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Abstract. A reformulation of the planetary geostrophic equations (PGEs) with inviscid balance equation

is proposed and the existence of global weak solutions is established, provided that the mechanical forcing

satisfies an integral constraint. There is only one prognostic equation for the temperature field and the ve-

locity field is statically determined by the planetary geostrophic balance combined with the incompressibility

condition. Furthermore, the velocity profile can be accurately represented as a functional of the temperature

gradient. In particular, the vertical velocity depends only on the first order derivative of the temperature.

As a result, the bound for the L∞(0, t1;L2)∩L2(0, t1;H1) norm of the temperature field is sufficient to show

the existence of the weak solution.
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1. Introduction

The planetary geostrophic equations (PGEs) have played an important role in large-scale ocean circulation

since the pioneering work of A. Robinson and H. Stommel [6] and P. Welander [12]. This system arises as

an asymptotic approximation to the primitive equations (PEs) for planetary-scale motions in the limit of

small Rossby number. The PGEs are considerably simpler than the PEs, but retain the dynamics necessary

to represent the large-scale, low-frequency dynamics of the mid-latitude oceans.

The PGEs with viscous geostrophic balance has been analyzed at the PDE level in recent articles. See

[1, 8, 9] for relevant discussions. One distinguishing feature of the PGEs is that there is only one prognostic

equation in the system for the temperature field; the velocity field is diagnostically determined by the

planetary geostrophic balance. The addition of a diffusion term in the geostrophic balance equation is for

the sake of simplicity in mathematical analysis, due to the lack of regularity for the velocity field by a

straightforward manipulation.

In this article, we consider the original formulation of the PGEs, with no viscous term in the geostrophic

balance equations. In such a formulation, both horizontal and vertical velocity profiles are accurately rep-

resented as functionals of the temperature gradient. The representation formula for the horizontal velocity
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field is based on the planetary geostrophic balance. Since every variable can be uniquely determined by the

combination of its mean (in vertical direction) and its vertical derivative, the horizontal velocity turns out to

be the solution of a differential equation at each fixed horizontal point, depending only on the temperature

gradient. The vertical velocity can be recovered by the continuity equation. Using the special form of the

Coriolis parameter, we arrive at a two-point boundary value ordinary differential equations (O.D.E.) in the

vertical direction at each fixed horizontal point for the vertical velocity, with the right hand side depending

only on the first order derivative of the temperature field.

The new formulation is derived in Section 2 and the existence of the global (in time) weak solution of

the reformulated PGEs is provided in Section 3. The approach of Galerkin approximation is used. Standard

energy estimate for the temperature equation gives the bound of the L∞(0, t1;L2) ∩ L2(0, t1;H1) norm of

the temperature variable, which in turn shows the bound of the L2(0, t1;L2) norm of the horizontal velocity.

Moreover, the L2(0, t1;L2) norm of the vertical velocity is also uniformly bounded since it satisfies the second

order O.D.E., in which the force term only involves the temperature gradient. The compactness for the time

derivative of the temperature field can be established in a similar manner. Thus the existence of the global

weak solution is proven.

2. Reformulation of the Inviscid Planetary Geostrophic Equations

The non-dimensional PGEs can be written as

(2.1)



Tt + (v ·∇)T + w
∂T

∂z
=

( 1
Rt1

4+
1
Rt2

∂2
z

)
T ,

fk × v +∇p = F ,

∂p

∂z
= T ,

∇·v + ∂zw = 0 ,

where T represents the temperature, v = (u, v) the horizontal velocity, w the vertical velocity, and p the

pressure. The term fk × v corresponds to the Coriolis force with f depending only on the latitude y. As

a typical example used in geophysical literatures, its β−plane approximation is given by f = f0 + βy. The

parameters 1/Rt1, 1/Rt2 stand for the horizontal and vertical heat conductivity coefficients. The operators

∇, ∇⊥, ∇·, 4 stand for the gradient, perpendicular gradient, divergence and Laplacian in horizontal plane,

respectively. For simplicity, we set κ1 = 1/Rt1, κ2 = 1/Rt2. The forcing term F = (F x, F y)⊥ appearing in

the geostrophic balance equation (2.1)2 comes from the wind stress at the ocean surface, which is a boundary

layer approximation. It may or may not depend on the vertical variable z. For simplicity, we assume in this

article F = F (x, y) =
(
F x(x, y), F y(x, y)

)
. The discussion of a general case can be carried out in the same

fashion and does not add any mathematical difficulty. See the relevant references on both the physical and

mathematical descriptions of the PGEs in [2, 3, 4, 5, 6, 8, 9, 10, 12], etc.

