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Abstract
As V. I. Arnold observed in the 1960s, the Euler equations of incompressible fluid flow
correspond formally to geodesic equations in a group of volume-preserving diffeomor-
phisms. Working in an Eulerian framework, we study incompressible flows of shapes
as critical paths for action (kinetic energy) along transport paths constrained to have
characteristic-function densities. The formal geodesic equations for this problem are Euler
equations for incompressible, inviscid potential flow of fluid with zero pressure and sur-
face tension on the free boundary. The problem of minimizing this action exhibits an
instability associated with microdroplet formation, with the following outcomes: any two
shapes of equal volume can be approximately connected by an Euler spray—a count-
able superposition of ellipsoidal geodesics. The infimum of the action is the Wasserstein
distance squared, and is almost never attained except in dimension 1. Every Wasser-
stein geodesic between bounded densities of compact support provides a solution of the
(compressible) pressureless Euler system that is a weak limit of (incompressible) Euler
sprays.
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1 Introduction

1.1 Overview

The geometric interpretation of solutions of the Euler equations of incompressible inviscid
fluidflowas geodesic paths in the groupof volume-preserving diffeomorphismswas famously
pioneered by V. I. Arnold [3]. If we consider an Eulerian description for an incompressible
body of constant-density fluid moving freely in space, such geodesic paths correspond to
critical paths for the action

A =
∫ 1

0

∫
Rd

ρ|v|2 dx dt, (1.1)

where ρ = (ρt )t∈[0,1] is a path of characteristic-function densities transported by a velocity
field v ∈ L2(ρ dx dt) according to the continuity equation

∂tρ + ∇ · (ρv) = 0. (1.2)

Such characteristic-function densities ρt represent a fluid having shape �t at time t :

ρt = 1�t , t ∈ [0, 1]. (1.3)

Naturally, the velocity field must be divergence free in the interior of the fluid domain �t ,
satisfying ∇ · v = 0 there. Equation (1.2) holds in the sense of distributions in R

d × [0, 1],
interpreting ρv as 0 wherever ρ = 0.

In this Eulerian framework, it is natural to study the action in (1.1) subject to given endpoint
conditions of the form

ρ0 = 1�0 , ρ1 = 1�1 . (1.4)

These endpoint conditions differ from Arnold-style conditions that fix the flow-induced
volume-preserving diffeomorphism between �0 and �1, and correspond instead to fixing
only the image of this diffeomorphism. Imposing endpoint conditions in an Eulerian transport
framework as in (1.4) is exactly analogous to the fundamental study of Benamou and Brenier
[6] that relates the minimization of the action (1.1) without incompressibility constraints to
Wasserstein (Monge–Kantorovich) distance with quadratic cost.

Aswe show in Sect. 3 below, it turns out that the geodesic equations that result are precisely
the Euler equations for potential flow of an incompressible, inviscid fluid occupying domain
�t , with zero pressure and zero surface tension on the free boundary ∂�t . In short, the
geodesic equations are classic water wave equations with zero gravity and surface tension.
The initial-value problem for these equations has recently been studied in detail—the works
[14,15,37] extend the breakthrough works of Wu [57,58] to deal with nonzero vorticity and
zero gravity, and establish short-time existence and uniqueness for sufficiently smooth initial
data in certain bounded domains.

The problem of minimizing the action in (1.1) subject to the constraints above turns out
to be ill-posed if the dimension d > 1, as we will show in this paper. By this we mean that
action-minimizing paths that satisfy all the constraints (1.2), (1.3) and (1.4) do not exist in
general, even locally. Nevertheless, the infimum of the action defines a distance between
equal-volume sets which we may call shape distance, determined by

ds(�0,�1)
2 = inf A, (1.5)
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where the infimum is taken subject to the constraints (1.2), (1.3), (1.4) above. By the well-
known result of Benamou and Brenier [6], it is clear that

ds(�0,�1) ≥ dW (1�0 ,1�1), (1.6)

where dW (1�0 ,1�1) denotes the usual Wasserstein distance (Monge–Kantorovich distance
with quadratic cost) between the measures with densities 1�0 and 1�1 . This is so because the
result of [6] characterizes the squaredWasserstein distance dW (1�0 ,1�1)

2 as the infimum in
(1.5) subject to the same transport and endpoint constraints as in (1.2) and (1.4), but without
the constraint (1.3) that makes ρ a characteristic function.

Our objective in this paper is to develop several results that precisely relate the infi-
mum in (1.5) and corresponding geodesics (critical paths for action) on the one hand, to
Wasserstein distance and corresponding length-minimizing Wasserstein geodesics—also
known as displacement interpolants—on the other hand. Wasserstein geodesic paths typ-
ically do not have characteristic-function densities, and thus do not correspond to geodesics
for the shape distance ds . A common theme in our results is the observation that the
least-action problem in (1.5) is subject to an instability associated with microdroplet
formation.

1.2 Main results

Broadly speaking, our aim is to investigate the geometry of the space of shapes (corresponding
to characteristic-function densities), focusing on the geodesics for shape distance and the
corresponding distance induced by (1.5). Studies of this type have been carried out by many
other authors, as will be discussed in Sect. 1.3.

One issue about which we have little to say is that of geodesic completeness, in the sense
this term is used in differential geometry. Here this concept corresponds to global existence
in time for weak solutions of the free-boundary Euler equations. But in addition to other
well-known difficulties for Euler equations, in the present situation there arise further thorny
problems, such as collisions of fluid droplets, for example.

Geodesics between shapes.Our principal results instead address the question of determin-
ing which targets and sources are connected by geodesics for shape distance, and how these
relate to the infimization in (1.5). The general question of determining all exact connecting
critical paths is an interesting one that seems difficult to answer. In regard to a related question
in a space of smooth enough volume-preserving diffeomorphisms of a fixed manifold, Ebin
andMarsden in [22, 15.2(vii)] established a covering theorem showing that the geodesic flow
starting from the identity diffeomorphism covers a full neighborhood. By contrast, what our
first result will show is that for an arbitrary bounded open source domain �0, targets for
shape-distance geodesics are globally dense in the ‘manifold’ of bounded open sets of the
same volume. The idea is to construct geodesics comprised of tiny disjoint droplets (whichwe
call Euler sprays) that approximately reach an arbitrarily specified �1 as closely as desired
in terms of an optimal-transport distance.

Below, it is convenient to denote the distance between two bounded measurable sets
�0,�1 that is induced by Wasserstein distance by the overloaded notation

dW (�0,�1) = dW (1�0 ,1�1), (1.7)

and similarly with L p-Wasserstein distance dp for any value of p ∈ [1,∞].
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(a) Source disk Ω0 decom-
posed into microdroplets Bi at
t = 0.

(b) Displacement interpolants at
path midpoint t = 1

2 .
(c) Expanded target (1 +ε) T (Ω0)
at t = 1, indicating expanded
microdroplet images (1 + ε)T (Bi)
(dark) and ellipsoidal approxima-
tion of T (Bi) (light). ε = 0.25.

Fig. 1 Illustration ofWasserstein geodesic flow from�0 to�1 = T (�0), where T is the Brenier map. Source
�0 is decomposed into countably many small balls, few shown. Matching shades indicate corresponding
droplets transported bydisplacement interpolation.Euler spray droplets are nested insideWasserstein ellipsoids
and remain disjoint

Theorem 1.1 Let �0,�1 be any pair of bounded open sets in R
d with equal volume. Then

for any ε > 0, there is an Euler spray which transports the source �0 (up to a null set) to a
target �ε

1 satisfying d∞(�1,�
ε
1) < ε. The action Aε of the spray satisfies

ds(�0,�
ε
1)

2 ≤ Aε ≤ dW (�0,�1)
2 + ε.

The precise definition of an Euler spray and the proof of this result will be provided
in Sect. 4. A particular, simple geodesic for shape distance will play a special role in our
analysis. Namely, we observe in Proposition 3.4 that a path t �→ �t of ellipsoids determines
a critical path for the action (1.1) constrained by (1.2)–(1.4) if and only if the d-dimensional
vector a(t) = (a1(t), . . . , ad(t)), formed by the principal axis lengths, follows a geodesic
curve on the hyperboloid-like surface in Rd determined by the constraint that corresponds to
constant volume,

a1a2 · · · ad = const. (1.8)

The fluid motions corresponding to such ellipsoids turn out to be ones known to Dirichlet
[19].

To prove Theorem 1.1, we decompose the source domain �0, up to a set of measure zero,
as a countable union of tiny disjoint open balls using a Vitali covering lemma. These ‘micro-
droplets’ are transported by ellipsoidal geodesics that approximate a local linearization of
the Wasserstein geodesic (displacement interpolant) which produces straight-line transport
of points from the source �0 to the target �1. Crucially, the droplets remain disjoint (essen-
tially due to the convexity of the density along the straight Wasserstein transport paths). The
total action or cost along the resulting path of ‘spray’ densities is then shown to be close to
that attained by the Wasserstein geodesic.

The ideas behind the construction of the Euler sprays are illustrated in Fig. 1. The shaded
background in panel (c) indicates the target �1 = T (�0), expanded by a factor (1 + ε),
where T : �0 → �1 is a computed approximation to the Brenier (optimal transport) map.
The expanded images (1 + ε)T (Bi ) of balls Bi in the source are shown in dark shades, and
(nested inside) ellipsoidal approximations to T (Bi ) in corresponding light shades. We show
that along Wasserstein geodesics (displacement interpolants), nested images remain nested,
and that the ellipsoidal Euler geodesics (not shown) remain nested inside the Wasserstein-
transported ellipses indicated in light shades.
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The result of Theorem 1.1 directly implies that a natural relaxation of the shape distance
ds—the lower semicontinuous envelope with respect to Wasserstein distance—agrees with
the induced Wasserstein distance dW . (See [7, section 1.7.2] regarding the general notion of
relaxation of variational problems.) In fact, by a rather straightforward completion argument
we can identify the shape distance in (1.5) as follows.

Theorem 1.2 For every pair of bounded measurable sets in Rd of equal volume,

ds(�0,�1) = dW (�0,�1).

As is well known, Wasserstein distance between measures of a given mass that are sup-
ported inside a fixed compact set induces the topology of weak-� convergence. In this
topology, the closure of the set of such measures with characteristic-function densities is
the set of measurable functions ρ : Rd → [0, 1]with compact support. Theorem 1.2 above is
a corollary of the followingmore general result that indicates howEuler-spray geodesic paths
approximately connect arbitrary endpoints in this set. Both theorems are proved in Sect. 5.

Theorem 1.3 Let ρ0, ρ1 : Rd → [0, 1] be measurable functions of compact support that
satisfy

∫
Rd

ρ0 =
∫
Rd

ρ1.

Then

(a) For any ε > 0 there are open sets �0, �1 which satisfy

d∞(ρ0,1�0) + d∞(ρ1,1�1) < ε,

and are connected by an Euler spray whose total action Aε satisfies

Aε ≤ dW (ρ0, ρ1)
2 + ε.

(b) For any ε > 0 there is a path ρε = (ρε
t )t∈(0,1) on (0, 1) consisting of a countable

concatenation of Euler sprays, such that

ρε
t

�
⇀ρ0 as t → 0+, ρε

t
�

⇀ρ1 as t → 1−,

and the total action Aε of the path satisfies

Aε =
∫ 1

0

∫
Rd

ρε
t |vε|2 dx dt ≤ dW (ρ0, ρ1)

2 + ε.

The results of Theorems 1.1 and 1.3 concern geodesics for shape distance that only approx-
imately connect arbitrary sources �0 and targets �1. A uniqueness property of Wasserstein
geodesics allows us to establish the following sharp criterion for existence and non-existence
of length-minimizing shape geodesics that exactly connect source to target.

Theorem 1.4 Let �0,�1 be bounded open sets in R
d with equal volume, and let ρ =

(ρt )t∈[0,1] be the density along theWasserstein geodesic path that connects1�0 and1�1 . Then
the infimum for shape distance in (1.5) is achieved by some path satisfying the constraints
(1.2), (1.3), (1.4) if and only if ρ is a characteristic function.
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For dimension d = 1 the Wasserstein density is always a characteristic function. For
dimension d > 1 however, this property of being a characteristic function, together with
convexity of the density along transport lines, requires that the Wasserstein geodesic is given
piecewise by rigid translation. See Corollary 5.8 and Remark 5.9 in Sect. 5.1.

Limits of Euler sprays. For the Euler sprays constructed in the proof of Theorem 1.1,
the fluid domains �t do not typically have smooth boundary, due to the presence of cluster
points of the countable set of microdroplets. The geodesic equations that they satisfy, then,
are not quite classical free-boundary water-wave equations. Rather, our Euler sprays provide
a family of weak solutions (ρε, vε, pε) to the following system of Euler equations:

∂tρ + ∇ · (ρv) = 0, (1.9)

∂t (ρv) + ∇ · (ρv ⊗ v) + ∇ p = 0, (1.10)

with the “incompressibility” constraint that ρε is a characteristic function as in (1.3). Both of
these equations hold in the sense of distributions onRd ×[0, 1], which means the following:
For any smooth test functions q ∈ C∞

c (Rd × [0, 1],R) and ṽ ∈ C∞
c (Rd × [0, 1],Rd),

∫ 1

0

∫
Rd

ρ(∂t q + v · ∇q) dx dt =
∫
Rd

ρq dx

∣∣∣∣
t=1

t=0
, (1.11)

∫ 1

0

∫
Rd

ρv · (∂t ṽ + v · ∇ṽ) + p∇ · ṽ dx dt =
∫
Rd

ρv · ṽ dx

∣∣∣∣
t=1

t=0
. (1.12)

Now, limits as ε → 0 of these Euler-spray geodesics can be considered. We find it is
possible to approximate a general family of Wasserstein geodesic paths that connect any two
equal-mass measures having bounded densities and compact support. Scaling so the densities
are bounded by 1, we can approximate in the weak-� sense by a sequence of characteristic-
function initial and final data ρk

0 = 1�k
0
, ρk

1 = 1�k
1
, and obtain the following.

Theorem 1.5 Let ρ0, ρ1 : Rd → [0, 1] be measurable functions of compact support that
satisfy ∫

Rd
ρ0 =

∫
Rd

ρ1.

