Then 
(1) There exists a unique global solution u~ to the Lax-Friedrichs scheme (1.5) 
with initial data u ~ which satisfies 

lu/- /12=o. (1.8) 
j~--oo 

(2) I f  
E (1 _}_j2)3/2 IU / __~/12 <0o, (1.7d) 

j~--oo 
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then oo  

sup E l u ; -  +;I < = .  
0<n<  co . 

(1.9) 

As an immediate consequence of Theorem 1.1, we have the following co- 
rollary. 

Corollary 1.1. Under the hypothesis of Theorem 1.1, there is L p asymptotic 
stability for p > 1: 

lira E [uY-+; [p =0. (1.10) 
j= --oo 

Remark 1.1. One would expect that the stability estimate (1.9) in Theorem 1.1 
implies the following error estimate for the Lax-Friedrichs scheme (1.5a) ap- 
proximating systems of conservation laws (1.1) with single-shock solution 
u(x, t), of the form (1.2a): 

Ilu(, t) - uh( , t)l]L, <= Ch (1,11) 

where uh(x, t) is the approximate solution and C is a positive constant in- 
dependent of the grid size h. The error estimate in (1.11) should be optimal. 
It has been achieved by JENNINGS in the scalar case [10]. It remains to combine 
some initial-layer estimates with (1.9) to obtain (1.11). This is left for the future. 

Remark 1.2. In the original Lax-Friedrichs scheme [13], v = 1. However, we do 
not expect asymptotic stability of the discrete shock profiles in this case. In 
fact, we can easily verify that stationary discrete shock profiles of the Lax- 
Friedrichs scheme for scalar equations are not asymptotically stable [16]. We 
note that the theorem of JENNINGS [10] for scalar equations also excludes the 
case v = 1. 

Next, we define the multiple discrete shock corresponding to the multiple 
shock solution (1.3) to be the superposition of m single discrete shocks: 

m m-1 

0in = E 0 ~ , j + ~ -  E u~' (1.12) 
/~=1 /~=1 

where 0~,j is the discrete shock connecting the constant states u-~-i and ~ ,  
and the c~ u are integers determined by initial data. 

The second main theorem of this paper is the following asymptotic 
L2-stability of the multiple discrete shock waves for the Lax-Friedrichs 
scheme. 

Theorem 1.2. Suppose that system (1.1) is strictly hyperbolic and genuinely 
nonlinear. Let Oy be the discrete multiple shock profile (1.12), and let integers ~ 
be chosen such that 

E o - O~,j+a~ + ~ = 0. (1.13a) 
j = - ~  / t=l ~t=l 
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Then there exist (suitably small) positive constants cl and Cz such that if 

e = lu+ - u_] N q ,  (1.13b) 

oo m m - 1  2 

]~  (1 + j 2 )  u f -  ~ o (1.13c)  c2, 
j = - o o  p = l  #=1 

then there exists a unique global solution, u;, to the Lax-Friedriehs scheme (1.5). 
Furthermore, 

O~ 

lirn ]~  [ u ; - 4 ~ ; 1 2 = 0 .  (1.14) 
j~--co 

Our stability analysis is strongly motivated by the nonlinear stability of 
viscous shock waves for systems of conservation laws with viscosity of the 
form 

ut + f(U)x = VUxx, v > 0. (1.15) 

There have been extensive studies of this question in the last three decades 
[5, 6, 11, 15, 22, 29]. Recently, important progress has been made by GooD- 
MAN [5], KAWASmMA & MATSVMURA [11], Lit: [15], and SzEPESSY & XIN [27] 
in the study of asymptotic stability of viscous shock profiles for a large class 
of conservation laws with viscosity. These authors showed that a weak viscous 
shock profile is nonlinearly stable in the Lz-norm in the sense that a small 
initial disturbance, under suitable restrictions, dies out as time tends to infini- 
ty. In the scalar case, J~NNIN~S [10], OSnER & RALSTON [22] proved LLsta- 
bility for discrete shocks and viscous shocks, respectively. 

The study of the existence and stability of discrete shocks is important in 
understanding the convergence behavior of numerical shock computations. In 
very interesting work [10], JENNINGS showed the stability of discrete shock pro- 
files for general first-order monotone schemes for scalar conservation laws. 
The existence of discrete shock waves for finite-difference methods accurate to 
first order for systems of conservation laws was established by MaJDA & 
RALSTON [181 using the center manifold theorem; see also [19]. ENGQUIST & 
OS~IER proved the stability of their first-order monotone scheme for the scalar 
case [4]. SMYgLIS [25] proved the stability of a scalar stationary discrete shock 
wave for the Lax-Wendroff scheme. Szv, P~ssY [26] studied the existence and 
LZ-stability of stationary discrete shocks for an implicit first-order, streamline- 
diffusion, finite-dement method for systems of conservation laws. In contrast 
to [261, we deal here with explicit schemes and non-stationary shocks. We also 
treat the case of multiple shocks and Ll-stability. Although we have proved 
similar results for stationary discrete shocks for the Lax-Friedrichs scheme by 
a different (and simpler) method [16], which is of intrinsic interest, we cannot 
apply this method in [16] here due to the complicated structure of non-sta- 
tionary discrete shocks. In the case that the given far field is a constant state, 
CHURN [1] proved the stability of the Lax-Friedrichs scheme using diffusion 
waves. 

As is well known, the L1-norm is the natural norm, both mathematically 
and physically, to measure the stability of shock waves. As far as we know, 
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our Ll-stability result in Theorem 1.1 is the first for shock waves for systems of 
conservation laws. In the scalar case, JENNINaS obtained the same result [10]. 

The Lax-Friedrichs scheme has played a very important role, both in 
theoretical and numerical computations and in the development of the theory 
of hyperbolic systems of conservation laws. The scheme first appeared in LAX 
[131 and was used by OLEINIK [211 to prove the existence and uniqueness of 
the admissible solution for scalar conservation laws. DIPEI~NA used the Lax- 

, Friedrichs scheme to prove the existence of large-amplitude weak solutions for 
some 2• systems [3]. NISHIDA & SMOLLER [20] also studied isentropic gas 
flows with a modified Lax-Friedrichs scheme. 

For scalar conservation laws, the Lax-Friedrichs scheme belongs to the class 
of monotone schemes which are well understood; see [12, 2, 24], e.g. It has 
been shown by KUZNECOV [12] (see also SANDERS [24]) that the best rate of 
convergence in the Ll-norm for such a scheme with general BV initial data 
is h I/2. HARABETIAN [8] studied the large-time behavior of rarefaction waves 
for some monotone schemes; see also [28]. 

In a forthcoming paper [17], we employ ideas developed in this paper to 
prove the convergence of approximations constructed by the Lax-Friedrichs 
scheme to piecewise smooth solutions for systems of conservation laws. GOOD- 
MAN & KIN [7] have proved convergence of viscous solutions for systems of 
conservation laws to piecewise smooth inviscid flows. 

The outline of this paper is as follows. In Section 2, we study some impor- 
tant properties of the discrete shock profiles constructed by MAJDA & RALSTON. 
These properties, such as the compressibility of admissible shocks and their 
asymptotic behavior, play crucial roles in the stability analysis. The key step 
in establishing these properties is that, in the construction of center manifolds 
for the enlarged system, because the shock is non-stationary, we need careful 
analysis to show that waves in the transversal direction are of higher order than 
the principal wave. This fact, together with the entropy condition, essentially 
yields the desired properties. 

We treat the L2-stability of single shocks in Section 3. As in [5, 15, 27, 29], 
we use an energy method. Because the scheme is explicit and the shock is non- 
stationary, a simple weighted energy estimate is not available here, and our 
analysis is technically more involved than its continuous counterpart and the 
analyses in [16, 26]. 

In Section 4, we investigate the Ll-stability of single discrete shocks. In 
contrast to the scalar case, due to the coupling of waves from different 
characteristic families, even the linear stability analysis in the Ll-norm is very 
difficult. We overcome this difficulty by carefully choosing weights so that the 
propagation of the perturbations in the principal direction dominates the 
disturbance in the transversal wave directions. The perturbation in the prin- 
cipal direction can be estimated by using the essential monotonicity of the 
scheme in the principal direction. This, together with the L2-nonlinear stabili- 
ty analysis, yields the desired result: Theorem 1.1. 

The stability of multiple discrete shocks is treated in Section 5. Since the 
system is strictly hyperbolic, so that waves from different characteristic families 
propagate with distinct speeds, waves produced by interactions of waves of dif- 
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ferent families are controllable both in space and time. This enables us to do 
a characteristic decomposition, so that each wave, on its dominant region, can 
be estimated essentially as in the single-shock case, while on the complement 
of its dominant region, it can be analyzed by a modified version of vertical 
estimates. 

2. Properties of  Discrete Shock Profiles 

We are concerned with the finite difference schemes (consistent and conser- 
vative) 

U ;  +1 : G(U;_  r . . . . .  u ;  . . . . .  u ;+ t ) ,  (2.1 a) 

approximating (1.1). We assume that (2.1 a) is a first-order scheme and satisfies 

t 

Ir - lk(u) E iZ Ci(u) rk(u) - I ;~ ;~k(u) /2  > 0 (2.1b) 

i=- r  

where C/(u) = OuiG(u_ r . . . .  , u t ) l ,  r=u ..... , t=, .  The discrete shock is a travel- 
ing-wave solution of  (2.1) satisfying 

Oj-p = G q ( @ - r q ,  ' ' '  , Oj+tq), Oj -~ u•  as j -~ 4- co. (2.2) 

We recall that p and q are integers that satisfy 2s =p/q .  The existence of 
discrete shocks for (2.1) has been proved by MAJDA & RALSTON [18] using a 
center manifold theorem. In this section, we refine the center manifold con- 
struction, show the strict monotonicity of the principal eigenvalues at the 
discrete shock profile, and discuss some asymptotic properties of the profiles. 

Theorem 2.1 ( M A J D A  & RALSTON [18]). Let u_ and u+ be the left and right 
states of a k-shock (1.2) with shock speed s. Suppose that the shock strength 
e = Iu+ - u_ ] is small and that s A t /Ax  = p / q ,  p, q E Z. Then there is a family 
of discrete shock profiles (oj satisfying (2.2). 

MAJDA & RALSTON proved this theorem by applying a center-manifold theorem 
(Proposition 2.1 below) to the marching map 

T: R (r+t)mq ~ R (r+t)mq 

given by 

in which 

u2 ) (:1 / 
T = U ( r + t )  q , 

\U(r+t)qJ H(Ul . . . . .  U(r+t)q / 

(2.3) 

C~t q : H(dPj_rq . . . . .  ffoj+tq_l) ( 2 . 4 )  

is a traveling-wave profile which is equivalent to the standard form 

dpj_p = Gq(qSj_rq . . . . .  Oj+tq). 

