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Abstract

We propose a class of simple and efficient numerical scheme for incompressible fluid equations with coordinate

symmetry. By introducing a generalized vorticity-stream formulation, the divergence free constraints are automatically

satisfied. In addition, with explicit treatment of the nonlinear terms and local vorticity boundary condition, the Navier–

Stokes (MHD, respectively) equation essentially decouples into 2 (4, respectively) scalar equation and thus the scheme is

very efficient. Moreover, with proper discretization of the nonlinear terms, the scheme preserves both energy and he-

licity identities numerically. This is achieved by recasting the nonlinear terms (convection, vorticity stretching, geo-

metric source, Lorentz force and electro-motive force) in terms of Jacobians. This conservative property is valid even in

the presence of the pole singularity for axisymmetric flows. The exact conservation of energy and helicity has effectively

eliminated excessive numerical viscosity. Numerical examples have demonstrated both accuracy and efficiency of the

scheme. Finally, local mesh refinement near the boundary can also be easily incorporated into the scheme without extra

cost.
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1. Introduction

In the numerical simulation of incompressible flows, it is desirable to have exact numerical conservation

of physically conserved quantities such as the energy and the helicity. The conservation of physical

quantities not only provides a diagnostic check for physically relevant numerical solutions, it also guar-

antees that the numerical scheme is nonlinearly stable and free from excessive numerical viscosity. This is
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essential for large time direct numerical simulations as well as the numerical search for possible flow

singularities.

Preserving energy numerically for incompressible Navier–Stokes equation has been quite common in
many numerical methods. For examples, a well known trick to obtain the conservation of energy is by

averaging a conservative and a non-conservative discretization of the nonlinear convection term. However,

it is usually difficult to satisfy two or more physical conservation laws numerically. The classical Arakawa

scheme preserves both energy and enstrophy (mean square of the vorticity) for 2D incompressible Euler

equation. This result was generalized recently to a high order discontinuous Galerkin method [8]. A strong

convergence result was also obtained for this scheme [11] when the initial value of the vorticity is merely

square-integrable. Some important flows such as vortex patches belong to this class.

For general three dimensional flows, enstrophy is no longer a conserved quantity. Instead, there is a
conservation law for the helicity. Although the discovery of this conservation law is only a recent event

(Moreau, 1961 [14]), it has played an important role in modern research on vortex dynamics for fluids and

plasma. The helicity has an interesting topological interpretation in terms of total circulations and Gauss

linking number of two interlocking vortex filaments. A comprehensive review of this subject can be found

in Moffatt [13]. Although there is at present no numerical method preserving both helicity and energy, the

conservation of the energy and cross helicity for three dimensional MHD has already been obtained in a

recent work by the authors [9]. On a set of dual staggered grids, the classic MAC scheme for Navier–Stokes

equation [6] and Yee’s scheme for Maxwell equation [17] are combined with particular care on discreti-
zation of the nonlinear terms. The divergence free condition for both the velocity field and the magnetic

field are maintained in the MAC–Yee scheme [9].

In this paper, we take a different approach and focus on three dimensional flows with coordinate

symmetry. Pipe flows and axisymmetric flows are two typical examples. For such symmetric flows, we

introduce a generalized vorticity-stream formulation, thus the divergence free constraint for the fluid ve-

locity is automatically satisfied. Under this vorticity-stream formulation, all the nonlinear terms (convec-

tion, vorticity stretching, geometric source, Lorentz force and electro-motive force) for the Navier–Stokes

and MHD equation can be recast as Jacobians. Associated with the Jacobians we introduce a trilinear form
equipped with a permutation identity which leads naturally to the conservation of energy and helicities for

both the Navier–Stokes and MHD equation. We then device a recipe of preserving the permutation

identities numerically and hence the energy and helicities. As an illustration, we implement a simple second

order finite difference scheme based on centered difference in space and high order Runge–Kutta in time.

The scheme is very efficient since the nonlinear terms are treated explicitly and a local vorticity boundary

condition similar to Thom’s formula [3,16] is applied to update the vorticity at the physical boundary. The

system therefore decouples into several scalar equations. On the other hand, since the energy and helicities

are preserved exactly, the scheme is free from excess numerical viscosity and therefore very accurate.
Another advantage of the scheme is the flexibility of choosing coordinate system since our formulation is

coordinate-independent. Mesh refinement near the boundary can be built into the equation by stretching

the coordinate with essentially no extra cost. The treatment of the nonlinear terms can be generalized to

higher order finite difference, finite element and spectral methods following the same guideline.

In practical implementations, the coordinate systems associated with these symmetric flows often ex-

hibits coordinate singularities such as the symmetry axis in cylindrical coordinate systems and the origin in

polar coordinates. A well known trick to handle this situation is to shift the grid points half grid away from

the singularity [12]. Remarkably, the permutation identity and therefore the energy and helicity conser-
vation remains valid even in the presence of the pole singularity for axisymmetric flows.

It is worth noting that the energy and helicity preserving scheme (EHPS) here and the MAC–Yee scheme

in [9] are based on totally different approaches. The MAC–Yee scheme is a second order finite difference

scheme for fully 3D MHD equation in primitive variables. The divergence free constraint is enforced by

means of staggered grids and exact discrete Hodge decomposition. The energy and the cross helicity are



10 J.-G. Liu, W.-C. Wang / Journal of Computational Physics 200 (2004) 8–33
preserved numerically through proper averaging in the evaluation of nonlinear terms. The magnetic helicity

is not preserved numerically since the magnetic field and the magnetic potential are not defined on the same

set of grids. In contrast, EHPS applies to 3D Navier–Stokes and MHD flows with symmetry, which admits
a generalized vorticity-stream formulation. All the energy and helicities are conserved locally. This is

achieved by recasting the nonlinear terms as Jacobians and realizing the permutation identity for the

Jacobians numerically. This realization does not require staggered grids and is not restricted to second

order finite difference schemes.

The rest of this paper is organized as follows: In Section 2, we recall the energy and helicity identities for

general 3D flows. In Section 3, we introduce the generalized vorticity-stream formulation for symmetric

flows and derive the expression of the nonlinear terms as Jacobians. In Section 4, we introduce the per-

mutation identity for the Jacobian and re-derive the energy and helicity identities from the permutation
identity. We then introduce EHPS by discretizing the nonlinear terms in such a way that the permutation

identity is preserved numerically. In Section 5, we give more details on the implementation of finite difference

EHPS for axisymmetric flows including the treatment of the pole singularity and the physical boundary

conditions. Finally we give several numerical examples in Section 6 and a few concluding remarks in Section

7. The derivation of the energy and helicity identities for the MHD equation and some technical proof

regarding the numerical boundary condition for physical boundaries are given in the Appendix A.
2. Energy and helicity conservation laws for 3D flows

The incompressible Navier–Stokes equation on a region D � R3 can be written as

otuþ x� uþr~p ¼ �mr� x

r � u ¼ 0;
ð2:1Þ

with no-slip boundary condition

u ¼ 0 on oD; ð2:2Þ

where ~p ¼ p þ juj2=2 is the total pressure.

