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Abstract

We show that in a tubular domain with sufficiently small width, the normal and tangential gradients of a harmonic
function have almost the same L2 norm. This estimate yields a sharp estimate of the pressure in terms of the viscosity
term in the Navier-Stokes equation with no-slip boundary condition. By consequence, one can analyze the Navier-
Stokes equations simply as a perturbed vector diffusion equation instead of as a perturbed Stokes system. As an
application, we describe a rather easy approach to establish a new isomorphism theorem for the non-homogeneous
Stokes system.

1 Introduction

Let Ω to be a bounded, connected domain in RN (N ≥ 2) with C3 boundary Γ = ∂Ω. The Navier-Stokes
equations for incompressible fluid flow in Ω with no-slip boundary conditions on Γ take the form

∂t~u+ ~u·∇~u+∇p = ν∆~u+ ~f in Ω, (1)
∇ · ~u = 0 in Ω, (2)

~u = 0 on Γ. (3)

Here ~u is the fluid velocity, p the pressure, and ν is the kinematic viscosity coefficient, assumed to be a
fixed positive constant.

Let P : L2(Ω,RN ) → (∇H1(Ω))⊥ denote the Helmholtz-Hodge projection onto vector fields that are
divergence free and have zero normal component on the boundary. One may apply P to both sides of (1)
to obtain

∂t~u+ P(~u·∇~u− ~f − ν∆~u) = 0. (4)

In this formulation, solutions formally satisfy ∂t(∇ · ~u) = 0. Consequently the zero-divergence condition
(2) needs to be imposed only on initial data.

Alternatives are possible, however. Instead of (4), as in [LLP] we consider

∂t~u+ P(~u·∇~u− ~f − ν∆~u) = ν∇(∇ · ~u). (5)
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There is no difference as long as ∇ · ~u = 0. However, the incompressibility constraint is enforced in a
more robust way, because the divergence of velocity satisfies a weak form of the diffusion equation with
no-flux (Neumann) boundary conditions — For all appropriate test functions φ, since Pa ⊥ ∇φ for any
a ∈ L2(Ω,RN ), we have ∫

Ω
∂t~u · ∇φ = ν

∫
Ω
∇(∇ · ~u) · ∇φ. (6)

Taking φ = ∇ · ~u we get the dissipation identity

d

dt

1
2

∫
Ω
(∇ · ~u)2 + ν

∫
Ω
|∇(∇ · ~u)|2 = 0. (7)

Due to the Poincaré inequality and the fact that
∫
Ω∇ · ~u = 0, the divergence of velocity is smoothed and

decays exponentially in L2 norm. And ∇ · ~u = 0 for all time if true initially, giving a solution of the
standard Navier-Stokes equations (1)–(3).

A second reason to prefer (5) is much deeper. To explain, we recast (5) in the form (1). Subtracting
(5) from (1), one can get

∇p = −(I − P)(~u·∇~u− ~f) + ν ((I − P)∆~u−∇∇ · ~u) . (8)

To explicitly identify the separate contributions to the pressure term made by the convection and viscosity
terms, we introduce the Euler pressure pE and Stokes pressure pS via the relations

∇pE = −(I − P)(~u·∇~u− ~f) (9)

∇pS = (I − P)∆~u−∇(∇ · ~u). (10)

Using (9) and (10), one can put (5) into the form (1) with p = pE + νpS:

∂t~u+ ~u·∇~u+∇pE + ν∇pS = ν∆~u+ ~f. (11)

Identifying the Euler and Stokes pressure terms in this way allows one to focus separately on the difficulties
peculiar to each. The Euler pressure is nonlinear, but of lower order. Since the Helmholtz projection is
orthogonal, naturally the Stokes pressure satisfies∫

Ω
|∇pS|2 ≤

∫
Ω
|∆~u|2 if ∇ · ~u = 0. (12)

Actually, a better estimate is true. It is not hard to show∇∇·~u = ∆(I−P)~u in the sense of distributions
for ~u ∈ L2(Ω,RN ) (see Lemma 1 of [LLP]), hence

∇pS = (I − P)∆~u−∇(∇ · ~u) = (∆P − P∆)~u = [∆,P]~u. (13)

Then it turns out that the Stokes pressure term is actually strictly dominated by the viscosity term,
regardless of the divergence constraint. The following theorem is proved in [LLP]:

Theorem 1 Let Ω ⊂ RN (N ≥ 2) be a connected bounded domain with C3 boundary. Then for any ε > 0,
there exists C ≥ 0 such that for all vector fields ~u ∈ H2 ∩H1

0 (Ω,RN ), the Stokes pressure pS determined
by (10) satisfies ∫

Ω
|∇pS|2 ≤ β

∫
Ω
|∆~u|2 + C

∫
Ω
|∇~u|2, where β = 1

2 + ε. (14)
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This theorem allows one to view (5) as fully dissipative. Rewriting it as

∂t~u+ P(~u·∇~u− ~f) = ν∆~u− ν∇pS, (15)

Theorem 1 allows us to regard the last term as a controlled perturbation and thus we can treat the
Navier-Stokes equations in bounded domains simply as a perturbation of the vector diffusion equation
∂t~u = ν∆~u. Both the pressure and convection terms are dominated by the viscosity term. This contrasts
with the standard approach that treats the Navier-Stokes equations as a perturbation of the Stokes system
∂t~u = ν∆~u−∇p, ∇ · ~u = 0.

A rather simple analytic proof of Theorem 1 has already been given in [LLP]. In this paper we will
present an alternative, more geometric proof, which will be carried out in section 3. Important ingredients
are: (i) an estimate near the boundary that is related to boundedness of the Neumann-to-Dirichlet map
for boundary values of harmonic functions — this estimate is proved in section 2, see Theorem 2; and
(ii) a representation formula for the Stokes pressure in terms of a part of velocity near and parallel to
the boundary. In section 4 we deduce an apparently new result for the linear Stokes system, namely an
isomorphism theorem between the solution space and a space of data for non-homogeneous side conditions
in which only the average flux through the boundary vanishes.

For references to other work connected to this new formulation of Navier-Stokes equations and for
further results, we refer to [LLP].

2 Integrated Neumann-to-Dirichlet estimates in tubes

2.1 Notation

Let Ω ⊂ RN be a bounded domain with C3 boundary Γ. For any ~x ∈ Ω we let Φ(~x) = dist(x,Γ) denote
the distance from x to Γ. For any s > 0 we denote the set of points in Ω within distance s from Γ by

Ωs = {~x ∈ Ω | Φ(~x) < s}, (16)

and set Ωc
s = Ω\Ωs and Γs = {~x ∈ Ω | Φ(~x) = s}. Since Γ is C3 and compact, there exists s0 > 0 such

that Φ is C3 in Ωs0 and its gradient is a unit vector, with |∇Φ(~x)| = 1 for every ~x ∈ Ωs0 . We let

~n(~x) = −∇Φ(~x), (17)

then ~n(~x) is the outward unit normal to Γs = ∂Ωc
s for s = Φ(~x), and ~n ∈ C2(Ω̄s0 ,RN ).

We let
〈
f, g

〉
Ω

=
∫
Ω fg denote the L2 inner product of functions f and g in Ω, and let ‖ · ‖Ω denote the

corresponding norm in L2(Ω). We drop the subscript on the inner product and norm when the domain of
integration is understood in context.