One can verify that the marching map T belongs to the class of operators 
defined below (Lemma 3.1 in [18]). 
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Let T: R N --~ R N be a smooth map and Xo ~ l i  N be a fixed point of T so 
that the following conditions are satisfied. 

(i) There are neighborhoods ~" and ~Y' of x0 in R N such that T maps 
diffeomorphically onto ?Z'. 

(ii) T fixes a smooth m-dimensional manifold f2 containing Xo. 
(iii) The algebraic eigenspace of dT(xo)  associated with the eigenvalue 1 is 

the span of  the tangent space of f2, ~.,~-~0(f2), and a vector Z satisfying 

dT(xo)  )C = )~ + r (2.5) 

where r E ~ 0  (s and r ~ 0. 
(iv) dT(xo)  has no eigenvalues in the set {z : lzl  = 1, z ~= 11. 
(v) Hypotheses (ii) and (iii) imply that, given 6 ' >  0, there is a 0 > 0 such 

that, when x ( f 2  and l x - x 0 1 <  ~, the eigenvalues of  dT(x )  lying in 
I z - 11 < ~' are i with multiplicity m and/~ (x) with multiplicity 1 where 
/~(x) ~ c ~ ( o ) .  

We assume that 
r .  Vfl(x0) < O. (2.6) 

We summarize the center manifold constructions for such an operator in 
[18] in the following proposition. 

Proposit ion 2.1 [18]. Assume that the map T satisfies conditions ( i ) - (v) .  Then 
there is an e > 0 such that, i f  x _  ~ Y2, f l ( x _ )  > 1 and Ix_ - X o l  < e, then 
(1) there is a C 1 segment Yx_ beginning at x _  such that T - l y x _  C Yx_ and 
I"3 j T -~ 7~_ = {x_ I, 

(2) for  any x ~ y~_, x ~= x _ ,  the sequence TJx, j = 0, 1 . . . .  converges to x+ ~ f2 
with f l ( x+)  < i ,  
(3) i f  the limit o f  TJx in (2) does not depend on x, then Uj=oTJTx_ = I x _  is 
a C 1 curve segment beginning at x _  ~ s B ( x _ )  > 1, and ending at x+ ~ s 
~ ( x + )  < 1. 

We remark here that in this proposition Fx_ is a C k curve provided that 
the map T~ C k. To study the structure of  discrete shock profiles, we need 
some additional estimates. 

Proposit ion 2.2. Suppose that x •  in Proposition 2.1 satisfy Ix• -Xo]  = 0(1) e. 
Then, for  any x ~ I x ,  x ~= x__, 

Ifl(x) - 11 < c l e ,  (2.7a) 

C2lX -- TX I ~ ~ ( x )  - ~ ( Z x )  ~ c3]x - TxI  , (2.7b) 

IT2x - 2 r x  + x [  __< c4e lTx  - x  I , (2.7c) 

where cl . . . . .  c4 are constants independent of  x and e. 

Proof.  It has been shown in Proposition 4.1 of  [18] that there is a center 
manifold Mo of m +  1 dimension, M 0 C Ix: I x - x o [  <= O(1) e} which is in- 
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variant  under  T. Fur thermore ,  there are coordinates o f  R N, ( r / l , . . .  , r/m, z-, 
~m+2 . . . . .  4N), such that  

x0 = (0, 0, 0) T, 

r =  (T, 0 ,0 )  T, r E R  m, 

g2 = {(r/, 0, 0 )T:  r/ E Rm}, 

m 0 = [(11, r, 0)T: r /6R m} n Ix: Ix - x 0 l  ~ O(1) el ,  

where To is the restriction of  T on Mo. In these coordinates,  To can be written 
a s  

To(r/, z) = (r/ + r_r + rg(r/, + rh(r/, r) (2.9) 

where h, g ( C 1, h(0 ,  0) = g(0 ,  0) = 0. Clearly, for  all (r/, r )  E Mo, 

lg(r/, r)[ <_ O(1) e, [h(r/, r)[ __< O(1) e. (2.10) 

Comput ing  the Jacobi  matr ix  for  To directly f rom (2.9), we get 

dTo(r/,r) = r + g ( r / , r )  + r - - .  
1 + h ( r / , r ) /  O(r/, r) 

It follows f rom (2.8) and condi t ion (v) that ,  on the center manifold  Mo, the 
eigenvalues of  dT lying in I z - l l -< 6 '  are the same as those o f  dTo, and 
these eigenvalues are 1 with multiplicity m and fl(r/, r) .  The  sum of  the eigen- 
values is equal to the trace o f  the Jacobi  matr ix  dTo(r/, r), i.e., 

0 (g, h) 
m + fl(r/, r )  = trace dTo(r/, r) = m + 1 + h(r/, r) + r trace - -  

0(r/, r)  
or, equivalently, 

3(g, h) 
fl(r/, r)  = 1 + h(r/, r )  + r trace - -  (2.11) 

~(r/, r )  
Consequently,  

O(g, h) 
r .  V,f l ( r / ,  r )  = r .  V~h(r/,  r )  + r_r. V~ trace - -  

0 (r/, r )  
The entropy condit ion (2.6) now implies that  

r. V,h(r/ ,  r) = r. Vfl(Xo) + O(e)  < 0. (2.12) 

Direct computa t ion  using (2.9) yields 

I To(r/, r)  - (r/, r)[ = r(l_r I + O ( e ) ) ,  

fl(ro(r/, r)) - f l ( r / ,  r) = r (r .  Vfl(Xo) + O(e) ) ,  (2.13) 

] T2(r/, r )  - 2To(r/, r)  + (r/, r) l  __< O(1) e r ,  

which in turn  gives estimates (2.7). []  
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Proposition 2.3. Suppose that x •  in Proposition 2.1 satisfy tx• - x01 = O(1) e. 
Then, for  any x ~ Fx , x . x •  and j = O, 4-1 . . . . .  

Cl e2 e -c2eljl <=f l (ZJx )  - f l ( z J + l x )  <_ c3~2 e -c4elj] , (2.14a) 

e s e e  -c6eljl < t TJx - x •  <_ c7ee  -ceeljl (2.14b) 

where c l , . . . ,  c8 are constants independent of  e and j. 

Proof.  It is shown in [18] that there is a surface patch 2; in the center manifold 
Mo such that h(r/, 'c) = 0 on X. The curve Fx_ joins two points x_ and x+ 
and pierces 2;; see Figure 1. We denote the intersection point of Fx_ with 2; 
as (r/o, "co), and set 

(r/s, rs) = TS(r/o, to) .  

r 

x_ = (o_ ,  o) 

Figure 1. Center 

) Z =  {h=0} J 

x+ = (0+, 0) 

manifold construction. 

r/ 

Rewriting (2.9) as 

we first show that 

r/j+l = r/j + "cjr + "cjg(rlj, r j ) ,  

"cj+~ = rj + r jh(r / ; ,  "cj), 
(2.15) 

l'Col __< O(1) e 2. (2.16) 

By the uniqueness and symmetry of F x ,  it suffices to show that for the in- 
itial point x = (r/0, "co)EX with ro = O(1) e 2, T~(r/o, to) hits f2 on the 
positive r/-axis at a distance of order O(e)  1 from the origin (i.e., x+ = (r/+, 0) 
and r.  r/+ = O(1) e) .  Since h(r/j, "Cj) < 0 for j __> 1 and [h(r/s, rj)[ =< O(1) e, 
we have 

r j+  1 ~ "Cj -- O(1) eTj ~ "Cj -- O(1) •3. 

Defining 

I J o =  O(1) e ~ = - -  ' 
we get 

rj 0 - ' c o - j o  O(1) e 3 = * o - � 8 9 1 8 9  

Taking the scalar product of r with (2.15) leads to 

r .  r/s+x = r"  r/s + r j ( I r l  + o ( e ) ) .  
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Summing from 1 to Jo yields 

_r" t/Jo = > r .  t/o + O(1)  jo  rj  o = > _ r '  t/o + � 8 9  = O ( 1 )  e .  

Since r .  t/j is increasing, by using the invariant region, we obtain 

_r. lim t/j = O(1) e, (2.17) 
j--.oo 

which proves (2.16). 
Now, we use (2.16) to derive (2.14a, b). Summing (2.95) from 0 to j gives 

J 
(t/j, rj) - (t/o, to) = ~ vi((r ,  0) + O(1) e) .  (2.98) 

i=0 

This, together with (2.17), implies that for j > '  ----Jo, 

(t/j, rj) - (t/o, to) = O(1) e(r ,  0) + O(1) e 2. (2.19) 

Consequently, for j => Jo we have 

h(t/ j ,  ~j) = h(t/o, to) + Vh( t / , ,  ~,) ((t/j, rj) - (t/o, rod  

= O(1) e_r. g , h ( 0 ,  0) + O(1) e 2 = - O ( 1 )  e. (2.20) 

In (2.20), the constant O(1) is positive due to the entropy condition (2.6). 
Plugging (2.20) into (2.15) gives 

Tj+I = rj(1 - O(1) e) .  

Therefore, 

"Cj ---- "Cjoe-O(1)elJ-Jol = O(1) 82e -O(1)alj[ . (2.21) 

Direct computation using (2.15) leads to 

f l ( t / j + l ,  T j+I )  - - f l ( t / j ,  Tj) = Tj(F" V ~ ( X o )  + O(,F.)), 

SO 

f l ( T J x )  - f l ( T J + l x )  = O(1) e2 e -O(1)e[j[ (2.22) 

This proves (2.94a). Next, letting j tend to +co,  we have 

oo 

(t/+, O) - ( t / j ,  rj) = E vi((_r, 0) + O(1) e) = O(1) e e-~ ((_r, 0) + O(1)~) 
i=j 

or  

[ (t/+, 0) - (t/j, Tj)[ = O(1) e e  -~ , (2.23) 

which yields (2.94b). The proof of Proposition 2.3 is complete. [] 

Now, we use the refined center manifold theorems and Propositions 2.2 and 
2.3, to show the strict monotonicity of the principal characteristic speed at the 
discrete shock profile and the asymptotic behavior of the discrete shock pro- 
files. These properties are crucial to our stability analysis. 
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Theorem 2.2. Under the assumption of  Theorem 2. 2, the discrete shock profiles 
@ of  (2.2) also satisfy, for  all j = O, 4-1 . . . . .  