Let (ρ, v)be the density and transport velocity determined by the uniqueWasserstein geodesic
that connects the measures with densities ρ0 and ρ1 as described in Sect. 2.

Then there is a sequence of weak solutions (ρk, vk, pk) to (1.11)–(1.12), associated to
Euler sprays as provided by Theorem 1.1, that converge to (ρ, v, 0), and (ρ, v) is a weak
solution of the pressureless Euler system

∂tρ + ∇ · (ρv) = 0, (1.13)

∂t (ρv) + ∇ · (ρv ⊗ v) = 0. (1.14)

The convergence holds in the the following sense: pk → 0 uniformly, and

ρk �
⇀ρ, ρkvk

�
⇀ρv, ρkvk ⊗ vk

�
⇀ρv ⊗ v, (1.15)

weak-� in L∞ on Rd × [0, 1].
This result, proved in Sect. 6, shows that one can approximate a large family of solutions
of pressureless Euler equations, ones coming from Wasserstein geodesics having bounded
densities of compact support, by solutions of incompressible Euler equations with vacuum.
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The weak-� convergence results stated in (1.15) indicate (correctly) the presence of oscil-
lations in the approximating sequence. This convergence can be strengthened, however, in
terms of the TL p metric that was introduced in [28] to compare two functions that are abso-
lutely continuous with respect to different probability measures—see Sect. 6.2. This provides
an appropriate framework to compare the velocity fields of Wasserstein geodesics to those
of the approximating Euler sprays.

Theorem 1.6 Under the same hypotheses as Theorem 1.5, we have the following. There is
a sequence of weak solutions (ρk, vk, pk) to (1.11)–(1.12), associated to Euler sprays as
provided by Theorem 1.1, which in addition to conclusions of Theorem 1.5 satisfies

sup
t∈[0,1]

dTL2((ρk(t), vk(t)), (ρ(t), v(t))) → 0 as k → ∞, (1.16)

sup
t∈[0,1]

dTL1((ρk(t), vk(t) ⊗ vk(t)), (ρ(t), v(t) ⊗ v(t))) → 0 as k → ∞. (1.17)

The result of Theorem 1.6 essentially shows that while oscillations exist in space and
time for the densities ρk and velocities vk in Theorem 1.5, there are no oscillations following
appropriately matched flow lines. (For a furthermanifestation of this see Corollary 6.7, which
establishes TL2 convergence of the Lagrangian flow maps for the Euler sprays.)

Our analysis of convergence in the TL p topology is based upon an improved stability
result regarding the stability of transport maps. We describe and establish this stability result
in Theorem B.1 in “Appendix 1”. We believe this result is of independent interest, as the TL p

metric allows one to quantify the stability of displacement interpolation in a stronger way
than weak convergence.

Shape distance without volume constraint. Our investigations in this paper were moti-
vated in part by an expanded notion of shape distance that was introduced and examined
by Schmitzer and Schnörr in [48]. These authors considered a shape distance determined
by restricting the Wasserstein metric to smooth paths of ‘shape measures’ consisting of
uniform distributions on bounded open sets in R

2 with connected smooth boundary. This
allows one to naturally compare shapes of different volume. In our present investigation,
the only smoothness properties of shapes and paths that we require are those intrinsically
associated with Wasserstein distance. Thus, we investigate the geometry of a ‘submanifold’
of the Wasserstein space consisting of uniform distributions on shapes regarded as arbitrary
bounded measurable sets in Rd . As we will see in Sect. 7 below, geodesics for this extended
shape distance correspond to amodifiedwater-wave systemwith spatially uniform compress-
ibility and zero average pressure. In Theorem 7.1 belowwe extend the result of Theorem 1.2,
for volume-constrained paths of shapes, to deal with paths of uniform measures connecting
two arbitrary bounded measurable sets. We show that the extended shape distance again
agrees with the Wasserstein distance between the endpoints. The proof follows directly from
the construction of concatenated Euler sprays used to prove Theorem 1.3(b).

1.3 Related work on geometry of image and shape spaces

The shape distance that we defined in (1.5) is related to a large body of work in imaging
science and signal processing.

The general problem of finding good ways to compare two signals (such as time series,
images, or shapes) is important in a number of application areas, including computer vision,
machine learning, and computational anatomy. The idea to use deformations as a means of
comparing images goes back to pioneering work of D’Arcy Thompson [50].
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Distances derived from optimal transport theory (Monge–Kantorovich, Wasserstein, or
earth-mover’s distance) have been found useful in analyzing images by a number of workers
[27,31,45,49,54,55]. The transport distance with quadratic cost (Wasserstein distance) is
special as it provides a (formal) Riemannian structure on spaces of measures with fixed total
mass [2,44,52].

Methods which endow the space of signals with the metric structure of a Riemannian
manifold are of particular interest, as they facilitate a variety of image processing tasks.
This geometric viewpoint, pioneered by Dupuis et al. [21,30], Trouvé [51], Younes [59] and
collaborators, has motivated the study of a variety of metrics on spaces of images over a
number of years—see [21,29,33,48,60] for a small selection.

Themain thrust of theseworks is to studyRiemannianmetrics and the resulting distances in
the space of image deformations (diffeomorphisms). Connections with the Arnold viewpoint
of fluid mechanics were noted from the outset [59], and have been further explored by Holm,
Trouvé, Younes and others [29,33,60]. This work has led to the Euler-Poincaré theory of
metamorphosis [33], which sets up a formalism for analyzing least-action principles based
on Lie-group symmetries generated by diffeomorphism groups.

A different way to consider shapes is to study them only via their boundary, and consider
Riemannianmetrics defined in terms of normal velocity of the boundary. Such a point of view
has been taken by Michor, Mumford and collaborators [11,41,42,61]. As they show in [41],
a metric given by only the L2 norm of normal velocity does not lead to a viable geometry, as
any two states can be connected by an arbitrarily short curve. On the other hand it is shown
in [11] that if two or more derivatives of the normal velocity are penalized, then the resulting
metric on the shape space is geodesically complete.

In this context, we note that what our work shows is that if the metric is determined by
the L2 norm of the transport velocity in the bulk, then the global metric distance is not zero,
but that it is still degenerate in the sense that a length-minimizing geodesic typically may not
exist in the shape space. While our results do not directly involve smooth deformations of
smooth shapes, it is arguably interesting to consider shape spaces which permit ‘pixelated’
approximations, and our results apply in that context.

We speculate that to create a shape distance that (even locally) admits length-minimizing
paths in the space of shapes, one needs to prevent the creation a large perimeter at negligible
cost. This is somewhat analogous to the motivation for the metrics on the space of curves
considered by Michor and Mumford [41]. Possibilities include introducing a term in the
metric which penalizes deforming the boundary, or a term which enforces greater regularity
for the vector fields considered.

A number of existing works obtain regularity of geodesic paths and resulting diffeo-
morphisms by considering Riemannian metrics given in terms of (second-order or higher)
derivatives of velocities, as in the Large Deformation Diffeomorphic Metric Mapping
(LDDMM) approach of [5], see [12]. Metrics based on conservative transport which penalize
only one derivative of the velocity field are connected with viscous dissipation in fluids and
have been considered by Fuchs et al. [26], Rumpf, Wirth and collaborators [46,56], as well
as by Brenier, Otto, and Seis [9], who established a connection to optimal transport.

1.4 Outline

The plan of this paper is as follows. In Sect. 2 we collect some basic facts and estimates
that concern geodesics for Monge–Kantorovich/Wasserstein distance. In Sect. 3 we derive
formally the geodesic equations for paths of shape densities and describe the special class
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of ellipsoidal solutions. The construction of Euler sprays and the proof of Theorem 1.1 is
carried out in Sect. 4. Theorems 1.2 and 1.3 are proved in Sect. 5. In Sect. 6 we study weak
convergence of Euler sprays and provide the proofs of Theorem 1.5 and Theorem 1.6. The
main part of the paper concludes in Sect. 7 with a treatment of the extended notion of shape
distance related to that examined by Schmitzer and Schnörr in [48]. Two appendices provide
(a) proofs of a few basic facts about subgradients, and (b) a treatment of the TL p topology
used in Sect. 6.2.

2 Preliminaries: Wasserstein geodesics between open shapes

In this section we recall some basic properties of the standard minimizing geodesic paths
(displacement interpolants) for the Wasserstein or Monge–Kantorovich distance between
shape densities on open sets, and establish some basic estimates. Two properties that are key
in the sequel are that the density ρ is (i) smooth on an open subset of full measure, and (ii)
it is convex along the corresponding particle paths, see Lemma 2.1.

Let �0 and �1 be two bounded open sets in R
d with equal volume. Let μ0 and μ1 be

measures with respective densities

ρ0 = 1�0 , ρ1 = 1�1 .

As is well known [8,35], there exists a convex function ψ such that the a.e.-defined map
T = ∇ψ (called the Brenier map in [52]) is the optimal transportation map between �0 and
�1, pushing μ0 forward to μ1, corresponding to the quadratic cost. Moreover, this map is
unique a.e. in �0; see [8] or [52, Thm. 2.32].

McCann [40] later introduced a natural curve t �→ μt that interpolates between μ0 and
μ1, called the displacement interpolant, which can be described as the push-forward of the
measure μ0 by the interpolation map Tt given by

Tt (z) = (1 − t)z + t∇ψ(z), 0 ≤ t ≤ 1. (2.1)

Because ψ is convex, ∇ψ is monotone, satisfying 〈∇ψ(z) − ∇ψ(ẑ), z − ẑ〉 ≥ 0 for all z, ẑ.
Hence the interpolating maps Tt are injective for t ∈ [0, 1), satisfying

|Tt (z) − Tt (ẑ)| ≥ (1 − t)|z − ẑ|. (2.2)

Note that particle paths z �→ Tt (z) follow straight lines with constant velocity:

v(Tt (z), t) = ∇ψ(z) − z. (2.3)

Furthermore [6], μt has density ρt that satisfies the continuity equation

∂tρ + div(ρv) = 0, (2.4)

and in terms of these quantities, the Wasserstein distance satisfies

dW (μ0, μ1)
2 =

∫
�0

|∇ψ(z) − z|2 dz =
∫ 1

0

∫
�t

ρ|v|2 dx dt . (2.5)

The displacement interpolant has the property that

dW (μs, μt ) = (t − s)dW (μ0, μ1), 0 ≤ s ≤ t ≤ 1. (2.6)

The property (2.6) implies that the displacement interpolant is a constant-speed geodesic
(length-minimizing path) with respect to Wasserstein distance. The displacement interpolant
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t �→ μt is the unique constant-speed geodesic connecting μ0 and μ1, due to the uniqueness
of the Brenier map and Proposition 5.32 of [47] (or see [1, Thm. 3.10]). For brevity the path
t �→ μt is called the Wasserstein geodesic from μ0 to μ1.

At this point it is convenient to mention that the result of Theorem 1.4, providing a sharp
criterion for the existence of a minimizer for the shape distance in (1.5), will be derived by
combining the uniqueness property ofWasserstein geodesicswith the result of Theorem1.2—
see the end of Sect. 5 below.

We note here that the L∞ transport distance may be defined as a minimum over maps S
that push forward the measure μ0 to μ1 [47, Thm. 3.24] and satisfies the estimate

d∞(μ0, μ1) = min{‖S − id‖L∞(μ0) : S	μ0 = μ1}
≥ |�0|−1/2 min{‖S − id‖L2(μ0)

: S	μ0 = μ1}
= |�0|−1/2dW (�0,�1).

(2.7)

3 Geodesics and incompressible fluid flow

3.1 Incompressible Euler equations for smooth critical paths

In this subsection, for completeness we derive the Euler fluid equations that formally describe
smooth geodesics (paths with stationary action) for the shape distance in (1.5). To cope with
the problem of moving domains we work in a Lagrangian framework, computing variations
with respect to flow maps that preserve density and the endpoint shapes �0 and �1.

Toward this end, suppose that

Q =
⋃

t∈[0,1]
�t × {t} ⊂ R

d × [0, 1] (3.1)

is a space–time domain generated by deformation of �0 due to a velocity field v : Q̄ → R
d

that is smooth up to the boundary. That is, the t-cross section of Q is given by

�t = X(�0, t), (3.2)

where X is the Lagrangian flow map associated to v, satisfying

Ẋ(z, t) = v(X(z, t), t), X(z, 0) = z, (3.3)

for all (z, t) ∈ �0 × [0, 1].
For any (smooth) extension of v toRd ×[0, 1], the solution of the mass-transport equation

in (1.2) with given initial density ρ0 supported in �̄0 is

ρ(x, t) = ρ0(z) det

(
∂X

∂z
(z, t)

)−1

, x = X(z, t) ∈ �t ,

with ρ = 0 outside Q̄.
Considering a family ε �→ Xε of flowmaps smoothly depending on a variational parameter

ε, the variation δX = (∂Xε/∂ε)|ε=0 induces a variation in density δρ = (∂ρε/∂ε)|ε=0

satisfying

− δρ

ρ
= δ log det

(
∂X

∂z
(z, t)

)
= tr

(
∂δX

∂z

(
∂X

∂z

)−1
)

(3.4)
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Introducing ṽ(x, t) = δX(z, t), x = X(z, t), it follows

− δρ

ρ
=

∑
j

∂ṽ j

∂x j
= ∇ · ṽ. (3.5)

For variations that leave the density invariant, necessarily ∇ · ṽ = 0 inside Q.
We now turn to consider the variation of the action or transport cost as expressed in terms

of the flow map:

A =
∫ 1

0

∫
Rd

ρ(x, t)|v(x, t)|2dx dt =
∫ 1

0

∫
�0

|Ẋ(z, t)|2dz dt . (3.6)

For flows preserving ρ = 1 in Q̄, of course ∇ · v = 0. Computing the first variation of A
about such a flow, after an integration by parts in t and changing to Eulerian variables, we
find

δA
2

=
∫ 1

0

∫
�0

Ẋ · δ Ẋ dz dt

=
∫

�0

Ẋ · δX dz

∣∣∣∣
t=1

−
∫ 1

0

∫
�0

Ẍ · δX dz dt

=
∫

�t

v · ṽ dx

∣∣∣∣
t=1

−
∫ 1

0

∫
�t

(∂tv + v · ∇v) · ṽ dx dt . (3.7)