Eq. (2.1) involves only elementary grad, div, curl and the cross product of vector fields. It is therefore

suitable to work with in any curvilinear orthogonal coordinate system and much simplifies our derivation

below.

Similarly, we can write the 3D incompressible MHD equation as

otuþ x� uþr~p ¼ �mr� xþ aj � b;

r � u ¼ 0;

otb ¼ �gr� j þr� ðu� bÞ;
x ¼ r� u; j ¼ r� b;

ð2:3Þ

with no-slip and perfectly conducting wall conditions

u ¼ 0; j � n ¼ 0 on oD: ð2:4Þ

Here u is the fluid velocity, x is the vorticity, ~p is the total pressure, b is the magnetic field, j is the electric
current density and n is the outward normal. The parameters m�1, g�1 and a�1=2 are usually referred to as the

fluid Reynolds number, the magnetic Reynolds number and the Alfv�en number, respectively.

The conserved quantities are made transparent by the expression of the nonlinear term in (2.1). Since

x� u is perpendicular to both x and u, it follows that
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Z
D
u � otuþ

Z
D
u � r~p ¼ �m

Z
D
u � r � x ð2:5Þ

and Z
D
x � otu ¼ �m

Z
D
x � r � x: ð2:6Þ

In view of the no-slip boundary condition (2.2) and the following identity

r � ðu� xÞ ¼ x � ðr � uÞ � u � ðr � xÞ; ð2:7Þ

we have

�m
Z
D
u � r � x ¼ �m

Z
D
x � x; ð2:8Þ
Z
D
x � otu ¼

Z
D
u � otx ¼ 1

2

d

dt

Z
D
u � x ð2:9Þ

and the conservation of energy and helicity follows:

d

dt
1

2

Z
D
juj2 ¼ �m

Z
D
jxj2; ð2:10Þ
d

dt
1

2

Z
D
u � x ¼ �m

Z
D
x � ðr � xÞ: ð2:11Þ

For inviscid flows, the helicity
R
D u � x is invariant in time. It has an intrinsic topological interpretation of

the flow. For example, when the flow pattern is two knotted vortex tubes or vortex filaments, the helicity is

then equal to �2nU1U2, where U1 and U2 are the circulation in the cross section of the vortex tubes re-

spectively, and n is the Gauss linking number [13].

The conservation of energy, cross helicity and magnetic helicity for the MHD equation (2.3) can be

derived similarly. See Appendix A for details.
3. Generalized vorticity-stream formulation for symmetric flows

This paper is motivated by the work of Grauer and Sideris [5] in the numerical search of possible sin-

gularities for the axisymmetric solutions of the Euler equation. For axisymmetric flows, the velocity and the

vorticity can be written as

u ¼ ð0; 0; uÞ þ r � ð0; 0;wÞ; x ¼ ð0; 0;xÞ þ r � ð0; 0; uÞ; ð3:1Þ

and the Euler equation reduces to

otuþ ðuxox þ urorÞuþ
ur
r
u ¼ 0;

otxþ ðuxox þ urorÞx� ur
r
x ¼ 1

r
oxðu2Þ;

�r2wþ 1

r2
w ¼ x;

ð3:2Þ
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where

ur ¼ �oxw; ux ¼ orwþ w
r
: ð3:3Þ

The formulation (3.1) and (3.2) can be generalized to general 3D flows with coordinate symmetry.

By symmetry, we mean that both the physical domain and the solution are invariant under translation in

a coordinate direction. To be more precise, let X ¼ ðx1; x2; x3Þ be the Cartesian coordinate system and

Y ¼ ðy1; y2; y3Þ a curvilinear orthogonal coordinate system with unit vectors ðe1; e2; e3Þ. Denote by hi,
i ¼ 1; 2; 3, the local stretching factors given by dX ¼

P
j hjdyjej. The three basic differential operators are

given by

rf ¼ 1

h1
o1f ;

1

h2
o2f ;

1

h3
o3f

� �
; ð3:4Þ
r � f ¼ 1

h1h2h3
o1ðh2h3f1Þð þ o2ðh1h3f2Þ þ o3ðh1h2f3ÞÞ; ð3:5Þ
r� f ¼ 1

h1h2h3

h1e1 h2e2 h3e3
o1 o2 o3
h1f1 h2f2 h3f3

������
������: ð3:6Þ

If we denote by y3 the direction of translation invariance, then by symmetry we mean that the active

independent variables are defined on the cross section, ðy1; y2Þ 2 X, and that both hi and the fluid variables

are independent of y3. That is, hi ¼ hiðy1; y2Þ, i ¼ 1; 2; 3 and o3 � 0.
For simplicity of presentation, we have assumed that yi are mutually orthogonal in our derivation. In

fact, we are interested in the case where y3 is orthogonal to the cross section X (such as pipe flows and

axisymmetric flows, for example). The orthogonality between y1 and y2 is not essential, see Remark 2 in

Section 5.

For a symmetric incompressible velocity field u ¼ uðy1; y2Þ

r � u ¼ 1

h1h2h3
o1ðh2h3u1Þð þ o2ðh3h1u2ÞÞ ¼ 0; ð3:7Þ

with u � njoX ¼ 0, we can always introduce a potential w, the component of the stream vector in the sym-

metry direction, such that

o2 h3wð Þ ¼ h2h3u1; o1 h3wð Þ ¼ �h3h1u2; ð3:8Þ

and we can write

u ¼ 1

h3

o2ðh3wÞ
h2

;

�
� 1

h3

o1ðh3wÞ
h1

; u
�

¼ ð0; 0; uÞ þ r � ð0; 0;wÞ: ð3:9Þ

Here u ¼ u3 is the velocity component in the symmetry direction. For axisymmetric flows, u is known as the

swirling velocity. Direct computation leads to

r�r� ð0; 0;wÞ ¼ ð0; 0;LwÞ; ð3:10Þ

where

Lw ¼ � 1

h1h2
o1

h2
h1h3

o1ðh3wÞ
� ��

þ o2
h1
h2h3

o2ðh3wÞ
� ��

: ð3:11Þ
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Denote by x ¼ �Lw, the vorticity component in the symmetry direction, it follows similarly that

x ¼ ð0; 0;xÞ þ r � ð0; 0; uÞ: ð3:12Þ
At this point, we would like to introduce the following identity:

Lw ¼ r2w� V w; ð3:13Þ
where r2 is the standard Laplacian in D:

r2w ¼ 1

h1h2h3
o1

h2h3
h1

o1w

� ��
þ o2

h1h3
h2

o2w

� ��
¼ r � rw ð3:14Þ

and V is the geometric source term

V ¼ �1

h1h2
o1

h2
h1h3

o1h3

� ��
þ o2

h1
h2h3

o2h3

� ��
¼ h3r2 1

h3

� �
: ð3:15Þ

The identity (3.13) plays an important role in the treatment of the pole singularity in our finite difference

spatial discretization (5.3). In the axisymmetric case, h3 ¼ 0 on the axis of symmetry. This poses a difficulty

as we discretize L directly using (3.11). This difficulty disappears with the equivalent operator r2 � V
provided r ¼ 0 is not a grid point. See Section 5 for details.