~.k(4j) > Ak(r (2.24a) 

I)Lp(4y) - s] __< c 1 E, (2.24b) 

C2[Oj--Oj+ll <--~'k(Oj) -- ~'k(Oj+l) <--C314j--4j+l], (2.24c) 

V f ( 4 j )  (4j+1 - 4j) = s(4j+l - 4j) + O ( e ) [ 4 j + l  - Oj], (2.24d) 

l 0 j+l - 24j + 4j-1 [ -5_ c4 e[ 4j+1 - 4j I, (2.24e) 

c5 e2 e -~6etjl <= Ak( 4j) - Ak( Oj+l) < c7 g 2 e-cseljl , (2.24f) 

C9 ee -Cl~ <= [Oj - u• I <= cli ee-q2e[J] (2.24g) 

where Cl . . . . .  c12 are positive constants independent of  e and j.  

Proof. Note that the derivation of the equality (3.25) in [18] implies that 

0 = (s  - 2k (u) )  )~q + � 89  in fl(u) + g l (u )  lnZfl(u) + g 2 ( u )  (s  - 2k(u)) 2 

where gl and g2 are smooth functions and ~:(u) is given by (2.16). Taking u 
first as 4j and then as 4j_1 in this equality and substracting the resulting 
equations, we arrive at 

1 
;I.k(r j )  - ,, lk(4j+t) = ~ tc(4j) ( ln  f l (4 j )  -- in fl(4j+l)) + O ( e ) [ 4 i  -- 4j+11 

1 
: (1 --I- 0 ( ~ ) )  ~ K(4o) (B (4 j )  - ~ ( 4 j + 1 ) )  + 0 ( ~ )  14j - 4j+al 

1 
= (1 + o(~))  ~ K(4o) (P(4;) - P(4j+O), (2.25) 

where (2.7a) has been used in the last equality. From (2 .7a-c )  and (2.14a, b), 
we know that 4j satisfies (2 .24a-g) .  This completes the proof of the 
theorem. [] 

Corollary 2.1. Let 4~ be the discrete shock profiles (1.6) of  the Lax-Friedrichs 
scheme (1.5) connecting u_ and u +. Suppose u• satisfy (1.2), e = ] u_ - u+ I is 
suitably small, and As = p /  q for  some relatively prime integers p and q. Then for  
all j = O, 4- 1 . . . .  and n = O, 1 . . . . .  the O; satisfy 

&(4;) > &(O~+D, 

I , ~ ( 4 ; )  - sL <= c1~, 

C2102 -- 4~+1[ ~ - k ( 4 ; )  - -Xk(4 j+l )  ~ C3142 -- 4~+11, 

vf(4;) (47+1 - 4 ; )  = s ( 4 ; + 1  - 4Y) + o ( ~ )  14;+1 - 4 ; I ,  

(2.26 a) 

(2.26b) 

(2.26c) 

(2.26d) 



Discrete Shocks 229 

10~§ - 20; + 0; -11  ~ c4 ~l 0;+1 - Off I, (2.26e) 

c5 e 2e -c6~lJ-~nl ~ ~k(Oj n) -/~k(0~+1) ~ C7 e2e-cs~lJ-~snl, (2.260 

C 9 g e -cl~ ~ I Off -- U=a= I e e -c~2~lj-~snl (2.26g) 

where c 1 . . . . .  c12 are positive constants independent of  ~, j and n. 

Proof.  Since the hypotheses of Theorem 2.2 hold in Corollary 2.1, we know 
that 0 ~ satisfies (2.26). Directly from (1.6), one can easily verify that, for 
n 0 , . .  q 1, 0~ satisfies (2.26). Since 0;  q+l l = ., -- = 0 j - ,p  we know that 0~ 
also satisfies (2 .26a-g)  for all n ____ 0. [] 

3. Lz-Stability Analysis for Single Shocks 

In this section we prove the first part of Theorem 1.1, the LZ-stability of 
single discrete shocks. We first reformulate the problem as follows. Let u;  be 
a solution of the Lax-Friedrichs scheme (1.5a) with initial data u ~ satisfying 
(1.7a), which is assumed to exist up to n__< nl < +c~. Denote by Off the 
single discrete shock profile in the k-field whose existence has been proved in 
Section 2. 

Setting 
J 

v-in = E (u~ - 0~) ,  (3.1) 

subtracting (1.6a) from (1.5 a), summing the resulting expression from -co  to 
j ,  and using some manipulations we obtain 

2 2 
~;+1 _ ~ ;  -t- ~ ~ f ( O j + l ) ( V ~ + I  -- V;) -t- ~ Vf(0;)(75 2 - "/~-1) 

2 )~ _n V _~ 
+ 2 Q(O]+I, ~7+1 - ~ )  + ~ Q(O~, o~ - v j -1)  = ~ (~+1 - 2~; + v j_ l )  

(3.2) 
where 

0 ( 0 ,  u - 0) = f ( u )  - f ( 0 )  - V / ( 0 )  (u - 0) (3.3) 

satisfies the estimate 

10(0,  u - 0)1 =-< O(1)I u - 012 (3.4) 

for u on any bounded set. Using the notations 

L ;  = L(0ff) ,  Aft = A ( 0 ; ) ,  R;  = R ( 0 ; ) ,  Oj~ = Q(O; ,  ~ ; -  g;_~), (3.5) 

we rewrite equations (3.2) in terms of characteristic variables 

vff = L;Oj  (3.6) 
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as 

2 A ; ( q - v ; _ ~ ) -  v n q + l _  v7 + 2-A~+l(v;+ 1 - v ; ) +  2 ~- ( v ; + l -  2v; +vj-1) 

(L )~ -L]_i))R;v;  + e;, (3.7) = ;+1 _ L; + ~ &(Lj%l 

where 

e ;  ---- (Lj n+l -L?)Rjn+l(v; +1 - v ; )  --I- (L ;  +1 - L ; ) ( R ;  +1 - R ; ) v ;  

(A]+ 1 - Aj  n) (L~+ 1 - L~) R ;  vj n - 2 Ljn(RjZ+I -Rjn) A;+I  (v;+l - -v;)  +7 
2 

+ 2 L ; ( R ; + I  --R;)Ajn+l (L;+ 1 --L;)Ryv; 

V 
2 Af(L; -L;_~) R ; _ l ( q  - v;_~) 

A;(L; - L ] _ I ) ( R ;  -Rjn_l) v; +V 2 2 q ( R ; + l  -- R ; ) ( v ; +  1 - v;)  

V n n Y n + ~ L;(R; - Rj-1) (v; - vj_i) + ~ Lf(Rj%a - 2R; + Rj-I) v; 

2 
2 L;(O'}+I + 0~). (3.8) 

Thus, to prove the first part of Theorem 1.1, we need to derive a basic a priori 
L2-estimate on the solution of (3.7). Taking the scalar product of equations 
(3.7) with 2v; and using summation by parts, we obtain 

2 E vy ' ( 2+ l - v ; )+2  E vf'(A;--A~+l) V;TVElV~+l--V;[2 
J J J 

= 2  E v;.  + l - L ;  + ~  A;(Ljn+I-L]_I Rj~v; 
J 

Using the identity 

[v.n+l I 2 - I v f l  2 =2vj n. (v; +1 --vj n) --}-I V? +1 --V;[ 2 J 

in (3.9), we arrive at 
Iv~+ll 2 E ,  

J 

+ 2 E v;. e;. (3.9) 
J 

(3.10) 

- ~ I q l ~ + , ~  q.  (A; -A~+,) q + ~ Iq+, - q l  ~ 
J J J 

= 2]~,~ v;. 2 +1 - L f  + 2 A2(Lj'+I 
J 

-[- E ],/)?+i __V;12 _{_ 2 E VJn" e j .  

J J 

(3.11) 
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Set 2)1/2 
M(nl) = sup E Iv;I 

/'l --~/~ 1 j 

and assume a priori that M(nl) is small. Clearly we have 

(3.12) 

sup I~1 ~ m ( n l ) "  (3.13) 
(j,n),n<=n 1 

We now estimate each term on the right-hand side of (3.11). It follows from 
(1.6) and Corollary 2.1 that 

,~s n c?  +1 - L? + ~ (L;+~ - Lj_I) = (1 -F O(e)) VL(r 

X ;+1 _ , ;  ..[_ 2-  (•;+1 -- ~;-1 

n ---- O(e)  ( ~ , j  -- ~k,j+l)" (3.14) 

Using the identity 

Lj n+l --  L ;  + 2 A ; ( L j n + I  - L ; - 1 )  

As 2 
= L ;  +1 - Z ; - t -  2 ( L ; + l - L ; - 1 ) - t -  ~- ( A ;  -- s) (L;+ 1 - L ; _ I )  , 

and (3.14), we obtain 

2v7. + 1 - L ; - ' ] -  ~ A ; ( L j n + I - L ; _  1 g ; v ;  

2k,j+l) 0(1) (,)l.k, j -- 2k,j+l) (3.15) = - ( v k , j )  + ( v ~ , j )  . 
8 

l~ :4: k 
It follows from equation (3.7) that 

IV7 +1 -- V;[ ~ 1 (,~[A]L~ + V + O(e)  + U ( n l ) )  (Ivy+ 1 - vjn[ + ]vff - v ; _  1 [) 

+ 0(1) I (zT,,j -x~,j+z) vf t ,  (3.16) 

where we have used the bound 

n n 2 2) I0;I _-< 0(1) (I v? - vy+l 12 + (&,j - & j + i )  ]CI (3.17) 

(see 3.3)). Consequently 

I?); +1 --V;I  2 ~ 8- ~ (/~,j -- )-~c,j+l)ICI 2 
J J 

+ ((~lAlLoo+v)2+O(e)+O(1)M(nl)) ~ Ivy+x-V;[ 2 
J (3.18) 

where we have used Corollary 2.1. 
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Next, using (3.8), (3.17) and Corollary 2.1, we get after some detailed 
manipulations that 

2 
( .e;__< ~ ~ (z~j-x~j+l) Iql 2 +o(~)]~ 14+1 -v?l 2 

j j j (3.19) 

+ (O(e )  + O ( l l M ( n l )  ) E ]v}+l-vjnl2 

J 

In fact, two typical terms involved in establishing (3.19) can be estimated as 
follows: 

I ( '  (L; +1 - L ; ) R ; + I ( C + I - v ) ]  _< O(1)(2~, j - ,~ , j+l)  I ( "  (C  +x - C ) I  

< - -  ()~]:,j -2]:,j+l)]V;12 +O(e ) ]v ;+ l - v ' n t  2, 
= 1 6  J 

Iv;.L; O;] <= o ( 1 ) I v ; I  Iv; - V}+ll 2 +O(e)(,V~,j - 27~,j+~) Iv;I 2 

< O(1) M(ni )  Iv; - v}+ll 2 + O (e) ()L~,j - / ~ , j + l )  [v;I 2. 