Recall that any L2 vector field u on�t has a unique (standard) Helmholtz decomposition,
as the sum of a gradient and a field L2-orthogonal to all gradients, which is divergence-free
with zero normal component at the boundary:

u = ∇ p + w, ∇ · w = 0 in �t , w · n = 0 on ∂�t . (3.8)

We make use of a variant of this decomposition [16, p. 215], which states that u has a
unique L2-orthogonal decomposition as the sum of a divergence-free field and a gradient of
a function that vanishes on the boundary:

u = w + ∇ p, ∇ · w = 0 in �t , p = 0 on ∂�t . (3.9)

Requiring δA = 0 for arbitrary virtual displacements having ∇ · ṽ = 0 (and ṽ = 0 at t = 1
at first), we find that necessarily u = −(∂tv + v · ∇v) has a representation as in (3.9) with
w = 0. Thus the incompressible Euler equations hold in Q:

∂tv + v · ∇v + ∇ p = 0, ∇ · v = 0 in Q, (3.10)

where p : Q̄ → R is smooth and satisfies

p = 0 on ∂�t . (3.11)

Finally, we may consider variations ṽ that do not vanish at t = 1. However, we require
ṽ · n = 0 on ∂�1 in this case because the target domain �1 should be fixed. That is, the
allowed variations in the flow map X must fix the image at t = 1:

�1 = X(�0, 1). (3.12)

The vanishing of the integral term at t = 1 in (3.7) then leads to the requirement that v is a
gradient at t = 1. For t = 1 we must have

v = ∇φ in �t . (3.13)
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We claim this gradient representation actuallymust hold for all t ∈ [0, 1]. Let v = ∇φ+w

be the Helmholtz decomposition of v, and for small ε consider the family of flow maps
generated by

Ẋε(z, t) = (v + εw)(Xε(z, t), t), Xε(z, 0) = z. (3.14)

Corresponding to this family, the action from (3.6) takes the form

Aε =
∫ 1

0

∫
�0

|Ẋε(z, t)|2dz dt =
∫ 1

0

∫
�t

|∇φ|2 + |(1 + ε)w|2 dx dt (3.15)

Because w · n = 0 on ∂�t , the domains �t do not depend on ε, and the same is true of ∇φ

and w, so this expression is a simple quadratic polynomial in ε. Thus

1

2

dAε

dε

∣∣∣∣
ε=0

=
∫ 1

0

∫
�t

|w|2 dx dt (3.16)

and consequently it is necessary that w = 0 if δA = 0. This proves the claim.
The Euler equation in (3.10) is now a spatial gradient, and one can add to φ a function of

t alone (possibly different on each component of Q) to ensure that

∂tφ + 1

2
|∇φ|2 + p = 0, �φ = 0 in �t . (3.17)

The equations boxed above, including (3.17) together with the zero-pressure boundary con-
dition (3.11) and the kinematic condition that the boundary of�t moves with normal velocity
v · n (coming from (3.2)–(3.3)), comprise what we shall call the Euler droplet equations, for
incompressible, inviscid, potential flow of fluid with zero surface tension and zero pressure
at the boundary.

Definition 3.1 A smooth solution of the Euler droplet equations is a triple (Q, φ, p) such
that φ, p : Q̄ → R are smooth and the Eqs. (3.1), (3.2), (3.3), (3.13), (3.17), (3.11) all hold.

Proposition 3.2 For smooth flows X that deform �0 as above, that respect the density con-
straint ρ = 1 and fix �1 = X(�0, 1), the action A in (3.6) is critical with respect to smooth
variations if and only if X corresponds to a smooth solution of the Euler droplet equations.

3.2 Weak solutions and Galilean boost

Here we record a couple of simple basic properties of solutions of the Euler droplet equations.

Proposition 3.3 Let (Q, φ, p) be a smooth solution of the Euler droplet equations. Let ρ =
1Q̄ and v = 1Q̄∇φ, and extend p as zero outside Q̄.

(a) The Euler equations (1.9)–(1.10) hold in the sense of distributions on Rd × [0, 1].
(b) The mean velocity

v̄ = 1

|�t |
∫

�t

v(x, t) dx (3.18)

is constant in time, and the action decomposes as

A =
∫ 1

0

∫
�t

|v − v̄|2dx dt + |�0||v̄|2. (3.19)
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(c) Given any constant vector b ∈ R
d , another smooth solution (Q̂, φ̂, p̂) of the Euler droplet

equations is given by a Galilean boost, via

Q̂ =
⋃

t∈[0,1]
(�t + bt) × {t}, (3.20)

φ̂(x + bt, t) = φ(x, t) + b · x + 1

2
|b|2t, p̂(x + bt, t) = p(x, t). (3.21)

Proof To prove (a), what we must show is the following: For any smooth test functions
q ∈ C∞

c (Rd × [0, 1],R) and ṽ ∈ C∞
c (Rd × [0, 1],Rd),

∫
Q
(∂t q + v · ∇q) dx dt =

∫
�t

q dx

∣∣∣∣
t=1

t=0

(3.22)

∫
Q

v · (∂t ṽ + v · ∇ṽ) + p∇ · ṽ dx dt =
∫

�t

ṽ · v dx

∣∣∣∣
t=1

t=0

(3.23)

Changing to Lagrangian variables via x = X(z, t), writing q̂(z, t) := q(X(z, t), t), and
using incompressibility, equation (3.22) is equivalent to

∫ 1

0

∫
�0

d

dt
q̂(z, t) dz dt =

∫
�0

q̂(z, t) dz

∣∣∣∣
t=1

t=0
. (3.24)

Evidently this holds. In (3.23), we integrate the pressure term by parts, and treat the rest as
in (3.7) to find that (3.23) is equivalent to∫

Q
(∂tv + v · ∇v + ∇ p) · ṽ dx dt = 0. (3.25)

Then (a) follows. The proof of parts (b) and (c) is straightforward. ��

3.3 Ellipsoidal Euler droplets

The initial-value problem for the Euler droplet equations is a difficult fluid free boundary
problem, one that may be treated by the methods developed by Wu [57,58]. For flows with
vorticity and smooth enough initial data, smooth solutions for short time have been shown
to exist in [14,15,37].

In this section, we describe simple, particular Euler droplet solutions for which the fluid
domain �t remains ellipsoidal for all t . As mentioned by Longuet-Higgins [39], equations
governing such solutions were known to Dirichlet [19] and are discussed in Lamb’s treatise
[36]. Our result below associates Dirichlet’s ellipsoids with an interesting geodesic interpre-
tation.

Proposition 3.4 Given a constant r > 0, let a(t) = (a1(t), . . . , ad(t)) be any constant-speed
geodesic on the surface in R

d+ determined by the relation

a1 · · · ad = rd . (3.26)

Then this determines an Euler droplet solution (Q, φ, p) with �t equal to the ellipsoid Ea(t)

given by

Ea =
{
x ∈ R

d :
∑
j

(x j/a j )
2 < 1

}
, (3.27)
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and potential and pressure given by

φ(x, t) = 1

2

∑
j

ȧ j x2j
a j

− β(t), p(x, t) = β̇

⎛
⎝1 −

∑
j

x2j
a2j

⎞
⎠ , (3.28)

with

β̇(t) = 1

2

∑
j ȧ

2
j /a

2
j∑

j 1/a
2
j

. (3.29)

Proof The flow X associated with a velocity potential of the form in (3.28) must satisfy

Ẋ j = η j (t)X j , η j = ȧ j

a j
, j = 1, . . . , d. (3.30)

Then for all j, (X j/a j )˙= 0 and hence

X j (z, t) = a j (t)

a j (0)
z j , (3.31)

so the flow is purely dilational along each axis and consequently ellipsoids are deformed to
ellipsoids as claimed. Note that incompressibility corresponds to the relation

�φ =
∑
j

η j =
∑
j

ȧ j

a j
= d

dt
log(a1 · · · ad) = 0.

From (3.28) we next compute

∂tφt + 1

2
|∇φ|2 = −β̇ + 1

2

∑
j

(η̇ j + η2j )x
2
j = −β̇ + 1

2

∑
j

ä j x2j
a j

.

This must equal zero on the boundary where x j = a j s j with s ∈ Sd−1 arbitrary. We infer
that for all j ,

a j ä j = 2β̇. (3.32)

The expression for p in (3.28) in terms of β̇ then follows from (3.17), and p = 0 on ∂�t .
We recover β̇ by differentiating the constraint twice in time. We find

0 =
∑
j

(∑
k

a1 · · · ad ȧk
ak

ȧ j

a j
+ a1 . . . ad

a j ä j − ȧ2j
a2j

)
= 0 +

∑
j

2β̇ − ȧ2j
a2j

whence (3.29) holds.
To get the first integral that corresponds to kinetic energy, multiply (3.32) by 2ȧ j/a j and

sum to find

0 =
∑
j

ȧ j ä j , whence
∑
j

ȧ2j = c2

and we see that c = |ȧ(t)| is the constant speed of motion.
It remains to see that (3.32) are the geodesic equations on the constraint surface. This

follows because (3.32) says that ä is parallel to the gradient of F(a) = ∑
j log a j , and the

constraint (3.26) corresponds to staying on the level set F(a) = log rd . This finishes the
demonstration of Proposition 3.4. ��
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Remark 3.5 For later reference, we note that ä j ≥ 0 for all t , due to (3.32) and (3.29).

Remark 3.6 Given any two points on the surface described by the constraint (3.26), there
exists a constant-speed geodesic connecting them. This fact is a straightforward consequence
of theHopf-Rinow theoremongeodesic completeness [34, Theorem1.7.1], because all closed
and bounded subsets on the surface are compact.

Remark 3.7 The Euclideanmetric on the hyperboloid-like surface arises, in fact, as themetric
induced by the Wasserstein distance [53, Chap. 15], because, given any incompressible path
t �→ X(·, t) of dilations, satisfying (3.30) for some smooth η(t) and with a1 · · · ad = rd ,

∫
�t

|v|2 dx =
∫

�t

∑
j

η2j x
2
j dx =

∑
j

ȧ2j

∫
|z|≤1

z2j dz r
d = ωdrd

d + 2

∑
j

ȧ2j ,

where ωd = |B(0, 1)| is the volume of the unit ball in Rd . For a geodesic, this expression is
constant for t ∈ [0, 1] and equals the action Aa in (3.6) for the ellipsoidal Euler droplet.

3.4 EllipsoidalWasserstein droplets

Let (Q, φ, p) be an ellipsoidal Euler droplet solution as given by Proposition 3.4, so that
�0 = Ea(0) and �1 = Ea(1) are co-axial ellipsoids. We will call the optimal transport map
T between these co-axial ellipsoids an ellipsoidal Wasserstein droplet. This is described and
related to the Euler droplet as follows.

Given A ∈ R
d , let DA = diag(A1, . . . , Ad) denote the diagonal matrix with diagonal

A. Then, given �0 = Ea(0), �1 = Ea(1) as above, the particle paths for the Wasserstein
geodesic between the corresponding shape densities are given by linear interpolation via

Tt (z) = DA(t)D
−1
A(0)z, A(t) = (1 − t)a(0) + ta(1). (3.33)

Note that a point z ∈ EA if and only if D−1
A z lies in the unit ball B(0, 1) in R

d . Thus the
Wasserstein geodesic flow takes ellipsoids to ellipsoids:

Tt (�0) = EA(t), t ∈ [0, 1].
Let a(t), t ∈ [0, 1], be the geodesic on the hyperboloid-like surface that corresponds to

the Euler droplet that we started with. Recall that �t = Ea(t) from Proposition 3.4. Because
each component t �→ a j (t) is convex by Remark 3.5, it follows that for each j = 1, . . . , d ,

a j (t) ≤ A j (t), t ∈ [0, 1]. (3.34)

Because EA = DAB(0, 1), we deduce from this the following important nesting property,
which is illustrated in Fig. 2 (where for visibility the ellipses at times t = 1

2 and t = 1 are
offset horizontally by b

2 and b respectively).

Proposition 3.8 Given any corresponding ellipsoidal Euler droplet and Wasserstein droplet
that deform one ellipsoid �0 = Ea(0) to another �1 = Ea(1), the Euler domains remain
nested inside their Wasserstein counterparts, with

X(�0, t) = �t ⊂ Tt (�0), t ∈ [0, 1]. (3.35)
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Fig. 2 Euler droplet (light blue)
deforming a circle to an ellipse,
nested inside a Wasserstein
droplet (dark orange). Tracks of
the center and endpoints of
vertical major axis are indicated
for both droplets (color figure
online)

Remark 3.9 The dilational flow X from (3.31) associated with the Euler droplet is given
by X(z, t) = Da(t)D

−1
a(0)z in terms of the notation used in (3.33). Due to (3.34), this flow

satisfies, for each j = 1, . . . , d and z ∈ R
d ,

|X j (z, t)| = a j (t)

a j (0)
|z j | ≤ A j (t)

A j (0)
|z j | = |Tt (z) j |.

For the nesting property X(�̂, t) ⊂ Tt (�̂) to hold, convexity of �̂ is not sufficient in general.
However, a sufficient condition is that whenever η j ∈ [0, 1] for j = 1, . . . , d ,

x = (x1, . . . , xd) ∈ �̂ implies Dηx = (η1x1, . . . , ηnxn) ∈ �̂.

3.5 Action estimate for ellipsoidal Euler droplets

For later use below, we describe how to bound the action for a boosted ellipsoidal Euler
droplet in terms of action for the corresponding boosted ellipsoidal Wasserstein droplet, in
the case when the source and target domains are respectively a ball and translated ellipse:

Lemma 3.10 Given r > 0, â ∈ R
d+ with â1 · · · âd = rd , and b ∈ R

d , let

�0 = B(0, r), �1 = Eâ + b.

Let a(t), t ∈ [0, 1], be a minimizing geodesic on the surface (3.26) with

a(0) = r̂ = (r , . . . , r), a(1) = â = (â1, . . . , âd).