The most crucial observation in this paper is that all the nonlinear terms can be written as Jacobians:

x� u¼
e1 e2 e3

1
h3

o2ðh3uÞ
h2

� 1
h3

o1ðh3uÞ
h1

x

1
h3

o2ðh3wÞ
h2

� 1
h3

o1ðh3wÞ
h1

u

�������
�������

¼ x
h3

o1ðh3wÞ
h1

�
� u
h3

o1ðh3uÞ
h1

;
x
h3

o2ðh3wÞ
h2

� u
h3

o2ðh3uÞ
h2

;
1

h23

o2ðh3wÞ
h2

o1ðh3uÞ
h1

�
� o2ðh3wÞ

h1

o2ðh3uÞ
h2

��
;

therefore

ðx� uÞ3 ¼
1

h23

1

h1h2
J h3u; h3wð Þ ð3:16Þ

and

rð � ðx� uÞÞ3 ¼
1

h1h2

o1 o2
xo1ðh3wÞ

h3
� uo1ðh3uÞ

h3

xo2ðh3wÞ
h3

� uo2ðh3uÞ
h3

�����
�����

¼ 1

h1h2
o1

x
h3

� �
o2 h3wð Þ

�
� o2

x
h3

� �
o1 h3wð Þ � o1

u
h3

� �
o2 h3wð Þ þ o2

u
h3

� �
o1 h3uð Þ

�

¼ 1

h1h2
J

x
h3

; h3w
� �

� 1

h1h2
J

u
h3

; h3u
� �

:

We therefore have the ðw; u;xÞ formulation for the 3D symmetric Navier–Stokes equation,

otuþ
1

h23

1

h1h2
J h3u; h3wð Þ ¼ mðr2 � V Þu;

otxþ 1

h1h2
J

x
h3

; h3w
� �

¼ mðr2 � V Þxþ 1

h1h2
J

u
h3

; h3u
� �

;

x ¼ �ðr2 � V Þw;

ð3:17Þ
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with the no-slip boundary condition (2.2) expressed in terms of u and w:

u � n ¼ osðh3wÞ ¼ 0; u � s ¼ onðh3wÞ ¼ 0; u � e3 ¼ u ¼ 0;

where n is the outer normal at oX and s ¼ n� e3. When the cross section X is simply connected, the no-slip
boundary condition further reduces to

u ¼ 0; w ¼ 0; onðh3wÞ ¼ 0 on oX: ð3:18Þ

Next we reformulate the energy and helicity identities (2.10) and (2.11) in terms of the active variables u
and x. We first define the weighted L2 and H 1 inner products:

hf ; gi ¼
Z
X
h1h2h3f ðy1; y2Þgðy1; y2Þdy1 dy2; ð3:19Þ
hf ; gi ¼
Z
X
h1h2h3f ðy1; y2Þ � gðy1; y2Þdy1 dy2 ð3:20Þ

and

½f ; g� ¼ 1

h1
o1f ;

1

h1
o1g

� �
þ 1

h2
o2f ;

1

h2
o2g

� �
þ hf ; Vgi: ð3:21Þ

It is worth noting that

hf ; ð�r2 þ V Þgi ¼ ½f ; g� ð3:22Þ

provided either f ¼ 0 or ong ¼ 0 on oX.
Since u and hi are independent of y3, it suffice to consider the energy and helicity identities on the cross

section X:Z
X
juj2h1h2h3 dy1 dy2 ¼ hð0; 0; uÞ þ r � ð0; 0;wÞ; ð0; 0; uÞ þ r � ð0; 0;wÞi

¼ hð0; 0; uÞ; ð0; 0; uÞi þ hr � ð0; 0;wÞ;r� ð0; 0;wÞi ¼ hu; ui þ ½w;w�; ð3:23Þ

where in the last equality, we have used (3.10), (3.13) and (3.22) and the fact that

hr � ð0; 0; f Þ;r� ð0; 0; gÞi ¼ hð0; 0; f Þ;r�r� ð0; 0; gÞi ð3:24Þ

provided either f ¼ 0 or onðh3gÞ ¼ 0 on oX.
Similarly, we can writeZ

X
jxj2h1h2h3 dy1 dy2 ¼ ½u; u� þ hx;xi ð3:25Þ
Z
X
u � xh1h2h3 dy1 dy2 ¼ hð0; 0; uÞ þ r � ð0; 0;wÞ; ð0; 0;xÞ þ r � ð0; 0; uÞi

¼ hð0; 0; uÞ; ð0; 0;xÞi þ hr � ð0; 0;wÞ;r� ð0; 0; uÞi
¼ hð0; 0;xÞ; ð0; 0; uÞi: ð3:26Þ

ThereforeZ
X
u � xh1h2h3 dy1 dy2 ¼ 2hu;xi ð3:27Þ
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and Z
D
x � ðr � xÞ ¼ hð0; 0;xÞ þ r � ð0; 0; uÞ; ð0; 0;�ðr2 � V ÞuÞ þ r � ð0; 0;xÞi

¼ ½u;x� � hx; ðr2 � V Þui; ð3:28Þ

we conclude with the energy and helicity identity in terms of u and x:

d

dt
1

2
ðhu; ui þ ½w;w�Þ þ mð½u; u� þ hx;xiÞ ¼ 0; ð3:29Þ
d

dt
hu;xi þ mð½u;x� � hx; ðr2 � V ÞuiÞ ¼ 0: ð3:30Þ

For MHD flows with coordinate symmetry, we can similarly write

u ¼ ð0; 0; uÞ þ r � ð0; 0;wÞ;
x ¼ ð0; 0;xÞ þ r � ð0; 0; uÞ; x ¼ �ðr2 � V Þw;
b ¼ ð0; 0; bÞ þ r � ð0; 0; aÞ;
j ¼ ð0; 0; |Þ þ r � ð0; 0; bÞ; | ¼ �ðr2 � V Þa;

ð3:31Þ

and reformulate all the nonlinear terms as Jacobians:

ðx� uÞ3 ¼
1

h23

1

h1h2
J h3u; h3wð Þ;

ðj � bÞ3 ¼
1

h23

1

h1h2
J h3b; h3að Þ;

ðu� bÞ3 ¼
1

h23

1

h1h2
J h3w; h3að Þ;

ð3:32Þ
rð � ðx� uÞÞ3 ¼
1

h1h2
J

x
h3

; h3w
� �

� 1

h1h2
J

u
h3

; h3u
� �

;

rð � ðj � bÞÞ3 ¼
1

h1h2
J

|

h3
; h3a

� �
� 1

h1h2
J

b
h3

; h3b
� �

;

rð � ðu� bÞÞ3 ¼
1

h1h2
J

u
h3

; h3a
� �

� 1

h1h2
J

b
h3

; h3w
� �

;

