
DISCRETE AND CONTINUOUS doi:10.3934/dcdsb.2017070
DYNAMICAL SYSTEMS SERIES B
Volume 22, Number 4, June 2017 pp. 1461–1492

GLOBAL EXISTENCE FOR A THIN FILM EQUATION WITH

SUBCRITICAL MASS

Jian-Guo Liu2 and Jinhuan Wang1

1School of Mathematics, Liaoning University
Shenyang 110036, China

2Department of Physics and Department of Mathematics

Duke University, Durham, NC 27708, USA

(Communicated by Thomas P. Witelski)

Abstract. In this paper, we study existence of global entropy weak solutions

to a critical-case unstable thin film equation in one-dimensional case

ht + ∂x(hn ∂xxxh) + ∂x(hn+2∂xh) = 0,

where n ≥ 1. There exists a critical mass Mc = 2
√
6π
3

found by Witelski et

al. (2004 Euro. J. of Appl. Math. 15, 223–256) for n = 1. We obtain global

existence of a non-negative entropy weak solution if initial mass is less than

Mc. For n ≥ 4, entropy weak solutions are positive and unique. For n = 1,
a finite time blow-up occurs for solutions with initial mass larger than Mc.

For the Cauchy problem with n = 1 and initial mass less than Mc, we show

that at least one of the following long-time behavior holds: the second moment
goes to infinity as the time goes to infinity or h(·, tk) ⇀ 0 in L1(R) for some

subsequence tk →∞.

1. Introduction. This paper deals with the following critical-case long-wave un-
stable thin film equation

ht + ∂x

(
hn ∂xxxh

)
+ ∂x

(
hn+2 ∂xh

)
= 0, x ∈ R, t > 0, (1)

where h(x, t) denotes the height of the evolving free-surface and n ≥ 1 is the expo-
nent of the mobility. We impose the following initial condition

h(x, 0) = h0(x), x ∈ R. (2)

The model (1)-(2) can be used to describe pattern formation in physical systems
that involve interfaces, c.f. [36]. Here we consider two classes of initial data:

h0 ≥ 0, supp h0 ⊂ (−a, a) for some a > 0, h0(x) ∈ L1(R), (3)

and

h0 ≥ 0, h0(x) = h0(x+ 2L) for x ∈ R, h0(x) ∈ L1(−L,L). (4)

2010 Mathematics Subject Classification. Primary: 35K65, 35K25, 39B62, 76D08.
Key words and phrases. Long-wave instability, free-surface evolution, equilibrium, the Sz. Nagy

inequality, long-time behavior.
Corresponding author: Jinhuan Wang, was supported by National Natural Science Foundation

of China (Grant No. 11301243) and Program for Liaoning Excellent Talents in University (Grant

No. LJQ2015041).

Jian-Guo Liu was partially supported partially supported by KI-Net NSF RNMS grant No.
1107444, NSF DMS grant No. 1514826.

1461

http://dx.doi.org/10.3934/dcdsb.2017070


1462 JIAN-GUO LIU AND JINHUAN WANG

We list below some important properties of the Cauchy problem (1)-(3). First,
non-negative solutions h(x, t) to (1)-(2) satisfy conservation of mass, i.e.,∫

R
h(x, t) dx ≡

∫
R
h0(x) dx =: M0.

Second, the equation (1) can be recast in a variational form

ht − ∂x(hn ∂xµ) = 0, µ =
δF
δh

= −∂xxh−
h3

3
, (5)

where µ is the chemical potential. It is given by the variation of the free energy
functional:

F(h) =
1

2

∫
R

(∂xh)2 dx− 1

12

∫
R
h4 dx. (6)

In thin film equations, the negative chemical potential is referred to as the pressure,
p = −µ = ∂xxh + 1

3h
3. The variation equation (5) induces the following energy-

dissipation relation for h ≥ 0:

d

dt
F(h(·, t)) = −

∫
R
hn
(
∂x(

1

3
h3 + ∂xxh)

)2

dx ≤ 0. (7)

Third, following Bernis and Friedman [5], for any 0 ≤ h ≤M we define a function

GM (h) =

∫ M

h

∫ M

y

1

sn
dsdy, (8)

which can be represented exactly by the following form

GM (h) :=



1

(n− 1)(n− 2)
(h2−n −M2−n)− 1

n− 1

(
M2−n −M1−nh

)
, if n > 2,

− log h+ logM − 1 +
1

M
h, if n = 2,

1

(n− 1)(2− n)
(M2−n − h2−n)− 1

n− 1

(
M2−n −M1−nh

)
, if 1 < n < 2,

h log
h

M
+M − h, if n = 1.

(9)

Define another free energy functional

GM (h) :=

∫
R
GM (h(x)) dx. (10)

Noticing that G′′M (h) = 1
hn , and from the equation (1), we deduce

d

dt
GM (h(·, t)) = −

∫
R
(∂xxh)2 dx+

∫
R
h2(∂xh)2 dx. (11)

According to (11), one has that GM (h) is bounded if it is initially so. This bound
can be used to obtain non-negativity of solutions to the model (1)-(2). The details
can be found in Subsection 2.2 below.

There is a vast literature on thin film equations, see [10], [3]-[11], [13]-[26], [29]-
[31], [33]-[37]. Here we give a short account about results related to (1). For the
classical thin film equation

ht + ∂x

(
hn∂xxxh

)
= 0, x ∈ (−L,L), t > 0 (12)

with appropriate boundary conditions, some fundamental mathematical theories
have been developed by Bernis and Friedman (BF) [5] such as regularization, global
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existence of non-negative weak solutions, and Hölder regularity h ∈ C 1
2 ,

1
8

(
[−L,L]×

[0, T ]
)
. In particular, for n ≥ 4, they proved that there exists a unique strict

positive solution h > 0 in (−L,L) × [0,+∞) under some initial assumptions. The
existence of solutions was established for higher dimensions in [11, 15, 16, 20, 21, 22].
Recently, the uniqueness of weak solutions was obtained by John [23], Knüpfer and
Masmoudi [24, 25].

One of the most important properties for (12) is finite speed of propagation of
the support of solutions. This problem can also be regarded as a free-boundary
problem and we refer to Giacomelli, Gnann, Knüpfer and Otto [17, 18, 19, 33], and
Mellet [30] for in-depth studies of this problem. The existence of weak solutions
for this degenerate parabolic fourth order free boundary problem was proved when
n = 1 [33]. It was proved in [5] that the support of the solution is expanding. An
upper bound on the support expansion was given by Bernis [4],

ζ(t) ≤ ζ(0) + C0t
α
(∫

Ω

h
(1+λ)
0 dx

)β
, (13)

where ζ(t) is a curve describing the boundary of the support for solutions, and α

and β are positive constants, max
(
− 1

2 , n−1
)
< λ < 1 (see also [3]). For the higher

dimensional case, the property is derived in [15, 16] for n ∈ (0, 2) and in [22] for
n ∈ [2, 3). We refer to [29] and [33] for the approach using gradient flow structure
of the thin-film equation.

Notice that the second term in (1) involves the fourth order derivative and it is
a stabilizing term. The third term is a destabilizing second derivative term. For
short wave solutions, the stabilizing term dominates the destabilizing one so that
the linearized equation of (1)-(2) is well-possed. However, for long wave solutions,
the destabilizing term may dominate the stabilizing one such that the long wave
instability may occur. The competition between stabilizing term and destabilizing
term is represented by opposing signs for the corresponding terms in the free energy
(6).

To the best of our knowledge, there are no results on existence of weak and
strong solutions to (1) with unstable diffusion in multi-dimension before year 2014.
In 2014, Taranets and King [35] proved local existence of nonnegative weak and
strong solutions in a bounded domain Ω with smooth boundary in Rd under a
more restrictive threshold M0 < M̄d. In one dimension (d = 1), their threshold is

M̄1 = 1/
√

12 < Mc. Below we review some results on the long-wave unstable thin
film equation in one dimensional case.

A slightly more general version of the long-wave unstable thin film equation is
given by

ht + ∂x

(
hn∂xxxh

)
+ ∂x

(
hm∂xh

)
= 0, (14)

and it was studied by Bertozzi, Pugh, and others in a series of papers [6]-[9], [13,
26, 34, 36]. Here n > 0 denotes the exponent of the mobility, and m > 0 is the
power of the destabilizing second order term.

The classification for the critical (m = n + 2), super-critical (m > n + 2), and
sub-critical (m < n + 2) cases can be obtained by the mass invariant scaling hλ =
λh(λx, λn+4t). These three regimes were first introduced and studied by Bertozzi
and Pugh [8] for (14). Details are discussed below.

In the subcritical case m < n+2, for relatively thick films (large λ) the stabilizing
term (a pre-factor λn+5 for this term in the re-scaling) dominates the destabilizing
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one (a pre-factor λm+3 for this term in the re-scaling) and the blow-up is precluded.
For relatively thin films (small λ), the destabilizing term dominates the stabilizing
one and prevents spreading. Global existence and finite speed of propagation of the
support of solutions were proved for any large initial data in [8] (also see [13]). On
the contrary, for the supercritical case m > n+ 2, the destabilizing term dominates
the stabilizing one for relatively thick films so that solutions may blow up in finite
time. For example, in [9] blow-up phenomenon is given for n = 1. In [13] blow-up
phenomenon is obtained for n ∈ (0, 2). The reference [14] shows blow-up phenome-
non and mass concentration for n ∈ (0, 3). For relatively thin films, the stabilizing
term dominates the destabilizing one and solutions have infinite-time spreading.

For m = n+ 2, the fourth order stabilizing term is balanced by the second order
destabilizing term and this case is called the critical case. For the critical-case
model, there is a critical mass Mc that can be used to distinguish between global
existence and finite time blow-up. As discussed below for the special case with
n = 1, both global existence and blow-up may occur depending on whether the
initial mass is less than or larger than the critical mass Mc. Furthermore, let h(x, t)
be a solution to (1)-(2), then the mass invariant re-scaling λh(λx, λn+4t) is also a
solution to (1)-(2) (see [34]). Using this property, Slepčev and Pugh [34] proved
that (14) cannot have self-similar blow-up solutions if n ≥ 3

2 . For 0 < n < 3
2 , there

are compactly supported, symmetric, self-similar solutions that blow up in finite
time. They also showed that any self-similar solution must have mass less that Mc.
In [36], for the n = 1 case of equation (1) Witelski, Bernoff, and Bertozzi studied
infinite-time self-similar spreading behavior below the critical mass, and finite time
blow-up self-similar solutions beyond the critical mass by numerical simulations and
asymptotic analysis.