Let (Q, φ, p) be the ellipsoidal Euler droplet solution corresponding to the geodesic a, and
let Aa denote the corresponding action. Then

dW (1�0 ,1�1)
2 ≤ Aa ≤ dW (1�0 ,1�1)

2 + λ
4

λ2
ωdr

d+2, (3.36)

where

λ = min
âi
r

, λ = max
âi
r

. (3.37)
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Proof First, consider the transport cost for mapping �0 to �1. The (constant) velocity of
particle paths starting at x ∈ B(0, r) is

u(x) = (r−1Dâ − I )x + b,

and the squared transport cost or action is (substituting x = r z)

dW (1�0 ,1�1)
2 =

∫
B(0,r)

|u(x)|2 dx =
∑
j

∫
B(0,r)

(
â j

r
− 1

)2

z2j + b2j dz

= ωdr
d
(

|b|2 + | Ȧ|2
d + 2

)
, (3.38)

where A(t) = (1 − t)r̂ + t â is the straight-line path from r̂ to â.
The mass density inside the transported ellipsoid Tt (�0) is constant in space, given by

ρ(t) = det DT−1
t =

∏
i

r

Ai (t)
=

∏
i

(
1 − t + t

âi
r

)−1

.

Due to Remark 3.7, the corresponding action for the Euler droplet is bounded by that of the
constant-volume path found by dilating the ellipsoidal Wasserstein droplet: Let

γ j (t) = ρ(t)1/d A j (t). (3.39)

Then the flow St (z) = r−1Dγ (t)z is dilational and volume-preserving (with
∏

j γ j (t) ≡ rd )
and has zero mean velocity. The flow z �→ St (z) + tb takes �0 to �1, as on Fig. 2, with
action

Aγ =
∫ 1

0

∫
B(0,r)

∑
j

(
b j + γ̇ j z j

r

)2

dz dt

= ωdr
d
(

|b|2 + 1

d + 2

∫ 1

0
|γ̇ |2 dt

)
. (3.40)

Note that
∑

j (γ̇ j/γ j )
2 ≤ ∑

j ( Ȧ j/A j )
2, because

γ̇ j

γ j
= Ȧ j

A j
+ ρ̇

dρ
= Ȧ j

A j
− 1

d

∑
i

Ȧi

Ai
.

Because ρ is convex we have ρ ≤ 1, hence γ 2
j ≤ max A2

i . Thus

|γ̇ |2 ≤ (max A2
i )

∑
j

Ȧ2
j

A2
j

≤
(
max A2

i

min A2
i

)
| Ȧ|2 ≤

(
max â2i
min â2i

)
|â − r̂ |2. (3.41)

Plugging this back into (3.40) and using (3.38), we deduce that

Aγ ≤ dW (1�0 ,1�1)
2 + ωdrd

d + 2

(
max â2i
min â2i

)
|â − r̂ |2. (3.42)

With the notation in (3.37), λ and λ respectively are the maximum and minimum eigenvalues
of DTt , and because |1 − âi/r | ≤ max(1, âi/r) ≤ λ for all i = 1, . . . , d , this estimate
implies
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Aa ≤ Aγ ≤ dW (1�0 ,1�1)
2 + d

d + 2

λ
4

λ2
ωdr

d+2. (3.43)

This yields (3.36) and completes the proof. ��

3.6 Velocity and pressure estimates

Lastly in this section we provide bounds on the velocity v = ∇φ and pressure p for the
ellipsoidal Euler droplet solutions.

Due to the action-minimizing property of the geodesic a(t), and because 1/a2j ≤∑
i (1/a

2
i ), the pressure in (3.28) is bounded in terms of the dilated path γ from (3.39),

by

0 ≤ p ≤ β̇ ≤ 1

2

∑
j

ȧ2j ≤ 1

2

∫ 1

0
|γ̇ |2 dt

Using (3.41) and the notation in (3.37), it follows

0 ≤ p ≤ λ
4

λ2
r2d. (3.44)

For the velocity, it suffices to note that in (3.30), |X j/a j | ≤ 1 hence |Ẋ |2 ≤ ∑
j ȧ

2
j . Thus

the same bounds as above apply and we find

|∇φ|2 ≤ λ
4

λ2
r2d. (3.45)

Finally, for a boosted ellipsoidal Euler droplet, with velocity boosted as in (3.21) by a
constant vector b ∈ R

d , the same pressure bound as above in (3.44) applies, and the same
bound on velocity becomes

|∇φ̂ − b|2 ≤ λ
4

λ2
r2d. (3.46)

We remark that in the constructions that we make in the next section, for a given distortion

ratio λ
4
/λ2, the bounds in (3.44)–(3.46) can be made arbitrarily small by requiring r2 is

small.

4 Euler sprays

Heuristically, an Euler spray is a countable disjoint superposition of solutions of the Euler
droplet equations. Recall that the notation �nQn means the union of disjoint sets Qn .

Definition 4.1 An Euler spray is a triple (Q, φ, p), with Q a bounded open subset of Rd ×
[0, 1] andφ, p : Q → R, such that there is a sequence {(Qn, φn, pn)}n∈N of smooth solutions
of the Euler droplet equations, such that Q = �∞

n=1Qn is a disjoint union of the sets Qn , and
for each n ∈ N, φn = φ|Qn and pn = p|Qn .

With each Euler spray that satisfies appropriate bounds we may associate a weak solution
(ρ, v, p) of the Euler system (1.9)–(1.10). The following result is a simple consequence of
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the weak formulation in (1.11)–(1.12) together with Proposition 3.3(a) and the dominated
convergence theorem.

Proposition 4.2 Suppose (Q, φ, p) is an Euler spray such that |∇φ|2 and p are integrable
on Q. Then with ρ = 1Q and v = 1Q∇φ and with p extended as zero outside Q, the triple
(ρ, v, p) satisfies the Euler system (1.9)–(1.10) in the sense of distributions on Rd × [0, 1].

Our main goal in this section is to prove Theorem 1.1. The strategy of the proof is simple
to outline: We will approximate the optimal transport map T : �0 → �1 for the Monge–
Kantorovich distance, up to a null set, by an ‘ellipsoidal transport spray’ built froma countable
collection of ellipsoidal Wasserstein droplets. The spray maps�0 to a target�ε

1 whose shape
distance from �1 is as small as desired. Then from the corresponding ellipsoidal Euler
droplets nested inside the Wasserstein ones, we construct the desired Euler spray (Q, φ, p)
that connects �0 to �ε

1 by a critical path for the action in (1.1).

Remark 4.3 In general, for theEuler sprays thatwe construct, the domainQ = �∞
n=1Qn has an

irregular boundary ∂Q strictly larger than the infinite union �∞
n=1∂Qn of smooth boundaries

of individual ellipsoidal Euler droplets, since ∂Q contains limit points of sequences belonging
to infinitely many Qn .

4.1 Approximating optimal transport by an ellipsoidal transport spray

Heuristically, an ellipsoidal transport spray is a countable disjoint superposition of transport
maps on ellipsoids, whose particle trajectories do not intersect.

Definition 4.4 An ellipsoidal transport spray on �0 is a map S : �0 → R
d , such that

�0 =
⊔
n∈N

�n
0

is a disjoint union of ellipsoids, the restriction of S to�n
0 is an ellipsoidalWasserstein droplet,

and the linear interpolants St defined by

St (z) = (1 − t)z + t S(z), z ∈ �0,

remain injections for each t ∈ [0, 1].
Proposition 4.5 Let �0,�1 be a pair of bounded open sets in R

d of equal volume, and
let T : �0 → �1 be the optimal transport map for the Monge–Kantorovich distance with
quadratic cost. For any ε > 0, there is an ellipsoidal transport spray Sε : �ε

0 → R
d such

that

(i) �ε
0 is a countable union of balls with |�0 \ �ε

0| = 0,
(ii) sup

z∈�ε
0

|T (z) − Sε(z)| < ε diam�1, and

(iii) the L∞ transportation distance between the uniform distributions on�ε
1 and�1 satisfies

d∞(�ε
1,�1) < ε diam�1.

The proof of this result will comprise the remainder of this subsection. The strategy is as
follows. Due to Alexandrov’s theorem on the twice differentiability of convex functions, the
Brenier map T = ∇ψ is differentiable a.e. The set �ε

0 will be chosen to be the union of a
suitable Vitali covering of �0 a.e. by balls Bi , whose centers are points of differentiability
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of T . On each ball Bi we approximate T by an affine map Sε which takes the ball center xi
to (1 + ε)T (xi ), taking the form

Sε(x) = (1 + ε)T (xi ) + DT (xi )(x − xi ), x ∈ Bi . (4.1)

The corresponding displacement interpolationmap Sε
t has three key properties: (i) it is locally

affine so maps balls to ellipsoids, (ii) it is volume-preserving, and (iii) it spreads out the
ball centers by the dilation factor 1 + ε, which ensures that the ball images remain non-
overlapping, because they are nested inside corresponding images under a dilated version of
the displacement interpolation map Tt .

4.1.1 Nesting by subgradient approximation

It turns out to be quite convenient to construct this dilated version based on the subgradient
∂ψ of the Brenier potential ψ , to deal with the problem that the Brenier map T may be
discontinuous, perhaps on a complicated set.

We recall that the subgradient of ψ is a set-valued function defined by

∂ψ(x) = {z ∈ R
d : ψ(x + h) ≥ ψ(x) + 〈z, h〉 ∀h ∈ R

d}. (4.2)

where 〈·, ·〉 denotes the standard inner product on R
d . For each x ∈ R

d , the set ∂ψ(x) is
closed, convex, and nonempty. For the convenience of readers, in “Appendix 1” we provide
proofs of the few basic facts about subgradients that we will use.

According to Alexandrov’s theorem (see [43, Thm. 1.3] or [23]), for almost every x0 ∈ R
d

the subgradient ∂ψ admits a local first-order expansion

∂ψ(x) ⊂ T (x0) + H(x − x0) + B(0, ω(x0, r)) ∀x ∈ B(x0, r), (4.3)

where H is a positive semidefinite matrix and ω(x0, r) = o(r) as r → 0. Note we may
assume ω(x0, r)/r is increasing in r . The quantity T (x0) = ∇ψ(x0) provides the Brenier
transport map at x0, and we let Hessψ(x0) denote the matrix H , which is the Hessian of ψ

at x0 in case the gradient ∇ψ is differentiable at x0.
Let us say x0 is an Alexandrov point if (4.3) holds. Because T = ∇ψ pushes forward the

Lebesgue measure on�0 to that on�1, it follows that det Hessψ(x) = 1 for a.e. Alexandrov
point x in �0 (see [40, Thm. 4.4] or [52, Thm. 4.8]). Denoting by �A the set of these points,
we have |�0 \ �A| = 0, and with λ1(x), . . . , λd(x) denoting the eigenvalues of Hessψ(x),

λ1(x) · · · λd(x) = 1 for all x ∈ �A. (4.4)

Note it follows λ j (x) > 0 for all x ∈ �A, j = 1, . . . , d .
Our construction involves an expanded, subgradient extension of the displacement inter-

polating map Tt . Namely, given ε > 0 and t ∈ (0, 1), we define

ψε
t (x) = 1

2
(1 − t)|x |2 + t(1 + ε)ψ(x). (4.5)

The subgradient of this function is (see Prop. A.1.ii),

∂ψε
t (x) = (1 − t)x + t(1 + ε)∂ψ(x). (4.6)

In case ε = 0, this map extends Tt in the sense that ∂ψ0
t (x) = {Tt (x)} for all x ∈ �A.

Further, the range of this subgradient is all of Rd (by Prop. A.1.iii). Just as in (2.2), due to
the monotonicity of the subgradient (Prop. A.1.i) one has

|z − ẑ| ≥ (1 − t)|x − x̂ | whenever z ∈ ∂ψε
t (x), ẑ ∈ ∂ψε

t (x̂). (4.7)
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By consequence, the inverse Lε
t := (∂ψε

t )
−1 is a single-value Lipschitz map with Lipschitz

constant bounded by (1 − t)−1. Note that for all z ∈ R
d ,

z ∈ ∂ψε
t (x) if and only if Lε

t (z) = x . (4.8)

Lemma 4.6 Let ε > 0 and let x0 ∈ �A. Choose r0 > 0 such that

(1 + ε)ω(x0, r0) <
1

2
ελ(x0)r0, (4.9)

where λ(x0) ∈ (0, 1) is the smallest eigenvalue of H = Hessψ(x0). Then, with

xε
t = ∇ψε

t (x0) = (1 − t)x0 + t(1 + ε)T (x0), Ht = (1 − t)I + t H ,

the ellipsoid

Eε
t (x0, r) := xε

t + Ht B(0, r) ⊂ ∂ψε
t (x0 + B(0, r)), (4.10)

whenever 0 < r < r0 and 0 < t < 1.

We note that the fact that the term t H in Ht does not contain a factor 1 + ε is needed to
guarantee the inclusion in (4.10).

Proof Note that Lε
t (x

ε
t ) = x0, so by (4.8), the inclusion in (4.10) is equivalent to the statement

|Lε
t (x

ε
t + Ht x) − Lε

t (x
ε
t )| < r whenever |x | < r . (4.11)

The proof that this holds whenever 0 < r ≤ r0 and t ∈ (0, 1) shall be based upon the local
expansion of ∂ψ in (4.3). We begin with the following conditional estimate of the quantity

f ε
t (x) := Lε

t (x
ε
t + Ht x) − Lε

t (x
ε
t ).

Sublemma 4.7 For each t ∈ (0, 1) there exists θt < 1 such that if |x | ≤ r0 and we further
assume | f ε

t (x)| ≤ r0, then | f ε
t (x)| ≤ θt |x |.

Proof Under the stated assumption, we have xε
t + Ht x ∈ ∂ψε

t (x0 + y) where y = f ε
t (x).

Due to (4.6) and (4.3), there exists w ∈ B(0, ω(x0, |y|)) such that

xε
t + Ht x = (1 − t)(x0 + y) + t(1 + ε)(T (x0) + Hy + w)

= xε
t + (Ht + εt H)y + t(1 + ε)w,

whence

y = (Ht + εt H)−1(Ht x − t(1 + ε)w).

By diagonalizing H and noting λt = 1 − t + tλ is the smallest eigenvalue of Ht , one finds

|(Ht + εt H)−1Ht x | ≤ λt

λt + εtλ
|x |, |(Ht + εt H)−1w| ≤ ω(x0, |y|)

λt + εtλ
.