2.2 Statement of results

Our strategy for proving Theorem 1 crucially involves an integrated Neumann-to-Dirichlet–type estimate
for harmonic functions in the tubular domains Ωs for small s > 0. Such an estimate can be obtained from
a standard Neumann-to-Dirichlet estimate of the form∫

Γr

|(I − ~n~nt)∇p|2 ≤ α1

∫
Γr

|~n ·∇p|2, (18)

by integrating over r ∈ (0, s), provided one shows that α1 > 0 can be chosen independent of r for small
r > 0. But the following theorem gives a sharper estimate on α1 which enables us to establish the full
result in Theorem 1 for any number β greater than 1

2 , independent of the domain. (In a half-space one has
(14) with β = 1

2 and C = 0 and this is sharp, see [LLP].)
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Theorem 2 Let Ω be a bounded domain with C3 boundary. There exist positive constants s1 and C0 such
that for any s ≤ s1, whenever p is a harmonic function in Ωs we have∫

Ωs

|(I − ~n~nt)∇p|2 ≤ (1 + C0s)
∫

Ωs

|~n ·∇p|2. (19)

Our proof here is different from the arguments in [LLP], and is motivated by the case of slab domains
with periodic boundary conditions in the transverse directions. In this case the analysis reduces to estimates
for Fourier series expansions in the transverse variables. For general domains, the idea is to approximate
−∆ in thin tubular domains Ωs by the Laplace-Beltrami operator on Γ× (0, s). This operator has a direct-
sum structure, and we obtain the integrated Neumann-to-Dirichlet–type estimate by separating variables
and expanding in series of eigenfunctions of the Laplace-Beltrami operator on Γ. For basic background in
Riemannian geometry and the Laplace-Beltrami operator we refer to [Au] and [Ta].

2.3 Harmonic functions on Γ× (0, s)

Geometric preliminaries. We consider the manifold G = Γ × I with I = (0, s) as a Riemannian
submanifold of RN × R with boundary ∂G = Γ × {0, s}. We let γ denote the metric on Γ induced from
RN , let ι denote the standard Euclidean metric on I, and let g denote the metric on the product space G.
Any vector ~a tangent to G at z = (y, r) has components ~aΓ tangent to Γ at y and ~aI tangent to I at r.
For any two such vectors ~a and ~b, we have

g(~a,~b) = γ(~aΓ,~bΓ) + ι(~aI ,~bI). (20)

Given a C1 function z = (y, r) 7→ f(y, r) on G, its gradient ∇Gf at z is a tangent vector to G determined
from the differential via the metric, through requiring

g(∇Gf,~a) = df · ~a for all ~a ∈ TzG. (21)

By keeping r fixed, the function y 7→ f(y, r) determines the gradient vector ∇Γf tangent to Γ in similar
fashion, and by keeping y fixed, the function r 7→ f(y, r) determines the gradient vector ∇If tangent to
I. These gradients are also the components of ∇Gf :

(∇Gf)Γ = ∇Γf, (∇Gf)I = ∇If.

If u = (u1, . . . , uN−1) 7→ y = (y1, . . . , yN ) is a local coordinate chart for Γ, the metric is given by
γij du

i duj (summation over repeated indices implied) with matrix elements

γij =
∂yk

∂ui

∂yk

∂uj
.

For I ⊂ R the identity map serves as coordinate chart. In these coordinates the tangent vectors are written
(in a form that aids in tracking coordinate changes) as

∇Γf = γij ∂f

∂ui

∂

∂uj
, ∇If =

∂f

∂r

∂

∂r
. (22)

As usual, the matrix (γij) = (γij)−1. Given two C1 functions f, f̃ on G,

γ(∇Γf,∇Γf̃) = γij ∂f

∂ui

∂f̃

∂uj
, ι(∇If,∇I f̃) =

∂f

∂r

∂f̃

∂r
. (23)
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In these coordinates, the (positive) Laplace-Beltrami operators on Γ and I respectively take the form

∆Γf = − 1
√
γ

∂

∂ui

(
√
γγij ∂

∂uj
f

)
, ∆If = − ∂2

∂r2
f, (24)

where
√
γ =

√
det(γij) is the change-of-variables factor for integration on Γ — if a function f on Γ is

supported in the range of the local coordinate chart then∫
Γ
f(y) dS(y) =

∫
RN−1

f(y(u))
√
γ du. (25)

(Since orthogonal changes of coordinates in RN and RN−1 leave the integral invariant, one can understand√
γ as the product of the singular values of the matrix ∂y/∂u.)

Whenever f ∈ H1(Γ) and f̃ ∈ H2(Γ), one has the integration-by-parts formula∫
Γ
f∆Γf̃ =

∫
Γ
γ(∇Γf,∇Γf̃). (26)

One may extend ∆Γ to be a map from H1(Γ) → H−1(Γ) by using this equation as a definition of ∆Γf̃ as a
functional on H1(Γ). In standard fashion [Ta], one finds that I+∆Γ : H1(Γ) → H−1(Γ) is an isomorphism,
and that (I+∆Γ)−1 is a compact self-adjoint operator on L2(Γ), hence L2(Γ) admits an orthonormal basis
of eigenfunctions of ∆Γ. Since the coefficient functions in (24) are C1, standard interior elliptic regularity
results ([GT, Theorem 8.8], [Ta, p. 306, Proposition 1.6]) imply that the eigenfunctions belong to H2(Γ).
We denote the eigenvalues of ∆Γ by ν2

k , k = 1, 2, . . ., with 0 = ν1 ≤ ν2 ≤ . . . where νk → ∞ as k → ∞,
and let ψk be corresponding eigenfunctions forming an orthonormal basis of L2(Γ). If ∆Γψ = 0 then ψ is
constant on each component of Γ, so if m is the number of components of Γ, then 0 = νm < νm+1.

In the coordinates û = (u, r) 7→ z = (y, r) for G, the metric g takes the form γij du
i duj + dr2, and the

Laplace-Beltrami operator ∆G = ∆Γ + ∆I . Similar considerations as above apply to ∆G , except G has
boundary. Whenever f ∈ H1

0 (G) and f̃ ∈ H2(G) we have∫
G
f∆G f̃ =

∫
G
g(∇Gf,∇G f̃). (27)

One extends ∆G to map H1(G) to H−1(G) by using this equation as a definition of ∆G f̃ as a functional on
H1

0 (G).
We introduce notation for L2 inner products and norms on G as follows:

〈f, f̃〉G =
∫
G
ff̃ ‖f‖2

G =
∫
G
|f |2, (28)

〈∇Γf,∇Γf̃〉G =
∫
G
γ(∇Γf,∇Γf̃), ‖∇Γf‖2

G =
∫
G
γ(∇Γf,∇Γf), (29)

〈∇If,∇I f̃〉G =
∫
G
(∂rf)(∂rf̃), ‖∇If‖2

G =
∫
G
(∂rf)2, (30)

〈∇Gf,∇G f̃〉G =
∫
G
g(∇Gf,∇G f̃) = 〈∇Γf,∇Γf̃〉G + 〈∇If,∇I f̃〉G , (31)

‖∇Gf‖2
G =

∫
G
g(∇Gf,∇Gf) = ‖∇Γf‖2

G + ‖∇If‖2
G . (32)
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Lemma 1 Let

