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Abstract The authors establish error estimates for recently developed finite-element
methods for incompressible viscous flow in domains with no-slip boundary conditions.
The methods arise by discretization of a well-posed extended Navier-Stokes dynamics for
which pressure is determined from current velocity and force fields. The methods use C1
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1 Introduction

Consider the Navier-Stokes equations (NSE) for incompressible fluid flow in a domain Ω in

R
N (N = 2 or 3) with no-slip boundary conditions on Γ := ∂Ω:

∂tu + u · ∇u + ∇p = ν∆u + f , in Ω, (1.1)

∇ · u = 0, in Ω, (1.2)

u = 0, on Γ. (1.3)

where u is the fluid velocity, p is the pressure, and ν = 1
Re is the kinematic viscosity coefficient,

assumed to be a fixed positive constant. Below, we denote the inner product of functions f and

g in L2(Ω) by 〈f, g〉Ω and let ‖ · ‖Ω denote the corresponding norm, omitting the subscript if

obvious in context. The vector n denotes an outward unit normal to Γ.
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The incompressibility constraint has long been a source of difficulties in both analysis and

computation for NSE in bounded domains. We will study discretization schemes that relate

to a well-posed extension of the dynamics of the NSE system (1.1)–(1.3), in which the incom-

pressibility constraint (1.2) is replaced by a weak-form Poisson equation for the pressure. Up

to a spatial constant, the pressure is determined by requiring

〈∇p,∇q〉 = 〈f − u · ∇u,∇q〉 + ν〈∇ × u, n ×∇q〉Γ, ∀ q ∈ H1(Ω). (1.4)

This is implied by (1.1)–(1.3) through dotting (1.1) with ∇q, using the vector identity ∆u −
∇∇ · u = −∇ × ∇ × u, and integrating by parts. In our previous paper [20], the system of

equations consisting of (1.1), (1.3) and (1.4), but omitting (1.2), was proved to be well-posed

locally in time, for strong solutions in C3 domains with arbitrary initial data uin ∈ H1
0 (Ω, RN ).

For solutions in general, ∇ · u is non-zero and satisfies a heat equation with no-flux boundary

conditions. But the divergence ∇·u is zero for all time if initially so, yielding the usual solution

of NSE. The well-posedness proof is based on estimates showing that the pressure gradient

determined by (1.4) is strictly dominated by the viscosity term in (1.1) at leading order.

In this paper, we refer to equations (1.1), (1.3) and (1.4) as the unconstrained Navier-Stokes

equations (UNSE). For analysis of equivalent and related formulations also see [10, 11]. See

[25] for recent discussion of the longstanding problem of replacing the divergence constraint by

a pressure Poisson equation, and an interesting alternative formulation.

The well-posedness proof in [20] was based on showing the stability of a simple time-

difference scheme: Given an approximation un ∈ H2 ∩ H1
0 (Ω, RN ) to the velocity at time

tn = n∆t, we determine ∇pn ∈ L2(Ω, RN ) by requiring

〈∇pn,∇q〉 = 〈fn − un · ∇un,∇q〉 + ν〈∇ × un, n ×∇q〉, ∀ q ∈ H1(Ω), (1.5)

then determine un+1 ∈ H2 ∩ H1
0 (Ω, RN ) to solve

un+1 − un

∆t
− ν∆un+1 = fn − un · ∇un −∇pn, in Ω, (1.6)

un+1 = 0, on Γ. (1.7)

Intriguingly, the analysis extended easily in [20] to prove the stability of a class of fully discrete

finite-element methods, in which the approximation spaces for pressure and velocity need not

satisfy the classical inf-sup (LBB) criterion for stability of weak solutions in mixed methods.

It is an important question to understand whether finite-element schemes can perform well

without satisfying the inf-sup condition, since this condition has been a serious complication

inhibiting the development and use of finite-element methods for problems involving incom-

pressible viscous flow. As is well-known, for example, the piecewise polynomial spaces of equal

order for velocity and pressure fail to be inf-sup stable. Finite element schemes based on fast

Stokes solvers work well at low Reynolds number if the inf-sup condition holds, but these solvers

typically converge slowly when the Reynolds number becomes high. Ways of circumventing the

inf-sup condition have been developed (e.g., stabilized finite-element methods), but at the cost

of additional complexity (see [2]) or for just the lowest-order velocity-pressure pairs (see [3]).



Error Estimates for Finite-Element Navier-Stokes Solvers 745

Our aim in the present paper is to investigate further the performance of the class of finite-

element methods treated in [20], which derived from the work of Johnston and Liu [16]. We

will establish error estimates for these schemes (higher-order in space and first-order in time),

and examine their performance numerically for a smooth test problem and for benchmark tests

involving flow in a driven cavity and over a backward-facing step.