Since we assume |y| ≤ r0 and this entails (1+ ε)ω(x0, |y|) ≤ 1
2ελ|y|, the result |y| ≤ θt |x |

follows by taking

θt = λt

λt + 1
2εtλ

< 1.

��
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Now we finish the proof of Lemma 4.6, establishing (4.11) by continuation. Fix t ∈ (0, 1)
and let

rt = sup
{
r ∈ [0, r0] : | f ε

t (x)| ≤ θt |x | whenever |x | ≤ r } (4.12)

(without the extra assumption made in the sublemma). The set in (4.12) is closed and rt > 0,
because f ε

t is continuous and f ε
t (0) = 0. Note that |x | ≤ rt implies | f ε

t (x)| ≤ θt rt < rt .
Now it follows rt = r0, because if rt < r0, then it follows from continuity that for some
r ∈ (rt , r0], |x | ≤ r implies | f ε

t (x)| ≤ rt < r0, whence | f ε
t (x)| ≤ θt |x | by the sublemma,

contradicting the definition of rt . ��

4.1.2 Proof of Proposition 4.5

We suppose 0 < ε < 1. The first step in the proof is to produce a suitable Vitali covering of
�0, up to a null set, by a countable disjoint union of balls. By translating the target �1 so
that it contains the origin, we may assume

ess sup
x∈�0

|T (x)| = sup
y∈�1

|y| < diam�1. (4.13)

We may choose r(x, ε) > 0 for each x ∈ �A and ε > 0 such that whenever 0 < r <

r(x, ε) we have (see (4.9))

(1 + ε)ω(x, r) <
1

2
ελ(x)r ,

λ(x)

λ(x)
r < ε diam�1, (4.14)

whereλ(x) is the largest eigenvalue ofHess(x) andλ(x) is the smallest. (The second condition
on r will be used in the next subsection.) Then |�0 \ �A| = 0, and the family of balls

{B(x, r) : x ∈ �A, 0 < r < r(x, ε)}
forms a Vitali cover of �A. Therefore, by Vitali’s covering theorem [20, Theorem III.12.3],
there is a countable family of mutually disjoint balls B(xi , ri ), with xi ∈ �A and 0 < ri <

r(xi , ε), such that

|�A\ ∪i∈N B(xi , ri )| = 0.

We let

�ε
0 =

⊔
i∈N

Bi , Bi = B(xi , ri ). (4.15)

Define the map Sε by (4.1). To show Sε is an ellipsoidal transport spray on �ε
0, we first

prove that the linear interpolants defined by

Sε
t (z) = (1 − t)z + t Sε(z), z ∈ �ε

0,

remain injections for each t ∈ [0, 1). Clearly the restriction to each Bi is an injection. But
by invoking Lemma 4.6 with H = Hessψ(xi ), we conclude that the image of Bi under Sε

t
satisfies

Sε
t (Bi ) = Eε

t (xi , ri ) ⊂ ∂ψε
t (Bi ). (4.16)

Recalling that the inverse (∂ψε
t )

−1 is a single-value Lipschitz map by (4.7), this implies that
the images Sε

t (Bi ) are pairwise disjoint.
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Now, for t = 1 we necessarily have Sε is injective, for if not then for some i �= j , the
open set Sε

t (Bi ) ∩ Sε
t (Bj ) is nonempty for t = 1 and hence for t near 1, contradiction. This

proves that Sε is an ellipsoidal transport spray on the set �ε
0 in (4.15), so that property (i)

holds.
Next we prove property (ii). Using (4.14), for each x ∈ Bi we have, since T (x) ∈ ∂ψ(x),

|T (x) − Sε(x)| ≤ |T (x) − T (xi ) − DT (xi )(x − xi )| + ε|T (xi )|
≤ ω(xi , ri ) + ε|T (xi )|
≤ 1

2
ελ(xi )ri + ε diam�1 ≤ 3

2
ε diam�1. (4.17)

This shows (ii) after replacing ε by ε/2. For part (iii), we note that the set �ε
0 = (Sε)−1(�ε

1)

has full measure in�0, and the map T pushes forward Lebesgue measure on�0 to Lebesgue
measure on �1. It follows that the map T ◦ (Sε)−1 : �ε

1 → �1 pushes forward uniform
measure to uniform measure and satisfies

sup
x∈�ε

1

|T ◦ (Sε)−1(x) − x | < ε diam�1.

The result claimed in part (iii) follows, due to (2.7). This finishes the proof of Proposition 4.5.

4.2 Action estimate for Euler spray

Each of the ellipsoidal Wasserstein droplets that make up the ellipsoidal transport spray Sε is
associated with a boosted ellipsoidal Euler droplet nested inside, due to the nesting property
in Proposition 3.8. The disjoint superposition of these Euler droplets make up an Euler spray
that deforms �ε

0 to the same set �ε
1.

In order to complete the proof of Theorem 1.1, it remains to bound the action of this Euler
spray in terms of the Wasserstein distance between the uniform measures on �0 and �1.
Toward this goal, we first note that because the maps T and Sε are volume-preserving, due
to the estimate in part (ii) of Proposition 4.5 and (2.7) we have

dW (T (Bi ), S
ε(Bi ))

2 ≤ (εK1)
2 |Bi |, K1 = diam�1.

Now by the triangle inequality,

dW (Bi , S
ε(Bi ))

2 ≤ (
dW (Bi , T (Bi )) + εK1|Bi |1/2

)2
≤ dW (Bi , T (Bi ))

2(1 + ε) + (ε + ε2)K 2
1 |Bi | (4.18)

Recall that by inequality (3.36) of Lemma 3.10, the action of the i-th ellipsoidal Euler
droplet, denoted by Ai , satisfies

Ai ≤ dW (Bi , S
ε(Bi ))

2 + λ(xi )4

λ(xi )2
r2i |Bi |

≤ dW (Bi , T (Bi ))
2(1 + ε) + 3εK 2

1 |Bi |, (4.19)

where we make use of the second constraint in (4.14).
By summing over all i , we obtain the required bound,

Aε =
∑
i

Ai ≤ dW (1�0 ,1�1)
2 + K ε
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where

K = dW (1�0 ,1�1)
2 + 4|�0|(diam�1)

2.

This concludes the proof of Theorem 1.1.

5 Shape distance equals Wasserstein distance

Ourmain goal in this section is to prove Theorem 1.3, which establishes the existence of paths
of shape densities (as countable concatenations of Euler sprays) that exactly connect any two
compactly supported measures having densities with values in [0, 1] and have action as close
as desired to the Wasserstein distance squared between the measures. Theorem 1.2 follows
as an immediate corollary, showing that shape distance between arbitrary bounded measur-
able sets with positive, equal volume is the Wasserstein distance between the corresponding
characteristic functions.

Theorem 1.3 will be deduced from Theorem 1.1 by essentially ‘soft’ arguments. Theo-
rem 1.1 shows that the relaxation of shape distance, in the sense of lower-semicontinuous
envelope with respect to the topology of weak-� convergence of characteristic functions, is
Wasserstein distance. Essentially, here we use this result to compute the completion of the
shape distance in the space of bounded measurable sets.

Lemma 5.1 Let ρ : Rd → [0, 1] be a measurable function of compact support. Then for any
ε > 0 there is an open set � such that its volume is the total mass of ρ and the L∞ transport
distance from ρ to its characteristic function is less than ε:

|�| =
∫
Rd

ρ dx and d∞(ρ,1�) < ε.

Proof We recall that weak-� convergence of probability measures supported in a fixed com-
pact set is equivalent to convergence in (either L2 or L∞)Wasserstein distance. Given k ∈ N,
cover the support of ρ a.e. by a grid of disjoint open rectangles of diameter less than εk = 1/k.
For each rectangle R in the grid, shrink the rectangle homothetically from any point inside
to obtain a sub-rectangle R̂ ⊂ R such that |R̂| = ∫

R ρ dx . Let �k be the disjoint union of

the non-empty rectangles R̂ so obtained. Then the sequence of characteristic functions 1�k

evidently converges weak-� to ρ in the space of fixed-mass measures on a fixed compact set:
for any continuous test function f on R

d , as k → ∞ we have∫
�k

f (x) dx →
∫
Rd

f (x)ρ(x) dx .

Choosing � = �k for some sufficiently large k yields the desired result. ��
Proof of Theorem 1.3 part (a) Let ρ0, ρ1 have the properties stated, and suppose D :=
dW (ρ0, ρ1) > 0. (The other case is trivial.) Let ε > 0. By Lemma 5.1 we may choose
open sets �0 and �̂1 whose volume is

∫
Rd ρ0 and such that

d∞(ρ0,1�0) + d∞(ρ1,1�̂1
) <

ε

2
, dW (�0, �̂1)

2 ≤ dW (ρ0, ρ1)
2 + ε

2
. (5.1)

Then we can apply Theorem 1.1 to find an Euler spray that connects �0 to a set �̂ε
1 =: �1

close to �̂1 with the properties

d∞(�1, �̂1) <
ε

3
, Aε ≤ dW (�0, �̂1)

2 + ε

3
, (5.2)
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where Aε is the action of this Euler spray. By combining the inequalities in (5.1) and (5.2)
we find that the sets �0,�1 have the properties required. ��

Before we establish part (b), we separately discuss the concatenation of transport paths.
Let ρk = (ρk

t )t∈[0,1] be a path of shape densities for each k = 1, 2, . . . , K , with associated
transport velocity field vk ∈ L2(ρk dx dt) and action

Ak =
∫ 1

0

∫
Rd

ρk
t (x)|vk(x, t)|2 dx dt .

We say this set of paths forms a chain if ρk
1 = ρk+1

0 for k = 1, . . . , K − 1. Given such a
chain, and numbers τk > 0 such that

∑K
k=1 τk = 1, we define the concatenation of the chain

of paths ρk compressed by τk to be the path ρ = (ρt )t∈[0,1] given by

ρt = ρk
s for t = τks +

∑
j<k

τk, s ∈ [0, 1]. (5.3)

The transport velocity associated with the concatenation is

v(·, t) = τ−1
k vk(·, s) for t = τks +

∑
j<k

τk, s ∈ [0, 1], (5.4)

and the action is

A =
∫ 1

0

∫
Rd

ρt |v|2 dx dt =
K∑

k=1

τ−1
k

∫ 1

0

∫
Rd

ρk
s (x)|v(x, s)|2 dx ds =

K∑
k=1

τ−1
k Ak .

(5.5)

Remark 5.2 We mention here how the triangle inequality for the shape distance defined in
(1.5) follows directly from this concatenation procedure. Given the chain ρk as above with
actions Ak , let δk = √Ak and set

τk = δk∑
j δ j

, k = 1, . . . , K .

Let A be the action of the concatenation of paths ρk compressed by τk , and let δ = √
A.

Then

A = δ2 =
∑
k

τ−1
k δ2k =

(∑
k

δk

)2

.

From this the triangle inequality follows.

Proof of Theorem 1.3 part (b) Next we establish part (b). The idea is to construct a path of
shape densities ρ = (ρt )t∈[0,1] connecting ρ0 to ρ1 by concatenating the Euler spray from
part (a) together with two paths of small action that themselves are concatenated chains of
Euler sprays that respectively connect�0 to sets that approximate ρ0, and connect �1 to sets
that approximate ρ1.

Let ε > 0, and let ρε be a shape density determined by an Euler spray as from part (a)
that connects bounded open sets �0 and �1 of volume

∫
Rd ρ0, but with the (perhaps tighter)

conditions
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dW (1�0 , ρ0) + dW (1�1 , ρ1) <
1

4
ε2−1, Aε < dW (ρ0, ρ1)

2 + ε,

where Aε is the action of this spray.
Next we construct a chain of Euler sprays with shape densities ρk, k = 1, 2, . . ., with

action Ak that connect �1 with a chain of sets �k such that 1�k

�
⇀ρ1 as k → ∞ and

dW (1�k , ρ1) <
1

4
ε2−k, Ak < (ε2−k)2. (5.6)

We proceed by recursion by applying Theorem 1.1 like in the proof of part (a). Given k ≥ 1,
suppose�k is defined and ρ j are defined for j < k. Using Lemma 5.1 we can find a bounded
open set �̂k+1 such that

|�̂k+1| =
∫
Rd

ρ0 and dW (1
�̂k+1

, ρ1) <
1

8
ε2−k−1.

Then by invoking Theorem 1.1 and the triangle inequality for dW , we obtain an Euler spray
with action Ak that connects �k to a bounded open set �k+1, such that

dW (�k+1, �̂k+1) <
1

8
ε2−k−1 and Ak < dW (�k, �̂k+1)

2 + 1

2
(ε2−k)2 < (ε2−k)2.

We let ρk = (ρk
t )t∈[0,1] be the path of shape densities for this spray, so that ρk

0 = 1�k and
ρk
1 = 1�k+1 . This completes the construction of the chain of paths ρk satisfying (5.6).
It is straightforward to see that dW (ρk

t , ρ1) → 0 as k → ∞ uniformly for t ∈ [0, 1]. Now
we let ρ+ = (ρ+

t )t∈[0,1] be the countable concatenation of this chain of paths ρk compressed
by τk = 2−k according to the formulas (5.3)–(5.5) above taken with K → ∞, and with
ρ+
1 = ρ1. The action A+ of this concatenation then satisfies

A+ =
∞∑
k=1

2kAk < ε2. (5.7)

In exactly analogous fashion we can construct a countable concatenation ρ̂− of a chain of
paths coming from Euler sprays, that connects ρ̂−

0 = 1�0 with ρ̂−
1 = ρ0 and having action

A− < ε2. Then define ρ− be the reversal of ρ̂−, given by

ρ−
t = ρ̂−

1−t .

This path ρ− has the same action A−.
Finally, define the path ρ by concatenating ρ−, ρε, ρ+ compressed by ε, 1 − 2ε and ε

respectively. This path satisfies the desired endpoint conditions and has actionA that satisfies

A = ε−1A− + (1 − 2ε)−1Aε + ε−1A+ < dW (ρ0, ρ1)
2 + K ε,

for some constant K independent of ε small. The result of part (b) follows. ��

Remark 5.3 Our construction here of a sequence of action-infimizing paths involves con-
necting geodesics given by Euler sprays only for simplicity. A more general approach to
constructing non-geodesic near-optimal incompressible paths can be taken that exploits the
convexity of density along Wasserstein transport paths. Such an approach was implemented
in an earlier preprint version of this article [38].
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5.1 Rigidity of minimizing incompressible paths

The result of Theorem 1.4, providing a sharp criterion for the existence of a minimizer for
the shape distance in (1.5), follows by combining the uniqueness property of Wasserstein
geodesics with the result of Theorem 1.2.