Another way to understand the critical mass Mc is through the steady solution
and the Sz. Nagy inequality as we discuss below. The critical mass sometimes is
given by the mass of equilibrium solutions. For equilibrium solutions heq, the dissi-
pation term on the right side of (7) is zero, and the equilibrium chemical potential
is given by {

µeq(x) = C̄, x ∈ supp heq,

µeq(x) ≥ C̄, otherwise
(15)

for some constant C̄. In other words, equilibrium solutions are Nash equilibria [12].
Denote an equilibrium profile as hα with parameter α as the height at the center
peak (assumed to be located at x = 0), i.e., hα(0) = α, ∂xhα(0) = 0. From (15),
one can solve for the equilibrium profile hα within its support

∂xxhα +
1

3
h3
α = −C̄, hα(0) = α, ∂xhα(0) = 0. (16)

Together with the decay property at infinity, one knows that a first integral is given
by

(∂xhα)2

2
+
h4
α

12
+ C̄hα ≡ 0. (17)

Evaluating the above integral at x = 0 and using hα(0) = α, ∂xhα(0) = 0, one knows
that C̄ = −α3/12. As shown in (i) below, hα has a compact support. Outside of
its support we have µeq ≡ 0 ≥ C̄. Thus (15) holds. (17) can be recast as

(∂xhα)2 =
1

6
(α3hα − h4

α). (18)
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After some simple calculations, we have the following properties for hα:

(i) The solution hα(x) has compact support, i.e., there exists xα > 0 such that
hα(x) > 0 for |x| < xα and hα(x) = 0 as |x| ≥ xα, and xα satisfies

α · xα =
√

6

∫ 1

0

1√
x− x4

dx =

√
6

3
B(1/6, 1/2),

where B(x, y) is the Beta function. From the above, one knows that the
support of the solution to (16) can be arbitrarily narrow provided that α is
large.

(ii) ∂xhα(x) < 0 for x ∈ (0, xα). From (18), we have limx→x−α ∂xhα(x) = 0 and

∂xhα(x) = 0 for x > xα. Hence ∂xhα(x) is continuous in R and ∂xhα(xα) = 0.
Noticing the second derivative ∂xxhα is discontinuous at xα (hence µeq is also
discontinuous at xα), i.e.,

lim
x→x−α

∂xxhα(x) =
1

12
α3 <∞, lim

x→x+
α

∂xxhα(x) = 0.

Therefore ∂xhα(x) is Lipschitz continuous in R.

(iii) ‖hα(x)‖L1(R) = 2
√

6π
3 =: Mc, which is a universal constant independent of α

and is the critical mass.
(iv) F(hα(x)) = 0.

In fact, multiplying hα to (16) and integrating in (−xα, xα), we get

−
∫ xα

−xα
(∂xhα)2 dx+

1

3

∫ xα

−xα
h4
α dx =

α3

12
Mc. (19)

On the other hand, integrating (18) in (−xα, xα), it holds

1

2

∫ xα

−xα
(∂xhα)2 dx+

1

12

∫ xα

−xα
h4
α dx =

α3

12
Mc. (20)

Subtracting (19) from (20) gives that

3F(hα) =
3

2

∫ xα

−xα
(∂xhα)2 dx− 1

4

∫ xα

−xα
h4
α dx = 0. (21)

More properties of steady states for thin film equations can be found in [26, 34].
Witelski et al. in [36] found that the following Sz. Nagy inequality ([32], see also

[2, pp. 167]) is closely connected to the critical mass Mc.

Proposition 1. Let f ∈ L1(R) be a non-negative function and f ′ ∈ L2(R). Then
f is in L4(R) and we have the estimate

1

12

∫
R
f4 dx ≤

(
M

Mc

)2
1

2

∫
R
f ′2 dx, (22)

where M =
∫
R f dx, Mc = 2

√
6π

3 . The equality holds if f = c hα(x−x0) for any real
numbers c > 0, α > 0 and x0. Here hα is the unique solution to the following free
boundary problem

h′′ +
1

3
h3 =

α3

12
for 0 < r < xα,

h(0) = α, h′(0) = 0, h(xα) = h′(xα) = 0.
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If the initial mass M0 is larger than the critical mass Mc, then there is an initial
datum h0 such that the solution to (1)-(2) blows up in finite time. In fact, taking
h0(x) = (1 + ε)hα(x), ε > 0, we have

F(h0) =
(1 + ε)2

2

(∫
R

(
∂xhα(x)

)2
dx− (1 + ε)2

6

∫
R
h4
α(x) dx

)
= − (1 + ε)2

12
(2ε+ ε2)

∫
R
h4
α(x) dx < 0, (23)

where we have used (21) in the second equality. Let m2(t) :=
∫
R |x|

2h(x, t)dx be
the second moment. Then for n = 1, a simple computation gives that the time
derivative of the second moment satisfies

d

dt
m2(t) = 6F(h(·, t)) ≤ 6F(h0) < 0, (24)

which implies that there exists a finite time t∗ such that m2(t∗) = 0 if the initial
second moment is finite. With some computations we obtain (c.f. [12, formula
(3.8)])

‖h(·, t)‖L4 ≥
(
M0

2

) 11
8

2−
3
4 (m2(t))

− 3
8 . (25)

Hence by (25) and the fact m2(t∗) = 0, we know that there is a Tmax ≤ t∗ such
that

lim sup
t→Tmax

‖h(·, t)‖L4 =∞.

Some blow-up results were also given in papers [9, 36]. Consequently, Mc can be
used as the critical mass to distinguish between global existence and finite time
blow-up for the thin film equation (1) with n = 1. For n > 1, (24) does not hold.
The question of finite time blow-up is still open.

In this paper we will prove that for n ≥ 1 and initial data satisfying M0 < Mc,
there exists a global non-negative weak solution to the models (1)-(2) with the two
classes of initial data (3) and (4). Throughout this paper, we will use C to denote
positive constants, which may be different for each calculation.

Before defining weak solutions, we need to review literatures on possible singu-
larities that may appear to the higher derivatives of weak solutions. For the thin
film equation without the long-wave unstable term, Giacomelli, Knüpfer, and Otto
[18], John [23], and Gnann[19] showed that for n = 1 solutions are smooth up to
the free boundary. However, for the thin film equation with the long-wave unstable
term, the control of solutions at the free boundary is subtle and we do not know
if solutions have singularities or not. If there are singularities, however, they will
occur in the set {h = 0}. Hence in the definition of an entropy weak solution, we
need to define a set

PT := (−L,L)× (0, T ) \ {(x, t)|h(x, t) = 0}. (26)

By Proposition 3 below, we know that PT is an open set and we can define distri-
bution functions on PT . Now we give the following definition of an entropy weak
solution to (1)-(2) with the periodic initial data (4).

Definition 1. (Entropy weak solution) We say that a non-negative function

h ∈ L∞
(
R+;L1 ∩H1(−L,L)

)
, (27)
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and for any fixed T > 0,

h ∈ L2(0, T ;H2(−L,L)), hn/2∂xxxh ∈ L2(PT ), (28)

∂th ∈ L2(0, T ;H−1(−L,L)) (29)

is an entropy weak solution to (1)-(2) provided that

(i) For any 2L-periodic function φ ∈ C∞
(
R× [0, T ]

)
the following identity holds∫ T

0

∫ L

−L
φht dxdt =

∫∫
PT

∂xφ h
n ∂xxxh dxdt+

∫ T

0

∫ L

−L
∂xφ h

n+2∂xh dxdt. (30)

(ii) F(h(·, t)) is a non-increasing function in t and satisfies the following energy-
dissipation inequality

F(h(·, t)) +

∫∫
PT

hn
∣∣∣∂x(∂xxh+

h3

3
)
∣∣∣2 dxdt ≤ F(h0) for any t > 0. (31)

The definition for an entropy weak solution to the Cauchy problem is similar.
We omit details here.

Remark 1. Bertozzi and Pugh [8] introduce the notion of the “BF weak solution”
to differentiate this solution from a weak solution in some sense of distributions in
their paper. They referred to solutions of (12) with some regularity as BF weak
solutions (see [8, Definition 3.1]). Later on for (12) with 0 < n < 3, it was proved
in [3, 4, 6, 7] that BF nonnegative weak solutions satisfy h(·, t) ∈ C1[−L,L] for
almost all t > 0. We shall remark that this kind of solutions was referred to as
strong solutions in literature such as [3, 4]. To avoid confusion, we consistently use
entropy weak solutions in this paper.

In Section 2 and Section 3, we will prove the following global existence theorem
for the periodic problem (1)-(2).

Theorem 1. Assume initial data h0 satisfying (4), M0 :=
∫ L
−L h0 dx < Mc and

F(h0) < ∞. Then for 1 ≤ n < 2, there is a global non-negative entropy weak
solution to (1)-(2) and it satisfies the following uniform estimate

sup
0<t<∞

{‖h(·, t)‖L4(−L,L) + ‖h(·, t)‖H1(−L,L)} ≤ C(‖h0‖H1(−L,L),F(h0)). (32)

Theorem 2. Assume initial data h0 satisfying (4), M0 < Mc, F(h0) < ∞ and
GM (h0) <∞. Then

1. for 2 ≤ n < 4, there is a global non-negative entropy weak solution to (1)-(2)
with the uniform estimate (32);

2. for n ≥ 4, there is a unique global positive entropy weak solution to (1)-(2)
with the uniform estimate (32), and additional regularity h ∈ L2(0, T ;H3)
and PT = (−L,L)× (0, T ).

Next, in Section 4, we will consider global existence of entropy weak solutions to
the Cauchy problem (1)-(2) with initial data (3). Global existence of the Cauchy
problem with compactly supported initial data can be proved by using

(i) periodic extension,
(ii) finite speed of propagation of the support of solutions,
(iii) uniform estimates for H1-norm of solutions.

The result is given as follows.
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Theorem 3. Assume n = 1 and initial data h0 satisfying (3), M0 :=
∫
R h0 dx < Mc

and F(h0) <∞. Then there is a global non-negative entropy weak solution to (1)-
(2) and it satisfies the following uniform estimate

sup
0<t<∞

{‖h(·, t)‖L4(R) + ‖h(·, t)‖H1(R)} ≤ C(‖h0‖H1(R),F(h0)), (33)

Furthermore, we will prove the following long-time behavior in Section 4.

Theorem 4. Assume n = 1 and initial data h0 satisfying (3), M0 < Mc and
F(h0) < ∞. Let h(x, t) be a global non-negative entropy weak solution of (1)-(2)
given by Theorem 3. Then at least one of the following results holds

(a) lim
t→∞

m2(t) =∞, (34)

(b) h(·, tk) ⇀ 0 in L1(Rd) for some subsequence tk →∞. (35)

2. Local existence and non-negativity. In this section, we will prove local
existence and non-negativity of entropy weak solutions to the thin film equation
(1)-(2) with initial data (4).