Estimates (3.15), (3.18) and (3.19), together with (3.11), yield 

Iv~+l 2 12 '~ E J I -- E IV; + 4 E (X~,j- X~,j+I)Iv~.j] 2 

J J J 

+ (v  - ( ,~l/IL~o + V) 2 -- O(C) - -O(1)  M(n l )  ) E ]v]+~ --v; l  2 

J 
E n E n 2 < 0(1) (2~,j-Xk,j+x) Iv, jI (3.20) 
j lz*k 

The waves in the transversal directions are bounded by the last term on 
the right-hand side of (3.20), which is estimated by the following proposition. 

Proposition 3.1 (Estimate on the transversal waves). 

,, ,, (vuj)  
j,n<=n 2 p * k  

----------O(/~)Z IV?J2 + O ( / ~ ) Z  (Zk,j__~k,j+l)n n (Vk,j)n 2 

j j,n<n2 

+ O ( e )  ~ lv ]+ l -v~ l  2 j  . (3.21) 
j ,n<n 2 

We prove Proposition 3.1 at the end of this section. Since v < 1, by taking 
e and 2 suitably small and applying Proposition 3.1, we prove the following 
basic a priori estimate. 

Proposition 3.2 (A priori estimate). Let v; be a solution of (3 .7) for  
n <= n 1. Then there exists a positive constant C independent of nl and e such 
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that 

]V_,lv;212+ ]~ Iv?-v~'+l[2+ ]~ I~ , : -~Ls+l l tv~ , j lZ<-c~lv~  ~ 
j j,n<=n2 j ,n<n 2 j 

for all n2 <= nl, provided that e, 2 and M(n~) are suitably small. 

(3.22) 

In Proposition 3.1 and in what follows, for simplicity of presentation we 
rise the notation 

E =EZ.  
j,n<=n2 j n<=n2 

Since (3.7) is a discrete uniformly parabolic system, it follows from Prop- 
osition 3.1 and the standard continuity argument [23] that the following prop- 
osition holds. 

Proposition 3.3. Assume that e and M(O) are suitably small. Then problem (3.5) 
has a unique global solution v; satisfying 

sup y'] lvfl2 + ~-)~ lvf -v']+,12 + ~ -'] 2'~,j- ~,j+lj lV'~,jl2<=CM2(O) (3.23) 

j j ,n  j ,n 

for any n >= O, where C is a positive constant independent of n and j. 

With Proposition 3.3 at hand, we can obtain the LZ-asymptotic stability 
result quite easily. 

Proof of the First Part of Theorem 1.1. First we show that condition (1.7) im- 
plies that M(0) is small. Here we give a proof under the condition that 

oo 

E (1+j2)~lu?--O?]2<--e2 

for any given constant oe > 1. The proof for the case oe = 1 requires a discrete 
version of a weighted Poincar6 inequality; for details, see [9]. Applying the 
HOlder inequality to 

J ~o = ~ (u o _ ,o) 

gives j j j 

I~~ 0 + i 2 ) ~ l u ~  (1 +i2)-~_<c2 ~ (1+i2)  -~ 
i = - o o  i = - ~  i = - o o  

Therefore, 0 0 ; 
C2 ]vj~ ~ ~ ( 1 + i 2 )  - ~ <  (3.24) 

j=-~o j=-oo i=-~o = 2(oe - l) 

Similarly, applying the H61der inequality to 
j ~o 

~o = ~ (u o _ , o )  = _ ~ (u o _ , o )  

i=-c~ i=j + l 
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and using (1.7a), we get 
c2 E i ol2  

2(o~ - 1) 
j=l  

Combining this with (3.24) yields the desired result: 
oo 

C2 

; = (o~ - 1) 
j ~ - - o o  

or, equivalently, 

M(0)  = =< O(1) . 
j - - -  

T h u s  the hypothesis in Proposition 3.3 is fulfilled under the conditions (1.7). 
It follows from Proposition 3.3 that there exists a unique global solution uj ~ 
to the Lax-Friedrichs scheme (1.5) by virtue of the relation 

u 7  = + - 

which follows from (3.1). 
Next, we study the asymptotic behavior of the solution u~ to (1.5). It 

follows from Proposition 3.3 that 

n = l  

which implies 

lira ~ [v7-~]+112 = 0. 
n ---+oo 

J 
Using (3.1) again, we have 

lim ~ 1.7- pl2 = lim ~ I~.~ -~7~+112 = 0, 
n---~ C~ ~---~ Oo J 

J J 
which is exactly the estimate (1.8). The proof  of the first part of  Theorem 1.1 
is complete. [] 

Finally we prove Proposition 3.1. As we remarked earlier, the estimates on 
transversal waves are technically quite involved due to wave interactions and 
the fact that our shocks are non-stationary. We employ a modified version of 
the "vertical estimate" [5]. The main idea is to relate a sum along time-like 
discrete segments to a sum over all the grid points in a strip in the space-time 
plane. 

Proof of Proposition 3.1. Suppose that /~ > k (the case /~ < k can be treated 
similarly). To simplify the presentation, we introduce some notations here. For 
any fixed space index J0, we define the k- th  time-like grid line originated at 
(J0, 0) to be 

J(Jo) ={(n, jn) lJn=Jo+ ( 1 -  1) p for ( I - 1 ) I P t  <=n<llPl, I = 1 , 2  . . . .  }. 

(3.25) 
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Nq 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••I•••••••••• 
nq + ~x 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
nq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . .  

.................. iiiiiiiiiii_iiiiii 

0 Jo Jo+P • q = J o + n P  

Figure 2. Time-like grid line J(Jo). 

See Figure 2. We now prove estimate (3.21). Let N be any given positive integer 
and J0 a given space index. For any integer n, 0 <_ n <_ N q -  1, multiplying 
the /~-th equation in (3.7) by 2v~,j and summing by parts over j from -c~ 
to Jn, we obtain 

Jn 
((v/~,j) -- + ( v u , j ) )  - +,~ s) E n + I  2 n 2 P n 2 n n 2 

(Vlt,jn) ('~It,jn (V,u,j n ) 
j= -o~ q 

Jn Jn 
n n 2 ~ n n 2 

2 ( 2 ~ , j  ~ /~ , j - 1 )  V - -  V p , j _ l )  - -  ( Y f t , j  - i ) - -  ( V,U , j  
j = - ~  j = - ~  

Jn 
+ ~ (2lvs'. e;] +Iv; +' -v ; I  2) + ( v -  2n. , j , ,+ l )v j , j , , (v j , j , ,+ 1 -vZ , j , , )  

j~--o~ 

" - " I v " l  2 -I- 0(1) Z~ Iv} '+1 - v J  ~12 O(1) E ('~k,j ~k,j+l) j 
j =-~ j =-co 

-{- ( V  - -  ~ , j n + l  ) vn_u,jn (Vn . u , j n+ l  - -  V ~ , j n )  

which, when summed from 0 to N q -  1, yields 

Nq-1 Jn Nq-1 Nq-1 
~"~ '~'a ( , n + l , 2 n 2  P n n tv;,,j j - (v,~,j) ) + ~., Iv~,j.12+,~ ~ (z~,j -~)(v~,jO 2 /...d / . d  " 
n=o j=-~o q n=O n=O 

N q - 1  oo N q - 1  o~ 

__<0(1) ~ ]~  (z~j-A~,j+i)lv;12+o(1) ]~ ~lv}+~-v;[  2 
n=O j=-~  n=0 j=-co 

Nq-1 

+ 0(1) ~ V ~ , j n ( V ~ , J n + l  - -  vnu, jn ) . (3.26) 
n=O 
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We now assert that 

Nq-1 ~ Nq-1 
E ( ,  n+l-,2 n 2 P n 2 t / )~ , j  ) - ( v . , : )  ) + - ~ ( v . , : )  

n=0 j=-co q n=O 

Jo + Np Jo -P 
= - ( v / ~ j )  - - -  E Nq 2 0 2 ( % j )  

j=-co j=-oo 

O(l )  Nq-1 co N--1 
, - _ ( v u j  ~) 5 E Elv;~- i  /);I 2 5 2  ~ : 

n=o j=-co ~=o (3.27) 

where 5 > 0 will be determined later. 
Assuming for a moment  that (3.27) holds, we find that for suitably chosen 5 

Nq -1 co Nq -1 oo 

E n 2 + 0(1) E E ( '~k, j -  /~k,j+l)]V;I 2 (v/~,jn) <= O(1) E IvJ~ e . . 
n = 0  j = - c o  n = 0  j = - ~  

Nq-1 co Nq-1 
+ O(1) E E Ivjn+l - - / ) ; / 2  q" O(1) E I v ~ , A ( v ~ , J ,  +1 -v~,A)l" 

n = 0  j = - o o  n = 0  (3.28) 

Applying Cauchy's inequality to the last term on the right-hand side of  (3.28) 
gives 

Nq-1 co Nq-1 co 
E n 2 "-[- O(1) ~ E (~'k , j -  /~k,j+l)[V;] 2 (vu,A) <__ O(1) ]~ [/)0]2 n . 

n = O  j = - c o  n = 0  j=-co 

Nq--1 co 

+O(1) E E Ivj+a-vffl2 
n = 0  j=-co 

0 0 We now multiply both sides of  (3.29) by s  and sum over J0 
- o o  to co to obtain 

Nq-1 
(;~Ojo 0 - ,Zk,jo+l) ] ~  ~ 2 (v~j.) 

j0 =-co n = 0  

Nq-1 co 

<__ F_, IvgL 2 + F, 141 2 
j=-co n=0 j=-o~ 

Nq-1 oo 

-I- 0 ( 8 )  E E [vy+I -- /);[2" 
n=O j=-co 

Noting that 
Nq-1 co c o  Nq-1 

n n Z n n n 2 E E (~k'J--/~k'j+l)(/)n-u'j)2":--- E ()"k,jn--/~k'jn +l)(/)'u'jn) 
n = 0  j=-oo jo=-co n=O Nq- i 

< (1 + O(e ) )  (2oj  ~ o -kk,jo+l) ~ n 2 = (/)/~,j~) , 

jo =-~, n=O 

(3.29) 

from 

(3.30) 
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we conclude from (3.30) that 

n n ( v ~ , j )  E (~k (Ok , j )  -- ~ k ( ~ k , j + l ) )  n 2 

j~n. 

o(~) ~ 1~~ + o(~) ~ (xf~j - ~,j+l) V;I 2 ~ 1~3'+~ -v;I  2. (3.31) 
j = - ~  j,n j,n 

Similar analysis shows that (3.31) is still true for p < k. Therefore, summation 
over /~ yields 

E ()~k,j ~ k , j + l ) E  n 2 n _ ~ (v~j)  

j,n p*k 

__<O(e) ~lv~ (2~,j-RT:,j+1)lvj'lz+o(e) ~Iv~+1-v;I 2. 
j j ,n j,n 

It follows that 

E ( ~ ' J - - ~ ] : , j . §  E n 2 n n (Vk,j) (v.,j) = o(~) ~ Iv~ ~ ( .~k , j - -~k , j+l )  n 2 

j,n I~*k j j ,n 

"t- 0( /7)  E Iv;+1 -- V;]2" 

j,n 

To complete the proof of Proposition 3.1 we must verify (3.27): Using (3.7) 
we compute that 

Nq-1 ~ Nq-1 
E [ ,  n+ l , 2  n 2 P t t v u ,  j ) - ( v p , j )  ) + - -  E n 2 
~=o j=-:~ q ~=o (v~,j.) 