Proof of Theorem 1.4 Let ρ = (ρt )t∈[0,1] be the density along the Wasserstein geodesic path
that connects 1�0 and 1�1 , where �0,�1 are bounded open sets in R

d with equal volume.
Clearly, if ρ is a characteristic function, then theWasserstein geodesic provides a minimizing
path for (1.5). On the other hand, if a minimizer for (1.5) exists, it must have constant speed
by a standard reparametrization argument. Then by Theorem 1.2 it provides a constant-
speed minimizing path for Wasserstein distance as well, hence corresponds to the unique
Wasserstein geodesic. Thus the Wasserstein geodesic density ρ is a characteristic function.

��
A consequence of Theorem 1.2 is that existence of a minimizer among incompressible

transport paths in (1.5) imposes a rigid structure on the optimal transport map T . We describe
this below inCorollary 5.8.Webegin by examining the density along theWasserstein geodesic
path that connects 1�0 and 1�1 . This density is the pushforward of ρ0 = 1�0 under the
transport map Tt from (2.1). Invoking a result of McCann [40, Proposition 4.2], we know

ρ(Tt (z), t)
−1 = det

∂Tt
∂z

= det((1 − t)I + t Hessψ(z)) =
d∏
j=1

(1 − t + tλ j (z)), (5.8)

for each z in the set �A of full measure in �0, which appears in (4.4) and consists of the
Alexandrov points z of ψ at which det Hessψ(z) = 1.

Lemma 5.4 Along the particle paths t �→ Tt (z) of displacement interpolation between the
measures with respective densities 1�0 and 1�1 as above, the density is log-convex, that is
t �→ log ρ(Tt (z), t) is convex, for each z ∈ �A. Moreover, this function is constant if and
only if Hessψ(z) = I .

Proof We compute

d2

dt2
log ρ = − d

dt

d∑
j=1

λ j − 1

1 − t + tλ j
=

d∑
j=1

(
λ j − 1

1 − t + tλ j

)2

≥ 0, (5.9)

and this vanishes if and only if λ j = 1 for all j . ��
Remark 5.5 A related fact stated in [40, Lemma 2.1] implies the (stronger) property that
ρ−1/d is concave along particle paths and is connected to a well-known proof of the Brunn-
Minkowski inequality by Hadwiger and Ohmann. The proof of Lemma 5.4 can be easily
modified to show ρ−q is concave along particle paths for any q ∈ (0, 1/d]. Indeed, due to
the Cauchy–Schwartz (or Jensen’s) inequality, for g(t) = ρ(Tt (z), t)−1/d , one has

g′′

g
=

⎛
⎝ 1

d

d∑
j=1

λ j − 1

1 − t + tλ j

⎞
⎠

2

− 1

d

d∑
j=1

(
λ j − 1

1 − t + tλ j

)2

≤ 0. (5.10)

Remark 5.6 We note that Lemma 5.4 implies that ρt ≤ 1 a.e., for all t ∈ [0, 1], with a simple
proof relying only on basic tools of optimal transport.
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If a minimizer for the shape distance in (1.5) exists, the result of Lemma 5.4 shows that
Hessψ(z) = 1 for every z ∈ �A and hence

∇Tt (z) = 1 for every z ∈ �A and t ∈ [0, 1]. (5.11)

To discuss further the consequences of these tight restrictions, it is convenient to invoke the
regularity theory of Caffarelli [13], Figalli [24] and Figalli and Kim [25]. These authors have
shown (see Theorem 3.4 in [17] and also [18]) that, due to the fact that the characteristic
functions are smooth inside �0 and �1, the optimal transportation potential ψ is smooth
away from a set of measure zero. More precisely, there exist relatively closed sets of measure
zero, �i ⊂ �i for i = 0, 1 such that T : �0\�0 → �1\�1 is a smooth diffeomorphism
between two open sets.

Remark 5.7 In a previous draft of this paper, this regularity theory was used to prove The-
orem 1.1 through a Vitali covering argument. The present approach to the proof in Sect. 4
exploits the simpler property that the subgradient maps ∂ψt have single-valued inverses.

As a consequence of this regularity theory, the rigidity of gradients in (5.11) implies the
following rigiditiy for transport maps.

Corollary 5.8 The Wasserstein geodesic density ρ is a characteristic function if and only if
the displacement interpolant is piecewise a rigid translation:

Tt (z) = z + tb(z),

where b(·) is constant on each component of the open set �0 \ �0.

In case the result of this Corollary applies, the target �1 = T (�0) represents some
kind of decomposition of the source �0 by fracturing into pieces that can separate without
overlapping.

Remark 5.9 In the case of one dimension (d = 1) it is always the case that the Wasserstein
geodesic density ρ(Tt (z), t) ≡ 1 for all z in the non-singular set. This is so because the dif-
feomorphism T : �0\�0 → �1\�1 must always be a rigid translation on each component,
as it pushes forward Lebesgue measure to Lebesgue measure.

As a nontrivial example, let C ⊂ [0, 1] be the standard Cantor set, and let �0 = (0, 1).
Define the Brenier map T (z) = z + c(z) with c given by the Cantor function, increasing and
continuous on [0, 1] with c(0) = 0, c(1) = 1 and c′ = 0 on (0, 1) \C. Then T (�0) = (0, 2),
but the pushforward of uniform measure on �0 is the uniform measure on the set �1 =
T (�0 \ C), which has countably many components, and total length |�1| = 1.

6 Displacement interpolants as weak limits

This section focuses on the proofs of Theorems 1.5 and 1.6 on the convergence of Euler
sprays towardsWasserstein geodesics. These results establish convergence of mass densities,
momenta, and momentum flux tensors, first in the standard weak-� sense in L∞, then in the
more precise TL p sense. While both theorems deal with general densities, in each case we
first treat the case that ρ0 is a characteristic function (Propositions 6.1 and 6.5). To extend to
the general case we use results on stability of Wesserstein geodesics (Propositions 6.3 and
6.6).

We conclude this section in Sect. 6.3 with a result on convergence of Lagrangian flow
maps, in the TL2 sense.
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6.1 Proof of Theorem 1.5

We will proceed in two steps, first dealing with the case that the endpoint densities ρ0, ρ1
are characteristic functions of bounded open sets. To extend this result to the general case of
bounded densities, we will make use of fundamental results on stability of optimal transport
plans from [2] and [53].

Proposition 6.1 Let �0,�1 be bounded open sets of equal volume. Let (ρ, v) be the den-
sity and transport velocity determined by the unique Wasserstein geodesic (displacement
interpolant) that connects the uniform measures on �0 and �1 as described in Sect. 2.

Then, as ε → 0, the weak solutions (ρε, vε, pε) associated to the Euler sprays of The-
orem 1.1 by Proposition 4.2 converge to (ρ, v, 0), and (ρ, v) is a weak solution to the
pressureless Euler system (1.13)–(1.14). The convergence holds in the following sense:
pε → 0 uniformly, and

ρε �
⇀ρ, ρεvε �

⇀ρv, ρεvε ⊗ vε �
⇀ρv ⊗ v, (6.1)

weak-� in L∞ on Rd × [0, 1].
Toward proving this result, we describe the bounds on pressure and velocity that come

from the construction of the Euler sprays constructed above, for any given ε ∈ (0, 1).

Lemma 6.2 Let (Qε, φε, pε), 0 < ε < 1, denote the Euler sprays constructed in the proof of
Theorem 1.1, and let Xε : �ε

0 ×[0, 1] → R
d denote the associated flow maps, which satisfy

Ẋε(z, t) = ∇φε(Xε(z, t), t), (z, t) ∈ �ε
0 × [0, 1],

with Xε(z, 0) = z. Then for some K̂ > 0 independent of ε, we have

0 ≤ pε(x, t) ≤ K̂ ε (6.2)

for all (x, t) ∈ Qε, and

|Xε(z, t) − Tt (z)| + |Ẋε(z, t) − Ṫt (z)| ≤ K̂ ε (6.3)

for all (z, t) ∈ �ε
0×[0, 1], where (z, t) �→ Tt (z) is the flowmap from (2.1) for theWasserstein

geodesic.

Proof By the pressure bound for individual droplets in (3.44) together with the second con-
dition in (4.14), we have the pointwise bound

0 ≤ pε ≤ K0ε, K0 = K 2
1d, K1 = diam�1. (6.4)

Next consider the velocity. The boosted ellipsoidal Euler droplet that transports Bi to Sε(Bi )
is translated by xi , and boosted by the vector

bi := (1 + ε)T (xi ) − xi = Ṫt (xi ) + εT (xi ). (6.5)

In this “i-th droplet,” the velocity satisfies, by the estimate (3.46),

|∇φε − bi | = |vε − bi | ≤ K0ε. (6.6)

Now the particle velocity for the Euler spray compares to that of the Wasserstein geodesic
according to
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|Ẋε(z, t) − Ṫt (z)| ≤ |Ẋε − bi | + |bi − Ṫt (z)|
≤ K0ε + ε|T (xi )| + |T (z) − z − (T (xi ) − xi )|
≤ K0ε + ε|T (xi )| + ri max

j
|λ j − 1| + ω(xi , ri )

≤ K0ε + 3K1ε. (6.7)

(Here λ j are the eigenvalues of Hessψ(xi ), and we use (4.3) with the fact that |λ j − 1|ri ≤
λ(xi )ri < K1ε and ω(xi , ri ) < εri by (4.14).) Integrating we get both bounds in (6.3). ��
Proof of Proposition 6.1 Now, let (ρ, v) be the density and velocity of the particle paths for the
Wasserstein geodesic, from (5.8) and (2.4). Recall that the density ρε = 1Qε and velocity

vε = 1Qε∇φε associated with the Euler sprays are uniformly bounded. To prove ρε �
⇀ρ

weak-� in L∞, it suffices to show that as ε → 0,
∫ 1

0

∫
Rd

(ρε − ρ)q dx dt → 0, (6.8)

for every smooth test function q ∈ C∞
c (Rd × [0, 1],R). Changing to Lagrangian variables

using Xε for the term with ρε = 1Qε and Tt for the term with ρ, the left-hand side becomes
∫ 1

0

∫
�0

(q(Xε(z, t), t) − q(Tt (z), t)) dz dt . (6.9)

Evidently this does approach zero as ε → 0, due to (6.3).

Next, we claim ρεvε �
⇀ρvweak-� in L∞. Because these quantities are uniformly bounded,

it suffices to show that as ε → 0,
∫ 1

0

∫
Rd

(ρεvε − ρv) · ṽ dx dt → 0 (6.10)

for each ṽ ∈ C∞
c (Rd × [0, 1],Rd). Changing variables in the same way, the left-hand side

becomes ∫ 1

0

∫
�0

(
Ẋε(z, t) · ṽ(Xε(z, t), t) − Ṫt (z) · ṽ(Tt (z), t)

)
dz dt . (6.11)

But because ṽ is smooth and due to the bounds in (6.3), this also tends to zero as ε → 0.

It remains to prove ρεvε ⊗ vε �
⇀ρv ⊗ v weak-� in L∞. Considering the terms compo-

nentwise, the proof is extremely similar to the previous steps. This finishes the proof of
Theorem 1.5. ��

To generalize Proposition 6.1 to handle general densities ρ0, ρ1 : Rd → [0, 1], wewill use
a double approximation argument, comparing Euler sprays to optimal Wasserstein geodesics
for open sets whose characteristic functions approximate ρ0, ρ1 in the sense of Lemma 5.1,
then comparing these to theWasserstein geodesic that connects ρ0 to ρ1. We prove weak-star
convergence for the second comparison by extending the results from [2] and [53] on weak-�
stability of transport plans to establish weak-� stability of Wasserstein geodesic flows (in the
Eulerian framework).

Proposition 6.3 Let (ρ, v) be the density and transport velocity determined by the Wasser-
stein geodesic that connects the measures with given densities ρ0, ρ1 : Rd → [0, 1],
measurable with compact support such that
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∫
Rd

ρ0 =
∫
Rd

ρ1.

Let �k
0,�

k
1, k = 1, 2, . . ., be bounded open sets such that |�k

0| = |�k
1| = ∫

Rd ρ0 and

d∞(ρ0,1�k
0
) + d∞(ρ1,1�k

1
) → 0 as k → ∞,

and let (ρ̄k, v̄k) be the density and transport velocity determined by the Wasserstein geodesic
that connects the measures with densities ρ̄k

0 = 1�k
0
and ρ̄k

1 = 1�k
1
. Then

ρ̄k �
⇀ρ, ρ̄k v̄k

�
⇀ρv, ρ̄k v̄k ⊗ v̄k

�
⇀ρv ⊗ v, (6.12)

weak-� in L∞ on Rd × [0, 1]. Consequently 0 ≤ ρ ≤ 1 a.e. in R
d × [0, 1].

Proof Let π (resp. πk) be the optimal transport plan connecting ρ0 to ρ1 (resp. 1�k
0
to 1�k

0
).

These plans take the form π = (id×T )	ρ0 (resp. πk = (id×T k)	1�k
0
) where T (resp. T k)

is the Brenier map. Then by [53, Theorem 5.20] or [2, Proposition 7.1.3], we know that πk

converges weak-� to π in the space of Radon measures on Rd × R
d .

The densities ρ̄k are uniformly bounded above a.e. by 1, due to Remark 5.6. Then the
momenta ρ̄k v̄k are uniformly bounded, since the velocities v̄k are bounded (cf. (2.3)). We

will prove that ρ̄k v̄k
�

⇀ρv; it will be clear that the remaining results in (6.12) are similar. Let
ϕ : Rd × [0, 1] → R

d be smooth with compact support. We claim that
∫ 1

0

∫
Rd

ρ̄k v̄kϕ(x, t) dx dt →
∫ 1

0

∫
Rd

ρvϕ(x, t) dx dt . (6.13)

Recall from (2.3) that the geodesic velocities v̄k(x, t) satisfy

v̄k((1 − t)z + tT k(z), t) = T k(z) − z.