ð3:33Þ

and the 3D symmetric MHD takes the form:

otuþ
1

h23

1

h1h2
J h3u; h3wð Þ ¼ mðr2 � V Þuþ a

h23

1

h1h2
J h3b; h3að Þ;
otxþ 1

h1h2
J

x
h3

; h3w
� �

� 1

h1h2
J

u
h3

; h3u
� �

¼ mðr2 � V Þxþ a
h1h2

J
|

h3
; h3a

� �
� a
h1h2

J
b
h3

; h3b
� �

;

x ¼ �ðr2 � V Þw;
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ota ¼ gðr2 � V Þaþ 1

h23

1

h1h2
J h3w; h3að Þ;
otb ¼ gðr2 � V Þbþ 1

h1h2
J

u
h3

; h3a
� �

� 1

h1h2
J

b
h3

; h3w
� �

;

| ¼ �ðr2 � V Þa: ð3:34Þ

On a simply connected X, the perfectly conducting wall conditions j � n ¼ 0 is given by

| ¼ 0; onðh3bÞ ¼ 0 on oX: ð3:35Þ

Since a is a computational variable, it is convenient to take the alternative form of | ¼ 0 in terms of a. In
view of (3.18) and the fourth equation in (3.34), the boundary condition for a is simply given by ota ¼ 0.
Therefore we have the boundary condition for the symmetric MHD:

u ¼ 0; w ¼ 0; onðh3wÞ ¼ 0; ota ¼ 0; onðh3bÞ ¼ 0 on oX: ð3:36Þ

This is also consistent with the boundary constraint otðb � nÞ ¼ 0, a direct consequence of the Faraday

equation.

In the next section, we will develop energy and helicity preserving numerical schemes for the vorticity-

stream formulation of symmetric Navier–Stokes and MHD equations. We will give detail derivation for the

Navier–Stokes equation (3.17) only. Generalization to the MHD equation (3.34) is straight forward. The

energy and helicity identities for the MHD equation formulated in terms of u, x, a and b are given in
the Appendix A.
4. Energy and helicity preserving schemes

4.1. The permutation identity and conservation laws revisited

We first derive the permutation identity associated with the Jacobians. Observe that

Jða; bÞ ¼ ra � r?b ¼ 1

3
ra � r?b
�

þr � ðar?bÞ þ r? � ðbraÞ
�
; ð4:1Þ

and define the following trilinear form:

T ða; b; cÞ ¼ 1

3

Z
X

cðra � r?bÞ
�

þ aðrb � r?cÞ þ bðrc � r?aÞ
�
: ð4:2Þ

It follows thatZ
X
cJða; bÞ ¼ T ða; b; cÞ �

Z
oX

cðaosb� bosaÞ; ð4:3Þ

and we have the following

Proposition 1. Let a; b; c be smooth functions defined on X with cðaosb� bosaÞ ¼ 0 on oX. ThenZ
X
cJða; bÞ ¼ T ða; b; cÞ: ð4:4Þ
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The assumption in Proposition 1 is valid on the physical boundary provided at least one of a, b or c
contains either w or u as a factor. This is the case for all the Jacobians in (3.17). It is also valid on the axis of

rotation for axisymmetric flows as all the dependent variables are the swirling components of axisymmetric
vector fields and satisfy odd extension across the axis of rotation. See also (5.4).

From (4.2), we can easily derive the following permutation identity which plays an essential role in our

development of energy and helicity preserving schemes:

T ða; b; cÞ ¼ T ðb; c; aÞ ¼ T ðc; a; bÞ; T ða; b; cÞ ¼ �T ðb; a; cÞ: ð4:5Þ

Indeed, we can give an alternative (and much simpler) derivation of (3.29) and (3.30) using (4.5). We take

the weighted inner product (3.19) of the first equation in (3.17) with t, the second with u to get
ht; otui þ T ðh3u; h3w; t=h3Þ ¼ mht; ðr2 � V Þui;
½u; otw� þ T ðx=h3; h3w; h3uÞ ¼ mhu; ðr2 � V Þxi þ T ðu=h3; h3u; h3uÞ: ð4:6Þ
The energy and helicity identities (3.29) and (3.30) follow easily from the permutation identity (4.5) by

taking ðt;uÞ ¼ ðu;wÞ and ðx; uÞ in (4.6) respectively.

In view of (4.6), it is clear that in order to preserve the energy and helicity identities numerically, it

suffices to discretize the Jacobians in such a way that the discrete analogue of the permutation identity (4.5)

is satisfied. In the next subsection, we will show how this can be done for a second order scheme based on

standard centered differencing. This principle can be generalized to higher order finite difference, finite

element and spectral Galerkin methods. See also Remark (2) in Section 4.2.
4.2. Finite difference method and discrete permutation identities

With the standard notation,

D1f ðy1; y2Þ ¼
f ðy1 þ Dy1=2; y2Þ � f ðy1 � Dy1=2; y2Þ

Dy1
; ð4:7Þ
~D1f ðy1; y2Þ ¼
f ðy1 þ Dy1; y2Þ � f ðy1 � Dy1; y2Þ

2Dy1
; ð4:8Þ
~rh ¼ ð~D1; ~D2Þ; ~r?
h ¼ ð�~D2; ~D1Þ; ð4:9Þ

the finite difference approximation of r2 and the Jacobians are given by

r2
hf ¼ 1

h1h2h3
D1

h2h3
h1

D1f
� ��

þ D2

h1h3
h2

D2f
� ��

ð4:10Þ

and

Jhðf ; gÞ ¼
1

3
~rhf � ~r?

h g
�

þ ~rh � ðf ~r?
h gÞ þ ~r?

h � ðg ~rhf Þ
	
: ð4:11Þ
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Altogether, the finite difference approximation of Navier–Stokes equation is given by

otuþ
1

h23

1

h1h2
Jh h3u; h3wð Þ ¼ mðr2

h � V Þu;
otxþ 1

h1h2
Jh

x
h3

; h3w
� �

¼ mðr2
h � V Þxþ 1

h1h2
Jh

u
h3

; h3u
� �

; ð4:12Þ
x ¼ ð�r2
h þ V Þw:

From (4.11), we will show that

Dy1Dy2
X
i;j

ci;jJhða; bÞi;j ¼ Dy1Dy2
1

3

X
i;j

c ~rha � ~r?
h b

�
þ a ~rhb � ~r?

h cþ b ~rhc � ~r?
h a
	
i;j
: ð4:13Þ

Therefore, if we define Thða; b; cÞ as the right hand side of (4.13), we recover the discrete permutation
identity

Thða; b; cÞ ¼ Thðb; c; aÞ ¼ Thðc; a; bÞ; Thða; b; cÞ ¼ �Thðb; a; cÞ: ð4:14Þ
To see this, we first look at the quasi-2D flows where X ¼ R2 or T 2 and the physical boundary is not

present. We begin with the following identity:

XN�1

j¼1

fj gjþ1

�
� gj�1

�
¼ �

XN�1

j¼1

fjþ1

�
� fj�1

�
gj þ fN�1gN þ fNgN�1 � f0g1 � f1g0; ð4:15Þ

ignoring the boundary terms, we can simply write (4.15) asX
j

fj gjþ1

�
� gj�1

�
¼ �

X
j

fjþ1

�
� fj�1

�
gj ð4:16Þ

and consequently

Dy1Dy2
X
j

X
i

c ~rh � ða ~r?
h bÞ ¼ �Dy1Dy2

X
i;j

a ~rhc � ~r?
h b; ð4:17Þ
Dy1Dy2
X
i

X
j

c ~r?
h � ðb ~rhaÞ ¼ �Dy1Dy2

X
i;j

b ~r?
h c � ~rha; ð4:18Þ

and (4.13) follows.