2.1. Local existence for a regularized problem. Define a standard mollifier
J(x) ∈ C∞(R) by

J(x) :=

{
Ce

1
|x|2−1 , if |x| < 1,

0, if |x| ≥ 1,

where constant C > 0 selected so that
∫
R J(x) dx = 1. For each ε > 0, set Jε(x) :=

1
εJ(xε ).

We consider local existence of solutions for the following regularized problem in
a period domain (−L,L){

∂thε + ∂x

(
(h2
ε + ε2)

n
2

(
∂xxxhε + ∂x(

h3
ε

3 )
))

= 0, x ∈ (−L,L), t > 0,

hε(x, 0) = hε0(x), x ∈ (−L,L).
(36)

Here hε0 := Jε ∗h0 + c
√
ε ∈ C∞(R) is a H1- approximation sequence of initial data

h0(x) and for ε sufficient small, it satisfies

hε0 ≥ h0, ‖hε0‖L1(−L,L) < Mc, (37)

‖hε0‖H1(−L,L) ≤ ‖h0‖H1(−L,L) + c
√
ε. (38)

Here the first inequality used the embedding theorem H1(−L,L) ↪→ C1/2[−L,L]
and c depends only on ‖h0‖H1(−L,L). We refer to [1] for a different regularized
method. Now we give a definition of entropy weak solutions to the regularized
problem (36).

Definition 2. (Entropy weak solutions) For any fixed ε > 0 and T > 0, we say a
2L-periodic function

h ∈ L∞(0, T ;H1(−L,L)), (h2 + ε2)
n
4 ∂xxxh ∈ L2(0, T ;L2(−L,L)), (39)

∂th ∈ L2(0, T ;H−1(−L,L)) (40)

is an entropy weak solution of the equation (36) provided that

(i) For any 2L-periodic function φ ∈ C∞
(
R× [0, T ]

)
the following equality holds∫ T

0

∫ L

−L
φ∂th dxdt =

∫ T

0

∫ L

−L
∂xφ (h2 + ε2)n/2 ∂x(∂xxh+

h3

3
) dxdt; (41)
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(ii) The energy-dissipation equality holds

F(h(·, t)) +

∫ t

0

∫ L

−L
(h2 + ε2)n/2

∣∣∣∂x(∂xxh+
h3

3
)
∣∣∣2 dxdt = F(h0), (42)

where t ∈ [0, T ].

Proposition 2. (Local existence of regularized solutions) For any 2L-periodic ini-
tial data h0 ∈ H1(−L,L), there exists a time T = T (‖h0‖H1) such that if t ∈ [0, T ],
the regularized problem (36) has an entropy weak solution hε and it satisfies the
following uniform in ε estimates

‖hε‖L∞(0,T ;H1(−L,L)) ≤ C, ‖∂thε‖L2(0,T ;H−1(−L,L)) ≤ C, (43)

‖(h2
ε + ε2)n/4 ∂xxxhε‖L2(0,T ;L2(−L,L)) ≤ C, (44)

and for any (x2, t2), (x1, t1) ∈ [−L,L]× [0, T ], the following Hölder continuity holds

|hε(x2, t2)− hε(x1, t1)| ≤ C(|x2 − x1|
1
2 + |t2 − t1|

1
8 ), (45)

where C is independent of ε.

The proof of Proposition 2 is standard, for completeness we provide details in
Appendix A.

Remark 2. As noticed by Bernis and Friedman [5], for n ≥ 4, regularized solutions
hε are positive, thus we can use directly the Sz. Nagy inequality and the energy
functional for hε to prove global existence of weak solutions. However, for 1 ≤ n < 4,
there is no non-negativity of hε. Instead, we will show that limit functions h of hε
are non-negative local weak solutions, and use the same strategy as above to obtain
global existence of entropy weak solutions.

2.2. Local existence of solutions for (1)-(2). In this subsection, we will prove
local existence of solutions to the equation (1)-(2) with initial data (4). In order to
prove non-negativity and uniform bound of ‖∂xxhε‖L2(0,T ;L2(−L,L)), analogous to
(8), we introduce the following entropy density functions

gM,ε(x) := −
∫ M

x

1

(s2 + ε2)
n/2

ds, GM,ε(x) := −
∫ M

x

gM,ε(s) ds, (46)

where M is taken so that M > max{1, ‖hε‖L∞(0,T ; L∞(−L,L))}. For n = 1, gε(x)
and Gε(x) have the following exact forms for x ∈ (−∞,M ]

gM,ε(x) = ln

√
x2 + ε2 + x√
M2 + ε2 +M

≤ 0, (47)

GM,ε(x) = x ln

√
x2 + ε2 + x√
M2 + ε2 +M

−
√
x2 + ε2 +

√
M2 + ε2. (48)

A simple computation gives the following lemma

Lemma 1. The functions gM,ε(x) and GM,ε(x) in (46) satisfy the following prop-
erties

1. If x ≤M , then for any ε > 0,

GM,ε(x) ≥ 0, G′M,ε(x) = gM,ε(x) ≤ 0; (49)

2. If −M ≤ x < 0, then
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(a) for n = 1, we have

GM,ε(x) ≥ |x| ln 1

ε
. (50)

(b) for n > 1, it holds that

GM,ε(x) ≥ C0ε
1−n|x|, (51)

where C0 :=
∫ 1

0
1

(s2+1)n/2
ds is a positive constant.

Proof. The result (1) is obvious. We only need to prove (2).
For n = 1, since |x| ≤M , we have

GM,ε(x) ≥ x ln

√
x2 + ε2 + x√
M2 + ε2 +M

= x ln
ε2

(
√
x2 + ε2 − x)(

√
M2 + ε2 +M)

.

Notice that if x < 0, then

GM,ε(x) ≥ 2x ln ε− x ln(
√
x2 + ε2 − x)− x ln(

√
M2 + ε2 +M)

≥ 2|x| ln 1

ε
+ |x| ln(

√
|x|2 + ε2 + |x|)

≥ |x| ln 1

ε
.

Hence (50) holds.
For n > 1, by (46), we have

GM,ε(x) =

∫ M

x

∫ M

s

1

(τ2 + ε2)
n/2

dτds = ε1−n
∫ M

x

∫ M
ε

s
ε

1

(z2 + 1)
n/2

dzds.

Noticing −M ≤ x < 0, we deduce

GM,ε(x) ≥ ε1−n
∫ 0

x

∫ 1

0

1

(z2 + 1)
n/2

dzds ≥ ε1−n|x|
∫ 1

0

1

(z2 + 1)
n/2

dz = C0ε
1−n|x|,

which means that (51) is true.

The following lemma provides uniform bounds for ‖∂xxhε‖L2(0,T ;L2(−L,L)) and∫ L
−LGM,ε(hε) dx.

Lemma 2. Assume h0 satisfying (4). Let T = T (‖h0‖H1) be the local time given

in Proposition 2. For n ≥ 2, we further assume that
∫ L
−LGM (h0) dx < ∞. Then

we have

(i) uniform in ε estimates

‖∂xxhε‖L2(0,T ;L2(−L,L)) ≤ C(M0, ‖h0‖H1(−L,L)), (52)∫ L

−L
GM,ε(hε) dx ≤ C(M0, ‖h0‖H1(−L,L)), (53)

(ii) mass conservation∫ L

−L
hε(x, t) dx =

∫ L

−L
hε0(x) dx, (54)
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(iii) the L1-norm goes to zero in the region {hε < 0} as ε→ 0, i.e.,∫
{hε<0}

|hε| dx ≤ C
(

ln
1

ε

)−1

for n = 1, (55)∫
{hε<0}

|hε| dx ≤ Cεn−1 for n > 1. (56)

Proof. For (i), from the definitions of GM,ε(h) and GM (h), it holds that∫ L

−L
GM,ε(hε0) dx ≤

∫ L

−L
GM (hε0) dx. (57)

For 1 ≤ n < 2, using (47) and (48), we can obtain∫ L

−L
GM (hε0) dx ≤ C(M0, ‖h0‖H1(−L,L)). (58)

For n ≥ 2, using the facts (37) and (38) and noticing the initial assumption∫ L
−LGM (h0) dx <∞ , we have for sufficient small ε∫ L

−L
GM (hε0) dx ≤

∫ L

−L
GM (h0) dx <∞. (59)

Hence (57), (58) and (59) imply that∫ L

−L
GM,ε(hε0) <∞ for any n ≥ 1. (60)

Multiplying (36) by gM,ε(hε) after integration on x, we have

d

dt

∫ L

−L
GM,ε(hε) dx =

∫ L

−L

(
h2
ε + ε2

)n/2 (
∂xxxhε + h2

ε∂xhε

)
g′M,ε(hε)∂xhε dx

= −
∫ L

−L
(∂xxhε)

2 dx+

∫ L

−L
h2
ε(∂xhε)

2 dx, (61)

where we used g′M,ε(hε) = 1
(h2
ε+ε

2)n/2
. Noticing (43), integrating (61) gives that∫ L

−L
GM,ε(hε(x, T )) dx+

∫ T

0

∫ L

−L
(∂xxhε)

2 dx ≤
∫ L

−L
GM,ε(hε0) dx+ C, (62)

where C is independent of ε. Hence (60) and (62) imply the estimate (53).
Property (ii) is obvious.
For (iii), using (49), (50) and (51) of Lemma 1, we know that∫ L

−L
GM,ε(hε) dx ≥

∫
hε<0

GM,ε(hε) dx ≥ ln
1

ε

∫
hε<0

|hε| dx for n = 1,∫ L

−L
GM,ε(hε) dx ≥ C0ε

1−n
∫
hε<0

|hε| dx for n > 1.

Noticing that the left side term in the above inequality is bounded due to Lemma
2, we obtain (55) and (56).

Now we give local existence of entropy weak solutions to the periodic problem
(1)-(2) and its non-negativity. The results on non-negativity of weak solutions
were mostly proved by using Hölder continuity in previous papers. In the following
proposition, we provide an alternative proof in Sobolev space and do not use Hölder
continuity in hope to generalize the results to multi-dimensional thin film equations.
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Proposition 3. Assume that the initial datum h0 satisfies (4), and
∫ L
−LGM (h0) dx

< ∞ when n ≥ 2. Then the problem (1)-(2) has a non-negative entropy weak
solution h in [0, T ] and it satisfies h ∈ C1/2,1/8([−L,L] × [0, T ]), where T =
T (‖h0‖H1(−L,L)) is the local time given in Proposition 2.