Hence the left-hand side of (6.13) can be written in the form
∫ 1

0

∫
Rd×Rd

(y − z)ϕ((1 − t)z + t y, t) dπk(z, y) dt =
∫
Rd×Rd

ψ(z, y) dπk(z, y),

where

ψ(z, y) =
∫ 1

0
(y − z)ϕ((1 − t)z + t y, t) dt .

Due to the fact that πk �
⇀π and all these measures are supported in a fixed compact set, as

k → ∞ we obtain the limit∫
Rd×Rd

ψ(z, y) dπ(z, y) =
∫ 1

0

∫
Rd×Rd

(y − z)ϕ((1 − t)z + t y, t) dπ(z, y) dt

=
∫ 1

0

∫
Rd

(T (z) − z)ϕ(Tt (z), t) ρ0(z) dz dt,

(6.14)

where Tt (z) = (1 − t)z + tT (z). To conclude the proof, we need to recall how ρ and v are
determined by displacement interpolation, in a precise technical sense for the present case
whenρ0 andρ1 lack smoothness. Indeed, from the results inLemma5.29 andProposition 5.30
of [47] (also see Proposition 8.1.8 of [2]), we find that with the notation

xt (z, y) = (1 − t)z + t y,
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the measure μt with density ρt is given by the pushforward

μt = (xt )	π = (xt )	(id×T )	μ0 = (Tt )	(ρ0 dz), (6.15)

and the transport velocity is given by

v(x, t) = (T − id) ◦ (Tt )
−1(x). (6.16)

Thus we may use Tt to push forward the measure ρ0(z) dz = dμ0(z) in (6.14) to write, for
each t ∈ [0, 1],

∫
Rd

(T (z) − z)ϕ(Tt (z), t) ρ0(z) dz =
∫
Rd

v(x, t)ϕ(x, t) ρt (x) dx . (6.17)

It then follows that (6.13) holds, as desired. ��

Remark 6.4 The validity of the continuity equation (1.13) for (ρ, v) is well known and estab-
lished in several sources, e.g., see [52, Theorem 5.51] or [47, Chapter 5]. The step above
going from (6.14) to (6.17) provides an answer to the related exercise 5.52 in [52]. We are not
aware, however, of any source where the momentum equation (1.14) for (ρ, v) is explicitly
and rigorously justified.

Proof of Theorem 1.5. Let us nowfinish the proof ofTheorem1.5.Anyball in L∞(Rd×[0, 1])
is metrizable, by [20, Theorem V.5.1], hence we may fix a metric d in a large enough ball,
and select εk > 0 for each k ∈ N such that for the quantities (ρk, vk, pk) := (ρεk , vεk , pεk )

coming from the Euler sprays of Proposition 6.1, the components of ρk, ρkvk and ρkvk ⊗ vk

approximate the corresponding quantities ρ̄k , ρ̄k v̄k and ρ̄k v̄k ⊗ v̄k that appear in Proposi-
tion 6.3, within distance 1/k. That is,

max
(
d(ρk, ρ̄k), d(ρkvki , ρ̄

k v̄ki ), d(ρkvki v
k
j , ρ̄

k v̄ki v̄
k
j )

)
<

1

k
.

Then the convergences asserted in (1.15) evidently hold. ��

6.2 Convergence in the stronger TLp sense

Herewe prove Theorem 1.6. It establishes that the convergences described in Propositions 6.1
and 6.3 and Theorem 1.5 actually hold in a stronger sense related to the TL p metric that was
introduced in [28] to measure differences between functions defined with respect to different
measures. For the convenience of readers, in “Appendix 1” we recall the definition and
characterization of the TL p metric from [28], and establish a needed TL p stability property
for transport maps and Wasserstein geodesics.

Our first result here strengthens the conclusions drawn in Proposition 6.1.

Proposition 6.5 Under the same hypotheses as Proposition 6.1 and Lemma 6.2, the map that
associates Tt (x) with Xε

t (x) = Xε(x, t), defined by Y ε
t = Xε

t ◦ T−1
t , pushes forward ρt to

ρε
t and we have the estimate

|x − Y ε
t (x)| + |vt (x) − vε

t (Y
ε
t (x))| ≤ K̂ ε (6.18)

for all t ∈ [0, 1] and ρt -a.e. x. By consequence, for all t ∈ [0, 1] we have
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dTL∞((ρt , vt ), (ρ
ε
t , v

ε
t )) ≤ K̂ ε.

This result follows immediately from estimate (6.3) of Lemma 6.2. Expressed in terms of
couplings, using the transport plan that associates Xε(z, t) with Tt (z) given by the pushfor-
ward

πε = (Xε( · , t) × Tt )	ρ0,

the estimate (6.3) implies that for πε-a.e. (x, y), for all t ∈ [0, 1] we have
|x − y| + |vε(x, t) − v(y, t)| ≤ K̂ ε.

Next we improve the conclusions of Proposition 6.3, on stability ofWasserstein geodesics,
by invoking the results of Corollary B.5 in the “Appendix 1”.

Proposition 6.6 Under the assumptions of Proposition 6.3, there exist transport maps S̄k that
push forward ρ0 to ρ̄k

0 = 1�k
0
, such that

‖ id−S̄k‖L∞(ρ0 dx) → 0 as k → ∞, (6.19)

and for any such sequence of transport maps, the maps given by

S̄kt = T k
t ◦ S̄k ◦ T−1

t

push forward ρt to ρ̄k
t and satisfy, as k → ∞,

sup
t∈[0,1]

∫
|x − S̄kt (x)|2 ρt (x) dx → 0, (6.20)

sup
t∈[0,1]

∫
|vt (x) − v̄kt (S̄

k
t (x))|2 ρt (x) dx → 0. (6.21)

Proof The existence of the maps S̄k follow from the fact that d∞(ρ0, ρ̄
k
0 ) → 0 as k → ∞,

and existence of optimal transport maps for these distances, see Theorem 3.24 of [47]. The
remaining statements follow from Corollary B.5 in the “Appendix”. ��

By combining the last two results, we can prove Theorem 1.6.

Proof (Proof of Theorem 1.6) Let ρ̄k
0 = 1�k

0
be as in Proposition 6.6, and let (ρk, vk, pk) be

corresponding solutions of the Euler system (1.13)–(1.14) coming from the Euler sprays of
Theorem 1.1, chosen as in the proof of Theorem 1.5. With S̄k as in Proposition 6.6, let

Skt = Xk
t ◦ S̄k ◦ T−1

t ,

Then (Skt )	(ρt dx) = ρk
t dx . To prove (1.16), by Proposition B.4 it suffices to show that

sup
t∈[0,1]

∫
|x − Skt (x)|2 ρt (x) dx → 0,

sup
t∈[0,1]

∫
|vt (x) − vkt (S

k
t (x))|2 ρt (x) dx → 0,

as k → ∞. Using Proposition 6.5, we can deduce that when k → ∞ then

sup
t∈[0,1]

∫
|Skt (x) − S̄kt (x)|2 ρt (x) dx → 0, (6.22)
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sup
t∈[0,1]

∫
|vkt (Skt (x)) − v̄kt (S̄

k
t (x))|2 ρt (x) dx → 0. (6.23)

Combining these with the results of Proposition 6.6 finishes the proof of (1.16). Then (1.17)
follows from the definition of the T L1 metric using the Cauchy–Schwartz inequality and the
boundedness of the velocities and the domain. ��

6.3 Convergence of Lagrangian flowmaps

From weak-� convergence of momenta (or velocities), one usually cannot conclude much
about the motion of particle trajectories. Here, though, we can establish the following con-
vergence result for Lagrangian flow maps.

Corollary 6.7 Under the assumptions of Proposition 6.3, the flow maps Xk
t for the Euler

sprays of Theorem 1.1 that connect ρ̄k
0 = 1�k

0
and ρ̄k

1 = 1�k
1
satisfy

sup
t∈[0,1]

dTL2((ρ0, Tt ), (ρ̄
k
0 , X

k
t )) → 0 as k → ∞.

Proof Note S̄k from Proposition 6.6 is a transport map from ρ0 to ρ̄k
0 . Then for all t ∈ [0, 1],

d2TL2((ρ0, Tt ), (ρ̄
k
0 , X

k
t )) ≤

∫
|S̄k(z) − z|2ρ0(z) dz +

∫
|Xk

t (S̄
k(z)) − Tt (z)|2ρ0(z) dz.

The first term converges to zero as k → ∞ by (6.19), while the second term can be estimated
using the change of variables z = T−1

t (x) as
∫

|Xk
t (S̄

k(z)) − Tt (z)|2ρ0(z) dz

≤
∫ (

|Xk
t (S̄

k(z)) − T k
t (S̄k(z))|2 + |T k

t (S̄k(z)) − Tt (z)|2
)

ρ0(z) dz

=
∫ (

|Skt (x) − S̄kt (x)|2 + |S̄kt (x) − x |2
)

ρt (x) dx .

These terms converge to zero as k → ∞, by (6.22) and (6.20), respectively. ��

7 A Schmitzer–Schnörr-type shape distance without volume constraint

Theorem 1.2 establishes that restricting the Wasserstein metric to paths of shapes of fixed
volume does not provide a new notion of distance on the space of such shapes. Namely it
shows that for paths in the space of shapes of fixed volume, the infimum of the length of
paths between two given shapes is the Wasserstein distance.

Volume change. It is of interest to consider a more general space of shapes in order to
compare shapes of different volumes. In particular, Schmitzer and Schnörr [48] considered a
space that corresponds to the set of bounded, simply connected domains in R

2 with smooth
boundary and arbitrary positive area. To each such shape� one associates as its corresponding
shape measure the probability measure having uniform density on �, denoted by

U� = 1

|�|1�. (7.1)

123



Least action principles for incompressible flows and... Page 35 of 43   179 

We consider here this same association between sets and shape measures, but allow for
more general shapes. Namely for fixed dimension d , let us consider shapes as bounded
measurable subsets of Rd with positive volume. Let C be the set of all shape measures
corresponding to such shapes. Thus C is the set of all uniform probability distributions of
bounded support.

One can formally consider C as a submanifold of the space of probability measures of
finite secondmoment, endowedwithWasserstein distance. Thenwedefine a distance between
shapes as we did in (1.5), requiring

dC(�0,�1)
2 = inf A, A =

∫ 1

0

∫
Rd

ρ|v|2 dx dt, (7.2)

where ρ = (ρt ) is now required to be a path of shape measures in C, with endpoints

ρ0 = U�0 , ρ1 = U�1 , (7.3)

and transported according to the continuity equation (1.2) with a velocity field v ∈
L2(ρ dx dt).

Because the characteristic-function restriction (1.3) is replaced by the weaker require-
ment that ρt has a uniform density, for any two shapes of equal volume scaled to unity for
convenience, it is clear that

ds(�0,�1) ≥ dC(�0,�1) ≥ dW (�0,�1). (7.4)

Then as a direct consequence of Theorem 1.2, we have

dC(�0,�1) = dW (�0,�1). (7.5)

By a minor modification of the arguments of Sect. 5, in general we have the following.

Theorem 7.1 Let �0 and �1 be any two shapes of positive volume. Then

dC (�0,�1) = dW (U�0 ,U�1).

Proof By a simple scaling argument, we may assume min{|�0|, |�1|} ≥ 1 without loss
of generality, so that both ρ0, ρ1 ≤ 1. Then the concatenated Euler sprays provided by
Theorem 1.3(b) supply a path of shape measures in C (actually shape densities), with action
converging to dW (U�0 ,U�1)

2. ��
Smoothness. For dimension d = 2, Theorem 7.1 does not apply to describe distance in

the space of shapes considered by Schmitzer and Schnörr in [48], however, for as we have
mentioned, they consider shapes to be bounded simply connected domains with smooth
boundary.

One point of view on this issue is that it is nowadays reasonable for many purposes to
consider ‘pixelated’ images and shapes, made up of fine-grained discrete elements, to be
valid approximations to smooth ones. Thus the microdroplet constructions considered in
this paper, which fit with the mathematically natural regularity conditions inherent in the
definition of Wasserstein distance, need not be thought unnatural from the point of view of
applications.

Nevertheless one may ask whether the infimum of path length in the space of smooth
simply connected shapes is still the Wasserstein distance, as in Theorem 7.1. Our proof of
Theorem 1.2 in Sect. 5 does not provide paths in this space because the union of droplets is
disconnected. However, the main mechanism by which we efficiently transport mass, namely
by “dividing” the domain into small pieces (droplets) which almost follow the Wasserstein
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geodesics, is still available. In particular, by creating many deep creases in the domain it
might be effectively ‘divided’ into such pieces while still remaining connected and smooth.
Thus we conjecture that even in the class of smooth sets considered in [48], the geodesic
distance is the Wasserstein distance between uniform distributions as in Theorem 7.1.

Geodesic equations. It is also interesting to compare our Euler droplet equations from
Sect. 3.1 with the formal geodesic equations for smooth critical paths of the action A in the
space C of uniform distributions. These equations correspond to equation (4.12) of Schmitzer
and Schnörr in [48].

These geodesic equations may be derived in a manner almost identical to the treatment in
Sect. 3.1 above. The principal difference is that due to (3.4), the divergence of the Eulerian
velocity may be a nonzero function of time, constant in space:

∇ · v = c(t),

and the same is true of virtual displacements ṽ. The variation of action now satisfies

δA
2

=
∫

�t

v · ṽ ρ dx

∣∣∣∣
t=1

−
∫ 1

0

∫
�t

(∂tv + v · ∇v) · ṽ ρ dx dt . (7.6)

Now, the space of vector fields orthogonal to all constant-divergence fields on�t is the space
of gradients ∇ p such that p vanishes on the boundary and has average zero in �t , satisfying

p = 0 on ∂�t ,

∫
�t

p dx = 0. (7.7)

Because ρ is spatially constant and ṽ can be (locally in time) arbitrary with spatially constant
divergence, necessarily u = −(∂tv+v ·∇v) is such a gradient. The remaining considerations
in Sect. 3.1 apply almost without change, and we conclude that v = ∇φ where

∂tφ + 1

2
|∇φ|2 + p = 0, �φ = c(t), (7.8)

where c(t) is spatially constant in �t .
These fluid equations differ from those in Sect. 3.1 in that φ gains one degree of freedom

(a multiple of the solution of �φ = 1 in �t with Dirichlet boundary condition) while the
pressure p loses one degree of freedom (as its integral is constrained).