As to the viscous terms, we denote the discrete weighted inner products by

h/;wih ¼
X
i;j

ðh1h2h3/wÞi;jDy1Dy2; ð4:19Þ
½/;w�h ¼
X
i;j

h2h3
h1

ðD1/ÞðD1wÞ
� �

i�1=2;j

Dy1Dy2 þ
X
i;j

h1h3
h2

ðD2/ÞðD2wÞ
� �

i;j�1=2

Dy1Dy2 þ h/; V wih:

ð4:20Þ

It is easy to see that

h/; ðr2
h � V Þwih ¼ �½/;w�h; ð4:21Þ

when there is no boundary terms involved.
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The discrete energy and helicity identities is a direct consequence of (4.13) and (4.21). Take the discrete

weighted inner product (4.19) of the first equation in (4.12) with t, the second with u, it follows that

ht; otuih þ Thðh3u; h3w; t=h3Þ ¼ mht; ðr2
h � V Þuih;

½u; otw�h þ Thðx=h3; h3w; h3uÞ ¼ mhu; ðr2
h � V Þxih þ Thðu=h3; h3u; h3uÞ;

ð4:22Þ

and we get the discrete energy identity

d

dt
1

2
ðhu; uih þ ½w;w�hÞ þ mð½u; u�h þ hx;xihÞ ¼ 0 ð4:23Þ

by taking t ¼ u, u ¼ w in (4.22). Also the discrete helicity identity

d

dt
hu;xih þ mð½u;x�h � hx; ðr2

h � V ÞuihÞ ¼ 0 ð4:24Þ

follows by taking t ¼ x, u ¼ u.
In the next section, we will focus on axisymmetric flows and show that both (4.13) and (4.21) remain

valid in the presence of the pole singularity and physical boundary. As a consequence, (4.23) and (4.24)

follow as well.

Remarks.

(1) In the 2D case, the approximation Jhða; bÞ is equivalent to the classical Arakawa scheme [1].

(2) The energy and helicity preserving scheme (4.12) can be generalized to higher order finite difference

scheme by replacing ~rh andrh with higher order centered difference approximations of r. The discrete

analogue of the permutation identity (4.5) remains valid. Similarly, to maintain the energy and helicity

preserving property in finite element and spectral Galerkin approximations, it suffices to define Jhða; bÞ
through its pairing with test function c by
hc; Jhða; bÞi � T ða; b; cÞ:
5. Finite difference scheme for axisymmetric flows

An important class of flows with symmetry is the axisymmetric ones. In this section, we give more details

of the finite difference EHPS applied to axisymmetric flows, including the treatment of the pole singularity
and physical boundary conditions.

For axisymmetric flows, the cylindrical coordinate system ðy1; y2; y3Þ ¼ ðx; r; hÞ with r2 ¼ y2 þ z2 and

h ¼ arctanðz=yÞ results in ðh1; h2; h3Þ ¼ ð1; 1; rÞ and the Navier–Stokes equation can be written as

ut þ
1

r2
J ru; rwð Þ ¼ m r2

�
� 1

r2

�
u;

xt þ J
x
r
; rw

� 	
¼ m r2

�
� 1

r2

�
xþ J

u
r
; ru

� 	
;

x ¼
�
�r2 þ 1

r2

�
w:

ð5:1Þ
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In [2], it is shown that the only possible singularity for axisymmetric flow of Navier–Stokes equation is

on the axis. We therefore may want to refine the grids locally near the axis. This can be done by a simple

change of variables. For example, take

ðy1; y2; y3Þ ¼ ðx; s; hÞ;

with s ¼ r1=2 ¼ ðy2 þ z2Þ1=4. This gives ðh1; h2; h3Þ ¼ ð1; 2s; s2Þ and the Navier–Stokes equation reads

ut þ
1

2s5
J s2u; s2w
� �

¼ m r2

�
� 1

s4

�
u;

xt þ
1

2s
J

x
s2
; s2w

� 	
¼ m r2

�
� 1

s4

�
xþ 1

2s
J

u
s2
; s2u

� 	
;

x ¼
�
�r2 þ 1

s4

�
w:

ð5:2Þ
5.1. Cylindrical coordinate system and the pole singularity

In either (5.1) or (5.2), the Navier–Stokes equation exhibits coordinate singularity 1=r (1=s, respectively)
at the axis of rotation. A simple and effective treatment for finite difference scheme is to shift the grids half
grid size off the axis [12]:

y2ðjÞ ¼ j
�

� 1

2

�
Dy2; j ¼ 0; 1; 2; . . . ð5:3Þ

That is, rj ¼ ðj� 1
2
ÞDr, j ¼ 0; 1; 2; . . . in ðx; r; hÞ coordinates and sj ¼ ðj� 1

2
ÞDs, j ¼ 0; 1; 2; . . . in ðx; s; hÞ

coordinates.

Since u;w;x are the swirling components of u;w;x, they satisfy the reflection boundary condition, or in

other words, odd extension across the axis of rotation:

uði; 0Þ ¼ �uði; 1Þ; wði; 0Þ ¼ �wði; 1Þ; xði; 0Þ ¼ �xði; 1Þ ð5:4Þ

and

h1ð0; jÞ ¼ h1ð1; jÞ; h2ð0; jÞ ¼ h2ð1; jÞ; h3ð0; jÞ ¼ h3ð1; jÞ ð5:5Þ

for the local stretching factors.

If we denote by j the index in the direction parallel to the axis, it follows from (4.15) that

X1
j¼1

fjðgjþ1 � gj�1Þ ¼ �
X1
j¼1

gjðfjþ1 � fj�1Þ � ðf0g1 þ g0f1Þ: ð5:6Þ

When we repeat the procedure outlined in (4.13)–(4.16) there is an additional boundary contribution at

the pole:X
i

ðfi;0gi;1 þ gi;0fi;1Þ;

where f ¼ c and g ¼ b~Dxa� a~Dxb (see also (A.19)).

In view of the reflection boundary condition (5.4), we have

fi;0 ¼ �fi;1; gi;0 ¼ gi;1: ð5:7Þ
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The boundary contribution at the pole cancels exactly and the discrete permutation identity (4.14) remains

valid even in the presence of the pole singularity.

As to the viscous terms, it is easy to see that (4.21) remains valid across the axis since r1=2 ¼ s1=2 ¼ 0 and

X1
j¼1

fjðgjþ1=2 � gj�1=2Þ ¼ � 1

2
ðf1

 
� f0Þg1=2 þ

X1
j¼2

ðfj � fj�1Þgj�1=2

!
� 1

2
ðf1 þ f0Þg1=2: ð5:8Þ

This also explains why we choose to discretize r2 � V instead of L in (4.12).

In summary, the discrete energy and helicity identity (4.23) and (4.24) remain valid for axisymmetric

flows in the whole space.