γ =
∫ s/2

−s/2
sinh2 νm+1τdτ

with νm+1 the first non-zero eigenvalue of ∆Γ. Suppose f ∈ H1(G) and ∆Gf = 0 on G = Γ× (0, s). Then,

‖∇Γf‖2
G ≤

(
1 +

s

γ

)
‖∇If‖2

G . (33)

Proof: Suppose ∆Gf = 0 on G. Since the coefficient functions in (24) are C1, the aforementioned interior
elliptic regularity results imply that that f ∈ H2

loc(G). For any r ∈ (0, s), fixing r yields a trace of f in
H1(Γ), and as a function of r, we can regard f = f(y, r) as in the space L2([a, b],H2(Γ))∩H2([a, b], L2(Γ))
for any closed interval [a, b] ⊂ (0, s). Now, for each r we have the L2(Γ)-convergent expansion

f(y, r) =
∑

k

f̂(k, r)ψk(y) (34)

where
f̂(k, r) =

∫
Γ
f(y, r)ψk(y) dS(y). (35)

For each k ∈ N, the map r 7→ f̂(k, r) is in H2
loc(0, s) and

∂rf̂(k, r) =
∫

Γ
∂rf(y, r)ψk(y) dS(y). (36)

For any smooth ξ ∈ C∞0 (0, s), taking f̃(y, r) = ψk(y)ξ(r) we compute that

∇Γf̃ = ξ(r)∇Γψk, ∂rf̃ = ψk∂rξ, (37)

and so by (27), (20), and (26), we have

0 =
∫
Gs

(∆Gf)f̃ =
∫
I

∫
Γ

(
γ(∇Γf,∇Γf̃) + (∂rf)(∂rf̃)

)
=

∫
I
ξ(r)

∫
Γ
γ(∇Γf,∇Γψk) +

∫
I
(∂rξ)

∫
Γ
(∂rf)ψk

=
∫
I
ξ(r)

∫
Γ
f∆Γψk +

∫
I
(∂rξ)∂rf̂(k, r)

=
∫ s

0

(
ξ(r)ν2

k f̂(k, r) + (∂rξ)∂rf̂(k, r)
)
dr. (38)

Therefore f̂(k, ·) is a weak solution of ∂2
r f̂ = ν2

k f̂ in H2
loc(0, s) and hence is C2. It follows that whenever

νk 6= 0, there exist ak, bk such that

f̂(k, r) = ak sinh νkτ + bk cosh νkτ, τ = r − s/2. (39)

Now

‖f‖2
G =

∑
k

∫ s

0
|f̂(k, r)|2 dr, (40)

‖∇Γf‖2
G =

∑
k

∫ s

0
|νkf̂(k, r)|2 dr, (41)

‖∇If‖2
G =

∑
k

∫ s

0
|∂rf̂(k, r)|2 dr. (42)
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Let γk =
∫ s/2
−s/2 sinh2 νkτ dτ . Then γk + s =

∫ s/2
−s/2 cosh2 νkτ dτ . When νk 6= 0 we get∫ s

0
|νkf̂(k, r)|2 dr = ν2

k(|ak|2γk + |bk|2(γk + s)), (43)∫ s

0
|∂rf̂(k, r)|2 dr = ν2

k(|ak|2(γk + s) + |bk|2γk). (44)

Since γk increases with k, β0(γk + s) ≤ γk when k ≥ m+ 1, where β0 = γm+1/(γm+1 + s) = γ/(γ + s).
It follows from (43) and (44) that

β0

∫ s

0
|νkf̂(k, r)|2 dr ≤

∫ s

0
|∂rf̂(k, r)|2 dr. (45)

The result follows by summing up over k. �

2.4 Global coordinates on Γ× (0, s)

To prove Theorem 2, we need to compare the Laplacian on G = Γ× (0, s) with the Laplacian on Ωs. It will
be important for this reason to coordinatize G for small s > 0 globally via the coordinate chart Ωs → G
given by

x 7→ z = (y, r) = (x+ Φ(x)~n(x),Φ(x)). (46)

In these coordinates, the metric on G that is inherited from RN+1 has the representation gij dx
i dxj with

matrix elements given by

gij =
∂zk

∂xi

∂zk

∂xj
=
∂yk

∂xi

∂yk

∂xj
+

∂r

∂xi

∂r

∂xj
. (47)

Let us write ∂i = ∂/∂xi and let ∇f = (∂1f, . . . , ∂Nf) denote the usual gradient vector in RN . The
components of ~n are ni = −∂iΦ and so ∂inj = ∂jni, meaning the matrix ∇~n is symmetric. Since |~n|2 = 1
we have ni∂jni = 0 = ni∂inj . Then the N ×N matrix

∂y

∂x
= I − ~n~nt + Φ∇~n = (I − ~n~nt)(I + Φ∇~n)(I − ~n~nt), (48)

and the matrix
G = (gij) = (I − ~n~nt)(I + Φ∇~n)2(I − ~n~nt) + ~n~nt = (I + Φ∇~n)2. (49)

With
√
g =

√
detG, the integral of a function f on G in terms of these coordinates is given by∫

G
f =

∫
Ωs

f
√
g dx. (50)

Given two C1 functions f , f̃ on G, we claim that the following formulae are valid in the coordinates from
(46):

g(∇Gf,∇G f̃) = (∇f)tG−1(∇f̃) = gij∂if∂j f̃ , (51)

γ(∇Γf,∇Γf̃) = (∇f)t(I − ~n~nt)G−1(I − ~n~nt)(∇f̃), (52)

ι(∇If,∇I f̃) = (~n ·∇f)(~n ·∇f̃) = (∇f)t~n~nt(∇f̃). (53)

Of course (51) simply expresses the metric in the x-coordinates from (46). To prove (53), note that along
any curve τ 7→ x(τ) satisfying ∂τx = ~n(x) we have

∂τ~n(x) = nj∂jni = nj∂j∂iΦ = nj∂inj = 0.
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So ~n(x) is constant and the curve is a straight line segment. Hence in the chart from (46), ~n(x) = ~n(y)
and we have x = y − r~n(y). Given a C1 function f then, we find that in these Ωs-coordinates,

∂rf(y, r) = (∂rxj)(∂jf) = −nj∂jf = −~n ·∇f, (54)

and (53) follows from (23). Finally, (52) follows directly from (51) and (53) using (20) — because of (49)
we have ~n~ntG = G~n~nt = ~n~nt, so ~n~nt = ~n~ntG−1 = G−1~n~nt and hence

(I − ~n~nt)G−1(I − ~n~nt) = G−1 − ~n~nt. (55)

2.5 Proof of Theorem 2

There exists an ε1 > 0 so that when 0 < ε ≤ ε1,
(
(1 + ε)−6 − ε

)−1 ≤ 1 + 20ε. (Indeed, ε1 ≈ 0.16.)
Assuming that the distance function Φ is C3 in Ωs0 , the s1 in Theorem 2 will be taken as ε1/(

√
2C) with

C some constant shown up later which depends only on Ω and s0. We assume that s1 ≤ s0, otherwise we
can make C larger and take s1 = s0.