The computational domain is taken as M = M0 × [−H0, 0], where M0 is the surface of the ocean. The

boundary condition at the top and bottom surfaces are given by

(2.2)
w = 0 and κ2

∂T

∂z
= T f , at z = 0 ,

w = 0 and κ2
∂T

∂z
= 0 , at z = −H0 ,
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where the term T f represents the heat flux at the surface of the ocean. Usually T f can be taken as either

a fixed heat flux function or of the form T f = −α(T − θ∗), where θ∗ is a reference temperature. Both

boundary conditions can be dealt with in an efficient way. In this article for simplicity we choose T f as a

given flux. On the lateral boundary section ∂M0 × [−H0, 0], the fixed boundary condition is prescribed for

the temperature field

(2.3) T = Tlb , on ∂M0 × [−H0, 0] ,

where Tlb is a given distribution. As will be shown later, the purpose of the choice of a Dirichlet boundary

condition is to facilitate the analysis of the system at the PDE level, although the no-flux boundary condition

for the temperature field is physically more relevant. The boundary condition (2.3) can also be viewed as an

approximation such that the disturbance of oceanic circulation motion is far away from the lateral boundary.

For simplicity of the presentation, we set the homogeneous profile Tlb = 0 in the theoretical and numerical

analysis. There is no real change for the non-homogeneous case. The normal component of the vertically

averaged horizontal velocity turns out to have a vanishing flux

(2.4) v ·n = 0 , on ∂M0 ,

which is compatible with the continuity equation (2.1)4. We recall that the average (in the vertical direction)

of any 3-D field g is given by g(x, y) = 1
H0

∫ 0

−H0
g(x, y, z) dz. See [4, 8] for a detailed explanation for the

choice of this nonlocal boundary condition in the case where no viscosity is present in the geostrophic balance

equation.

We now derive an equivalent formulation of the system of PGEs (2.1)-(2.4). The key point in this

reformulation is that both the horizontal and vertical velocity variables can be determined by the first order

derivative of the temperature field. This makes valid the analysis of the well-posedness for the system.

The horizontal velocity field is the solution of the following system

(2.5)


∂zu =

−Ty

f
, ∂zv =

Tx

f
,

u(x, y) = ue , v(x, y) = ve =
−∂yF

x + ∂xF
y

∂yf
,

where ue is explicitly given below.

Equation (2.5) is derived from the geostrophic equation and hydrostatic equation. Taking the vertical

derivative of the geostrophic balance equation fk × v +∇p = F gives the thermal wind equation

(2.6) vz =
∇⊥pz + ∂zF

⊥

f
=
∇⊥T
f

, i.e. uz =
−Ty

f
, vz =

Tx

f
,

where the hydrostatic balance ∂p/∂z = T and the independence on z of F and f = f(y) were used. In other

words, the profile vz can be expressed by the temperature gradient.

Meanwhile, integrating the geostrophic balance equation fk × v +∇p = F in the vertical direction and

dividing by H0, we find

(2.7) fk × v +∇p = F .
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Applying the curl operator ∇⊥ to (2.7) results in

(2.8) (∂yf)v + f(vy + ux) = ∇× F = −∂yF
x + ∂xF

y .

Moreover, the continuity equation ∇ · v + ∂zw = 0 and the boundary condition for the vertical velocity

w( ·, 0) = w( ·,−H0) = 0 show that the averaged horizontal velocity field is divergence-free, i.e.,

(2.9) ∇ · v = 0 .

The combination of (2.8) and (2.9) yields

(2.10) ve = v(x, y) =
−∂yF

x + ∂xF
y

∂yf
.

By taking the tangential part of (2.7) and applying (2.4), one obtains the vertically averaged tangential

pressure gradient (and thus the pressure, aside from an arbitrary constant) on the boundary from the

tangential component of the forcing F :

(2.11)
∂p

∂τ
= F · τ ,

where τ is the unit tangential vector on the boundary. Integrating this relation around the boundary, one

obtains the constraint that the line integral of F around the boundary must be zero:

(2.12)
∫

∂M′

F · τ dl = 0 .