Proof. Step 1. Strong convergence.
By Proposition 2 and Lemma 2, we know that solutions to (36) satisfy the fol-

lowing uniform estimates

‖hε‖L∞(0,T ;H1(−L,L)) ≤ C, ‖hε‖L2(0,T ;H2(−L,L)) ≤ C, (63)

‖(h2
ε + ε2)

n
4 ∂xxxhε‖L2(0,T ;L2(−L,L)) ≤ C, ‖∂thε‖L2(0,T ;H−1(−L,L)) ≤ C,(64)

where the constant C is independent of ε. Consequently, as ε → 0, there exists a
subsequence of hε (still denoted by hε), and h satisfying (63)-(64) such that

hε
∗
⇀ h in L∞(0, T ;H1(−L,L)), (65)

hε ⇀ h in L2(0, T ;H2(−L,L)), (66)

∂thε ⇀ ∂th in L2(0, T ;H−1(−L,L)). (67)

Using the Lions-Aubin lemma [27], there exists a subsequence of hε (still denoted
by hε) such that

hε → h in L2(0, T ;H1(−L,L)) as ε→ 0. (68)

Hence

hε → h a.e. as ε→ 0. (69)

From (45), we have for any x1, x2 ∈ [−L,L] and t1, t2 ∈ [0, T ], the following estimate
holds

|h(x2, t2)− h(x1, t1)| ≤ C(|x2 − x1|
1
2 + |t1 − t2|

1
8 ), for t ∈ (0, T ), (70)

that is h ∈ C1/2,1/8([−L,L]× [0, T ]).

Step 2. Non-negativity of h almost everywhere.
In this step, we use the contradiction method to prove that the limit function h is

non-negative in (−L,L)× [0, T ] almost everywhere. If not, we have |{(x, t)|h(x, t) <
0}| 6= 0. Noticing that {(x, t)|h(x, t) < 0} =

⋃∞
m=1{(x, t)|h(x, t) < − 1

m}, then there
exist m0 and

A :=
{

(x, t)|h(x, t) < − 1

m0

}
(71)

such that |A| := α0 > 0. Let

Cα0(t) = {x|(x, t) ∈ A}, Dα0 = {t
∣∣|Cα0(t)| > 0}.

We know that |Dα0
| > 0, and

⋃
t∈Dα0

{t} × Cα0
(t) ⊂ A.

Due to (68), there exists a subsequence {εk}∞k=1 of ε (εk > 0, and εk → 0 as
k → +∞) such that for any (x, t) ∈

⋃
t∈Dα0

{t} × Cα0
(t), we have∫

Dα0

‖hεk(·, t)− h(·, t)‖2L∞(Cα0
(t)) dt <

( 1

2m0

)2 |Dα0 |
2k+1

. (72)

We define

B = {t ∈ Dα0
, for all k, x ∈ Cα0

(t), hεk(x, t) ≤ − 1

2m0
},
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and

Ak = {t ∈ Dα0
, there is x ∈ Cα0

(t) such that hεk(x, t) > − 1

2m0
}.

From the definition of Ak and (71), we know that( 1

2m0

)2 |Dα0
|

2k+1
≥

∫
Dα0

‖hεk(·, t)− h(·, t)‖2L∞(Cα0
(t)) dt

≥
∫
Ak

‖hεk(·, t)− h(·, t)‖2L∞(Cα0
(t)) dt

≥
( 1

2m0

)2|Ak|,
which means |Ak| ≤ |Dα0

|/2k+1. Hence we have

| ∪∞k=1 Ak| ≤
∞∑
k=1

|Dα0
|/2k+1 = |Dα0

|/2.

Noticing that for any k, B ∩ Ak = ∅, from the definition of these two subsets, we
know B ∩ [∪∞k=1Ak] = ∅. Thus we obtain

|B| = |Dα0 | − | ∪∞k=1 Ak| ≥ |Dα0 |/2 > 0.

By non-negativity of GM,ε(x) for any |x| ≤M , we have∫ T

0

∫ L

−L
GM,ε(hε(x, t)) dxdt ≥

∫
B

∫
Cα0

(t)

GM,ε(hε(x, t)) dxdt. (73)

On the other hand, for n = 1, by the formula (50) in Lemma 1, we know for any
−M ≤ hε ≤ − 1

2m0
,

GM,ε(hε) ≥ 1

2m0
ln

1

ε
→ +∞, as ε→ 0+. (74)

Thus by (73), we deduce

lim sup
ε→0+

∫ T

0

∫ L

−L
GM,ε(x) dxdt ≥ lim

ε→0+

1

2m0
|Cα0

(t)| · |B| ln 1

ε
= +∞, (75)

which is a contradiction with the uniform estimate∫ T

0

∫ L

−L
GM,ε(hε) dxdt ≤ C(M0, ‖h0‖H1(−L,L)).

For n > 1, all the arguments above are exactly same except ln 1
ε in (75) and (74) is

replaced by ε1−n in view of using (51) in Lemma 1.

Step 3. h is a local solution of (1)-(2).
Now we show that the non-negative limit function h in (65) is a local entropy

weak solution to (1)-(2). Passing to the limit for hε in (41) as ε→ 0, we can obtain
for any 2L-periodic function φ ∈ C∞

(
R× [0, T ]

)
∫ T

0

∫ L

−L
φ ∂th dxdt =

∫∫
PT

∂xφ h
n ∂xxxh dxdt+

∫ T

0

∫ L

−L
∂xφ h

n+2∂xh dxdt. (76)

The details of the proof for (76) are given below. The convergence of the left side
term and the second term on the right side in (41) can be directly obtained from
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the convergence of (66), (67) and (68), i.e.,∫ T

0

∫ L

−L
φ ∂thε dxdt→

∫ T

0

∫ L

−L
φ ∂th dxdt, (77)∫ T

0

∫ L

−L
∂xφ

(
h2
ε + ε2

)n/2
h2
ε ∂xhε dxdt→

∫ T

0

∫ L

−L
∂xφ h

n+2∂xh dxdt.(78)

The limit for the first term on the right side in (41) is given by the following claim.

Claim. We have as ε→ 0∫ T

0

∫ L

−L
∂xφ

(
h2
ε + ε2

)n/2
∂xxxhε dxdt→

∫∫
PT

∂xφ h
n ∂xxxh dxdt, (79)

where PT is defined in (26).

Proof of claim. For any fixed δ > 0, using the strong convergence (68) in L2(0, T ;
H1(−L,L)), similar to (72), we know that there exists a subsequence {εk}∞k=1 of ε
(εk > 0, and εk → 0 as k → +∞) such that∫ T

0

‖hεk(·, t)− h(·, t)‖2L∞(−L,L) dt <
δ3

22k
. (80)

Notice that ∫ T

0

∫ L

−L
∂xφ

(
h2
εk

+ ε2
k

)n/2
∂xxxhεk dxdt

=

∫∫
{h>δ}

∂xφ
(
h2
εk

+ ε2
k

)n/2
∂xxxhεk dxdt

+

∫∫
{h≤δ}

∂xφ
(
h2
εk

+ ε2
k

)n/2
∂xxxhεk dxdt

=: I1 + I2. (81)

For I2, denote

Cδ(t) := {x ∈ (−L,L) | 0 ≤ h(x, t) ≤ δ},
B := {t ∈ [0, T ] | for all k ∈ N, x ∈ Cδ(t), |hεk(x, t)| ≤ 2δ}, (82)

Ak := {t ∈ [0, T ] | there is x ∈ Cδ(t) such that |hεk(x, t)| > 2δ}.

From the above definitions, one has B ∪ (∪∞k=1Ak) = [0, T ]. Using the definition of
Ak, we know that∫ T

0

‖hεk(·, t)− h(·, t)‖2L∞(Cδ(t))
dt ≥

∫
Ak

‖hεk(·, t)− h(·, t)‖2L∞(Cδ(t))
dt

≥ δ2|Ak|. (83)

Thus (80) and (83) imply |Ak| ≤ δ/22k. We decompose I2 as follows

I2 =

∫
∪∞k=1Ak

∫
Cδ(t)

∂xφ
(
h2
εk

+ ε2
k

)n/2
∂xxxhεk dxdt

+

∫
B

∫
Cδ(t)

∂xφ
(
h2
εk

+ ε2
k

)n/2
∂xxxhεk dxdt

=: J1 + J2.
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Using the Hölder inequality and the estimate (64), we have

J2 =

∫
B

∫
Cδ(t)

∂xφ
(
h2
εk

+ ε2
k

)n/2
∂xxxhεk dxdt

≤
(∫

B

∫
Cδ(t)

(∂xφ)2
(
h2
εk

+ ε2
k

)n
2 dxdt

) 1
2

·
(∫

B

∫
Cδ(t)

(
h2
εk

+ ε2
k

)n
2 (∂xxxhεk)2 dxdt

) 1
2

≤ C(δ + εk)1/2, (84)

and

J1 ≤
∞∑
k=1

∫
Ak

∫
Cδ(t)

∣∣∣∂xφ (h2
εk

+ ε2
k

)n/2
∂xxxhεk

∣∣∣ dxdt
≤ C

∞∑
k=1

(∫
Ak

∫
Cδ(t)

(∂xφ)2
(
h2
εk

+ ε2
k

)n/2
dxdt

)1/2

.

Since ‖hεk‖L∞((−L,L)×(0,T )) < C, we obtain

J1 ≤ C
∞∑
k=1

|Ak|1/2 ≤ Cδ1/2
∞∑
k=1

1

2k
= Cδ1/2. (85)

Hence (85) and (84) imply

I2 = J1 + J2 ≤ C(δ + εk)1/2. (86)

For I1, similar to the above process, we denote

Cδ(t) := {x ∈ (−L,L) | h(x, t) > δ},

B := {t ∈ (0, T ] | for all k ∈ N, x ∈ Cδ(t), hεk(x, t) >
δ

2
}, (87)

Ak := {t ∈ (0, T ] | there is x ∈ Cδ(t) such that hεk(x, t) ≤ δ

2
},

Dδ :=
⋃
t∈B

Cδ(t)× {t}, Eδ :=
⋃

t∈(0,T ]

Cδ(t)× {t}.

From the above definitions, one has that B ∪ (∪∞k=1Ak) = (0, T ], Dδ ⊆ Eδ ⊆ PT
and the subset Dδ increases as δ → 0+. By the definition of Ak, we know that∫ T

0

‖hεk(·, t)− h(·, t)‖2L∞(Cδ(t))
dt ≥

∫
Ak

‖hεk(·, t)− h(·, t)‖2L∞(Cδ(t))
dt

≥ (δ/2)2|Ak|. (88)

So, (80) and (88) give |Ak| ≤ 4δ
22k , which implies

∞∑
k=1

|Ak| ≤ Cδ.