They have ellipsoidal droplet solutions given by displacement interpolation of ellipsoidal
Wasserstein droplets as in Sect. 3.4, because pressure vanishes and density is indeed spatially
constant for these interpolants. Because they are Wasserstein geodesics, these particular
solutions are also length-minimizing geodesics in the shape space C.

We remark that unlike in the case of Euler sprays, disjoint superposition will not yield a
geodesic in general. This is because the requirement of spatially uniform density leads to a
global coupling between all shape components. It seems likely that length-minimizing paths
in C will not generally exist even locally, but we have no proof at present.
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Appendix A: Some basic facts about subgradients

For the convenience of readers, we include here proofs of a few facts about subgradients that
we use in Sect. 4 for the proof of Theorem 1.1. The proofs are standard and simple but seem
not to be easy to extract from monographs on the subject, e.g., see [4,10,32].

Proposition A.1 Let H be a Hilbert space, and let ϕ : H → (−∞,∞] be convex, lower
semi-continuous, and proper (i.e., somewhere finite). Let S(x) = 1

2‖x‖2 + ϕ(x). Then:

i. The subgradient ∂ϕ is a monotone operator.
ii. ∂S(x) = x + ∂ϕ(x) for all x ∈ H.
iii. The range of ∂S is all of H. I.e., for all y ∈ H there exists x ∈ H and z ∈ ∂ϕ(x) such

that y = x + z.

Proof i. Given any x, x̂ ∈ H , z ∈ ∂ϕ(x), ẑ ∈ ∂ϕ(x̂), by the definition of ∂ϕ(x) and ∂ϕ(x̂)
respectively we have ϕ(x̂) − ϕ(x) ≥ 〈z, x̂ − x〉 and ϕ(x) − ϕ(x̂) ≥ 〈ẑ, x − x̂〉, whence
0 ≤ 〈z − ẑ, x − x̂〉. This proves ∂ϕ is monotone.

ii. 1. Let z ∈ ∂ϕ(x). We claim x + z ∈ ∂S(x). Indeed, for all h ∈ H ,

1

2
‖x + h‖2 + ϕ(x + h) ≥ 1

2
‖x‖2 + ϕ(x) + 〈z + x, h〉.

2. Suppose z /∈ ∂ϕ(x). We claim z + x /∈ ∂S(x). We know there exists h ∈ H such that

t−1(ϕ(x + th) − ϕ(x)) − 〈z, h〉 < 0

for t = 1, hence for all t ∈ (0, 1] by convexity. Then for sufficiently small t > 0 we can add
1
2 t‖h‖2 to the left-hand side and conclude that for small t > 0,

1

2
‖th‖2 + ϕ(x + th) < ϕ(x) + 〈z, th〉,

whence z + x /∈ ∂S(x), since

1

2
‖x + th‖2 + ϕ(x + th) <

1

2
‖x‖2 + ϕ(x) + 〈z + x, th〉.

iii. Let y ∈ H and define Ŝ(x) = S(x) − 〈y, x〉 = 1
2‖x‖2 + ϕ(x) − 〈y, x〉. Due to our

hypotheses, Ŝ has a minimum at some x ∈ H . This implies that for all h ∈ H ,

1

2
‖x + h‖2 + ϕ(x + h) ≥ 1

2
‖x‖2 + ϕ(x) − 〈y, h〉,

which means that y ∈ ∂S(x) = x + ∂ϕ(x). ��

Appendix B: TLp stability of Wasserstein geodesics

Here we recall the notion of TL p convergence as introduced in [28], which provides a more
precise way to compare Wasserstein geodesics than the notion of weak convergence does
alone. We establish the TL p stability of optimal transport maps in Theorem B.1 and TL p

stability of the Wasserstein geodesics in Corollary B.2. In Proposition B.4 we recall a basic
property of TL p convergence and use it to show that the stability in Corollary B.2 holds even
if the maps used to couple the relevant measures are not optimal. This technical result is
needed in the proofs in Sect. 6.2.
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The TL p metric provides a natural setting for comparing optimal transport maps between
different probability measures. Let Pp(R

d) be the space of probability measures on Rd with
finite p-th moments. On the space TL p(Rd), consisting of all ordered pairs (μ, g) where
μ ∈ Pp(R

d) and g ∈ L p(μ), the metric is given as follows: For 1 ≤ p < ∞,

dTL p ((μ0, g0), (μ1, g1)) = inf
π∈�(μ0,μ1)

(∫
|x − y|p + |g0(x) − g1(y)|p dπ(x, y)

)1/p

,

dTL∞((μ0, g0), (μ1, g1)) = inf
π∈�(μ0,μ1)

ess sup
π

(|x − y| + |g0(x) − g0(y)|),

where �(μ0, μ1) is the set of transportation plans (couplings) between μ0 and μ1.
The following result establishes a (new) TL p stability property for optimal transport maps,

as a consequence of a known general stability property for optimal plans.

Theorem B.1 (TL p stability of transport maps) Letμ,μk ∈ Pp(R
d) be probability measures

absolutely continuous with respect to Lebesgue measure, and let ν, νk ∈ Pp(R
d), for each

k ∈ N. Assume that

dp(μk, μ) → 0 and dp(νk, ν) → 0 as k → ∞.

Let Tk and T be the optimal transportationmaps betweenμk and νk , andμand ν, respectively.
Then

(μk, Tk)
TL p−→ (μ, T ) as k → ∞.

Proof The measures πk = (id×Tk)	μk and π = (id×T )	μ are the optimal transportation
plans between μk and νk , and μ and ν, respectively. By stability of optimal transport plans
(Proposition 7.1.3 of [2] or Theorem 5.20 in [53]) the sequence πk is precompact with respect
to weak convergence and each of its subsequential limits is an optimal transport plan between
μ and ν. Since π is the unique optimal transportation plan between μ and ν the sequence πk

converges to π . Furthermore, by Theorem 5.11 of [47] or Remark 7.1.11 of [2],

lim
k→∞

∫
|x |p + |y|p dπk(x, y) = lim

k→∞

∫
|x |p dμk +

∫
|y|p dνk

=
∫

|x |p dμ +
∫

|y|p dν =
∫

|x |p + |y|p dπ(x, y).

By Lemma 5.1.7 of [2], it follows the πk have uniformly integrable p-th moments, therefore

dp(πk, π) → 0 as k → ∞,

by Proposition 7.1.5 in [2]. Hence there exists (optimal) γk ∈ �(π, πk) such that∫
|x − x̃ |p + |y − ỹ|p dγk(x, y, x̃, ỹ) → 0 as k → ∞. (B.1)

Since π-almost everywhere y = T (x) and πk-almost everywhere ỹ = Tk(x̃) and the support
supp γk of γk is contained in suppπ × suppπk , we conclude that γk-almost everywhere
(x, y, x̃, ỹ) = (x, T (x), x̃, Tk(x̃)). Therefore∫

|x − x̃ |p + |T (x) − Tk(x̃)|p dγk(x, y, x̃, ỹ) → 0 as k → ∞.

Finally let θk be the projection of γk to (x, x̃) variables. Since θk ∈ �(μ,μk), by above∫
|x − x̃ |p + |T (x) − Tk(x̃)|p dθk(x, x̃) → 0 as k → ∞. (B.2)
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Thus (μk, Tk)
TL p−→ (μ, T ). ��

We now consider the convergence of Wasserstein geodesics between measures μk and νk
as in the Lemma B.1, treating only the case p = 2. We recall that particle paths along these
geodesics are given by

Tk,t (x) = (1 − t)x + tTk(x).

The displacement interpolation between μk and νk , and particle velocities (in Eulerian vari-
ables) along the geodesics, are given by (cf. (6.15)–(6.16))

μk,t = Tk,t 	μk, vk,t = (Tk − id) ◦ T−1
k,t , t ∈ [0, 1).

If νk is absolutely continuous with respect to Lebesgue measure, then t = 1 is allowed. We
also recall that ∫

|vk,t (z)|2dμk,t (z) =
∫

|vk,0(x)|2dμk(x) = d22 (μk, νk).

Furthermore it is straightforward to check that t �→ (μk,t , vk,t ) is Lipschitz continuous into
TL2(Rd), satisfying for 0 ≤ s < t < 1

(t − s)d2(μk, νk) = d2(μk,t , μk,s) ≤ dTL2((μk,t , vk,t ), (μk,s, vk,s)) ≤ (t − s)d2(μk, νk).

(B.3)

Corollary B.2 (TL2 stability for displacement interpolants) Under the assumptions of Theo-
rem B.1 for the case p = 2, as k → ∞ we have

sup
t∈[0,1]

d2(μk,t , μt ) → 0 and sup
t∈[0,1)

dTL2((μk,t , vk,t ), (μt , vt )) → 0. (B.4)

If the measures νk and ν are absolutely continuous with respect to Lebesgue measure then
the convergence in (B.4) also holds for t ∈ [0, 1].
Proof Let π ∈ �(μ, ν), πk ∈ �(μk, νk), and γk ∈ �(π, πk) be as in the proof of Theo-
rem B.1. Similarly to θk , we define θk,t = (zt × zt )	γk where

zt (x, y) = (1 − t)x + t y and (zt × zt )(x, y, x̃, ỹ) = (zt (x, y), zt (x̃, ỹ)).

We note that θk,t ∈ �(μt , μk,t ) and hence, for all t ∈ [0, 1],

d2(μt , μk,t )
2 ≤

∫
|z − z̃|2dθk,t (z, z̃)

=
∫

|(1 − t)(x − x̃) + t(y − ỹ)|2dγk(x, y, x̃, ỹ)

≤ 2
∫

|x − x̃ |2 + |y − ỹ|2dγk(x, y, x̃, ỹ),

which by (B.1) converges to 0 as k → ∞.
We use the same coupling θk,t to compare the velocities. Using that γk-almost everywhere

(x, y, x̃, ỹ) = (x, T (x), x̃, Tk(x̃)), for any t ∈ [0, 1) we obtain∫
|vt (z) − vk,t (z̃)|2 dθk,t (z, z̃)

=
∫

|vt ((1 − t)x + t y) − vk,t ((1 − t)x̃ + t ỹ)|2 dγk(x, y, x̃, ỹ)
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=
∫

|vt (Tt (x)) − vk,t (Tk,t (x̃))|2 dθk(x, x̃)

=
∫

|v0(x) − vk,0(x̃)|2 dθk(x, x̃)

≤ 2
∫

|x − x̃ |2 + |T (x) − Tk(x̃)|2 dθk(x, x̃),

which converges to 0 as k → ∞, as in (B.2). ��
Remark B.3 If the target measure νk is not absolutely continuous with respect to Lebesgue
measure, then Tk may fail to be invertible on the support of νk and (μk,t , vk,t ) may fail
to converge as t → 1 to some point in TL2(Rd) due to oscillations in velocity. However,
if νk and ν are absolutely continuous with respect to Lebesgue measure, then the curves
t �→ (μk,t , vk,t ), t �→ (μt , vt ) extend as continuous maps into TL2 for all t ∈ [0, 1], and the
uniform convergences in (B.4) holds on [0, 1].

A number of properties of the TL p metric are established in Section 3 of [28] for measures
supported in a fixed bounded set. One useful characterization of TL p-convergence in this
case is stated in Proposition 3.12 of [28], which implies the following.

Proposition B.4 (A characterization of TL p convergence on bounded domains) Let D ⊂ R
d

be open and bounded, and let μ and μk (k ∈ N) be probability measures on D, and suppose
μ is absolutely continuous with respect to Lebesgue measure. Call a sequence of transport
maps (Sk) that push forward μ to μk (satisfying Sk	μ = μk) stagnating if

lim
n→∞

∫
D

|x − Sk(x)| dμ(x) = 0. (B.5)

Then the following are equivalent, for 1 ≤ p < ∞.

(i) (μk, fk)
TL p−→ (μ, f ) as k → ∞.

(ii) μk converges weakly to μ and there exists a stagnating sequence (Sk) such that∫
D

| f (x) − fk(Sk(x))|p dμ(x) → 0 as k → ∞. (B.6)

(iii) μk converges weakly to μ and for every stagnating sequence (Sk) the equality (B.6)
holds.

This result together with Proposition B.2 yields the following.

Corollary B.5 (A characterization of TL p convergence for displacement interpolants) Make
the same assumptions as in Corollary B.2, and assume all measures μk, μ, νk, ν are abso-
lutely continuous with respect to Lebesgue measure and have support in a bounded open set
D. Then for any stagnating sequence of transport maps (Sk) that push forward μ to μk , with
the notation

Sk,t = Tk,t ◦ Sk ◦ T−1
t

the sequence (Sk,t ) pushes forward μt to μk,t and is stagnating, and as k → ∞,

sup
t∈[0,1]

∫
|x − Sk,t (x)|2 dμt (x) → 0, (B.7)

sup
t∈[0,1]

∫
|vt (x) − vk,t (Sk,t (x))|2 dμt (x) → 0, (B.8)
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Proof First we note that indeed

μk,t = (Tk,t )	μk = (Tk,t ◦ Sk)	μ = (Sk,t )	μt .

Next, fix any t ∈ [0, 1]. Because d2(μk,t , μt ) → 0 by (B.4) and Tk,t is the optimal transport
map pushing forwardμk toμk,t , by Theorem B.1 we have d2((μk, Tk,t ), (μ, Tt )) → 0. Now
by Proposition B.4, because (Tt )	μ = μt we have∫

|x − Sk,t (x)|2 dμt (x) =
∫

|Tt (z) − Tk,t (Sk(z))|2 dμ(z) → 0. (B.9)

We infer that (Sk,t ) is stagnating and the convergence in (B.7) holds pointwise in t . But now,
the middle quantity in (B.9) is a quadratic function of t , so the uniform convergence in (B.7)
holds.

Next, we note that the quantity in (B.8) is actually independent of t . We have∫
|vt (x) − vk,t (Sk,t (x))|2 dμt (x) =

∫
|v0(z) − vk,0(Sk(z))|2 dμ(z) → 0,

due to Proposition B.4. ��
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