Suppose ∆p = 0 in Ωs. We may assume p ∈ H1(Ωs) without loss of generality by establishing the
result in subdomains where Φ(x) ∈ (a, b) with [a, b] ⊂ (0, s) and taking a→ 0, b→ s. We write

p = p1 + p2,

where p1 ∈ H1
0 (Ωs) is found by solving a weak form of ∆Gp1 = ∆Gp:

〈∇Gp1,∇Gφ〉G = 〈∇Gp,∇Gφ〉G for all φ ∈ H1
0 (Ωs). (56)

For small s > 0, G = (gij) = I +O(s) and
√
g = 1 +O(s). Since 〈∇p,∇p1〉 = 0, taking φ = p1 we have

‖∇Gp1‖2
G =

∫
Ωs

(∇p)t(G−1√g − I)∇p1 dx ≤ Cs‖∇p‖Ωs‖∇Gp1‖G , (57)

where C is a constant independent of s.
For 0 < ε < 1, using (52), (50) and (29) we deduce

‖(I − ~n~nt)∇p‖2
Ωs

≤ (1 + Cs)‖∇Γp‖2
G

≤ (1 + Cs)
(
(1 + ε)‖∇Γp2‖2

G + (1 + ε−1)‖∇Γp1‖2
G
)

≤ (1 + Cs)(1 + ε)
(
‖∇Γp2‖2

G + ε−1C2s2‖∇p‖2
Ωs

)
. (58)

Now p2 = p− p1 satisfies ∆Gp2 = 0 in Ωs and p2 ∈ H1(G), hence we have

‖∇Γp2‖2
G ≤

(
1 +

s

γ

)
‖∇Ip2‖2

G , (59)

‖∇Ip2‖2
G ≤ (1 + ε)‖∇Ip‖2

G + (1 + ε−1)‖∇Ip1‖2
G

≤ (1 + ε)(1 + Cs)
(
‖~n ·∇p‖2

Ωs
+ ε−1C2s2‖∇p‖2

Ωs

)
, (60)

Without loss of generality, we can take C > 1/γ. Taking Cs = ε/
√

2, assembling these estimates yields

‖(I − ~n~nt)∇p‖2
Ωs

≤ (1 + ε)5
(
‖~n ·∇p‖2

Ωs
+ ε‖∇p‖2

Ωs

)
≤ (1 + ε)6

(
‖~n ·∇p‖2

Ωs
+ ε‖(I − ~n~nt)∇p‖2

Ωs

)
, (61)
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since |∇p|2 = |~n ·∇p|2 + |(I − ~n~nt)∇p|2. From the above inequality, we can derive(
(1 + ε)−6 − ε

)
‖(I − ~n~nt)∇p‖2

Ωs
≤ ‖~n ·∇p‖2

Ωs
. (62)

When s ≤ s1, we have ε ≤ ε1 and hence
(
(1 + ε)−6 − ε

)−1 ≤ 1 + 20ε. So, we get

‖(I − ~n~nt)∇p‖2
Ωs
≤ (1 + 20ε) ‖~n ·∇p‖2

Ωs
. (63)

Substituting ε =
√

2Cs into (63) leads to (19) for any s ≤ s1.

3 Analysis of the Stokes pressure

The main purpose of this section is to prove Theorem 1. Here we follow rather closely the arguments made
in [LLP].

3.1 Identities at the boundary

A key part of the proof of Theorem 1 involves boundary values of two quantities that involve the decom-
position of ~u = (I − ~n~nt)~u + ~n~nt~u into parts parallel and normal to the boundary, for which we have the
following lemma.

Lemma 2 Let Ω ⊂ RN be a bounded domain with boundary Γ of class C3. Then for any ~u ∈ H2(Ω,RN )
with ~u|Γ = 0, the following is valid on Γ:

(i) ∇ ·
(
(I − ~n~nt)~u

)
= 0 in H1/2(Γ).

(ii) ~n · (∆−∇∇·)
(
~n~nt~u

)
= 0 in H−1/2(Γ).

Proof: By a density argument, we only need to consider ~u ∈ C2(Ω̄,RN ). In [LLP, Lemma 3], we have
proved (i) as well as

∇~u⊥ − (∇~u⊥)τ = 0 on Γ (64)

with ~u⊥ = ~n~nt~u in a neighborhood of Γ. Then, note that for any ~v ∈ H2(Ω,RN ) and φ ∈ H1(Ω), by
integration by parts, we have the identity∫

Γ
(~n · (∆~v −∇∇ · ~v))φ =

∫
Ω
(∆~v −∇∇ · ~v) · ∇φ =

∫
Γ
~n · (∇~v −∇~vτ )∇φ. (65)

Hence (ii) follows from (64) by taking ~v to be equal to ~u⊥ in a neighborhood of Γ in (65). �

3.2 Identities for the Stokes pressure

Given ~u ∈ H2 ∩H1
0 (Ω,RN ), recall that P(∇∇ · ~u) = 0, so that the Stokes pressure defined in (10) satisfies

∇pS = ∆~u−∇∇ · ~u− P∆~u = (I − P)(∆−∇∇·)~u. (66)

Also recall that whenever ~a ∈ L2(Ω,RN ) and ∇ · ~a ∈ L2(Ω), ~n · ~a ∈ H−1/2(Γ) by the trace theorem for
H(div; Ω). If ∇ · ~a = 0 and ~n · ~a|Γ = 0, then we have

〈
~a,∇φ

〉
= 0 for all φ ∈ H1(Ω) and this means

(I − P)~a = 0. Thus, the Stokes pressure is not affected by any part of the velocity field that contributes
nothing to ~n · ~a|Γ where ~a = (∆ −∇∇·)~u. Indeed, this means that the Stokes pressure is not affected by
the part of the velocity field in the interior of Ω away from the boundary, nor is it affected by the normal
component of velocity near the boundary, since ~n · (∆−∇∇·)(~n~nt~u)|Γ = 0 by Lemma 2.
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This suggests we focus on the part of velocity near and parallel to the boundary. We make the following
decomposition. Let ρ : [0,∞) → [0, 1] be a smooth decreasing function with ρ(t) = 1 for t < 1

2 and ρ(t) = 0
for t ≥ 1. For small s > 0, the cutoff function given by ξ(x) = ρ(Φ(x)/s) is C3, with ξ = 1 when Φ(x) < 1

2s
and ξ = 0 when Φ(x) ≥ s. Then we can write

~u = ~u⊥ + ~u‖ (67)

where
~u⊥ = (1− ξ)~u+ ξ~n~nt~u, ~u‖ = ξ(I − ~n~nt)~u. (68)

Since ~u⊥ = (~n~nt)~u in Ωs/2, with ~a⊥ = (∆−∇∇·)~u⊥ we have

~a⊥ ∈ L2(Ω,RN ), ∇ · ~a⊥ = 0 and ~n · ~a⊥|Γ = 0 (69)

by Lemma 2(ii). Hence
〈
~a⊥,∇φ

〉
= 0 for all φ ∈ H1(Ω), that is,

(I − P)(∆−∇∇·)~u⊥ = 0. (70)

Combining this with (66) and (67) proves part (i) of the following.