Hence we have

|Eδ \Dδ| ≤
∑
k

2L|Ak| ≤ Cδ. (89)
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Therefore for any η > 0, take δj = η
2j , we have the following relations

PT =

∞⋃
j=1

Eδj , (90)

PT \
∞⋃
j=1

Dδj ⊂
∞⋃
j=1

(Eδj \Dδj ), (91)

which give

|PT \
⋃
δ>0

Dδ| = |PT \
∞⋃
j=1

Dδj | ≤ Cη
∞∑
j=1

1

2j
= Cη.

Thus taking η → 0, we have

|PT \
⋃
δ>0

Dδ| = 0. (92)

We decompose I1 as follows

I1 =

(∫
∪∞k=1Ak

∫
Cδ(t)

+

∫
B

∫
Cδ(t)

)
∂xφ

(
h2
εk

+ ε2
k

)n/2
∂xxxhεk dxdt

=: L1 + L2.

Similar to J1, we get

L1 ≤ Cδ1/2. (93)

To estimate L2, using the fact hεk >
δ
2 in Dδ, and (64), we have∫∫

[0,T ]×(−L,L)

(
h2
εk

+ ε2
k

)n/2
(∂xxxhεk)2 dxdt ≤ C.

Thus we have ∫∫
Dδ

(∂xxxhεk)2 dxdt ≤ C((
δ
2

)2

+ ε2
k

)n/2 ≤ C

δn
,

which implies that there exists a subsequence of hεk (still denote hεk) such that

∂xxxhεk ⇀ ∂xxxh, as k →∞ in L2(Dδ).

Together with (68), we have for k →∞,

L2 =

∫
B

∫
Cδ(t)

∂xφ
(
h2
εk + ε2k

)n/2
∂xxxhεk dxdt→

∫
B

∫
Cδ(t)

∂xφ h
n ∂xxxh dxdt. (94)

Hence from (81), (86), (93) and (94), we know that there exists K > 0 such that as
k > K,∣∣∣ ∫ T

0

∫ L

−L
∂xφ

(
h2
εk + ε2k

)n
2 ∂xxxhεk dxdt−

∫
B

∫
Cδ(t)

∂xφ h
n ∂xxxh dxdt

∣∣∣ ≤ C√δ, (95)

which implies that

lim
δ→0+

lim
k→∞

(∫ T

0

∫ L

−L
∂xφ

(
h2
εk + ε2k

)n/2
∂xxxhεk dxdt−

∫∫
Dδ

∂xφ h
n ∂xxxh dxdt

)
= 0.

Noticing (92), we get∫∫
PT

∂xφ h
n ∂xxxh dxdt = lim

δ→0+

∫∫
Dδ

∂xφ h
n ∂xxxh dxdt.
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Therefore the following limit holds

lim
k→∞

∫ T

0

∫ L

−L
∂xφ

(
h2
εk

+ ε2
k

)n/2
∂xxxhεk dxdt =

∫∫
PT

∂xφ h
n ∂xxxh dxdt,

i.e., we obtain (79). This completes the proof of the claim.
Therefore (77), (78) and (79) imply (76), i.e., h satisfies the weak form (30) in

Definition 1.
Next we will prove that h is an entropy weak solution. The solution hε of the

regularized problem (36) satisfies the energy-dissipation equality (42). Here we
recall it,

F(hε(·, t)) +

∫ t

0

∫ L

−L

(
h2
ε + ε2

)n/2 (
∂xxxhε + h2

ε∂xhε

)2

dxdτ = F(hε0).

By the convergent relations (65)–(68) and (79), we know that if ε→ 0,∫ L

−L
(∂xh)2 dx ≤ lim inf

ε→0

∫ L

−L
(∂xhε)

2 dx a.e. t ∈ (0, T ];∫ L

−L
h4
ε dx→

∫ L

−L
h4 dx a.e. t ∈ (0, T ].

Hence we get
F(h(·, t)) ≤ lim inf

ε→0
F(hε(·, t)) a.e. t ∈ (0, T ].

From (78) and (79), we have

(h2
ε + ε2)n/2

(
∂xxxhε + h2

ε∂xhε

)
⇀ hn

(
∂xxxh+ h2∂xh

)
in L2(PT ),

which means∫∫
PT

hn
(
∂xxxh+ h2∂xh

)2
dxdτ ≤ lim inf

ε→0

∫∫
PT

(
h2
ε + ε2

)n/2 (
∂xxxhε + h2

ε∂xhε
)2
dxdτ.

Together with
F(hε0)→ F(h0),

we have that the non-negative function h satisfies the following energy-dissipation
inequality

F(h(·, t)) +

∫∫
Pt

hn
(
∂xxxh+ h2∂xh

)2

dxdt ≤ F(h0), a.e. t ∈ [0, T ]. (96)

Since F(hε(·, t)) is decreasing in (0, T ) from (42), then Helly’s selection theorem
implies that F(h(·, t)) is also a decreasing function in (0, T ). Hence h is an entropy
weak solution in [0,T] as that in Definition 1.

3. Global existence. In this section, we will prove global existence of entropy
weak solutions to the problem (1)-(2) under the sharp initial condition M0 < Mc in
the periodic domain. Namely, we prove that local weak solutions given by Propo-
sition 3 are indeed global solutions.

Firstly, we use the energy-dissipation inequality (96) and the Sz. Nagy inequality
(22) to prove the following lemma.

Lemma 3. Assume that initial datum h0 satisfies M0 < Mc, F(h0) < ∞. Let h,
T = T (‖h0‖H1) be a local entropy weak solution in (0, T ) given by Proposition 3.
Then

‖h‖L∞(0,T ;H1(−L,L)) ≤ C(M0,F(h0)). (97)
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Proof. From (96) and non-negativity of h, we have

F(h(·, t)) ≤ F(h0), t ∈ [0, T ]. (98)

To apply the Sz. Nagy inequality (22) in the periodic setting, we use a trick from
[36] below. Suppose that h achieves its minimum hmin at x∗(t). Hence hmin ≥ 0.
Denote

h̄(x) =

{
h(x)− hmin ≥ 0, if x ∈ [x∗, x∗ + 2L],

0, otherwise.

Using the Sz. Nagy inequality (22) for h̄(x), we have∫
R
h̄4(x) dx ≤ 9

4π2

(∫
R
h̄(x) dx

)2
∫
R

(∂xh̄(x))2 dx. (99)

By the definition of h̄(x), we obtain∫ x∗+2L

x∗
h̄4(x) dx ≤ 9

4π2

(∫ x∗+2L

x∗
h̄(x) dx

)2
∫ x∗+2L

x∗
(∂xh̄(x))2 dx. (100)

A simple computation gives∫ L

−L
h(x)4 dx =

∫ x∗+2L

x∗
h(x)4 dx =

∫ x∗+2L

x∗
(h̄(x) + hmin)4 dx

=

∫ x∗+2L

x∗
h̄(x)4 dx+ 4hmin

∫ x∗+2L

x∗
h̄(x)3 dx

+6h2
min

∫ x∗+2L

x∗
h̄(x)2 dx+ 4h3

min

∫ x∗+2L

x∗
h̄(x) dx+ 2Lh4

min.

Using Young’s inequality, we get∫ L

−L
h(x)4 dx ≤ (1 + 3ν)

∫ x∗+2L

x∗
h̄(x)4 dx+ C(ν)h4

min (101)

with some ν > 0. Hence from (100) and (101), we know that∫ L

−L
h(x)4 dx ≤ 6(1 + 3ν)

M2
c

(∫ x∗+2L

x∗
h̄(x) dx

)2 ∫ x∗+2L

x∗
(∂xh̄(x))2 dx+ C(ν)h4

min. (102)

Noticing ∫ L

−L
(∂xh(x))2 dx =

∫ x∗+2L

x∗
(∂xh̄(x))2 dx,

we obtain∫ L

−L
h(x)4 dx ≤ (1 + 3ν)

6

M2
c

(
M0 − 2Lhmin

)2
∫ L

−L
(∂xh(x))2 dx+ C(ν)h4

min. (103)

From conservation of mass, we have

M0 =

∫ L

−L
h dx ≥

∫ L

−L
hmin dx = 2Lhmin,

which means

0 ≤ hmin ≤
M0

2L
. (104)
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Thus we deduce

F(h(·, t))

=
1

2

∫ L

−L
(∂xh(x, t))2 dx− 1

12

∫ L

−L
h(x, t)4 dx

≥ 1

2

(
1− (1 + 3ν)M−2

c

(
M0 − 2Lhmin

)2)∫ L

−L
(∂xh(x, t))2 dx− C(ν)h4

min

≥ 1

2

(
1− (1 + 3ν)

(M0

Mc

)2)∫ L

−L
(∂xh(x, t))2 dx− C(ν)h4

min.

Taking ν =
M2
c−M

2
0

6M2
0

, we get 1− (1 + 3ν)
(
M0

Mc

)2

> 0. Using (98) and (104), we have∫ L

−L
(∂xh(x, t))2 dx ≤ C(M0,F(h0)).

The formula (103) implies∫ L

−L
h(x)4 dx ≤ C(M0,F(h0)).

Hence (97) holds. This completes the proof of the lemma.

Now we will use theH1-estimate (97) and a bootstrap iterative technique to prove
global existence of non-negative entropy weak solutions to the periodic problem (1)-
(2).

Proof of Theorem 1. By (97) in Lemma 3, for any non-negative initial data satisfying
that M0 < Mc and initial free energy is finite, we have

‖h(·, t)‖H1(−L,L) ≤ C(M0,F(h0)) for any t ∈ [0, T ],

where T = T (‖h0‖H1) is given by Proposition 2.

For any initial data h̃0 ≥ 0 satisfying that (i)
∫ L
−L h̃0 dx = M0, (ii) F(h̃0) ≤ F(h0)

and (iii) ‖h̃(·, t)‖H1(−L,L) ≤ C(M0,F(h0)), by Proposition 2, we know that there
is a fixed T1 depending only on M0 and F(h0) such that a entropy weak solution
exists in [0, T1].

At t = T1, h(x, t) still satisfies above (i), (ii) and (iii). Taking T1 as a new initial
time and h(·, T1) as a new initial datum, we can obtain a non-negative entropy weak
solution, which exists in t ∈ [T1, 2T1]. We can continue this process and obtain a
global solution in R+, and it satisfies

‖h‖L∞(R+;H1(−L,L)) ≤ C(M0,F(h0)).

Therefore again using the Sz. Nagy inequality (22), we have (32). Furthermore,
estimates (27)–(31) hold for any T > 0. This completes the proof of Theorem
1.