This means that the forcing must not give a net torque on the fluid.

From (2.9), we can find a 2-D mean stream function ψ(x, y) for the vertically averaged velocity field, such

that (u, v) = (−∂yψ, ∂xψ). Moreover, the boundary condition (2.4) indicates that ψ is a constant on the

lateral boundary. For simplicity of the discussion, we take ψ = 0 on ∂M0. In addition, we denote γ1(y0),

γ2(y0) by the x-coordinates of the intersection points between ∂M0 and y = y0. The mean stream function

ψ and the mean velocity u can be determined by the kinematic relationship and formula (2.10):

(2.13) ψe(x, y) =
∫ x

γ1(y)

∇× F

∂yf
dx′ , ue(x, y) = −∂yψe(x, y) ,

with γ1(y) being a point on ∂M0. Evaluating ψ at another boundary point (γ2(y), y) with the same y-value,

we obtain an additional constraint on the forcing:

(2.14)
∫ γ2(y)

γ1(y)

∇× F

∂yf
dx′ = 0 ,

since ψ is identically 0 on the lateral boundary. Constraint (2.14) amounts to saying that the average forcing

across the domain at a fixed y must not give a torque on the fluid.

The combination of (2.6), (2.10) and (2.13) leads to the system (2.5). By the representation formula

valid for any 3-D variable g:

(2.15) g(x, y, z) =
∫ z

−H0

gz(x, y, z1) dz1 + g(x, y)− 1
H0

∫ 0

−H0

∫ z

−H0

gz(x, y, z1) dz1 dz ,
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the solution of (2.5) can be expressed explicitly using an integration formula:

(2.16a) u(x, y, z) = −
∫ z

−H0

Ty

f
(x, y, z1) dz1 + ue(x, y) +

1
H0

∫ 0

−H0

∫ z

−H0

Ty

f
(x, y, z1) dz1 dz ,

(2.16b) v(x, y, z) =
∫ z

−H0

Tx

f
(x, y, z1) dz1 + ve(x, y)−

1
H0

∫ 0

−H0

∫ z

−H0

Tx

f
(x, y, z1) dz1 dz ,

with ue, ve given by (2.10) and (2.13).

The vertical velocity can be calculated by integrating the horizontal divergence of the horizontal velocity

field, due to the incompressibility condition

(2.17) w(x, y, z) = −
∫ z

−H0

∇· v(x, y, s) ds .

The substitution of (2.16) into (2.17) gives

(2.18) w(x, y, z) =
∫ z

−H0

∫ z2

−H0

(∂yf)Tx

f2
(x, y, z1) dz1 dz2 −

1
H0

(z +H0)
∫ 0

−H0

∫ z

−H0

(∂yf)Tx

f2
(x, y, z1) dz1 dz .

Therefore, w can be expressed as a functional of the temperature gradient, like the horizontal velocity v.

The vertical velocity can also be represented as the solution of a differential equation. By taking the

vertical derivative of the continuity equation

(2.19) ∇ · vz + ∂2
zw = 0 ,

combined with (2.6), we arrive at

(2.20) ∂2
zw = −∂x(uz)− ∂y(vz) = ∂x

(Ty

f

)
− ∂y

(Tx

f

)
=

(∂yf)Tx

f2
.

It can be observed that the second order derivatives for the temperature field cancel each other due to the

special form of the Coriolis parameter f = f(y). Therefore, the vertical velocity w can be reformulated as

the solution of the following system of second order O.D.E.s

(2.21)


∂2

zw =
(∂yf)Tx

f2
,

w = 0 , at z = 0 , −H0 ,

in which the right hand side includes only the first order derivative of the temperature. This key point is

crucial to the analysis presented below.

We then have the following formulation, where the velocities are expressed as functionals of the temper-

ature gradient.

Temperature Transport Equation

(2.22a)


Tt + (v ·∇)T + w

∂T

∂z
=

(
κ14+ κ2∂

2
z

)
T ,

∂T

∂z
= Tf , at z = 0 ,

∂T

∂z
= 0 , at z = −H0 ,

T = 0 , on ∂M0 × [−H0, 0] ;
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Recovery of the horizontal velocity

(2.22b)


∂zu = −Ty

f
, ∂zv =

Tx

f
,

u(x, y) = ue , v(x, y) = ve ;

Recovery of the vertical velocity

(2.22c)


∂2

zw =
(∂yf)Tx

f2
,

w = 0 , at z = 0 , −H0 .