We will also compare the performance of some closely related methods that incorporate

an approximate Leray projection on divergence-free velocity fields. These projection methods

suppress divergence errors in a more robust way that appears to be useful in numerical tests such

as flow over a backward-facing step, for which the flow field may fail to have sufficient spatial

regularity. The projection schemes we treat are essentially finite-element versions of classic

projection methods described in work of Orszag, Israeli, DeVille and Karniadakis [17, 24] and

studied recently by Leriche et al [22]. These schemes involve improved pressure boundary

conditions that figured in many later developments of projection methods (see e.g. [4, 12, 15,

17, 27]). For a comprehensive recent review of projection schemes, see [12]. Also see [20] for

discussion of the relation of the Johnston-Liu scheme and its C1 analog to schemes of Kim and

Moin [18], Timmermans et al [27], Henshaw and Petersson [15], Brown et al [4], and the gauge

method of E and Liu [7].

A difference between the schemes we study and classic projection methods is that we de-

termine pressure directly by discretization of the well-posed formula (1.4). In this paper, we

will also prove a nonlinear stability result for the simplest finite-element projection method of

this type, one that is formally first-order in time and is a variant of the schemes studied in [20].

Again, for this stability result to hold, the finite-element spaces for velocity and pressure need

not be related in any way; there is no need for the classic inf-sup condition.

What our analysis does require at present is that finite elements for pressure be C0 and

finite elements for velocity be C1. Computationally, it is generally not so attractive to use

C1 finite elements, due to the complexity and expense of solving biharmonic-type equations.

However, the analysis that we perform for these fully discrete schemes provides fundamental

support for a design philosophy that more practical C0 schemes may be based upon.

Our numerical analysis relies heavily on an estimate of the part of the pressure due to

viscosity, called the Stokes pressure p
S

= p
S
(u) in [20] and determined from any u ∈ H2(Ω, RN )

by the requirement

〈∇p
S
,∇q〉 = 〈∇ × u, n ×∇q〉Γ, ∀ q ∈ H1(Ω). (1.8)

The Stokes pressure is a harmonic function, solving the boundary value problem

∆p
S

= 0 in Ω, n · ∇p
S

= −n · ∇ ×∇× u on Γ. (1.9)

Since the right-hand side of (1.8) equals 〈∆u −∇∇ · u,∇q〉, it follows

∇p
S
(u) = (I − P)(∆u −∇∇ · u) = (∆P − P∆)u. (1.10)

Here P denotes the Leray-Helmholtz projection operator onto divergence-free fields with zero

normal component, providing the Helmholtz decomposition u = Pu + ∇φ, where

〈Pu,∇q〉 = 〈u −∇φ,∇q〉 = 0, ∀ q ∈ H1(Ω). (1.11)
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A central tool is the following result proved in [20], showing that the commutator (1.10) between

the Laplacian and Leray projection operators is strictly dominated by the viscosity term at

leading order.

Theorem 1.1 Let Ω ⊂ R
N (N ≥ 2) be a connected bounded domain with C3 boundary.

Then for any ε > 0, there exists C ≥ 0 such that for all vector fields u ∈ H2 ∩ H1
0 (Ω, RN ),

∫

Ω

|(∆P − P∆)u|2 ≤
(1

2
+ ε

)∫

Ω

|∆u|2 + C

∫

Ω

|∇u|2. (1.12)

The rest of this paper is organized as follows. In the next section, we establish error estimates

for the basic class of finite-element schemes treated in [20]. In Section 3, we prove a stability

theorem for a related projection method. The numerical analysis is based on Theorem 1.1 and

is limited to C3 domains — it is an open question whether similar results hold in domains

with corners, particularly in domains where H2 regularity may fail naturally due to corner

singularities.

We discuss several practical issues in Section 4, related to non-homogeneous boundary con-

ditions for velocity, numerical treatment of re-entrant corners, higher-order time discretization,

and how to compute the pressure. Then in Section 5, we present and discuss numerical results

for the finite-element schemes that we study. We conclude in Section 6 with a discussion of the

relation of our results to the inf-sup condition in the time-independent linear case.

2 Error Estimates for Extended Navier-Stokes Dynamics

Since pressure is determined directly from current velocity and forcing fields in the UNSE

system, discretization is rather straightforward, as indicated already by Johnston and Liu [16].

An implicit treatment of the viscosity term is appropriate for low to moderate Reynolds number

flow, but for efficiency and simplicity, we discretize the remaining terms explicitly in time. For

the spatial discretization, let Yh ⊂ H1(Ω)/R be a space of C0 finite elements for pressure, and

X0,h ⊂ H2 ∩ H1
0 (Ω, RN ) be a space of C1 finite elements for velocity. Here h > 0 is a bounded

discretization parameter.

The class of schemes we study is defined as follows. Given un
h ∈ X0,h as an approximation

to velocity at time tn = n∆t, we determine pn
h ∈ Yh through discretization of the pressure

Poisson equation (1.4), by requiring

〈∇pn
h ,∇qh〉 = 〈fn − un

h · ∇un
h,∇qh〉 + ν〈∇ × un

h , n ×∇qh〉Γ, ∀ qh ∈ Yh. (2.1)

Then we find un+1
h ∈ X0,h so that

〈∇un+1
h −∇un

h

∆t
,∇vh

〉
+ ν〈∆un+1

h , ∆vh〉 = 〈∇pn
h − f

n + un
h · ∇un

h, ∆vh〉 (2.2)

for all vh ∈ X0,h. This scheme is analogous to a C0 scheme described by Johnston and Liu

[16], the difference being that to derive the weak form of (1.1), instead of dotting with vh, we

dot with ∆vh to get (2.2).