5.2. Treatment of physical boundary conditions

In order to preserve the conservation laws for the energy and helicity in the presence of the physical

boundary, the no-slip boundary condition needs to be realized in a proper way. We consider the flow

confined in a cylinder fxmin < x < xmax; 0 < r < rmaxg, and let i be the index in the axial direction. Similar to

(4.15), we have

XM�1

i¼1

fi giþ1ð � gi�1Þ ¼ �
XM�1

i¼1

fiþ1ð � fi�1Þgi þ fM�1gM þ fMgM�1 � f0g1 � f1g0; ð5:9Þ

it follows that if we place the physical boundary in the middle of grid points

x1
2
¼ xmin; . . . ; xM�1

2
¼ xmax; r1

2
¼ 0; . . . ; rN�1

2
¼ rmax ð5:10Þ

a second order approximation for two of the no-slip boundary condition w ¼ onw ¼ 0 is realized by simply

imposing

w0;j ¼ w1;j ¼ 0; wM�1;j ¼ wM ;j ¼ 0; wi;N�1 ¼ wi;N ¼ 0: ð5:11Þ
Table 1

Errors and orders of accuracy for example 1

Mesh L2 error Order L1 error Order

50� 64 1.6373E)3 – 1.4779E)3 –

100� 128 4.1033E)4 1.997 3.7036E)4 1.997

w 200� 256 1.0289E)4 1.996 9.2885E)5 1.995

400� 512 2.5770E)5 1.997 2.3259E)5 1.998

800� 1024 6.4488E)6 1.999 5.8198E)6 1.999

50� 64 1.2637E)2 – 3.8124E)2 –

100� 128 2.8318E)3 2.158 7.9906E)3 2.254

u 200� 256 6.7669E)4 2.065 1.9580E)3 2.029

400� 512 1.6720E)4 2.017 4.8754E)4 2.006

800� 1024 4.1679E)5 2.004 1.2146E)4 2.005

50� 64 2.3133E)2 – 4.0879E)2 –

100� 128 5.7070E)3 2.019 9.3925E)3 2.122

x 200� 256 1.4162E)3 2.011 2.2181E)3 2.082

400� 512 3.5390E)4 2.001 6.3534E)4 1.804

800� 1024 8.8512E)5 1.999 1.6974E)4 1.904
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Fig. 1. Example 2, contour plot of the current density j at t ¼ 2:7.
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Fig. 2. Example 2, close up of Fig. 1. The current sheet is resolved with about 8 grid points.
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Also, a second order approximation of the third no slip condition u ¼ 0 is given by

u0;j þ u1;j ¼ 0; uM�1;j þ uM ;j ¼ 0; ui;N�1 þ ui;N ¼ 0: ð5:12Þ

We can show that under (5.11) and (5.12), the discrete permutation identity (4.14) are indeed verified and

the energy and helicity identities (4.23) and (4.24) remain valid. The details are given in the Appendix A.
In the case of MHD equation, the discrete counterpart of the boundary term in (4.3) does not drop out

automatically. A simple remedy is to add a correction term to the Jacobians at points ð1; jÞ, ðM � 1; jÞ and
ði;N � 1Þ. Since these points are OðDxÞ and OðDrÞ from the boundary, this correction is of OðDx2 þ Dr2Þ
and the resulting scheme is still second order consistent with the equation. This approach is quite artificial

so we will not pursue further.

We are unable to find a simple and local numerical boundary condition that preserves the MHD energy

and helicity identities in the presence of physical boundaries.

In practice, a more convenient way of realizing (3.36) is to place the grid points on the physical boundary
as is usually done (the pole r ¼ 0 is still located at j ¼ 1

2
). In other words, we put

x0 ¼ xmin; . . . ; xM ¼ xmax; r1
2
¼ 0; . . . ; rN ¼ rmax: ð5:13Þ

The u ¼ w ¼ 0 condition are given by

w0;j ¼ wM ;j ¼ wi;N ¼ 0; ð5:14Þ
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Fig. 3. Example 2, time evolution history of maximum current sheet with different resolutions. jfit: data computed in [4] using

equivalence of 40962 resolution.
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u0;j ¼ uM ;j ¼ ui;N ¼ 0; ð5:15Þ

The boundary condition onðh3wÞ ¼ 0, or equivalently onw ¼ 0 since w ¼ 0 on the boundary, can be realized

as

w�1;j ¼ w1;j; wMþ1;j ¼ wM�1;j; wi;Nþ1 ¼ wi;N�1: ð5:16Þ

Similarly

ota0;j ¼ 0; otaM ;j ¼ 0; otai;N ¼ 0; ð5:17Þ
ðh3bÞ�1;j ¼ ðh3bÞ1;j; ðh3bÞMþ1;j ¼ ðh3bÞM�1;j; ðh3bÞi;Nþ1 ¼ ðh3bÞi;N�1: ð5:18Þ

The boundary conditions (5.16) and (5.18) uniquely determines the values of w and b on the ghost points

ð�1; jÞ, ðM þ 1; jÞ and ði;N þ 1Þ. The vorticity boundary condition can be easily derived from (5.16),

known as Thom’s formula:

x0;j ¼
2w1;j

ðDxÞ2
: ð5:19Þ

In this setting, the active computational variables are u, x and a at interior points and b at interior and

boundary points.
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Fig. 4. Example 3, contour plot of u at t ¼ 0. Horizontal axis: x, vertical axis: r.
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Notice that the vorticity boundary condition for (5.10) and (5.11) corresponds to

x1;j ¼
w2;j

ðDxÞ2
; ð5:20Þ

which differs from Thom’s formula by a factor of 2. It is also known as Fromm’s formula. If the grid points

were placed right on the boundary as in (5.13), Fromm’s formula reduces to a first order scheme, see [15]. It

is indeed a second order scheme when the boundary is placed between the grid points (5.10). The second
order convergence of (5.10) with (5.20) has been verified in our numerical tests. See Example 1 in Section 6.

Remarks.
(1) With a standard but somewhat lengthy truncation error analysis and a clever use of the discrete permu-

tation identity (4.14), we can prove the following error estimate for axisymmetric flows:

ku� uhk þ krhðw� whÞk1 6CðDx2 þ Dr2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j logDrj

p
Þ in x; r; h coordinates

and

ku� uhk þ krhðw� whÞk1 6CðDx2 þ Ds2Þ in x; s; h coordinates;

where kf k2 ¼ hf ; f ih and kf k21 ¼ ½f ; f �h. The details will be reported in a forthcoming paper [10].