Proof of Theorem 2. For n ≥ 2, we further assume
∫ L
−LGM (h0) dx <∞. By Lemma

2, we have that (52) and (53) still hold. Hence we can prove that there is a global
non-negative entropy weak solution, which satisfies Hölder continuity (70).
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Now we only need to prove positivity of weak solutions for n ≥ 4 in part (ii) of
Theorem 2.

Step 1. Positivity of hε for ε sufficiently small.
From Proposition 2 and Lemma 2, we know that solutions hε of the regularized

problem (36) satisfy the space Hölder continuity (45) and for any fixed T > 0∫ L

−L
GM,ε(hε) dx ≤ C(T,M0, ‖h0‖H1(−L,L)).

Now we use a contradiction method to prove hε > 0. If not, there is a point
(x∗, t∗) ∈ [−L,L]× [0, T ]) such that hε(x∗, t∗) = 0. Then by (45) we have

|hε(x, t∗)| ≤ C|x− x∗|1/2, for any x ∈ [−L,L].

Thus there is δ > 0 such that if |x− x∗| < δ, we have C|x− x∗|1/2 < M . Hence we
deduce that

GM,ε(hε) =

∫ M

hε

∫ M

y

1

(s2 + ε2)
n/2

dsdy

≥
∫ M

C|x−x∗|1/2

∫ M

y

1

(s2 + ε2)
n/2

dsdy

≥
∫ M

C|x−x∗|1/2

∫ M

y

1

(s+ ε)n
dsdy

=

∫ M+ε

C|x−x∗|1/2+ε

∫ M+ε

y

1

sn
dsdy ≥ GM (C|x− x∗|1/2 + ε). (105)

By (8), we know that for n ≥ 4 and 0 ≤ h ≤M , it holds that

GM (h) ≥ 1

(n− 1)(n− 2)
h2−n − 1

n− 2
M2−n. (106)

Hence from (105) and (106) we have

GM,ε(hε) ≥
1

(n− 1)(n− 2)
(C|x− x∗|1/2 + ε)2−n − 1

n− 2
M2−n.

A simple computation gives that∫ L

−L
GM,ε(hε) dx ≥

∫ x∗+δ

x∗

GM,ε(hε) dx

≥ C

∫ x∗+δ

x∗

(C|x− x∗|1/2 + ε)2−n dx− C, (107)

and ∫ x∗+δ

x∗

(C|x− x∗|1/2 + ε)2−n dx ≥ C


1

εn−4
, if n > 4,

log
1

ε
, if n = 4,

(108)

where the constant C is independent of ε. Hence (107) and (108) imply

CT ≥
∫ L

−L
GM,ε(hε) dx ≥ C


1

εn−4
, if n > 4,

log
1

ε
, if n = 4,

(109)
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which is a contradiction for sufficiently small ε.

Step 2. Positivity of limit functions h.
From Step 1, for any fixed T and sufficient small ε, there exists a minimum point

(x∗, t∗) ∈ [−L,L]× [0, T ], such that for any (x, t) ∈ [−L,L]× [0, T ]

0 < hε,min := hε(x∗, t∗) ≤ hε(x, t) ≤M,

and for any x ∈ [−L,L], it holds

0 < hε,min ≤ hε(x, t∗) ≤ hε,min + CT |x− x∗|
1
2 .

Noticing

GM,ε(hε) ≥ GM (hε + ε),

we have

CT ≥
∫ L

−L
GM,ε(hε) dx ≥

∫ L

−L
GM (hε + ε) dx ≥ CT


1

(hε,min + ε)n−4
, if n > 4,

log
1

hε,min + ε
, if n = 4.

Hence hε,min + ε ≥ CT . Taking 0 < ε < CT
2 , we have hε ≥ hε,min ≥ CT

2 . Hence

limit functions h satisfy h ≥ CT
2 . In other words, the thin film equation is non-

degenerate and its solutions have further regularity h ∈ L2(0, T ;H3(−L,L)) and
PT = (−L,L)× (0, T ).

Step 3. Uniqueness for n ≥ 4.
Let h1 and h2 be two solutions to (1)-(2) with the same initial datum. Denote

h = h1 − h2. Using the fact h1, h2 ≥ c0 > 0 for n ≥ 4 and some simple estimates,
we have

d

dt
‖h‖2L2(−L,L) ≤ C

(
1 + ‖(h1)xxx‖2L2(−L,L)

)
‖h‖2L2(−L,L).

Hence the facts ‖h1‖L2(0,T ;H3(−L,L)) ≤ C, h(0) = 0 and Grönwall’s inequality imply
that h ≡ 0. This completes the proof of Theorem 2.

4. Global existence and long-time behavior for the Cauchy problem. In
this section, we first prove global existence for the Cauchy problem (1)-(2) with
n = 1 as stated in Theorem 3.

Proof of Theorem 3. Step 1. Local existence of weak solutions.
Since the initial data h0 has compact support, h0 ∈ H1(R), and supp h0 ∈

[−a, a], we take a 2(a+A0)− periodic extension function h0,period defined in R such
that h0,period satisfies the assumptions of Theorem 1, where A0 is a constant and is
given by (121) below. Hence from Theorem 1, we know that there exists a global
non-negative weak solution hperiod to the periodic problem (1)-(4) with initial data
h0,period and hperiod satisfies (27)-(29).

Now we apply results on finite speed of propagation for support of solutions
in [4, 8, 13] to hperiod within the periodic domain (−(a + A0), (a + A0)). Let ζ(t)
denote the right boundary of support of solutions hperiod within the periodic domain
(−(a + A0), (a + A0)). Following the results in [8, Lemma 3.7 and Lemma 3.8] or
[13] and using the method provided by Bernis in [4, Theorem 5.1], we have that
there is a positive constant T∗ such that if 0 < t < T∗

ζ(t) ≤ a+ C0t
k
(∫ L

−L
h

(1+λ)
0 dx

)β
, 0 < λ < 1, (110)
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where β = 1
4λ+5 is a decreasing function of λ, and k = λ+1

4λ+5 is a increasing function

of λ. As explained in [8], the unstable term in (1) is attractive and it shrinks the
support of solutions. We omit details here.

Using (110) and taking T1 ∈ [0, T∗] such that

C0T
k
1

(∫
Ω

h
(1+λ)
0 dx

)β
< A0, (111)

one has that for 0 ≤ t ≤ T1,

supp hperiod(·, t) ∩ [−(a+A0), a+A0] ⊂ (−(a+A0), (a+A0)). (112)

In other words, the support of solutions hperiod to the local equation (1) in every
periodic domain stays within the interior of the periodic domain for any t ≤ T1.
Thus we use hperiod within one period to construct h as below, for any t ∈ [0, T1],

h(x, t) =

{
hperiod(x, t), if x ∈ (−(a+A0), (a+A0)),

0, otherwise .
(113)

Clearly, h(x, t) is a local non-negative entropy weak solution for the Cauchy problem
(1)-(2) with initial data h0, and satisfies the following regularities

h ∈ L∞
(
0, T1;L1 ∩H1(R)

)
∩ L2

(
0, T1;H2(R)

)
, (114)

∂th ∈ L2
(
0, T1;H−1(R)

)
, (115)

and the energy-dissipation inequality (96).

Step 2. Estimate on ‖h‖L∞(0,T1;H1(R)).
Using the Sz. Nagy inequality (22), we deduce

F(h(·, t)) =
1

2

∫
R
(∂xh(x, t))2 dx− 1

12

∫
R
h(x, t)4 dx

≥ 1

2

(
1−M−2

c

( ∫
R
h(x, t) dx

)2)∫
R

(∂xh(x, t))2 dx.

=
1

2

(
1− M2

0

M2
c

)∫
R
(∂xh(x, t))2 dx. (116)

From M0 < Mc and the energy-dissipation inequality (96), one has∫
R

(
∂xh(x, t)

)2
dx ≤ C

(
M0,F(h0)

)
, 0 ≤ t ≤ T1. (117)

Again, using (22), we know∫
R
h(x, t)4 dx ≤ C(M0,F(h0)), 0 ≤ t ≤ T1. (118)

Hence

‖h‖L∞(0,T1;H1(R)) ≤ C(M0,F(h0)). (119)

Using (118), we can get for any t ∈ [0, T1]

‖h‖Lλ+1(R) ≤ ‖h‖1−θL1(R)‖h‖
θ
L4(R) ≤ C̃(M0,F(h0)), θ =

3− λ
3(λ+ 1)

. (120)

Now, we take

A0 := 2C0T
k
1

(
C̃(M0,F(h0))

)β
(121)
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satisfying (111), hence (112) holds for any t ∈ [0, T1].

Step 3. Global existence under the sharp condition M0 < Mc.
In the above two steps, we have shown that

1.
∫
R h(x, T1) dx = M0,

2. F(h(·, T1)) ≤ F(h0),
3. supp h(·, T1) ⊂ (−(a+A0), (a+A0)).

Taking T1 as a new starting time and h(x, T1) ∈ H1 as a new initial data and
repeating the arguments used in Step 1 and Step 2, we can obtain a non-negative
entropy weak solution h to the Cauchy problem (1)-(2) and it satisfies supp h(·, t) ⊂
(−(a + 2A0), a + 2A0) in t ∈ [T1, 2T1]. At t = 2T1, (i), (ii) and (iii) are also true.
Hence we can continue this process and obtain a global solution for the Cauchy
problem in R+ and it satisfies for any fixed T > 0

h ∈ L∞
(
R+;L1 ∩H1(R)

)
∩ L2

(
0, T ;H2(R)

)
, (122)

∂th ∈ L2
(
0, T ;H−1(R)

)
. (123)

This completes the proof of Theorem 3.

Proof of Theorem 4. Let h(x, t) be a global non-negative entropy weak solution
of (1)-(2) given by Theorem 3 with initial data h0 satisfying (3), M0 < Mc and
F(h0) <∞. Since M0 < Mc, the Sz. Nagy inequality (22) implies that F(h(·, t)) >
0 for any t ≥ 0. Noticing that the free energy is decreasing in time t, we know that
there is a F∞ such that

lim
t→∞

F(h(·, t)) = F∞ ≥ 0.

On the other hand, a simple computation gives

d

dt
m2(t) = 6F(h(·, t)) ≥ 6F∞ ≥ 0, (124)

which says that the second moment is increasing in t.
Now we prove that at least one of (34) and (35) holds. Suppose that

m2(t) 6→ +∞ as t→∞. (125)

By (124), we have that there exists a constant C̃ > 0 such that m2(t) ≤ C̃ for any
t ∈ (0,∞). In this case, we claim that there is a sequence tk and h∞ such that as
tk →∞

h(tk)→ h∞ strongly in L4(R). (126)

In fact, since h ∈ L∞(R+, L
1 ∩H1(R)) and the second moment is finite, we have

1. ∀ ε > 0, there exists a Rε > 0 such that∫
|x|>Rε

h4 dx ≤ 1

R2
ε

‖h‖3L∞
∫
|x|>Rε

|x|2h dx

≤ m2(t)

R2
ε

‖h‖3L∞ .