J~ J~P  1 ~ 1 (Dq-i, p b 
j=-c* j = - ~  q n=O \ c~=O fl=l 

The last term on the right-hand side of this equality can be estimated as 
follows: 

N-1 q-1 p \ 
(P~-o" nq.§ nq 2 tV~'Jnq ) -- q E  (Vp'Jnq+J) ) 

n=0 - fl=l 

N-1 q-1 N-1 q-1 
p E E . nq+c~ nq . 2 . nq+a tvu'Aq -v"'Aq) +2PE E nq . nq = t 'Up,Jnq -- V,u,J~q ) Vp,Jnq 

n=O a=O n=O a=O 

N--I p N-1 p 

-- nq __q,nq. ,2__  2q E E (v~q'Jnq+fl--V~Snq)lJ~Snq q E  E (vn'j.,q +j ~n,s.q" 
n=0 j= l  n=0 fl=l 

N-1 
O(1) E . . 2 E , n q  , 2  < (Vp,j -- V/~,j+I ) -t- = (~ tVp'Jnq) = < 

j,n n=O 
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N-1 q-1 o(1) 
(~ E (Vtx,j__Vlx,j+I)2 + ( i n  n E E <Vp'Jnq" nq+a.2) 

j,n n=O a=O 

O(1) n 2 Nq-1 
n _ (v~j,) C~ E (Vp'J Vix'J-I-1) q" (~ E n 2 

j,n n=0 

by the Cauchy inequality. This yields the desired inequality (3.27). [] 

4. L1-Stability Analysis for Single Shocks 

We now turn our attention to the Ll-stability of single discrete shocks. As 
we remarked in the introduction, L a is the natural norm for the stability of 
shock waves, but in contrast to scalar conservation laws where Ll-stability is 
a simple consequence of the entropy condition, for systems it is quite difficult 
to obtain an Ll-estimate due to the interactions of waves from different 
characteristic families. The main idea of achieving an Ll-estimate is to exploit 
t h e  fact that the Lax-Friedrichs scheme is essentially monotonic in each 
characteristic direction and to employ a carefully chosen weight based on the 
internal structure of the discrete shock profile. We note that here the char- 
acteristic decomposition is essential. 

To obtain the Ll-esfimate (1.9) on the solution u ;  to the Lax-Friedrichs 
scheme, we work on the characteristic decomposition introduced in Section 3. 
We first rewrite (3.7) as 

n V n 2 2 A;(v; - vj-1) 2 (v~+l - 2v; + vj_l) v ; + l -  V; "-~ 7 Ajn+l ( v ; + l  -- y ; )  -[- 7 

=A;v; +B;(vtf+I-v;) +C;(v;-v~_l) +D;(v;+l-v; )  q-e; (4.1) 

where A; ,  B; ,  C;  and D ;  are matrices given by 

A;  -- ;+1 - L ;  + 2 A ; (L ;+ I  - L ; - 1  R; ,  

B; ---- 1 L;(Rjn+l _ R;)(v - -  ).Aj*+I), 

c; = �89 (v + ;,.4;)L;(R; -R;_I), 

D ;  ---- (L;  +1 - L ; )  R;  +1, 

and ~j" is a vector given by 
A 

e 7 : (L; +' - L ; ) ( R ;  +1 - R ; ) v ;  + 7 ( A ; + i - Z I ; )  (L;+ 1 - L ; ) R ; v ;  

+ 2 Lf(RJn+I mR;) A'f+I(L']+ 1 - L ; ) R f v ; -  A;(L; -L'}_I)(Rj-R'f_I)v; 

v 2 
+ 2 L;(Rjn+I --2R; + R~_I )  v ;  --  ~-  L;(Ojn+l + Of). (4.2) 
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It follows from (4.1) that 

( i - z ) 7 )  (~y+~-~7) = 1 (  v - XA~+~ + 287)(vT+,-~7)  

1 (v + XA; - 2C 7) (~7 - ~y-1) + A ; v 7  + eT. 2 

This, together with (4.1), gives 

A y ( ~ y  - ~_~) - v ~l, AJ n+x ('/)9+ 1 __ ~ )  "1- 7 7 (v~+I -- 2vy -.I- v}'- i) ,/jy+l _ Vy "t- 7 

(4.3) = E ; ~ - l - f y ( v S Z + l - v j  n) - t -Gy(v jn-v~_l ) - t -Hy~,  

where 

i v y l l - � 8 9  

E~ = A; + D;( I  - D y ) - I A ; ,  

Fy =- By -b 1 Djn(l _ Dy)- i  (v - ~A~+ 1 "k 2Bin), 

G ; = C ; - 1  . n -1 2 A y - - 2 C ; ) ,  D j ( I - D j )  ( v+  

Hf = I + Dy (I - Dr)  -1. (4.4) 

In the rest of  this section, abusing notation slightly we denote by ]A] the 
matrix (vector) whose components are the absolute values of the corresponding 
components of a matrix (vector) A, and by diag (A) the diagonal matrix con- 
sisting of the diagonal elements of matrix A, i.e., 

IAI = (lai,;I), diag(A) = diag(all . . . . .  amm ) for A = (ai,j). (4.5) 

We now rewrite (4.3) as 

vy +1 - �89 (v + ; .Ay - 2diag Gy) vj*-i - �89 (v - 2A~+ I + 2diag Fj ~) vff+l 

(1 ;" ( A j ' + I - A y ) -  d iag(Fj~-  Gy)) vy - - v + ~ -  

=Eyvy + ( F y -  diag Fj~)(vj '+l-vj  ~) + ( G y - d i a g  Gj ' ) ( vy -  v ; - 1 ) + H y ~ j  ~. 

(4.6) 

By the definition of the matrices Ay . . . . .  Gy, each component in these 
matrices has a bound of order O(1)e due to Corollary 2.1; consequently, all 
the matrices on the left-hand side of (4.6) are diagonal and positive for small 

and ~. This immediately implies that 

+ 2Ay - 2diag Gy)[v~_l [ - 1 (v - 2A2+1 + 2diag Fj n) [v]+l ] 

(1 /~" (A~+ 1 - M y ) - d i a g ( F y - a y ) ) ] v ; [  

=< IEyl IvTI +lFy - diag Fy[ [v)~l -vy[ 
+ IGj ~ - diag Gj~t Ivy - Vy_x ] q-[gy] I~Yl. (4.7) 
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The principal part of (4.7) can be rewritten in the conservation form 

sc x Af(iv71 - IvL,  I) Iv;+ll - lv ; I  + 2 Aj%(lv;% I - Iv ; l )  + ~- 
v 

- 2  (Iv;+,l -21v71 +lv~'-ll) 

- diag Ff(lv~'+ll - Ivf l )  +d iag  Gf(Ivfl ilvj"-i [) 

~lEfl Ivfl + [ f f -  diag Eli (Iv;+ll +ICI) 

+ I G f -  diag Gf [ (Iv;I + Iv}-ll) + Igf I le;l. (4.8) 

Here and in what follows, the vector inequality is to be understood com- 
ponentwise. Summing (4.8) by parts over j we obtain 

( l v~+ l l j  - I v ; I ) + ~ ] ~  (Af - /7+ l ) I~ f l  =<Iflvfl +lHfl l~f l  (4.9) 
J J 

where 

If  = diag(F~_ 1 - F f )  + diag(G]+l - Gf) + [Ell + IFj~I - d i a g  F~_ 1 [ 

+ ] F f -  d i ag Ff l  + l G f - d i a g  Gfl +IGj~+~- diag G~+I]. (4.10) 

In order to control waves in transversal directions, we multiply both sides of  
(4.9) by a constant diagonal matrix W =  diag(wl . . . . .  win) with wk = 1, to 
obtain 

]~ (1 wv;+l  I - I w~; I) + ~ ]~  W ( A ;  - A mj+l)I u7 I 
J J 

<= ~ wIflvfl + ~ wlHfl I~fl. (4.11) 
J ] 

We now estimate each term on the right-hand side of (4.11). From (4.2), (4.4) 
and Corollary 2.1 it follows that 

diag(F~_~ - F f )  + diag(G~+l - G~) = O(e)(27<,j - 2~j+1), 

(L k - L,_,)) Rf + O(~) (,~., - ,~,,+~). Ef  = 2+1 - L ;  -[- 7 Af(Ljn+I 

Following the argument in (3.14) and (3.15), we can show that the (k, k)-th 
element of the matrix 

L; +~ - L f  + 7 Af(L;§ -L;_~) 

is of order O(e)(k~,j- ;-~,j+l) and the remaining elements are of order 
0(1)  ( ~ , j  - k~,j+l). Therefore, 

.) ) IwleYllv;I t <o(1)(2~,j-fp:,j+l) +E I%1 +]~ vj:,jl . (4.12) 
,u*k ,u:ek 
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As a consequence of (4.11), (4.12) and the fact that the diagonal dements of 
the matrix 

F n n I j - ~ -  diagF~_ll + ]FT-diag Ff] + IG~-diag GfI + IG~'+I-diag Gj+ll 

are zero and the remaining elements of the matrix are of order 0(1)(2 '~ , j -  
A~,j+l), we have 

[ W l I ~ i i v ; ' l - i < O ( 1 ) ( / t " ~ , ' - ~ , J + l ) ( (  ~+ E wP) Ivy,j] + E Ivj,J]) " (4.13, 
/x :4:k /lck 

Direct computation using Corollary 2.1 shows that 

leTI = O(e)()4, j-~'Z, j+I) [vTI + 0 ( 1 ) l u j  ~ -4>;I z. 