Remark 2.1. It is observed that the alternate formulation (2.22a-c) is equivalent to the original formulation

(2.1)-(2.4) of the PGEs, from which they were derived. Indeed, to recover (2.1)-(2.4) from (2.22a-c), we

need to show that φ = ∇ · v + ∂zw ≡ 0. A simple calculation utilizing (2.22b) and (2.22c) leads to

(2.23) ∂zφ = ∂z

(
∇ · v + ∂zw

)
= ∂x(∂zu) + ∂y(∂zv) + ∂2

zw = −∂x

(Ty

f

)
+ ∂y

(Tx

f

)
+

(∂yf)Tx

f2
= 0 ,

(2.24) φ =
(
∇ · v + ∂zw

)
= ∇ · v + ∂zw = 0 ,

since the average of v is divergence-free in the horizontal plane. The combination of (2.23) and (2.24) results

in the incompressibility condition. In addition, a direct calculation

(2.25) ∇× (fk × v − F ) = (∂yf)v −∇× F = 0 ,

indicates the existence of a mean pressure field p such that fk × v + ∇p = F . Accordingly, we define the

total pressure field as

(2.26) p(x, y, z) =
∫ z

−H0

T (x, y, s) ds+ p(x, y)− 1
H0

∫ 0

−H0

∫ z

−H0

T (x, y, s) ds dz .

Clearly, the hydrostatic balance is satisfied by taking the vertical derivative of (2.26). The geostrophic balance

equation can also be verified by using the integration formulas for v in (2.16), which comes from the recovery

equation (2.22b), combined with the horizontal gradient of (2.26):

(2.27) ∇p =
∫ z

−H0

∇T ds+∇p− 1
H0

∫ 0

−H0

∫ z

−H0

∇T ds dz .

All the boundary conditions presented in (2.1)-(2.4) are included in the system (2.22). Hence, (T,u, p) is

also a solution of (2.1)-(2.4). This completes the proof of the formal equivalence of smooth solutions between

the two formulations.
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3. Existence of a Global Weak Solution

Before starting the discussion on the weak solutions, we introduce the following functional setting:

(3.1)
H = L2(M) , V = the closure of C∞lat,0(M) in H1(M) ,

Cm
lat,0(M) = {T ∈ Cm(M) | T = 0 on ∂M0 × [−H0, 0]} .

Note that the introduction of Cm
lat,0(M) is motivated by the boundary condition for T on the lateral boundary

sections. Let ( ·, ·) be the inner product in L2(M) = L2(M0× [−H0, 0]), and ‖·‖ the corresponding L2 norm.

For any positive final time t1 > 0, the functions (T, u, v, w)

T ∈ L∞
(
0, t1 ;H

)
∩ L2

(
0, t1 ;V

)
, u , v , w ∈ L2

(
0, t1 ;L2(M)

)
,

are called a weak solution of the original PGEs formulated in (2.22) if

(3.2a)

∫
M0

∫ 0

−H0

(
∂t(Tφ) + uTφx + vTφy + wTφz + κ1(∇T )·(∇φ) + κ2(∂zT )·(∂zφ)

)
dx dz

+κ2

∫
M0

α

κ2
(T (x, 0)− θ∗)φ(x, 0) dx = 0 , ∀φ ∈ C1

lat,0(M) ∩H3(M) ,

where

(3.2b)

u(x, y, z) = −
∫ z

−H0

Ty

f
(x, y, z1) dz1 + ue(x, y) +

1
H0

∫ 0

−H0

∫ z

−H0

Ty

f
(x, y, z1) dz1 dz ,

v(x, y, z) =
∫ z

−H0

Tx

f
(x, y, z1) dz1 + ve(x, y)−

1
H0

∫ 0

−H0

∫ z

−H0

Tx

f
(x, y, z1) dz1 dz ,

(3.2c) w(x, y, z) =
∫ z

−H0

∫ z2

−H0

(∂yf)Tx

f2
(x, y, z1) dz1 dz2 −

1
H0

(z +H0)
∫ 0

−H0

∫ z

−H0

(∂yf)Tx

f2
(x, y, z1) dz1 dz .