Lemma 3 Let Ω ⊂ RN be a bounded domain with C3 boundary, and let ~u ∈ H2 ∩H1
0 (Ω,RN ). Let pS and

~u‖ be defined as in (66) and (68) respectively. Then

(i) The Stokes pressure is determined by ~u‖ according to the formula

∇pS = (I − P)(∆−∇∇·)~u‖. (71)

(ii) For any q ∈ H1(Ω) that satisfies ∆q = 0 in the sense of distributions,〈
∆~u‖ −∇pS,∇q

〉
= 0. (72)

(iii) In particular we can let q = pS in (ii), so
〈
∆~u‖ −∇pS,∇pS

〉
= 0 and

‖∆~u‖‖2 = ‖∆~u‖ −∇pS‖2 + ‖∇pS‖2. (73)

Proof: We already proved (i). For (ii), note by Lemma 2(i) we have

∇ · ~u‖|Γ = 0, (74)

so ∇ · ~u‖ ∈ H1
0 (Ω), thus

〈
∇∇ · ~u‖,∇q

〉
= −

〈
∇ · ~u‖,∆q

〉
= 0. Now (i) entails〈

∇pS,∇q
〉

=
〈
∆~u‖,∇q

〉
. (75)

This proves (ii), and then (iii) follows by the L2 orthogonality. �
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3.3 Proof of Theorem 1

Let ε > 0 and β = 1
2 + ε. Fix β1 < 1 such that 1 + ε0 := β(1 + β1) > 1, and fix s, ε1, ε2 > 0 small so that

2ε1 < ε0 and 1− ε2 − 2C0s > β1 with C0 as in Theorem 2.
Let ~u ∈ H2 ∩H1

0 (Ω,RN ), define the Stokes pressure by (10), and make the decomposition ~u = ~u⊥ + ~u‖
as in the previous subsection. Then by Lemma 3 we have

‖∆~u‖2 = ‖∆~u⊥‖2 + 2
〈
∆~u⊥,∆~u‖

〉
+ ‖∆~u‖ −∇pS‖2 + ‖∇pS‖2. (76)

We will establish the Theorem with the help of two further estimates.
Claim 1: There exists a constant C1 > 0 independent of ~u such that〈

∆~u⊥,∆~u‖
〉
≥ −ε1‖∆~u‖2 − C1‖∇~u‖2. (77)

Claim 2: There exists a constant C2 independent of ~u such that

‖∆~u‖ −∇pS‖2 ≥ β1‖∇pS‖2 − C2‖∇~u‖2. (78)

Combining the two claims with (76), we get

(1 + 2ε1)‖∆~u‖2 ≥ (1 + β1) ‖∇pS‖2 − (C2 + 2C1)‖∇~u‖2. (79)

Multiplying by β and using β(1 + β1) = 1 + ε0 > 1 + 2ε1 yields (14).
Proof of claim 1: From the definitions in (68), we have

∆~u⊥ = ξ~n~nt∆~u+ (1− ξ)∆~u+R1, ∆~u‖ = ξ(I − ~n~nt)∆~u+R2, (80)

where ‖R1‖+ ‖R2‖ ≤ C‖∇~u‖ with C independent of ~u. Since I − ~n~nt = (I − ~n~nt)2,(
ξ~n~nt∆~u+ (1− ξ)∆~u

)
·
(
ξ(I − ~n~nt)∆~u

)
= 0 + ξ(1− ξ)|(I − ~n~nt)∆~u|2 ≥ 0.

This means the leading term of
〈
∆~u⊥,∆~u‖

〉
is non-negative. Using the inequality |

〈
a, b

〉
| ≤ (ε1/C)‖a‖2 +

(C/ε1)‖b‖2 and the bounds on R1 and R2 to estimate the remaining terms, it is easy to obtain (77).
Proof of claim 2: Let ~a = ∇pS and ~b = ∆~u‖, and put

~a‖ = (I − ~n~nt)~a, ~a⊥ = (~n~nt)~a, ~b‖ = (I − ~n~nt)~b, ~b⊥ = (~n~nt)~b. (81)

Recall ~u‖ is supported in Ωs = {x ∈ Ω | Φ(x) < s}. Due to (80), we have∫
Ωs

|~b⊥|2 =
∫

Ωs

|~n ·∆~u‖|2 =
∫

Ωs

|~n ·R2|2 ≤ C

∫
Ω
|∇~u|2 (82)

Since ~b = 0 in Ωc
s = {x ∈ Ω | Φ(x) ≥ s}, we have

‖∆~u‖ −∇pS‖2 =
∫

Ω
|~a−~b|2 =

∫
Ωc

s

|~a|2 +
∫

Ωs

|~a⊥ −~b⊥|2 +
∫

Ωs

|~a‖ −~b‖|2. (83)

We estimate the terms in (83) as follows. First,∫
Ωs

|~a⊥ −~b⊥|2 ≥
∫

Ωs

(|~a⊥|2 − 2~a⊥ ·~b⊥) ≥ (1− ε2)
∫

Ωs

|~a⊥|2 −
1
ε2

∫
Ωs

|~b⊥|2. (84)
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Due to the orthogonality in Lemma 3, we have 〈~a,~a−~b〉 = 0, hence

0 =
∫

Ω
~a · (~a−~b) =

∫
Ωc

s

|~a|2 +
∫

Ωs

~a⊥ · (~a⊥ −~b⊥) +
∫

Ωs

~a‖ · (~a‖ −~b‖). (85)

For a sharp estimate we need to treat ~b‖ carefully. Using (85) we obtain∫
Ωs

|~a‖ −~b‖|2 + |~a‖|2 ≥ −2
∫

Ωs

~a‖ · (~a‖ −~b‖)

= 2
∫

Ωc
s

|~a|2 + 2
∫

Ωs

~a⊥ · (~a⊥ −~b⊥)

≥ 2
∫

Ωc
s

|~a|2 + (2− ε2)
∫

Ωs

|~a⊥|2 −
1
ε2

∫
Ωs

|~b⊥|2,

hence ∫
Ωs

|~a‖ −~b‖|2 ≥ (1− ε2)
∫

Ωs

|~a‖|2 + (2− ε2)
∫

Ωs

(|~a⊥|2 − |~a‖|2)−
1
ε2

∫
Ωs

|~b⊥|2. (86)

Using (84) and (86) in (83) yields∫
Ω
|~a−~b|2 ≥ (1− ε2)

∫
Ω
|~a|2 + (2− ε2)

∫
Ωs

(|~a⊥|2 − |~a‖|2)−
2
ε2

∫
Ωs

|~b⊥|2. (87)

Finally, using Theorem 2 and the estimate (82) we infer∫
Ω
|∇pS −∆~u‖|2 ≥ (1− ε2 − 2C0s)

∫
Ω
|∇pS|2 − C

∫
Ω
|∇~u|2. (88)

This establishes Claim 2, and finishes the proof of Theorem 1. �

4 Isomorphism theorems for non-homogeneous Stokes systems

Consider the non-homogeneous Stokes system:

∂t~u+∇p− ν∆~u = ~f (t > 0, x ∈ Ω), (89)
∇ · ~u = h (t ≥ 0, x ∈ Ω), (90)

~u = ~g (t ≥ 0, x ∈ Γ), (91)
~u = ~uin (t = 0, x ∈ Ω). (92)

The aim of this section is to obtain an isomorphism between the space of solutions and the space of data
{~f,~g, h, ~uin}, for the Stokes system. In examining this question we are motivated by the classic works of
Lions and Magenes [LM] which provide a satisfactory description of the correspondence between solutions
and data for elliptic boundary value problems. In the spirit of these results, a satisfactory theory of a given
system of partial differential equations should describe exactly how, in the space of all functions involved,
the manifold of solutions can be parametrized. Yet we are not aware of any such complete treatment of
the non-homogeneous Stokes system. (See further remarks on this issue below.)