(2) It is worth noting that this numerical conservation property is very similar to the classical Zabusky–

Kruskal scheme for the KdV equation [7]:

ut þ uux þ 6uxxx ¼ 0 ð5:21Þ
Fig. 5. Example 3, contour plot of u at t ¼ 2.
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in which the convection term is discretized as

ðuuxÞh ¼
1

3
u~Dxuþ

2

3
~Dxðu2=2Þ ¼

uj�1 þ uj þ ujþ1

3
~Dxuj; ð5:22Þ

and it gives local conservation for both uj and u2j .
(3) Since

Jða; bÞ
h1h2

¼
j oða;bÞ
oðy1;y2Þ

j
j oðx1;x2Þ
oðy1;y2Þ

j
; ð5:23Þ

it follows that the Jacobian formulation is also valid for nonorthogonal (z1; z2) coordinates in the (y1; y2)
plan, as long as X is orthogonal to y3. We simply replace (5.23) by

j oða;bÞ
oðz1;z2Þ

j
j oðx1;x2Þ
oðz1;z2Þ

j
¼ Jða; bÞ

j oðx1;x2Þ
oðz1;z2Þ

j
ð5:24Þ

in the ðz1; z2; y3Þ coordinates. It is therefore straight forward to generalize EHPS to non-orthogonal

coordinate system to simulate flows in irregular domains using fixed or moving mesh.
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Fig. 6. Example 3, contour plot of u at t ¼ 2:5.
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6. Numerical examples

In the examples below, we perform numerical simulations using second order finite difference EHPS with
uniform grids and classical RK4 for time integration. For axisymmetric flows, the azimuthal convection is

not evolved numerically (oh ¼ 0) and therefore finite difference method is not restrictive in terms of stability

constraint unless the ðx; s; hÞ coordinate were used. We have used fixed Dt for convenience. The CFL

number varies with time and the maximal CFL number ranges from around 2.0 (Examples 1 and 2) to 2.8

(Example 3), or from 0.5 to 0.7 per Runge–Kutta step. The energy and helicity identities in Examples 2 and

3 are preserved numerically up to 9–11 digits, consistent with the truncation error in time (Dt ¼ 0:005,
ðDtÞ4 ¼ Oð10�10Þ).

6.1. Example 1: accuracy check

We first check the accuracy of EHPS for axisymmetric Navier–Stokes equation. We setup the problem in

a cylinder f0 < x < p; 0 < r < pg with m ¼ 0:001 and exact solution

wðx; r; tÞ ¼ cosðtÞ sinðrÞ cosðr=2Þ sin2ðxÞ; uðx; r; tÞ ¼ cosðtÞ sinðrÞ sinðxÞ:

Here Dt ¼ 0:05 for the coarsest grid and scales with the mesh size. The result at t ¼ 3 is given in Table 1.

Clear second order accuracy is verified.
Fig. 7. Example 3, contour plot of u at t ¼ 3:0.
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6.2. Example 2: Orszag–Tang vortex

In this example, we repeat the calculation done by Friedel et al. [4] for ideal 2D MHD equation
(b ¼ u ¼ 0 and m ¼ g ¼ 0 in (3.34)) using local mesh refinement technique. The underlying scheme in [4] is a

second order upwind scheme combined with projection method on the primitive variable for the fluid part

and potential formulation for the magnetic part. The initial data is given by

wðx; y; 0Þ ¼ cosðxþ 1:4Þ þ cosðy þ 2:0Þ; aðx; y; 0Þ ¼ 1
3
cosð2xð þ 2:3Þ þ cosðy þ 6:2ÞÞ

on a 2p periodic box. This configuration typically develops singularity-like structure known as current

sheets where the current density is observed to grow exponentially in time and thickness shrinks at ex-

ponential rate as well. We monitor the growth of the maximum of the current sheet during our simulation.

This problem is a good test on the performance of EHPS since excessive numerical viscosity can easily
smear out the current sheet. In [4], the initial resolution is 2562 and adaptively refined on regions where the

solution develops large variation. At t ¼ 2:7, the finest mesh corresponds to the resolution of 40962 grids.

As a comparison, we repeat the same calculation with fixed resolution 10242 and Dt ¼ 0:005. The

contour plot of the current density | at t ¼ 2:7 is shown in Fig. 1, which agrees well with the calculation

done in [4]. Fig. 2 is a close up view of the same plot and we see the strong current sheet is well resolved with

only 7–8 grid points across the sheet.

In addition, we plot the history of time evolution of the current sheet maximum against the simulated

result |fitðtÞ reported in [4]. Compared with the same plot ([4], Fig. 3) of the fixed resolution calculation done
Fig. 8. Example 3, contour plot of u at t ¼ 3:5.
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there, we can see that EHPS is much less dissipative. Overall, we can achieve the same resolution with about

half the number of grids in each space direction.

For 2D MHD, the magnetic helicity is identically zero and
R
a2 emerges as an additional conserved

quantity. This quantity is also preserved numerically by EHPS.

6.3. Example 3: axisymmetric flow in a cylinder

We setup another test problem on a cylindrical domain 0 < x < 3, 0 < r < 3, with m ¼ 0:0001 and initial

data:

wðx; r; 0Þ ¼ 0; uðx; r; 0Þ ¼ 1

2r
1
�

� tanh 100 ðr
��

� 1Þ2 þ ðx� 1:5Þ2 � 1=4
			

and the no-slip condition. The initial configuration corresponds to a tube of flow in a circular cross section

region with uniform angular momentum and the flow outside is at rest. At t > 0, the flow closer to the axis

is thus driven outward and generates complicated flow patterns at later time. This situation is very similar

to a rising bubble in 2D Boussinesq flow. Note that this flow configuration corresponds to a strong vortex

sheet at the boundary of the circular region (see Fig. 4).

The simulation is done with 15362 grids and Dt ¼ 0:005. We remark here that we can afford such high

resolution simulation on an ordinary desktop. This is a combined effect of the vorticity-stream formulation,

explicit time integration for the nonlinear terms, and the local boundary condition that effectively decouples
the Navier–Stokes equation into 2 scalar evolution equations.

Several contour plots of u are given in Figs. 4–8. The details of the complicated flow structure is well

captured.
7. Conclusions

For 3D symmetric flows, we reformulated all the nonlinear terms in Navier–Stokes equation and MHD
in terms of Jacobians. The physical conservation laws for energy and helicities follow directly from the

permutation identity associated with the Jacobians.

We showed how to design numerical schemes that preserve the permutation identity and hence the

energy and helicity numerically. By construction, EHPS is nonlinearly stable and free from excess nu-

merical viscosity, and suitable for long time integration. We also give a clean way of handling geometric

singularities on the axis of rotation for axisymmetric flows.

The procedure is quite general. Any type of spatial discretization such as finite difference, finite element,

and spectral methods can be treated similarly by numerically realizing the permutation identity (4.5). Local
mesh refinement near the physical boundary can also be incorporated into the scheme by stretching the

coordinate accordingly at no extra cost. Numerical evidence has demonstrated both accuracy and efficiency

of the scheme.
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Appendix A

A.1. Energy and helicity identities for MHD flows with symmetry

We have derived the two conservation laws (2.10) and (2.11) in Section 2 using the fact that the

nonlinear term x� u is perpendicular to both x and u. This is a special case of the following vector

identity:

f � g � h ¼ g � h � f ¼ h� f � g; f � g � h ¼ �g � f � h: ðA:1Þ

In view of the nonlinear terms in the MHD equation (2.3), it is convenient to introduce the vector
potential formulation for the Faraday equation first:

otb ¼ �gr� j þr� ðu� bÞ: ðA:2Þ

Since the right hand side of (A.2) is divergence free, it is clear that r � b ¼ 0 as long as r � bjt¼0 ¼ 0. We

can therefore find a vector potential a such that r� a ¼ b. Moreover,

r� ðotaþ gj � u� bÞ ¼ 0 ðA:3Þ

and

ota ¼ �gj þ u� b�rv; ðA:4Þ

with a gauge function v.
Therefore the MHD equation can be written as

otuþ x� uþr~p ¼ �mr� xþ aj � b; ðA:5Þ
otaþ b� uþrv ¼ �gr� b; ðA:6Þ

where x ¼ r� u, b ¼ r� a, j ¼ r� b and r � u ¼ 0.