Theorem 3.1 Suppose F ∈ H2(M0) is given and the constraint (2.14) is satisfied so that ue, ve can be

consistently determined. Let T0 = T (·, 0) ∈ L2(M). Then there exists at least one global weak solution for

the PGEs (2.22), such that for any t1 > 0

(3.3)
T ∈ L∞

(
0, t1 ;H

)
∩ L2

(
0, t1 ;V

)
, ∂tT ∈ L

4
3

(
0, t1 ;H−2(M)

)
,

u , v , w ∈ L2
(
0, t1 ;L2(M)

)
, ∂zu , ∂zv , ∂

2
zw ∈ L2

(
0, t1 ;L2(M)

)
,

(3.4)
‖T (·, t)‖2 + 2

∫ t

0

(
κ1‖∇T (·, s)‖2 + κ2‖∂zT (·, s)‖2

)
ds ≤ ‖T0‖2 + C∗t , for 0 < t < t1 ,

with C∗ = α

∫
M0

(θ∗)2 dx ,

(3.5)

∇ ·
∫ 0

−H0

v dz = 0 , in the sense of distribution ,∫ 0

−H0

v dz ·n = 0 , on ∂M0 ,

w = 0 , at z = 0 ,−H0 .
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Proof. The proof can be accomplished by the Galerkin procedure. A standard energy estimate is used to

obtain the uniform bound for the L∞(0, t1 ;L2(M)) and L2(0, t1 ;H1(M)) norms of the temperature field.

Let {Φj}j≥1 ⊂ H2(M) be the eigenvectors of the diffusion operator corresponding to the eigenvalues λj ,

j = 1, 2, ..., such that

(3.6)



(
κ14+ κ2∂

2
z

)
Φj = λjΦj , λj →∞ ,

∂Φj

∂z
= −αΦj

κ2
, at z = 0 ,

∂Φj

∂z
= 0 , at z = −H0 ,

Φj = 0 , on ∂M0 × [−H0, 0] .

The diffusion operator A = κ14+ κ2∂
2
z with the given boundary condition is a self-adjoint linear operator

and admits a compact inverse. Then {Φn}n≥1 defines a complete orthogonal basis in L2(M). To seek a

weak solution of the reformulated PGEs defined in (3.2), we find an approximate solution {Tm} such that

(3.7) Tm(x, z; t) =
m∑

j=1

βm
j (t)Φj(x, z) ,

(3.8)

d

dt

(
Tm,Φj

)
+

(
vmTm,∇Φj

)
+

(
wmTm, ∂zΦj

)
+ κ1

(
∇Tm,∇Φj

)
+ κ2

(
∂zTm, ∂zΦj

)
+κ2

∫
M0

α

κ2
(Tm(x, 0)− θ∗)Φj(x, 0) dx = 0 , j = 1, 2, ...,m ,

(3.9)

um(x, y, z) = −
∫ z

−H0

∂yTm

f
(x, y, z1) dz1 + ue(x, y) +

1
H0

∫ 0

−H0

∫ z

−H0

∂yTm

f
(x, y, z1) dz1 dz ,

vm(x, y, z) =
∫ z

−H0

∂xTm

f
(x, y, z1) dz1 + ve(x, y)−

1
H0

∫ 0

−H0

∫ z

−H0

∂xTm

f
(x, y, z1) dz1 dz ,

(3.10)

wm(x, y, z) =
∫ z

−H0

∫ z2

−H0

(∂yf)∂xTm

f2
(x, y, z1) dz1 dz2 −

1
H0

(z +H0)
∫ 0

−H0

∫ z

−H0

(∂yf)∂xTm

f2
(x, y, z1) dz1 dz ,

(3.11) Tm |t=0= PmT0 ,

where Pm is the orthogonal projection operator in L2(M): Pm: L2(M) → Span {Φ1, ...,Φm}.
The scheme (3.8) and (3.11) proposes an initial value problem for a system of m O.D.E.s, with the

velocities determined by (3.9) and (3.10). Therefore, it is straightforward to conclude the local (in time)

existence of the approximate solution. To get the global (in time) solution, the energy estimates are necessary.