We will first present an unconstrained formulation of the Stokes system (89)-(92) and then study
existence and uniqueness of solutions of this new formulation. Finally we go back to the Stokes system
and establish an isomorphism theorem for it.
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4.1 An unconstrained formulation

What we have done before to get an unconstrained formulation of Navier-Stokes equation with non-slip
boundary condition can be viewed as replacing the divergence constraint (2) by decomposing the pressure
via the formulae in (9) and (10) in such a way that the divergence constraint is enforced automatically. It
turns out that in the non-homogeneous case a very similar procedure works. Although we treat linear Stokes
systems here, a similar procedure works for non-homogeneous Navier-Stokes equations. One can simply
use the Helmholtz decomposition to identify a Stokes pressure term exactly as before via the formulae (10),
but in addition another term is needed in the total pressure to deal with the inhomogeneities. Dropping
the nonlinear term, equation (5) is replaced by

∂t~u+ P(−~f − ν∆~u) +∇pgh = ν∇(∇ · ~u). (93)

The equation that determines the inhomogeneous pressure pgh can be found by dotting with ∇φ for
φ ∈ H1(Ω), formally integrating by parts and plugging in the side conditions: We require〈

∇pgh,∇φ
〉

= −
〈
∂t(~n · ~g), φ

〉
Γ

+
〈
∂th, φ

〉
+

〈
ν∇h,∇φ

〉
(94)

for all φ ∈ H1(Ω). With this definition, we see from (93) that〈
∂t~u,∇φ

〉
−

〈
∂t(~n · ~g), φ

〉
Γ

+
〈
∂th, φ

〉
=

〈
ν∇(∇ · ~u− h),∇φ

〉
(95)

for every φ ∈ H1(Ω). This will mean w := ∇ · ~u− h is a weak solution of

∂tw = ν∆w in Ω, ~n ·∇w = 0 on Γ, (96)

with initial condition w = ∇·~uin−h
∣∣
t=0

. So the divergence constraint will be enforced through exponential
diffusive decay as before (see (119) below).

To find the total pressure in (89), subtract (93) from (89) to get

∇p = (I − P)~f + ν∇pS +∇pgh, (97)

where pS is defined as before via (10), and pgh is determined up to a constant by the forcing functions g
and h through the weak-form pressure Poisson equation (94). (See Lemma 5 below.) Our unconstrained
formulation is

∂t~u+∇p− ν∆~u = ~f (t > 0, x ∈ Ω), (98)
~u = ~g (t ≥ 0, x ∈ Γ), (99)

~u = ~uin (t = 0, x ∈ Ω), (100)

with p determined by (97).
Although the definition of Stokes pressure does not require a no-slip velocity field, clearly the analysis

that we performed in section 2 does rely in crucial ways on no-slip boundary conditions. So in order
to analyze the new unconstrained formulation, we will decompose the velocity field ~u in two parts. We
introduce a fixed field ũ in Ω× [0, T ] that satisfies ũ = ~g on Γ, and let

~v = ~u− ũ. (101)

Then ~v = 0 on Γ. With this ~v, similar to (10) we introduce

∇qS = (I − P)∆~v −∇∇ · ~v. (102)
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Then we can rewrite (98) as an equation for ~v:

∂t~v + ν∇qS = ν∆~v + f̃ , (103)

where
f̃ := −∂tũ+ P(ν∆ũ) + ν∇∇ · ũ−∇pgh + P ~f. (104)

We will answer questions concerning the existence and regularity of ũ and pgh in the next subsection.

4.2 Regularity assumptions

Let Ω be a bounded, connected domain in RN (N ≥ 2) with boundary Γ of class C3. Let

V (0, T ) := L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)), (105)

W (0, T ) := L2(0, T ;H1(Ω)) ∩H1(0, T ;H1(Ω)′). (106)

Here (H1)′ is the space dual to H1. Note we have the embeddings ([Ta1, p. 42], [Ev, p. 288], [Te1, p. 176])

V (0, T ) ↪→ C([0, T ],H1(Ω)), W (0, T ) ↪→ C([0, T ], L2(Ω)). (107)

Our theory on strong solutions comes in two similar flavors, depending on the regularity assumed on
the data. The two flavors correspond to solutions having either the regularity

~u ∈ Vdiv(0, T ) := V (0, T )N ∩ {~u | ∇ · ~u ∈ V (0, T )}, (108)

or the somewhat weaker regularity

~u ∈Wdiv(0, T ) := V (0, T )N ∩ {~u | ∇ · ~u ∈W (0, T )}, (109)

for some T > 0. In the first case, ∇ · ~u is more regular (∇ · ~u = 0 is usual), but we need to assume
∇ · ~uin ∈ H1(Ω) due to the embedding (107). The condition (109) means that ~u ∈ V (0, T )N and ∇ · ~u has
vector-valued distributional derivative ∂t(∇ · ~u) in L2(0, T ;H1(Ω)′), the dual of L2(0, T ;H1(Ω)).

Note the following characterization of Wdiv(0, T ) (see [LLP, Lemma 6] for the proof):

Lemma 4 Wdiv(0, T ) = V (0, T )N ∩ {~u | ∂t(~n · ~u|Γ) ∈ L2(0, T ;H−1/2(Γ))}.

Corresponding to the regularity in (109), our precise assumptions on the data are that for some T > 0
we have

~uin ∈ Huin := H1(Ω,RN ), (110)
~f ∈ Hf := L2(0, T ;L2(Ω,RN )), (111)

~g ∈ Hg := H3/4(0, T ;L2(Γ,RN )) ∩ L2(0, T ;H3/2(Γ,RN ))

∩ {~g
∣∣ ∂t(~n · ~g) ∈ L2(0, T ;H−1/2(Γ))}, (112)

h ∈ Hh := W (0, T ) (113)

We also make the compatibility assumptions

~g = ~uin when t = 0, x ∈ Γ, (114)〈
∂t(~n · ~g), 1

〉
Γ

=
〈
∂th, 1

〉
Ω
. (115)
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Lemma 5 Assume (110)-(115). Then, there exists some ũ ∈ V that satisfies

ũ(0) = ~uin, ũ
∣∣
Γ

= ~g, (116)

and there exists pgh ∈ L2(H1(Ω)/R) satisfying (94). Moreover,

‖ũ‖2
V ≤ C

(
‖~g‖2

H3/4(L2(Γ))∩L2(H3/2(Γ))
+ ‖~uin‖2

H1(Ω)

)
, (117)

‖pgh‖L2(H1(Ω)/R) ≤ C
(
‖∂t(~n · ~g)‖L2(H−1/2(Γ)) + ‖h‖W (0,T )

)
. (118)

Proof: (i) By a trace theorem of Lions and Magenes [LM, vol II, Theorem 2.3], the fact ~g ∈ H3/4(L2(Γ))∩
L2(H3/2(Γ)) together with (110) and the compatibility condition (114) implies the existence of ũ ∈ V
satisfying (116).