Therefore, 

IWvj I-iWv;I)+~]~ W(A;-A'f+I)IVjI ( n+l 

J J 

- O ( 1 )  E ( 2 ~ , j - 2 ~ , j + i ) ( @ + E w ~ ) i v ~ , j i + E i v n ) ~ , , ]  
j ix:#k p:#k 

For suitably small e, coup :~ k, we have 

-~"l  2 + o ( 1 ) ~ l u j '  j . 

s (4.14) 

�9 )t 
(IWvj~+ll IwcI) + 2  ~ (&~"J-&P~'J+l)iV'~'J[ 

J J 
=< 0 ( 1 1 E  ( 2 k , j - 2 ~ j + l ) ~ "  , Iv~u,j + 0(1) ]u 7 - 6 ~ 1 ~  �9 " 2 

j /x.k 
(4.15) 

The first term on the right-hand side of (4.15) is estimated by the following 
proposition which will be proved at the end of this section. 

Proposition 4.1 (Estimate on the transversal waves). For suitably small e and 
2 the following estimate holds: 

.V., (~ ; , j - ,< j+ l )  ]~ lv;,j/ 
J,n~n2 p:~k 

o(e)~ (Iv~ +lv~ 2) +o(~) ~ (z~,j-)4,j+,)lv;,jl. 
j J,n<-n2 

(4.16) 

Assuming this proposition, we have from (4.15) and (4.16) that 

]~ Iv;21 + ~ ( ,< j - ,< ;+ , ) lv~, j l  
j J,n<=n2 

____ o(1) ~ (141 +1412) + o(1) ~ lu;-<~;I 2. 
J j,n<=n 2 

(4.17) 



242 JIAN-Guo L1V & ZHOUPING XIN 

But Proposition 3.2 shows that the last term on the right-hand side of (4.17) 
is bounded above by O(1)M(0) 2. Thus we have shown 

Proposition 4.2. Assume that e and M(O) are suitably small. Then the problem 
(4.1) has a unique global solution v; satisfying 

sup~ Iv;t + ~ I~,:-~,:§ __<0(1)~ (Iv~ +1:1 ~) for any n>_O. 

J J,n J (4.18) 
This immediately yields the desired Li-stability estimate. 

P r o o f  o f  the Second Part of Theorem 1.1. As in the proof of the first part 
of Theorem 1.1, we can show that (l .7a) and (1.7d) imply that 

EI:I <oo. 
J 

Thus Proposition 4.2 and (3.1) show that 

l u ; - ~ ; I  <-2 ~ I~;[ < oo, 
J J 

which yields the desired estimate (1.9). This completes the proof of Theo- 
rem 1.1. [] 

It remains to derive the estimate (4.16) on the transversal waves. As in the 
proof of Proposition 3.1, we employ a modified version of the "vertical 
estimate". However, in the Ll-estimate, the dissipation terms do not produce 
terms with a favorable sign, in contrast to the previous case (see (4.15)); addi- 
tional care is needed to relate a sum along a time-like grid segment to a sum 
along a space grid segment (see the proof of (4.22)). 

P r o o f  o f  Proposition 4.1. Fix/~ > k and assume that p >_ 0 (the case p __< 0 can 
be treated similarly). Let N be any given positive integer, J0 a given space in- 
dex, and J(Jo) the time-like grid line originating at (J0, 0) and defined by 
(3.25). For any integer n ~ [0, N q -  1], summing the /~-th inequality in (4.8) 
by parts over j from -oo to j~, and using known estimates we obtain 

Jn 
E (1 n+1 P n n v~,: [ -Iv~j l )  + - Iv . j n l  + x ( z . , j . - s ) l  v ~  I q ~,Jn 

j =-ao Jn 

=< E (I;kv;I)~ + �89 (v - ~,:n+l)(Lv~,jn+l I "  -1:~.~1) 

+ (2~,j_2,,jn+~)lv,,j,,ln ~ n + ( ( d i a g F ~ + l F ~ _ d i a g F  ~.ynl)lvjn+l]) 
J, 

- -  ( (diag Gj~ +1 + l Gj~ +1 - diag Gj~ +11 ) I v ;  I ),  + ~ ([ H ;  ] [ e ;  1 ) ,  

__< O(1) ~ ()l~,~ - )~,y.x)]v]'l + O(1) ~ ]u; - 4j~t 2 
j J 
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S u m m i n g  this inequality  over n from 0 to Nq-  1 gives 

Nq-1 in Nq-1 Nq-1 
E .', n+l n P n n n E tlv;,j I - Iv~, j l )  + - ~2 Iv~,jnl +,~ ~ (,~,~j.-s)lv~,j.I 
n=o j=-co q n=o n=o 

Nq-1 co Nq-1 co 

-<O(1) E E l'~;,j-'~,j+lll4[ +o(1)]~ ]~ l u ; - + ; I  2 
n=O j=-oo n=O j=-co 

Nq-1 

-t- + E ( :  -- ~ ' J n  +1) (1V~'jn+l I --]vn_u,jn I)" (4.19) 
n=0 

Since 

Nq-1 ~ Nq-1 
.n+l  n P n 

n=o j=-co q n=o 

l ql o ) 
j=-co j=-co n=O - f l= -p+ l  

it fo l lows  from (4.19) that 

Nq-1 

n=O 
Nq-1 co 

--<~lv~ ~ ~l)~L+-,~L++llrV;I 
j n=O j=--co 

Nq-1 co Nq--1 

+ o(1) E E I . ; - + ; I  2 + } E ( : -  ZZ;,jn+l)<Iv;,jn+,l --lv;,j~[) 
n=O j=-co n=O 

_1 ]v~,,n~ - q Iv~5~q+~ I �9 (4.20) 
q n=0 f l=-p+l  

0 We n o w  mult iply  both  sides o f  (4.20) by Z~ --).k,jo+l and sum over J0 from 
- o o  to oo to obtain 

co Nq-1 

--'~k'jo+l) E (ZP'Jn - -  S ) I v ~ j n l  
Jo =-co n=0 

Nq= i co 

j n=O j=--co 
co Nq-1 

+ 1 ~  0 0 n n n 
(Zk'jo -- Zk'jo+l) E ( :  -- )t~P'Jn+l) (I V,u,jn+l I -l~,J. l) 

Jo =-co n=O 

o ) 
1 ,~n 0 0 nq+e~ 

(&Jo - ~ 1  '~ -- ~k'jo+l) E ] q I Y,a,Jnq "U lA,Jnq T fl 
-~ n=o jo=-co ~=o /~=-p+l (4.21) 
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where the L2-estimate (3.23) has been used. We now estimate the last two 
terms on the right-hand side of (4.21). First we assert that 

N-1 c~ ( p  q- I  0 ) 
E E (~O'jo 0 nq+e~ nq 

n=O Jo =-z* a=O f l= -p+ l  
N-1 

<=O(e) ~ ~ (,~7:,j-)~'~,j+l)]vj~]+o(e)~luj'-Oj'l 2. (4.22a) 
n=0 j j,n 

Next, summation by parts shows that 

oo Nq-1 
0 n 

�89 E ( ~ O , j o - - ~ k , j o + l ) E  (V-- '~t~ 'Jn+l)( lYt t 'Jn+ll - -Jvn-u 'Jn I) 
Jo =-~176 n=O 

c~ Nq -1 ' 
<_ O(e) ~.~ o o n -- (~'k'jo -- 2k' jo+l)  E (l~mU'jn -- S) l Yng,jn [. (4.22b) 

Jo =- 'u '  n=O 
In fact, 

j o= -~  

oo Nq-1 
E 0 0 n (&,Jo - &,Jo+~) ] ~  (v - .u~,jo+l)  (I v.,j.+~l -IG,j~ l) 

rt=O 

N-1 q-1 oo 

= E E  Z 
n=O ce=O Jn =-~ 

nq ~nq+e~ ~ z, nq+o~ nq+o~ 
(xtkq, Jnq -- *~k,]nq+l) (V -- ,~*~iGJnq§ ([Vp,Jnq+l l -- Ykt,Jnq l) 

N-1 q-1 

E E E (<,%- 
n=O a=O Jn =-~ 

~,qjnq+l) (1" -- )]nq+o~ , .... p,Jnq + I ! 

nq ,~,~ nq+a.l] nq+oe 
-- (l~q, Jnq_ 1 -- I~k,]nq) (V -- -'~,U,Jnq .': l Yfl,Jnq I 

N-1 q-1 c~ 
O(F,) E E Z nq nq+o~ (l~k,Jnq--}'~,~nq+l) Vp,Jnq [ 

n=0 c~=0 jn =-~176 

Nq-1 
<= O(e) ~_~ o o - & j o + ~  - s )  I~" I. ( &,Jo ) ~ ( '~ ~,J. .,Jn 

jo = -oo n=O 

Assuming for a moment that (4.22a) holds, we find that 

c~ Nq-1 
E 0 _ 0 ~k'J0+l) E tvn'u'jn (&,Jo [ 

Jo = - ~ 1 7 6  n=0 

Nq-i  

E 
J 

k ( ~ , j  - - ~ , j §  
n=O j - - - ~  

(4.23) 
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Noting that 

Nq-1 oo 

~ (~,j -,z~,j+l)Iv~,jl = 
n=O j= -oo  

we conclude from (4.23) that 

Nq-1 

~ (~,Jn -- ~ , J n  +1) I vn " ,a,J n [ 
j0 =- (~  n=O 

co Nq-1 

__< (1 + O(e)) E (2~ o v" l, 
j0 =-cr  n=O 

E ()~k'j--Xk'j+l)lVlz'J[<=O(g') E (Ivyl+lv~ 2)+~ z.,' k,j- ~,j+~)lql, 
j,n j=-c. j,n (4.24) 

Similar analysis shows that (4.24) is also true for/1 < k. Therefore, summation 
over /a yields 

(~,j-~,j+l) ~., Iv~,jl <__o(~) ~ (Iv~ +[v~ 2) 
j,n l~*k j 

+ o(~) ~ (~4,j -,z~j+l)Iv?I, 
j,n 

which is the desired estimate. It remains to show that (4.22a) is true. We first 
rewrite the left-hand side of (4.22a) as 

N-1 q-1  :~ 
nq nq nq + o~ 

P Z Z E (~kJnq--~k,Jnq+l)( V,U,Jnq [ -Iv~qjo~l) 
n=O ~=0 j 0 = - ~  

N-1 p oo 
nq nq. . --q E E E ()~k,J,,q-~,,q+l)(lvp,Jnq+tl-lv~q, Jnql ) 

n=O i=1 jo=-oo 

N-1 q-1  c~-i co 

_ _  nq (Iq,nq.+l.#l ]v~q.+Z ]) =P E E E E ():~:,~ 2k,j+l),,~v,, 1 -  v,a 
n=O cr l=0 j0=-r 

N-1 0 i -1 
_ n q  _ nq 

n=0 i = - p + l  /=0 j= - r  

But 

~ I 1  + I 2 .  