We observe that the approximated velocity field um = (vm, wm) satisfies

(3.12)
∇ · vm + ∂zwm = 0 ,

vm · n |∂M0×[−H0,0]= ve · n |∂M0×[−H0,0]= 0 , wm |z=0,−H0= 0 ,
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which comes from the construction (3.9), (3.10) and the homogeneous Dirichlet boundary condition for Tm

on the lateral boundary. As a result, we find by integration by parts that

(3.13)
(
vmTm,∇Tm

)
+

(
wmTm, ∂zTm

)
= 0 .

Multiplying (3.8) by βm
j (t) and adding up the resulting equations leads to

(3.14)

1
2
d

dt
‖Tm‖2 + κ1‖∇Tm‖2 + κ2‖∂zTm‖2 = −κ2

∫
M0

α

κ2

(
Tm(·, 0)− θ∗

)
Tm(·, 0) dx

= −α
∫
M0

(
Tm(·, 0)− θ∗

)
Tm(·, 0) dx

≤ −α
2

∫
M0

T 2
m(·, 0) dx +

α

2

∫
M0

(θ∗)2 dx

≤ α

2

∫
M0

(θ∗)2 dx .

Applying the Gronwall inequality to (3.14) results in

(3.15) ‖Tm(·, t)‖2 + 2
∫ t

0

(κ1‖∇Tm‖2 + κ2‖∂zTm‖2) ds ≤ ‖T0‖2 + C∗t , with C∗ = α

∫
M0

(θ∗)2 dx ,

which in turn indicates that

(3.16) Tm ∈ a bounded set of L∞
(
0, t1 ;L2(M)

)
∩ L2

(
0, t1 ;H1(M)

)
.

Moreover, by the recovery formulation (3.9), (3.10), we have

(3.17)
um , vm , wm ∈ a bounded set of L2

(
0, t1 ;L2(M)

)
,

∂zum , ∂zvm , ∂2
zwm ∈ a bounded set of L2

(
0, t1 ;L2(M)

)
.

Furthermore, we need an estimate for ∂tTm so that we can obtain compactness and a strong convergence

result. Consider T̃ ∈ H2(M) given by T̃ =
∑∞

j=1 β̃jΦj . Equation (3.8) shows that

(3.18)

(
∂tTm , T̃

)
=

(
∂tTm , PmT̃

)
=

(
vmTm ,∇PmT̃

)
+

(
wmTm , ∂zPmT̃

)
+ κ1

(
∇Tm,∇PmT̃

)
+ κ2

(
∂zTm, ∂zPmT̃

)
+κ2

∫
M0

α

κ2
(Tm(x, 0)− θ∗)PmT̃ ( ·, 0) dx .

Regarding the nonlinear term, we have

(3.19)

∣∣∣∣∫
M

vmTm∇PmT̃ dx

∣∣∣∣ ≤ ‖vm‖L2‖Tm‖L3‖∇PmT̃‖L6 ≤ C‖vm‖‖Tm‖1/2‖Tm‖1/2
H1 ‖PmT̃‖H2 .

It is observed that

(3.20)

∂PmT̃

∂z
= −αPmT̃

κ2
, at z = 0 ,

∂PmT̃

∂z
= 0 , at z = −H0 ,

PmT̃ = 0 , on ∂M0 × [−H0, 0] ,
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since PmT̃ =
∑m

j=1 β̃jΦj and each Φj satisfies the boundary condition in (3.6). Consequently, an application

of the elliptic regularity for PmT̃ gives

(3.21) ‖PmT̃‖H2 ≤ C‖A(PmT̃ )‖ .

In more detail, we have

(3.22)

A(PmT̃ ) = A
( m∑

j=1

β̃jΦj

)
=

m∑
j=1

β̃jAΦj =
m∑

j=1

λj β̃jΦj , by (3.6) ,

AT̃ = A
( ∞∑

j=1

β̃jΦj

)
=

∞∑
j=1

β̃jAΦj =
∞∑

j=1

λj β̃jΦj , by (3.6) ,

which along with the orthogonality of {Φj}j≥1 in L2(M) leads to

(3.23) ‖A(PmT̃ )‖2 =
m∑

j=1

λ2
j β̃

2
j ‖Φj‖2 ≤

∞∑
j=1

λ2
j β̃

2
j ‖Φj‖2 = ‖AT̃‖2 .