At this point, it is quite straight forward to derive all the conserved quantities by managing to cancel the

nonlinear terms in (A.5) and (A.6) using (A.1).

The conservation of energy is given by taking the inner product of (A.5) with u and the inner product of

(A.6) with aj:

d

dt
1

2

Z
D
ðjuj2 þ ajbj2Þ ¼ �m

Z
D
jxj2 � ag

Z
D
jjj2: ðA:7Þ

The conservation of the cross helicity is given by taking the inner product of (A.5) with b and the inner

product of (A.6) with x:

d

dt

Z
D
u � bþ

Z
oD

~pb � n ¼ �m
Z
D
b � ðr � xÞ � g

Z
D
x � j; ðA:8Þ

where in both (A.7) and (A.8), we have used the boundary conditions (2.4) and the identity (2.7).

An alternative expression to (A.8) can be derived by taking the inner product of a with the curl

of (A.5) and the inner product of u with the curl of (A.6) and proceed as before. The result is given
by

d

dt

Z
D
u � b ¼ �m

Z
D
a � ðr � r� xÞ � g

Z
D
x � j: ðA:9Þ
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The magnetic helicity 1
2

R
D a � b in general depends on the choice of the gauge v. If we restrict ourselves to

the subclass vjoD ¼ 0, then the magnetic helicity is gauge invariant. The conservation of magnetic helicity

can be derived by taking the inner product of (A.6) with b:

1

2

d

dt

Z
D
a � b ¼ �g

Z
D
b � j: ðA:10Þ

Following the procedure outlined in (3.23)–(3.30), we can similarly express (A.7), (A.9) and (A.10) in

terms of the computational variables as

d

dt
1

2
ðhu; ui þ ½w;w� þ ahb; bi þ a½a; a�Þ þ mð½u; u� þ hx;xiÞ þ gað½|; |� þ hb; biÞ ¼ 0; ðA:11Þ
d

dt
ðhu; bi þ hx; aiÞ ¼ mðhb; ðr2 � V Þui þ ha; ðr2 � V ÞxiÞ þ ag ½u; b�

�
þ hx; ðr2 � V Þai

�
ðA:12Þ

and

d

dt
ha; bi þ g½a; b� ¼ 0: ðA:13Þ

A.2. Discrete energy and helicity identities for Navier–Stokes equation with physical boundaries

Here we show that the discrete permutation identity (4.14) remains valid in the presence of physical

boundary for axisymmetric flows. We first introduce the convolution operator

ðf � gÞi�1
2
¼ 1

2
ðfi�1gi þ figi�1Þ;

we can write (5.9) as

XM�1

i¼1

fi giþ1ð � gi�1Þ ¼ �
XM�1

i¼1

fiþ1ð � fi�1Þgi þ 2ðf � gÞM�1
2
� 2ðf � gÞ1

2
; ðA:14Þ

therefore

DxDr
X
j

XM�1

i¼1

c~Dxða~DrbÞ
� 	

i;j
¼ � DxDr

X
j

XM�1

i¼1

að~DxcÞð~DrbÞ
� 	

i;j

þ Dr
X
j

ðc �x a~DrbÞM�1
2
;j

 
� ðc �x a~DrbÞ1

2
;j

!
; ðA:15Þ

where �x denotes convolution in x direction. Similarly,

DxDr
X
i

XN�1

j¼1

c~Drða~DxbÞ
� 	

i;j
¼ � DxDr

X
i

XN�1

j¼1

að~DrcÞð~DxbÞ
� 	

i;j

þ Dx
X
i

ðc �r a~DxbÞi;N�1
2

 
� ðc �r a~DxbÞi;1

2

!
: ðA:16Þ
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From (A.15) and (A.16) it follows that

DxDr
X
i;j

c ~rh � ða ~r?
h bÞ ¼ �DxDr

X
i;j

a ~rhc � ~r?
h b� Dys

X
Ch

c �n ða~DsbÞ
� 	

; ðA:17Þ
DxDr
X
i;j

c ~r?
h � ðb ~rhaÞ ¼ �DxDr

X
i;j

b ~r?
h c � ~rhaþ Dys

X
Ch

c �n ðb~DsaÞ
� 	

; ðA:18Þ

where for brevity, we have used �n to denote the convolution in the normal direction and ys the variable in
the tangential direction.

We have the discrete analogue of (4.3):

X
i;j

cJhða; bÞDxDr ¼
X
i;j

ðc ~rha � ~r?
h bþ a ~rhb � ~r?

h cþ b ~rhc � ~r?
h aÞDxDr

þ 1

3

X
Ch

c �n ða~Dsb
�

� b~DsaÞ
	
Dys: ðA:19Þ

For the discrete energy identity (4.23), the boundary contribution from the 3 nonlinear terms

1

3

X
Ch

c �n ða~Dsb
�

� b~DsaÞ
	

ðA:20Þ

corresponds to ða; b; cÞ ¼ ðh3u; h3w; u=h3Þ, ðx=h3; h3w; h3wÞ and ðu=h3; h3u; h3wÞ, respectively. From (5.11),

the convolutions involving w drop out automatically. For the same reason, the only boundary contribution
from the nonlinear terms in the derivation of the discrete helicity identity corresponds to

ða; b; cÞ ¼ ðu=h3; h3u; h3uÞ. This term is also identically zero since on r ¼ rmax, we have

ða~Dsb� b~DsaÞ ¼ ðu~Dxu� u~DxuÞ ¼ 0 on j ¼ N � 1;N ;

while on x ¼ xmin and x ¼ xmax,

c �n ða~Dsb
� 	

¼ r u �x ðu=r~DrðruÞ
� 	

¼ 0

and

c �n ðb~DsaÞ
� 	

¼ r u �x ru~Drðu=rÞÞ
� 	

¼ 0

from (5.12).

In the mean time, we have the following Lemma 1 concerning the boundary contributions for the viscous

term.

Lemma 1. If either a satisfies the homogeneous Dirichlet boundary condition

a0;j þ a1;j ¼ 0; aM�1;j þ aM ;j ¼ 0; ai;N�1 þ ai;N ¼ 0

or b satisfies the homogeneous Neumann boundary condition

b0;j ¼ b1;j; bM�1;j ¼ bM ;j; bi;N�1 ¼ bi;N
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at the physical boundary, then

ha; ðr2
h � V Þbih ¼ �½a; b�h: ðA:21Þ

The proof follows straight forward from the following identity

XM�1

i¼1

fiðgiþ1=2 � gi�1=2Þ ¼ �
XM
i¼1

0ðfi � fi�1Þgi�1=2 þ
1

2
ðfM�1 þ fMÞgM�1=2 �

1

2
ðf1 þ f0Þg1=2; ðA:22Þ

where

XM
i¼1

0 ¼ 1

2

X
i¼1

þ
XM�1

i¼2

þ 1

2

X
i¼M

:

From the analysis above, we see that the energy and helicity identities (4.23) and (4.24) remains valid

with the physical boundary condition (5.11) and (5.12).
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