o o  

nq nq 

j =  --co :o 

E nq nq nq = (2k,y-l+l - 22~,~-t + 2~j- l - l )  ] vu,j I 
j =  --oo 

oo 

j = --(:o 
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This leads to 

[ell -< O ( e ) ~  ( ~ , j - ) ~ , j + l ) l v y l  . 
j,n 

Using inequality (4.8) and summation by parts, we verify that 

OO 

( ~ 5  - '~,qj+l) ([ v"q+z+l/1,j I - I  vnq+ll)/1 ,j 
j=--O~ 

2 
< - - -  E (x~q'J--~q'J+l) jnq'+l(  nq+l .nq+l -/1,, . v/1j+l I - I  I) : v/1,j-i 

2 
j : - - o o  

Oo 

V nq ~nq.+l ( q~nq+l I vnq'+l nq+l 
2 E (~'~,~ - ~ks  ../1,j .. ~/1,j+l ] --  2 /1,a I + v/1,j-1 I) 

j = - - o o  

co 

j : - - o e  

or 

+ o(e) ~ 1.2 q+' - +U§ ~ 

__< o(~) ~ (x~,5 -x7~5+,)l~U§ + o(~) ~ I.U § - +;q§ 2. 
j =_r j =-r 

This leads to 

I*~l _-< o ( ~ ) ~  (&j-~, j+ , ) [~21 + o ( ~ ) ~  1 .2 -+ ; I  2, 
j,n j,n 

which yields the desired inequality (4.22a). [] 

5. Stability Analysis for Multiple Shocks 

In this section, we carry out the L2-asymptotic stability analysis of multi- 
ple discrete shocks for the Lax-Friedrichs scheme. The main idea is as follows. 
Since weak waves propagate essentially with characteristic speeds, it follows 
that waves produced by interactions of shocks from each family are relatively 
small. This enables us to adapt the ideas developed in previous sections to ob- 
tain the desired stability theorem. 

We begin by reformulating the problem. Let 4y be the discrete multiple- 
shock given by (1.12), i.e., 

m-1 

42 = +~,j+a~ - ~ ~/1, (5.1) 
/1=1 /1=1 

where 0/1 is the discrete single-shock profile (1.5) connecting u~-i and u/1 with 
shock speed s/1 satisfying 2s/1 =p jq /1  (for p/l, q/1 ~ 77 and q/1 even and positive), 
and fi/1 is an integer denoting the phase shift determined by the initial pertur- 
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bation. By renormalizing and renaming variables, if necessary, we can assume 
without loss of generality that qu = q and fi~ = 0 for all p = 1 , . . . ,  m. An 
easy computation shows that 0~, given by (5.1), satisfies the Lax-Friedrichs 
difference equations (1.5a) approximately: 

/]. v 
0; +1 --0;+ 2 (f(O;+i) - - f (0 ; -1) )  ---- ~- (0;+, -- 20 ;  +0 ; -1 )  

where the error r/ is given by 

m-1  

~/2 = f ( O ; )  - f(O~,j) + E f ( ~ ) "  
/x=l /*=1 

2 
+ 7 (.;+1-.;-1) 

(5.2) 

(5.3) 

Let u;  (n __< n I < co) be a solution to the Lax-Friedrichs scheme (1.5) with in- 
itial data satisfying (1.13). To estimate this solution, as in Section 3, we work 
with the characteristic variables for a summed error equation. We set 

J 
~5; = E (u• - OF), v; = L; ~; ,  (5.4) 

j~--oo 

where a notation such as L ;  = L(O;)  has the same form as in Section 3, but 
with 0 ;  defined by (5.1), unless otherwise stated. It follows from (1.5) and 
(5.1)- (5.4) that 

~ A ? ( v ?  - V ; _ l )  v . v; +1 - v ;  + 7 A;+l(v;+l-v;)  + 2 - 2  (v;+,-2v;  +vj_l) 

"~ A;(r;+I -L;_I R;v; + e; + 2 L;(.+"< + ,I;) = + l - r ; +  2 (5.5) 

where e;  has the same form as in (3.6). Taking the scalar product of (5.5) with 
2v; and summing by parts over both the space and time indices, we obtain 

- (vk,j) +v  ~ [Vj+l-Vj.I 2 
j j,n<--n 2 k=l  j,n<=n 2 

=~1r ~ 2v;'(L;+I-L; 
j j,n<=n2 

"~" n n _ Lj_I~ '~ ,) + 2 Aj (Lj+ 1 ~ R;v; 

+ ~_~ (2vT"e;+~.vT"L;(t#;+~+~#;)+lvT+l-vTl2). (5.6) 
j,n<-n 2 

We now estimate each term in (5.6) separately. The results are stated in the 
following five lemmas and a proposition, whose proofs will be given in detail 
later. In what follows, we assume a priori that M(nl), defined in (3.13), is 
bounded, and that e is suitably small. 
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Lemma 5.1. Let e; be given by (3.6). Then 

2 
Z 2v;.efl <- ~ Z (2k(O'/~,j) --);k(Orl~,j+l))Iv;I 2 

j,n<-_n 2 j,n<=n 2 

vn+i ]2. + O ( X ) ( e + M ( n l ) )  Z ]V;+l-Vj ~12+O(e) Z J -vJ ~ 
j ,n<-n 2 j,n<=n 2 

(5.7) 

Lemma 5.2. The error rl; in (5.3), due to the linear superposition of single 
shocks from each family, is in L I in both space and time; more precisely, 

I ~ ; I  - o ( 1 )  E2e -O(1)e<]j]+n), (5.8) 

which implies that 

I v;. L;(,7;+, + ~2) I < ~ / 4 =  ] ~  Iv.~-vj'+ll2+o(1) e ' / 4 J  . (5.9) 
j , n < n  2 j,n<=n~ 

Lemma 5.3. The time difference admits the bound 

~_~ lvj'+l-vf'l 2<- _ (()tlAIL~+V)2+O(el/4)+O(1)M(n~)) ~_~ [v~§ 2 

j , n < n  2 j,n<=n2 

+ ~- . ] ~  (2~(O~,j) -)~AgJ/,,j+l))lvj'12+o(1)e 1/4. 
j,n<=,~ k=x (5.10) 

Lemma 5.4. The principal waves can be estimated by 

--~ ~ ( 2 k ( ( ) ; ) _ ~ k ( r  n 2 = ~ n _ ~ k ( d P k , j + l ) ) ( V k , j  n 2 

j , n < n  2 k=l j,n<_n z k=l 

- o(1) E E - E 
j,n<<_n 2 k=l tt~k 

__ ~1/4 Z IV; -- V;+ 1 I 2 --  0(1) /~1/4. (5 .11)  

j,n<=n 2 

Lemma 5.5. 

(L ~l _ Lj_l)) Rj~ vy v ;  ;+~-L; + y A;(L;+~ 
j , n < n  z 

--< s (&(O7~,j) - ,~k(O~,j+l)) (v~j) 
) , n N n  2 k=l 

n __ n (V#,j) . 

j , n ~ n  2 k=l p~:k 

(5.12) 



Discrete Shocks 249 

Proposition 5.1. The transversal waves can be estimated by 

m 

j,n<=n 2 k=l p:Ck 

~_~ O ( ~ ) Z I v ? I  2 § O(~) Z ~ (Xk(~)k,j)n --~k(*k,j+l))n (Vk,j)n 2 
j j,n<=n 2 k=l 

§ o(c)  ~ Iv~+l -vjn[ 2 § O(1) G4/3. (5.]3) 
j ,n'< n 2 

Assuming that Lemmas 5 .1-5 .5  and Proposition 5.1 hold, we continue our 
energy estimate. It follows from Lemmas 5 .1-5 .3  that 

Z (2vf'ef+fvf'Lf(r/J n+l +r/f) +lvf +1 -vfl  2) 
j,n<n2 

2 
< -  ~] (Z~(O~,j)-~k(O~j+l))lvfl  2 
=4  

j , n < n  2 

§ ((XlAIL= § v) 2 § O(gl/4) § O(1) M ( n l )  ~ IV~+l -- v.~[ 2 § O(1) gl/4 j 
J 

This, together with Lemmas 5.4 and 5.5, leads to 

Z ]  ~2 2 2 ~ n _ ~ (vk,j) Vj § 2 Z (~k(~)k,j) ~k(Ok,j+l)) n 2 
j j,n<n z k=l 

§ (v - (~IAIL~ § v) = -O(C1/4) - -  O(1) M(nl)) Z lv'] +1 -vf]  2 
j,n<=n 2 

~--- Z ] 4  12 § O(1) ~ Z ~ (~k(dPk,j)n -- ~k(Ok,j+l))n Z (Vu,j)n 2 § O(1) El/4. 
j j,n<=n 2 k=l p~k 

Combining this inequality with Proposition 5.1 yields 

Z ]Vf 212 § 2 . Z  ()tk(+k,j) __)tk(~)k,j+l) ) n 2 
j j,n<=n 2 k=l 

§ (V -- (/~[A]LOO @ V) 2 -- 0(~ 1/4) -- 0(1) / ( n l )  ) 

___< ~ 1412 + O(1)e 1/4. 

J 

We thus have demonstrated the following basic a priori estimate. 

y., Iv;+1-v;I 2 
j,n<n2 

(5.14) 
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Proposition 5.2 (A priori estimate). Let v 2 be a solution of (5.6) and (5.7)for 
n <= nl. Then there exists a positive constant c, independent of nl and a, such that 

Iv2*l =+ 1r - v~+l[ 2-1- ~ ~(Zk(Ok,j)n --  ~ k ( ~ k , j + l ) ) n  (Vk,j)n 2 

j j,n<=n 2 j ,n<n 2 k=l 

=< C(M(O) 2 + 81/4) (5.15) 

for all n 2 <= n 1 provided that e and M(nl) are suitably small. 

Having proved the a priori estimate (5.15), we deduce the desired global 
existence and estimate for the solution to (5.5) just as in Section 3. 

Proposition 5.3. Assume that 8 and M(O) are suitably small. Then the problem 
(5.5) has a unique global solution v 2 satisfying, for any n >_ 0, 

E Ivjn[2 "[- Z [~ --V;+112 + ~ ~ (~k(~P~, j )  _ ~k((~k, j+l))n  (Vk,j)n 2 

p j j ,n  j ,n  k=l 

< C(M2(O) + 81/4). (5.16) 

Proof of Theorem 1.2. With Proposition 5.2 at hand, we can prove Theo- 
rem 1.2 in the same way as Theorem 1.1. The proof of Theorem 1.2 is con- 
sidered complete. [] 

The remaining task is to prove Lemmas 5.1-5.5 and Proposition 5.1, 
which occupies the rest of this section. We begin with Lemma 5.1. 