Hence taking

Rε ≥
(2‖h‖3L∞C̃

ε

)1/2

≥
(2‖h‖3L∞m2(t)

ε

)1/2

, (127)

we obtain ∫
|x|>Rε

h4 dx < ε. (128)
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Then there is a subsequence tk (without relabel) and h1,∞ such that

h(·, tk) ⇀ h1,∞ in L4(|x| ≥ Rε)
and ∫

|x|>Rε
h4

1,∞ dx ≤ lim inf
k→∞

∫
|x|>Rε

h(x, tk)4 dx ≤ ε. (129)

2. For fixed Rε satisfying (127), we know that h(x, tk) ∈ L∞(R+;H1(B(0, Rε))).
Thus by the Sobolev embedding theorem, one obtains that there is a strong
convergent subsequence, still denoted by h(x, tk), and h2,∞ such that

h(·, tk)→ h2,∞ strongly in L4(B(0, Rε)). (130)

Let h∞ be the combination of h1,∞ and h2,∞ defined in R. Hence, from (128), (129)
and (130), we have that there is a K such that if k ≥ K, then∫

R
|h(x, tk)− h∞|4 dx

=

∫
|x|>Rε

|h(x, tk)− h∞|4 dx+

∫
|x|≤Rε

|h(x, tk)− h∞|4 dx

≤ C

∫
|x|>Rε

(
|h(x, tk)|4 + |h∞|4

)
dx+

∫
|x|≤Rε

|h(x, tk)− h∞|4 dx

< Cε,

which proves our claim (126). Thus we have

lim
k→∞

∫
R
h4(x, tk) dx =

∫
R
h4
∞ dx. (131)

By uniform in time estimate (33), we know that there is a subsequence of tk (still
denoted by tk) such that as tk →∞

∂xh(·, tk) ⇀ ∂xh∞ in L2(R),

and hence ∫
R

(∂xh∞)2 dx ≤ lim inf
k→∞

∫
R
h2
x(x, tk) dx. (132)

Therefore (131) and (132) give

F(h∞) =
1

2

∫
R

(∂xh∞)2 dx− 1

12

∫
R
h4
∞ dx

≤ lim inf
k→∞

1

2

∫
R
h2
x(x, tk) dx− lim

k→∞

1

12

∫
R
h4(x, tk) dx

= lim inf
k→∞

F(h(·, tk)) = F∞. (133)

Finally, noticing that ‖h(·, tk)‖L1(R) = M0, ‖h(·, tk)‖L4(R) ≤ C and the second
moment is finite, from the Dunford-Pettis theorem we can get

h(·, tk) ⇀ h∞ in L1(R). (134)

Hence Fatou’s lemma implies∫
R
h∞ dx ≤ lim inf

k→∞

∫
R
h(x, tk) dx = M0 < Mc. (135)

We have two cases: (i) h∞ = 0, (ii) h∞ 6= 0. In the case (i), the formula (134)
implies that there exists a subsequence tk such that h(·, tk) ⇀ 0 as tk → ∞, i.e.,
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(35) holds. In the case (ii), by the inequality (22), we know F(h∞) > 0. Hence
(133) gives F∞ > 0. Note that

m2(t) ≥ m2(0) + 2(d+ 2)F∞t→ +∞ as t→∞,
which contradicts with (125). Hence (34) holds. This finishes the proof of Theorem
4.

Appendix A. The proof of Proposition 2. Denote h̄δε := Jδ ∗hδε + c
√
ε. Jδ is

defined in Subsection 2.1. We introduce the following further regularized problem
by using the modified method in [−L,L]× [0,∞){

(hδε)t + ∂x

(
Jδ ∗

[ (
h̄2
δε + ε2

)n
2
(
∂xxxh̄δε + ∂x(

h̄3
δε

3 )
)])

= 0,

hδε(x, 0) = hε0(x)
(136)

with the 2L-periodic boundary condition. Here we notice

‖hδε(·, 0)‖H1(−L,L) = ‖hε0‖H1(−L,L) ≤ ‖h0‖H1(−L,L) + c
√
ε.

Step 1. An estimate on H1-norm of solutions hδε.
Taking hδε − ∂xxhδε as a test function in the equation (136), and using the

Cauchy-Schwarz inequality, we have

d

dt
‖hδε‖2H1(−L,L)

= 2

∫ L

−L
∂x(h̄δε − ∂xxh̄δε)

(
h̄2
δε + ε2

)n/2
(∂xxxh̄δε + h̄2

δε∂xh̄δε) dx

≤ −
∫ L

−L

(
h̄2
δε + ε2

)n/2
(∂xxxh̄δε)

2 dx+ C
(∫ L

−L

(
h̄2
δε + ε2

)n/2
h̄4
δε(∂xh̄δε)

2 dx

+

∫ L

−L

(
h̄2
δε + ε2

)n/2
(∂xh̄δε)

2 dx+

∫ L

−L

(
h̄2
δε + ε2

)n/2
h̄2
δε(∂xh̄δε)

2 dx
)
.

Notice that if hδε ∈ H1(−L,L), then by the embedding theorem H1(−L,L) ↪→
C1/2[−L,L], we have

‖hδε‖L∞(−L,L) ≤ C‖hδε‖H1(−L,L).

So, we have

d

dt
‖hδε‖2H1(−L,L) +

∫ L

−L

(
h̄2
δε + ε2

)n/2
(∂xxxh̄δε)

2 dx ≤ C(‖hδε‖2H1(−L,L) + 1)(n+6)/2,

where C is a constant independent of T, δ, ε and hδε. Solving the above ordinary
differential inequality, we obtain

‖hδε‖2H1(−L,L) + 1 ≤ 1(
(‖hε0‖2H1(−L,L) + 1)−

n+4
2 − n+4

2 Ct
) 2
n+4

. (137)

This implies that there exists a T = T (‖h0‖H1(−L,L)) independent of δ and ε such
that the following estimates hold

‖hδε‖L∞(0,T ;H1(−L,L)) ≤ C, (138)

εn
∫ T

0

∫ L

−L
(∂xxxh̄δε)

2 dxdt ≤ C, (139)

‖∂thδε‖L2(0,T ;H−1(−L,L)) ≤ C, (140)
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where constants C are independent of δ and ε. A direct consequence of (138) and
(140) is that

‖hδε‖L∞((−L,L)×(0,T )) ≤ C, (141)

‖h̄δε‖L∞(0,T ;H1(−L,L)) ≤ C, ‖∂th̄δε‖L2(0,T ;H−1(−L,L)) ≤ C, (142)

where constants C are also independent of δ and ε.

Step 2. Existence of hδε in [0, T ] is given by an ODE theory in Banach space
L∞(−L,L), where T = T (‖h0‖H1(−L,L)) is stated in Step 1.

Define Fδ : L∞(−L,L)→ L∞(−L,L) as

Fδ(hδε) := −∂x
(
Jδ ∗

[((
Jδ ∗ hδε

)2
+ ε2

)n
2

(
∂xxx (Jδ ∗ hδε) + ∂x

(
(Jδ ∗ hδε)3

3

))])
.

We easily prove that Fδ(h) is locally Lipschitz continuous in L∞(−L,L), i.e., for
any h1, h2 ∈ L∞(−L,L), it holds

‖Fδ(h1)− Fδ(h2)‖L∞(−L,L) ≤ C(‖h1‖L∞(−L,L), ‖h2‖L∞(−L,L), δ, ε)‖h1 − h2‖L∞(−L,L).

Hence the equation (136) can be written as the following ODE in L∞(−L,L),

∂thδε = Fδ(hδε), hδε(0) = hε0. (143)

By Theorem 3.1 of [28, pp.100], we know that there is Tδ > 0 such that (143) has
a unique local solution hδε ∈ C1(0, Tδ; L

∞(−L,L)). Then the extension theorem
[28, Theorem 3.3] tells us that the solution hδε exists in [0, T ] due to the uniform
L∞ estimate (141). Hence all estimates (138) and (140) are actually valid for the
solution hδε of the equation (136).

Step 3. Existence of an entropy weak solution to (36).
From estimates (138) and (140), we know that for any fixed ε > 0, there exists

a subsequence (still denoted by hδε) such that as δ → 0 the following convergent
relations hold

hδε
∗
⇀ hε in L∞(0, T ;H1(−L,L)),

∂thδε ⇀ ∂thε in L2(0, T ;H−1(−L,L)).

Hence by using properties of mollifiers and (142) , we have that as δ → 0, h̄δε =
Jδ ∗ hδε satisfies

h̄δε
∗
⇀ hε in L∞(0, T ;H1(−L,L)), (144)

∂th̄δε ⇀ ∂thε in L2(0, T ;H−1(−L,L)).

From the uniform bounds (139) and (144), one has that there exists a subsequence
of h̄δε (still denoted by h̄δε) such that as δ → 0

h̄δε ⇀ hε in L2(0, T ;H3(−L,L)). (145)

Therefore by the Sobolev embedding theorems, we know

H3(−L,L) ↪→↪→ H2(−L,L) ⊂ H−1(−L,L).

The Lions-Aubin lemma [27] with (139) and (142) implies that there is a subse-
quence of h̄δε (still denoted by h̄δε) such that as δ → 0

h̄δε → hε in L2(0, T ;H2(−L,L)). (146)
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Hence for any fixed ε > 0, and any 2L- periodic function φ ∈ C∞
(
R × [0, T ]

)
, we

have that the following weak form holds∫ T

0

∫ L

−L
φ∂thε dxdt =

∫ T

0

∫ L

−L
∂xφ

(
h2
ε + ε2

)n/2
∂xxxhε dxdt

+

∫ T

0

∫ L

−L
∂xφ

(
h2
ε + ε2

)n/2
h2
ε∂xhε dxdt. (147)

Moreover, there is a constant C independent of ε such that hε satisfies (43)-(44).
Hence for any fixed ε > 0, hε ∈ L∞(0, T ;H1(−L,L)) ∩ L2(0, T ;H3(−L,L)). Let

pε = ∂xxhε+
h3
ε

3 ∈ L
2(0, T ;H1(−L,L)). Taking φi ∈ C∞([−L,L]× [0, T ]) such that

φi → pε as i→∞ in L2(0, T ;H1(−L,L)), i.e.,∫ T

0

‖φi − pε‖2H1 dt→ 0 as i→∞. (148)

By the weak form (147), we know∫ t

0

∫ L

−L
φi∂thε dxdt =

∫ t

0

∫ L

−L
∂xφi

(
h2
ε + ε2

)n/2
∂x

(
∂xxhε +

h3
ε

3

)
dxdt.