The combination of (3.21) and (3.22) results in

(3.24) ‖PmT̃‖H2 ≤ C‖AT̃‖ ≤ C‖T̃‖H2 .

The substitution of (3.24) into (3.19) leads to

(3.25)
∣∣∣∣∫
M

vmTm∇PmT̃ dx

∣∣∣∣ ≤ C‖vm‖‖Tm‖1/2
H1 ‖Tm‖1/2‖T̃‖H2 ≤ C‖Tm‖3/2

H1 ‖Tm‖1/2‖T̃‖H2 .

Similarly, we have the following estimates

(3.26)

∣∣∣∣∫
M

wmTm ∂zPmT̃ dx

∣∣∣∣ ≤ ‖wm‖L2‖Tm‖L3‖∂zPmT̃‖L6

≤ C‖Tm‖3/2
H1 ‖Tm‖1/2‖T̃‖H2 ,

(3.27)

∣∣∣∣(∇Tm,∇PmT̃
)

+
(
∂zTm, ∂zPmT̃

)∣∣∣∣ ≤ C‖Tm‖H1‖T̃‖H2 ,

(3.28)

∣∣∣∣∫
M0

α

κ2
(Tm(x, 0)− θ∗)PmT̃ (·, 0) dx

∣∣∣∣ ≤ C‖Tm‖H1‖T̃‖H2 ,

By the combination of (3.16), (3.17), (3.25)-(3.28), we arrive at

(3.29) ∂tTm ∈ a bounded set of L4/3
(
0, t1 ;H−2(M)

)
,

for any t1 > 0 and independent of m.

10



The estimates (3.16), (3.17), (3.29) imply the existence of T ∈ L∞(0, t1 ;L2)∩L2(0, t1 ;H1) and u , v , w ∈
L2(0, t1 ;L2) and a subsequence {Tm′ ,vm′ , wm′} such that

(3.30)

Tm′ ⇀ T weakly in L2(0, t1 ;H1) ,

Tm′
∗
⇀ T weak-star in L∞(0, t1 ;L2) ,

vm′ , wm′ ⇀ v , w weakly in L2(0, t1 ;L2) ,

With the use of (3.29), (3.30) and Aubin’s compactness theorem, we also have

(3.31) Tm′ −→ T strongly in L2(0, t1 ;L2) .

Then it is standard to pass to the limit in (3.9)-(3.11) and prove that the limit function (T,v, w) is

indeed a weak solution as defined in (3.2). The details are omitted for brevity. The proof for the first part

of Theorem 3.1 is completed.

Furthermore, we multiply (3.15) by φ(t), where φ ∈ D
(
(0, t1)

)
, φ(t) ≥ 0, and integrate in time:

(3.32)
∫ t1

0

(
‖Tm(·, t)‖2 + 2

∫ t

0

(κ1‖∇Tm(·, s)‖2 + κ2‖∂zTm(·, s)‖2) ds
)
φ(t) dt ≤

∫ t1

0

(
‖T0‖2 +C∗t

)
φ(t) dt .

Using the weak convergence (3.30) we pass the lower limit in this inequality and obtain

(3.33)
∫ t1

0

(
‖T (·, t)‖2 + 2

∫ t

0

(κ1‖∇T (·, s)‖2 + κ2‖∂zT (·, s)‖2) ds
)
φ(t) dt ≤

∫ t1

0

(
‖T0‖2 + C∗t

)
φ(t) dt ,

for all φ ∈ D
(
(0, t1)

)
, φ ≥ 0. This amounts to saying that the energy inequality (3.4) is satisfied for almost

every t ∈ [0, t1].

For the second part, we note that, by a direct calculation using the representation formulas for the

horizontal velocity field in (3.2b),

(3.34)
∫ 0

−H0

v(x, y, z) dz = ve(x, y) , ∀(x, y) ∈M0 .

This leads to the first identity of (3.5), due to the free divergence of ve given by formulas (2.10) and (2.13).

Moreover, the second identity of (3.5) is valid since ve satisfies the specified boundary condition on the

lateral boundary. The third identity of (3.5) is also found by direct verification using formula (3.2c). This

completes the proof of Theorem 3.1.
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