Proof of Lemma 5.1. By direct computation using the expression for e2, 
(3.6), we can verify that 

< IV n+l ~ v2"e2=O(1) i .~  lcbf -~'j+~ v2[ 7 -v2] 
J J 

+ 0(1) E Iq)2-~b~+x Iv211V;+l -v21 
J 

+ 0(1) ]~ I go;+l-2q~2 +q~;_illC[2 + o ( 1 ) M ( n l )  ~ Iv~ - v'}_ll 2 

j J 

V.nl 2 
+ 1o2-o;+ 1 , 

J 

where we have used the facts that 

]Oj[<=O(1) lv _ V j _ l [ 2 + O ( 1 )  n_~j+ln [21~j1,,,,,,12 
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and I vj~[ < M(nl).  Since 

]qij ~ -q~ff+l[ -< ldp~,j--Ok,j+l] NO(l )  (Ak(0k, j )n _ ~ ( ( ~ k , j + l ) ) ,  

k=l  k= l  

[(~;+1 --  202 - (hi'-11 _-_N O(e) ~ (2k(r - X ( O ~ , j + I ) ) ,  
k=l  

as follows from Corollary 2.1, the Cauchy inequality leads to (5.7). This com- 
pletes the proof of Lemma 5.1. [] 

Proof  of I_emma 5.2. First we show (5.8). By the strict hyperbolicity, there are 
constants a l ,  �9 �9  a,~_l, such that 

- - ~  = 17 0 " ~  S 1 < 171 < ' ' "  ~ (Tin_ I < S m < G m ---- ~ .  

On the cone [(j, n) : 2ak-1 <j /n  <__ 2ak}, we rewrite (5.3) as 

(o re=l) 
rl; = f  ~,j + O~,j-  - f(dp'~,j) 

B . k  ,u=l 

k-1  m 

- E ( f ( q S ~ , j ) - f ( ~ ) ) -  E ( f (O~ ,J ) - f (~u -1 ) ) .  (5.17) 
p=l- p = k + l  

The Taylor expansion of the right-hand side of (5.17) and Corollary 2.1 lead to 

r/J n = Vf(~k) E (O~,j - gz) + Vf(~k) (r --  U/~-I) 
//=1 f l=k+i  

k-1  m 

p=l  ,u=k+l 

k -1  

= ( V ( r  + (vf (r  
p = l  r  

= O(1) e 2 ~ e-~ n[ . 

t t*k 

To prove (5.8), we note that for p < k, 

e-~ e l j - 2 s u n  [ ~- e -O(1)efl[j--Xspn] e-O(1) e(1-fl)[j-2sl~n I 

< e -O(1)eB(ak-a-s/Ane -O(1)e(1-fl) (IJl-Z]s~I n) 

= e - O ( 1 ) e f l ( a l ~  ~ - s u ) - ( 1 - f l ) , t l s u [ ) n e - O ( 1 ) e f l l j [  

= e - O ( 1 ) e ( [ J [ + n ) .  

a similar estimate holds for /z > k. Thus the estimate (5.8) follows. 
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Next, we prove (5.9). Using the Sobolev and Young inequalities, we have 

E Ivjn" r/;I --< ~ O(1) e2e -~ suP Ivj~[ = O(1) 8 e  -O(1)en sup ]vjn[ 
J J 

J J 
( 2)1/4 (j~. 2) 1/4 

_--< O(1) els/16e -O(1)en E ]v; --vjn+l[ e 1/16 IV;[ 

J 
~1/4 E IV; - Vy+ll  2 + O ( 1 )  C5/4e-O(1)gn, 

J 

where we have used the a priori bound on M(nl). Summing this inequality 
over n leads to 

Iv;.,1;I ~ 81/4 E I v ; - v ; ~ l  ~ -b O(1)~1/4' 
j,n<=n~ j,n<-n 2 

which yields (5.9). [] 

Proof  of  I .emma 5.3. It follows from (5.5) and (5.8) that 

Iv n+l - v ~ l  < I ( ,~ IAIL~  + v + O(e) +M(nx))(Iv' j+l-v;I  +Iv; - V~-l l)  J J = 

+ 0(1) ~ ('~k(O~,j) --~k(O~',j+l))]V;I + 0(1) ,s,2e -O(1)e(Ijl+n) 

k=l 
Therefore, 

/v ~+xJ - v212 =< (~-I a IL= + v + O(e)  + M(nl)) 2 E I V~+l - vJ~ 12 
J m J 

+ o(e)~  ~ (&(o~,j)-~k(0~,/+,))lCI2+ o0)83e-O(1)en 
j k=l 

m 

+ o (x )~  ~ (x~(0~,j) -z~(o~j+l))ICL Iv;+1 -v;I 
j k=l 

+ O(1) E e2e-~ (5.18) 

J 
We handle the last term on the right-hand side of (5.18) in the same way as 
in the proof of Lemma 5.2 to obtain 

O(1) ~ eZe-~ ____<gl/4 E IC -vy+ll  ~ +o(1)81/4. (5.19/ 
j j,n<n2 

Applying Cauchy's inequality gives 

O(1) ~ ~ (&(i&j)-,~k(O~,j+l))lv;llv;+l-V;I 
j k=l 

< -- E (2k(~b~,/) - -2k(g)~- , j+ l ) ) Ivf l2+O(e)~  iv;+1--vjnl �9 (5.20) 
= 8 j k=l j 

Estimating (5.18), together with (5.19) and (5.20), yields (5.10). [] 



Discrete Shocks 

Proof of I.emma 5.4. First, as in the proof of Lemma 5.2, we have 

kk(+f ) ----2k(~b~,J) + E 2k(O~'J ) + O(1) e2e  -~ 

#:~k 

so that the left-hand side of (5.11) becomes 

5 m (&(~;) - & ( O ; + l ) )  . 2 ~ . (Vk'j) = E (Xk(~kk'J) - -  Xk(~kk'j+l)) (Vk,j)n 2 

k=l  k=l  

253 

"}- ~ E ()'#(k,j) ~ # ( ( ~ k , j + l ) )  n 2 -O(1)e(]j[+n) 2 n __ n (Vu,j) + 0 ( 1 )  e 2 e  [vjn[ 
k=l  ##k 

m 

~---- E (,~k(g~k,j)n __ ,~k(~kk,j+l) (Vk,j)n 2 
k=l  

O(1) ~ E (2k(4)<J) ~k(4)k,j+l)) n_ 2 _ , _ ,~ (vv, i )  
k=l  #*k 

- O(1) e2e  -~ [V;[ 2 

This, together with the estimate 

] ~  O(1) 82e -O(1)ec]j[+n) Iv;I 2 <-- ~ O(1) 82e -O(1)e([j[+n) Iv;I 
j,n<=n 2 j,n<=n 2 

(5.21) 

~1/4 ~ jv 7 _ v;+l 12 + O(1) ~1/4, 
j,n<=n z 

leads to (5.11). [] 

Proof of Lemma 5.5. We first estimate each element of the matrix on the left- 
hand side of (5.12). A Taylor expansion yields 

n + l  n lk,p(Oj ) --lk,#((gj) =-'- 'Vlk,p(~;)((9;+l--~;)  + O(e) I ~ j -  ~'+1]. 

Using Corollary 2.1 and (1.6), we have 

qS#,j) m 
0f  __ __ n - -ZJ ((~/~,j+1--~#,j-1) - { -O(g) ]~ j  --(~j+l[" 

, ~u,J 2 
p = l  #=1 

Therefore, 
2 

lk '#( (~;+l)  - - l k ' u ( ( ~ ; )  + 2 2 k ( O ; )  ( l k '# (O;+l)  -/k'#((/);-1)) 

= o(1)  ~ ~ (&(r - ~#) (~n~,j+ 1 -- *~,j-1) + O(e)  l * ;  -- ~')~+i I = 
#=1 
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= O(e) itl~b~,j+, - qS~,j_, [ + 0(1) ~ I ~ , j + l -  +~,j-a I + 0 ( ~ ) I o ; -  +~+,l 
l.t*k 

= o ( e )  it (it~(i, Lj) - ;~ (+Ls+~)) + o(1)  ] ~  ( & ( ~ , j )  - ;t (+~,j+~)). 

Consequently, 

X v;(L;+I-L; 
j,n<=n 2 

it _ L ; _ I  ~ + ~ A;(L;+~ R; v; 

j,n<=n 2 k=l 
m 

+ O(1) it E E (itk(+~,j) - it~(O~,j+l))Iv~,jl ~ Iv~,jl 
j,n<-n 2 k=l /~ :l: k 

it Z ~ n . . 2 -< - (it~(i,~,j)" - itk(r (vk,j~" 
8 j,n<=n z k=l 

m 

+ O(1) it Z E (itk(Ok,j)n _itk(k,j+l))n E (V~,j) ~ 2. 
j,n<=n 2 k=l /~*k 

This is the desired estimate. [] 

(5.22) 

Finally we derive estimate (5.1) on the transversal waves. This can be done 
as in Proposition 3.1. For completeness, we sketch it here. 

Proof of Proposition 5.1. Let k be fixed, and let the a-th ( a ,  k) time-like 
grid line originating at (J0, O) be defined by (3.25) with p replaced by Pu" In 
exactly the same way as in the proof of Proposition 3.1, we can show that 

E (itk(~)k,j)n -- itk(q~,J +I)) E (Va,j)n 2 

j,n<-_n 2 /~*k 

-<_o(~)~] lv~ ]~  l+7-+Y+l[lvTI 2 
j j,n<=n2 

+ o(~) ~ I~;+1 -~212 + o(1) ~4/3. 
j,n<n 2 

This inequality holds for each k (1 < k _< m). Summation over k yields 
m 

E Z (itk(Ok,j)n _itk(Ok,j+l))n E (Va,j)n 2 
j,n<=n 2 k=i pC:k 

__<o(~) ]~]v~ 2 +o (~ )  ]~  IO;-+;+,b[~;l 2 
j j,n<-n2 

- -  vnl2 g4/3 + O(e) ] ~  Iv}+1 j + O(1) . 
j,n'<n 2 
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On the other hand, we have 

I s ;  - Iv;12_-< o(1) n (Vk,j)n 2 

j ,n<n~ j,n<=n 2 k=l 

+ 0(1) Z ~ (2k(qi~,J) -"~k(q~'J+l)) Z (y~,j)2 
j ,n<-n 2 k=l /~:~k 

It follows that 

j,n<=n 2 k = l  p~:k 

j = - ~  j,n<=n 2 k=l 

+ O(e) ~ Iv~*+x -v.~l 2 ,  + o(1)  e4/3. 
j , n < n  2 

This completes the proof of Proposition 5.1. [] 
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