(ii) One applies the Lax-Milgram lemma for a.e. t to (94) in the space of functions in H1(Ω) with zero
average. We omit the standard details. �

4.3 Existence and uniqueness for the unconstrained formulation (97)–(100)

Theorem 3 Let Ω be a bounded, connected domain in RN (N ≥ 2) and assume (110)-(115). Then for
any T > 0, there is a unique strong solution of (97)-(100) exists on [0, T ], with

~u ∈ V (0, T )N , p ∈ L2(0, T ;H1(Ω)/R),

where pS and pgh are defined in (10) and (94). Moreover, ~u ∈ C([0, T ],H1(Ω,RN )) and

∇ · ~u− h ∈W (0, T )

is a smooth solution of the heat equation for t > 0 with no-flux boundary conditions. The map t 7→
‖∇ · ~u− h‖2 is smooth for t > 0 and we have the dissipation identity

d

dt

1
2
‖∇ · ~u− h‖2 + ν‖∇(∇ · ~u− h)‖2 = 0. (119)

If we further assume h ∈ Hh.s := V (0, T ) and ∇ · ~uin ∈ H1(Ω), then

∇ · ~u ∈ V (0, T ).

Proof: We will consider the existence of the system (102)-(104). Consider the following spatially contin-
uous time discretization scheme:

~vn+1 − ~vn

∆t
− ν∆~vn+1 = f̃n − ν∇qn

S , (120)

∇qn
S = (I − P)∆~vn −∇(∇ · ~vn), (121)

~vn
∣∣
Γ

= 0. (122)

We set

f̃n =
1

∆t

∫ (n+1)∆t

n∆t
f̃(t) dt, (123)

and take ~v0 = 0 because of (116). Notice that from Lemma 5 we can conclude f̃ ∈ L2(L2(Ω)).
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Dot (120) with −∆~vn+1, we get

1
2∆t

(
‖∇~vn+1‖2 − ‖∇~vn‖2 + ‖∇~vn+1 −∇~vn‖2

)
+ ν‖∆~vn+1‖2

≤ ‖∆~vn+1‖
(
‖f̃n‖+ ν‖∇qn

S ‖
)

≤ ε1
2
‖∆~vn+1‖2 +

2
ε1
‖f̃n‖2 +

ν

2
(
‖∆~vn+1‖2 + ‖∇qn

S ‖2
)

(124)

By Theorem 1, ‖∇qn
S ‖2 ≤ β‖∆~vn‖2 + C‖∇~vn‖2, and we can manipulate (124) to derive

1
∆t

(
‖∇~vn+1‖2−‖∇~vn‖2

)
+ (ν − ε1)

(
‖∆~vn+1‖2 − ‖∆~vn‖2

)
+ ε2‖∆~vn‖2

≤ 4
ε1
‖f̃n‖2 + νCβ‖∇~vn‖2, (125)

for ε2 = ν − ε1 − νβ > 0. Using a discrete Gronwall inequality and ~v0 = 0 gives

sup
0≤k≤n

‖∇~vk‖2 +
n∑

k=0

‖∆~vk‖2∆t+
n−1∑
k=0

∥∥∥∥~vk+1 − ~vk

∆t

∥∥∥∥2

∆t ≤ eCT
n∑

k=0

‖f̃k‖2∆t, (126)

where we have also used (120). This implies that the function ~v∆t(t) and ~V∆t(t) are bounded uniformly in

L2(H2 ∩H1
0 (Ω)) ∩H1(L2(Ω)) and L2(H2 ∩H1

0 (Ω)), (127)

respectively, where ~v∆t(t) and ~V∆t(t) are defined on each subinterval [tn, tn + ∆t) through linear interpo-
lation and as piecewise constant respectively:

~v∆t(tn + s) = ~vn + s

(
~vn+1 − ~vn

∆t

)
, s ∈ [0,∆t), (128)

~V∆t(tn + s) = ~vn, s ∈ [0,∆t). (129)

Then (120) means that whenever t > 0 with t 6= tn,

∂t~v∆t − νP∆~V∆t = ν∆(~V∆t(·+ ∆t)− ~V∆t) + ν∇∇ · ~V∆t + f̃n
∆t, (130)

where f̃∆t(t) = f̃n for t ∈ [tn, tn +∆t). By the boundedness in (127), we have associated weakly convergent
sequences in (127) and ~v∆t → ~v strongly in L2(L2(Ω)). Then, because of (126),

‖~v∆t − ~V∆t‖2
L2(Q) ≤ ‖~V∆t(·+ ∆t)− ~V∆t‖2

L2(Q) =
n−1∑
k=0

‖~vn+1 − ~vn‖2∆t ≤ C∆t2. (131)

Therefore ~V∆t, ~V∆t(· + ∆t) and ~v∆t convergence strongly in L2(L2(Ω)) to the same limits ~v. And hence
their weak limits in (127) are the same. Then we can pass to the limit weakly in L2(L2(Ω)) in all terms in
(130) to see ~v satisfies

∂t~v − νP(∆~v) = ν∇∇ · ~v + f̃ .

That is, ~v is indeed a strong solution of (103) and therefore (98). At the same time, we also get the
boundedness of the mapping from data to solution. For this linear equation, the uniqueness follows.
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Now, we prove the regularity of ∇·~u. We go from (98) to (93) by using (97) and (10). Then using (94)
we get (95) for any φ ∈ H1(Ω).

Recall, the operator A := ν∆ defined on L2(Ω) with domain

D(A) = {w ∈ H2(Ω) | ~n · ∇w = 0 on Γ} (132)

is self-adjoint and non-positive, so generates an analytic semigroup. With w = ∇·~u−h, taking φ ∈ D(A),
we have 〈

w, φ
〉

=
〈
~n · ~g, φ

〉
Γ
−

〈
~u,∇φ

〉
−

〈
h, φ

〉
, (133)

therefore t 7→
〈
w, φ

〉
is absolutely continuous, and (95) yields (d/dt)

〈
w, φ

〉
=

〈
w,Aφ

〉
for a.e. t. By

Ball’s characterization of weak solutions of abstract evolution equations [Ba], w(t) = eAtw(0) for all
t ∈ [0, T ]. It follows w ∈ C([0, T ], L2(Ω)), and w(t) ∈ D(Am) for every m > 0 [Pa, theorem 6.13]. Since
Amw(t) = eA(t−τ)Amw(τ) if 0 < τ < t we infer that for 0 < t ≤ T , w(t) is analytic in t with values in
D(Am). Using interior estimates for elliptic equations, we find w ∈ C∞((0, T ], C∞(Ω)) as desired. The
dissipation identity follows by dotting with w.

If we further assume h ∈ Hh.s and ∇ · ~uin ∈ H1(Ω), then w(0) ∈ H1(Ω). We claim

H1(Ω) = D((−A)1/2). (134)

Then semigroup theory yields w ∈ C([0, T ], D((−A)1/2)). Since

0 =
〈
−∆w, ∂tw − ν∆w

〉
=

d

dt

1
2
‖∇w‖2 + ν‖∆w‖2 (135)

for t > 0, we integrate (135) on [ε, T ] and let ε → 0 to deduce w ∈ L2(0, T ;H2(Ω)). Then because
∂tw = ν∆w, we get w ∈ L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)), and ∇ · ~u is in the same space.

To prove (134), note X := D((−A)1/2) is the closure of D(A) from (132) in the norm given by

‖w‖2
X = ‖w‖2 + ‖(−A)1/2w‖2 =

〈
(I − ν∆)w,w

〉
=

∫
Ω
|w|2 + ν|∇w|2.