Using the estimates (43), (44) and (148), we can prove in the limit i→∞∫ t

0

∫ L

−L
pε∂thε dxdt =

∫ t

0

∫ L

−L
∂xpε

(
h2
ε + ε2

)n/2
∂x

(
∂xxhε +

h3
ε

3

)
dxdt.

Thus a simple computation leads the following energy-dissipation equality, for any
t ∈ [0, T ],

F(hε) +

∫ t

0

∫ L

−L

(
h2
ε + ε2

)n/2 ∣∣∣∂x(∂xxhε +
h3
ε

3

)∣∣∣2 dxdt = F(hε0). (149)

From the above arguments, we know that there is a local entropy weak solution hε
to (36).

Step 4. hε is space-time Hölder continuous uniformly in ε. Indeed, for any x1, x2 ∈
(−L,L) and t1, t2 ∈ (0, T ), the estimate (45) holds. The property was proved in
the paper [5]. For completeness, we provide the proof in Appendix B.

Appendix B. Hölder continuity. In this Appendix, we consider the uniform
in ε Hölder continuity (70) of weak solutions hε to the regularized problem (36).
Before proving the main result, we first show the following two lemmas.

Lemma 4. Suppose h(x, t) ∈ L∞(0, T ;H1(−L,L)), then for almost everywhere
x1, x2 ∈ [−L,L], t ∈ [0, T ], it holds that

|h(x1, t)− h(x2, t)| ≤ ‖h‖L∞(0,T ;H1(−L,L))|x1 − x2|1/2. (150)

Proof. This a direct consequence of the embedding theoremH1(−L,L) ↪→ C1/2[−L,
L] and h(x, t) ∈ L∞(0, T ;H1(−L,L)).

For any t1, t2 ∈ [0, T ], t1 < t2, we construct a cut-off function bδ(t) =
∫ t
−∞ b′δ(t) dt,

b′δ(t) satisfying

b′δ(t) =


1
δ , |t− t2| < δ,

− 1
δ , |t− t1| < δ,

0, otherwise,

(151)
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where the constant δ satisfies 0 < δ < |t2−t1|
2 . Using the definition of bδ(t), we know

that bδ(t) is Lipschitz continuous, and satisfies |bδ(t)| ≤ 2.
For any x0 ∈ (−L,L), constructing an auxiliary function

a(x) = a0

(
K(x− x0)

|t2 − t1|α

)
,

where 0 < α < 1 and K > 0 are two constants to be determined later, and
a0(x) ∈ C∞0 (R) is defined by

a0(x) =

{
1, − 1

2 ≤ x ≤
1
2 ,

0, |x| ≥ 1
(152)

satisfying |a′0(x)| ≤ C. From (152), we know

a(x) =

{
1, |x− x0| ≤ 1

2K |t2 − t1|
α,

0, |x− x0| ≥ 1
K |t2 − t1|

α.
(153)

Taking K > Tα

L such that(
− 1

K
|t2 − t1|α,

1

K
|t2 − t1|α

)
⊂ (−L,L),

hence a(−L) = a(L) = 0.

Lemma 5. Let h(x, t) ∈ L∞(0, T ;H1(−L,L)), and a(x) and bδ(t) be defined above.
Then for almost everywhere x0 ∈ [−L,L], t1, t2 ∈ [0, T ], t1 < t2, it holds

| h(x0, t2)− h(x0, t1) |≤ C
(
〈h(x, t), a(x)b′δ(t)〉|t2 − t1|−α + |t2 − t1|

α
2

)
, (154)

where C depends only on T , L and ‖h‖L∞(0,T ;H1(−L,L)).

Proof. Without loss of generality, we suppose h(x0, t2) > h(x0, t1). Computing the
inner product of h and a(x)b′δ(t), we obtain

〈h(x, t), a(x)b′δ(t)〉 =

∫ x0+ 1
K (∆t)α

x0− 1
K (∆t)α

∫ T

0

h(x, t)a(x)b′δ(t) dxdt

=

∫ x0+ 1
K (∆t)α

x0− 1
K (∆t)α

(∫ t2+δ

t2−δ

1

δ
h(x, t)a(x)−

∫ t1+δ

t1−δ

1

δ
h(x, t)a(x)

)
dxdt

=
1

δ

∫ x0+ 1
K (∆t)α

x0− 1
K (∆t)α

(∫ δ

−δ
h(x, t2 + τ)a(x) dτ − h(x, t1 + τ)a(x)dτ

)
dx

=
1

δ

∫ δ

−δ

∫ x0+ 1
K (∆t)α

x0− 1
K (∆t)α

a(x) (h(x, t2 + τ)− h(x, t1 + τ)) dxdτ

=
1

δ

∫ δ

−δ

∫ 1
K (∆t)α

− 1
K (∆t)α

a(x0 + y) (h(x0 + y, t2 + τ)− h(x0 + y, t1 + τ)) dydτ.(155)

By Hölder continuity of h respect to the space variable, we have

|h(x0 + y, t)− h(x0, t)| ≤ C|y|
1
2 .
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Noticing that a(x) is a nonnegative function, from (155) we have

〈h(x, t), a(x)b′δ(t)〉 (156)

≥ 1

δ

∫ δ

−δ

∫ 1
K (∆t)α

− 1
K (∆t)α

a(x0 + y)
(
h(x0, t2 + τ)− h(x0, t1 + τ)− 2C|y| 12

)
dydτ

≥ 1

δ

∫ δ

−δ

∫ 1
K (∆t)α

− 1
K (∆t)α

a(x0 + y) (h(x0, t2 + τ)− h(x0, t1 + τ)) dydτ − C(∆t)
3α
2 .

By the Lebesgue differentiation theorem, for a.e. t1, t2 ∈ (0, T ), we have

lim
δ→0

1

δ

∫ δ

−δ

∫ 1
K (∆t)α

− 1
K (∆t)α

a(x0 + y) (h(x0, t2 + τ)− h(x0, t1 + τ)) dydτ

= 2

∫ 1
K (∆t)α

− 1
K (∆t)α

a(x0 + y)(h(x0, t2)− h(x0, t1)) dx. (157)

Therefore from (156) and (157), we know that for any ε0 = (∆t)
3α
2 > 0, there is a

δ0 > 0 such that when 0 < δ < δ0, it holds that

2

∫ 1
K (∆t)α

− 1
K (∆t)α

a(x0 + y)(h(x0, t2)− h(x0, t1)) dx

≤ 1

δ

∫ δ

−δ

∫ 1
K (∆t)α

− 1
K (∆t)α

a(x0 + y) (h(x0, t2 + τ)− h(x0, t1 + τ)) dydτ + ε0

≤ 〈h(x, t), a(x)b′δ(t)〉+ C(∆t)
3α
2 . (158)

Since h(x0, t2) > h(x0, t1), and from the definition of a(x), we have

1

K
(∆t)α(h(x0, t2)− h(x0, t1)) ≤

∫ 1
K (∆t)α

− 1
K (∆t)α

a(x0 + y)(h(x0, t2)− h(x0, t1)) dx.

Hence we obtain that

2

K
(∆t)α(h(x0, t2)− h(x0, t1) ≤ 〈h(x, t), a(x)b′δ(t)〉+ C(∆t)

3α
2 , (159)

which implies that (154) holds.

Theorem 5. Let hε(x, t) be an entropy weak solution defined in Definition 2 to the
regularized problem (36). Then hε(x, t) ∈ C1/2,1/8(QT ), and for almost everywhere
x1, x2 ∈ [−L,L] and t1, t2 ∈ [0, T ], the following uniform in ε estimates hold

|hε(x2, t)− hε(x1, t)| ≤ C|x2 − x1|
1
2 for t ∈ [0, T ], (160)

|hε(x0, t2)− hε(x0, t1)| ≤ C|t1 − t2|
1
8 for x0 ∈ [−L,L], (161)

where C > 0 is only dependent of T , L, M0 and ‖h0‖L∞(0,T ;H1(−L,L)).

Proof. Since hε(x, t) is an entropy weak solution defined in Definition 2, we have
hε ∈ L∞(0, T ;H1(−L,L)), and

‖hε‖L∞(0,T ;H1(−L,L)) ≤ C,

where C is independent of ε. Hence using Lemma 4, we know that (160) holds.
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Now we prove 1
8 -Hölder continuity of hε respect to the time t. Multiplying

a(x)bδ(t) to both sides of the equation of (36), and integrating in (−L,L)× (0, T ),
we have

|〈∂thε, a(x)bδ(t)〉| =

〈√
h2
ε + ε2

(
∂xxxhε + ∂x(

h3
ε

3
)

)
, a′(x)bδ(t)

〉
≤

∥∥∥∥√h2
ε + ε2

(
∂xxxhε + ∂x(

h3
ε

3
)

)∥∥∥∥
L2((−L,L)×(0,T ))

·‖a′(x)bδ(t)‖L2((−L,L)×(0,T )). (162)

Due to (39), we can deduce∥∥∥∥√h2
ε + ε2

(
∂xxxhε + ∂x(

h3
ε

3
)

)∥∥∥∥
L2((−L,L)×(0,T ))

≤ C,

where the constant C is independent of ε. Hence we obtain

|〈∂thε, a(x)bδ(t)〉| ≤ C‖a′(x)bδ(t)‖L2((−L,L)×(0,T )). (163)

Notice that

〈hε, a(x)b′δ(t)〉 = −〈∂thε, a(x)bδ(t)〉, (164)

and

‖a′(x)bδ(t)‖L2((−L,L)×(0,T )) =

(∫∫
(−L,L)×(0,T )

a′2(y)b2δ(s) dyds

) 1
2

≤

(∫ x0− 1
K |t2−t1|

α

x0− 1
K |t2−t1|α

a′2(y) dy

∫ T

0

b2δ(s) ds

) 1
2

≤ C

(∫ 1

−1

K

|t2 − t1|α
a′20 (y) dy

) 1
2

(∫ T

0

b2δ(s) ds

) 1
2

= C
1

|t2 − t1|
α
2
· |t2 − t1 + 2δ| 12

≤ C |t2 − t1|
1
2−

α
2 . (165)

Combining (163), (164) and (165), we get

|〈hε, a(x)b′δ(t)〉| ≤ C |t2 − t1|
1
2−

α
2 . (166)

Hence using Lemma 5, we have

| u(x0, t2)− u(x0, t1) |≤ C
(
|t2 − t1|

1
2−

3
2α + |t2 − t1|

α
2

)
. (167)

Taking α = 1
4 , then (167) indicates that (161) holds. This completes the proof of

Theorem 5.
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