Clearly X ⊂ H1(Ω). For the other direction, let w ∈ H1(Ω) be arbitrary. We may suppose w ∈ C∞(Ω̄)
since this space is dense in H1(Ω). Now we only need to construct a sequence of C2 functions wn → 0 in
H1 norm with ~n ·∇wn = ~n ·∇w on Γ. This is easily accomplished using functions of the form wn(x) =
ξn(dist(x,Γ))~n ·∇w(x), where ξn(s) = ξ(ns)/n with ξ smooth and satisfying ξ(0) = 0, ξ′(0) = 1 and
ξ(s) = 0 for s > 1. This proves (134).

4.4 Isomorphism theorem for the Stokes system (89)–(92)

4.4.1 From data to solutions

First, we consider the mapping from data to solutions. Given {~f,~g, h, ~uin}, we first solve (97)-(100). To go
from the unconstrained formulation (97)-(100) to Stokes system (89)-(92), there is one more step: we need
to verify the ∇ · ~u = h is satisfied. It turns out that this is true if the following additional compatibility
condition holds:

∇ · ~uin = h in Ω for t = 0. (136)

From ΠF.c to ΠU . Recall, from Theorem 3, when the data {~f,~g, h, ~uin} lie inside the space

ΠF := Hf ×Hg ×Hh ×Huin (137)



18

from (110)–(113), and satisfy the compatibility conditions (114)–(115), we have a unique solution ~u of
(97)-(100) in the space

Hu := Wdiv(0, T ). (138)

The total pressure p lies in
Hp := L2(0, T ;H1(Ω)/R), (139)

and the pair {~u, p} satisfies (89), (91) and (92). Moreover, w = ∇ · ~u − h satisfies a heat equation with
no-flux boundary conditions and (119) is true. Equation (90) says that w = 0, and this will hold if and
only if w(0) = 0, i.e., the additional compatibility condition (136) holds.

Therefore, for the non-homogeneous Stokes system (89)–(92), we should define the data and solution
spaces by

ΠF.c :=
{
{~f,~g, h, ~uin} ∈ ΠF : (114), (115) and (136) hold

}
, (140)

ΠU := Hu ×Hp. (141)

From what we have said so far, we get a bounded map ΠF.c → ΠU by solving the unconstrained
formulation (97)–(100), which because of (136) also solves (89)-(92).
From ΠF.c.s to ΠU.s. Note that in Theorem 3, one has more regularity on ∇ · ~u if one assumes more on
∇ · ~uin and h. Correspondingly, like Hh.s defined in Theorem 3, we introduce spaces of stronger regularity
by

Huin.s := H1(Ω,RN ) ∩ {~uin

∣∣ ∇ · ~uin ∈ H1(Ω)}, (142)
ΠF.s := Hf ×Hg ×Hh.s ×Huin.s. (143)

The solution ~u then lies in

Hu.s := Vdiv(0, T ). (144)

So as an alternative to the spaces in (140)–(141), we also obtain an isomorphism between the data and
solution spaces with stronger regularity defined by

ΠF.c.s :=
{
{~f,~g, h, ~uin} ∈ ΠF.s : (114), (115) and (136) hold

}
, (145)

ΠU.s := Hu.s ×Hp. (146)

4.4.2 From solutions to data

In the other direction, given {~u, p} ∈ ΠU (or ΠU,s), we simply define {~f,~g, h, ~uin} using (89)–(92) and
check that this lies in ΠF.c (or ΠF.c.s). (Note that we are not using (97)-(100) because we have trouble to
determine h. See the Remark 2 at the end of this section.)

4.4.3 Isomorphism theorem

Summarizing, we have proved the following isomorphism theorem for the non-homogeneous Stokes system
(89)–(92).

Theorem 4 Let Ω be a bounded, connected domain in RN with N any positive integer ≥ 2, and let
T > 0. The map {~f,~g, h, ~uin} 7→ {~u, p}, given by solving the unconstrained system (97)–(100), defines an
isomorphism from ΠF.c onto ΠU . The same solution procedure defines an isomorphism from ΠF.c.s onto
ΠU.s.
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Remark 1. For the standard Stokes system with zero-divergence constraints ∇ · ~uin = 0 and h = 0,
existence and uniqueness results together with the estimates

sup
0≤t≤T

‖~u(t)‖H1 + ‖~u‖L2(0,T ;H2) + ‖p‖L2(0,T ;H1/R)

≤ C
(
‖~f‖L2(0,T ;L2) + ‖~uin‖H1 + ‖~g‖H3/4(L2(Γ)) + ‖~g‖L2(H3/2(Γ))

)
(147)

were obtained in the classic work of Solonnikov [Sol, Theorem 15], where more general Lp estimates were
also proved. (Also see [GS1, GS2].) However, instead of the necessary compatibility condition∫

Γ
~n · ~g = 0, (148)

Solonnikov made the stronger constraining assumption that both the data ~g and solution ~u have zero
normal component on Γ, and correspondingly his estimates do not contain a term ‖∂t(~n ·~g)‖L2(H−1/2(Γ)) on
the right hand side of (147). (Note that when ∇ · ~uin = 0 and h = 0, we have

∫
Γ ~n · ~g|t=0 =

∫
Ω∇ · ~uin = 0

by (114), whence (148) is equivalent to (115).)
One treatment with h = 0 but imposing only

∫
Γ ~n · ~g = 0 is that of Fursikov et al. [Fu], who study the

problem in a scale of spaces that in one case exactly corresponds to what we consider here but with zero
divergence constraint. Amann recently studied very weak solutions without imposing ~n · ~g = 0 on Γ, but
only in spaces of very low regularity that exclude the present case [Am].

Remark 2 (Isomorphism theorem for (97)-(100)). For the unconstrained Stokes system (97)-(100)
there is an extra subtlety in determining an isomorphism from data to solution. We obtain a unique
solution pair {~u, p} ∈ ΠU given any data {~f,~g, h, ~uin} ∈ ΠF that satisfy only the compatibility conditions
(114) and (115) without (136). And, in the other direction, given {~u, p}, we can recover

~f = ∂t~u+∇p− ν∆~u, ~g = ~u
∣∣
Γ
, ~uin = ~u|t=0. (149)

But how are we to recover h? We need to use the fact, that follows from the definition of pgh in (94), that
∇ · ~u − h satisfies a heat equation with no-flux boundary conditions. In fact, to be able to recover h we
need to know one more item, hin, the initial value of h. We have

h = ∇ · ~u− w (150)

where w is the solution of

∂tw = ν∆w in Ω, ~n · ∇w = 0 on Γ, w(0) = ∇ · ~u|t=0 − hin. (151)

This procedure indicates that we should count the triple {~u, p, hin} as our solution in order to build an
isomorphism with the data for system (97)-(100). Of course, the regularity of hin must match that of h,
recalling the embeddings in (107).

Consequently, we see that solving the unconstrained system (97)-(100) defines an isomorphism between
the data spaces

Π̃F.c :=
{
{~f,~g, h, ~uin} ∈ ΠF : (114) and (115) hold

}
, (152)

Π̃F.c.s :=
{
{~f,~g, h, ~uin} ∈ ΠF.s : (114) and (115) hold

}
, (153)

and, respectively, the solution spaces for {~u, p, hin} given by

Π̃U = Hu ×Hp ×Hhin, Hhin = L2(Ω), (154)

Π̃U.s = Hu.s ×Hp ×Hhin.s, Hhin.s = H1(Ω). (155)
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