In this section, we prove the following error estimates for (2.1)–(2.2), which ensure high-

order accuracy in space given a sufficiently smooth solution of the UNSE system for t ≥ 0.
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Similar to the stability proof in [20], the proof is based on H1 estimates and crucially uses

the estimate on Stokes pressure from Theorem 1.1. Thus the result is limited to C3 domains

and to initial data that satisfy nonlocal compatibility conditions implied by UNSE. We are not

aware, however, of any previous results of this type for fully nonlinear NSE that treat viscosity

terms implicitly, and nonlinear and pressure terms explicitly in general domains with smooth

boundary.

Theorem 2.1 Assume Ω is a bounded domain in R
N (N = 2, 3) with C3 boundary. Let

M0, ν > 0, and let T∗ > 0 be given by the Stability Theorem 4.1 in [20]. Let m ≥ 2, m′ ≥ 2 be

integers, and assume that

( i ) The spaces X0,h ⊂ H2 ∩ H1
0 (Ω, RN ) and Yh ⊂ H1(Ω) have the property that whenever

0 < h < 1, v ∈ Hm+1 ∩ H1
0 (Ω, RN ) and q ∈ Hm′

(Ω),

inf
vh∈X0,h

‖∆(v − vh)‖ ≤ C0h
k−1‖v‖Hk+1 for k = 2 and m, (2.3)

inf
qh∈Yh

‖∇(q − qh)‖ ≤ C0h
m′−1‖q‖Hm′ , (2.4)

where C0 > 0 is independent of v, q and h.

(ii) f ∈ C1([0, T ], L2(Ω, RN )), T > 0, and a given solution of (1.1), (1.3) and (1.4) satisfies

(u, p) ∈ C1([0, T ]; Hm+1(Ω, RN )) × C1([0, T ]; Hm′

(Ω)/R).

Then there exists C1 > 0 with the following property. Whenever u0
h ∈ X0,h, 0 < h < 1,

0 < n∆t ≤ min(T, T∗), and

‖∇u0
h‖2 + ν∆t‖∆u0

h‖2 +

n∑

k=0

‖f(tk)‖2∆t ≤ M0, (2.5)

the velocity and pressure errors en = u(tn) − un
h, rn = p(tn) − pn

h for the solution to the

finite-element scheme (2.1) and (2.2) satisfy

sup
0≤k≤n

‖∇ek‖2 +

n∑

k=0

(‖∆ek‖2 + ‖∇rk‖2)∆t

≤C1(∆t2 + h2m−2 + h2m′−2 + ‖∇e0‖2 + ‖∆e0‖2∆t). (2.6)

Remark 2.1 When m = m′, the time-averaged error estimates for velocity in H2 and

pressure in H1 have optimal convergence rates in terms of the approximation assumptions (2.3)

and (2.4). For typical C1 finite element spaces X0,h, whose element restrictions contain all

polynomials of degree d, standard results for polygonal domains with quasi-uniform meshes

assert that (2.3) holds when 2 ≤ m ≤ d. Similarly, for C0 finite element spaces Yh, whose

element restrictions include all polynomials of degree d′, (2.4) holds for 2 ≤ m′ ≤ d′ + 1.

Theorem 2.1 does not apply in domains with corners, but for smooth enough solutions, the

convergence rate from (2.6) would be optimal (the same as interpolation error) for both velocity

and pressure provided that d′ + 1 = d. (The theorem can be applied in principle in the case of

C3 domains, if suitable parametrically mapped piecewise polynomial finite elements are used.)

For the FVS (locally cubic) C1 finite elements used in our numerical tests, hypothesis (2.3)
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holds for both m = 2 and 3, and hypothesis (2.4) holds for both m′ = 3 and 4 (see [6, §6.1.5, p.

357]); for smooth solutions, the best rate in (2.6) would then correspond to m = m′ = 3, which

is not optimal for pressure. In our tests, though, we actually observe optimal convergence rates

for both velocity and pressure (see Section 5 below).

Proof Let M0, ν > 0 and let T∗, C∗ be given by [20, Theorem 4.1]. Fix integers m ≥ 2 and

m′ ≥ 1. Let C0 > 0 and suppose that X0,h, Yh satisfy assumption (i) of Theorem 2.1. Suppose

that T , f , u and p satisfy assumption (ii), so that (1.1) and (1.2) hold. The pressure p then

satisfies (1.4). More generally, we can suppose that u and p satisfy the unconstrained system

UNSE consisting of (1.1), (1.3) and (1.4), without (1.2).

In what follows, C denotes a generic constant independent of ∆t and h, whose value may

change from case to case. (The value of C will depend on the solution, so it may depend on

quantities such as ν in ways that we will not attempt to track here.)

2.1 Approximation error

We first project the solution into the finite element spaces and estimate the resulting ap-

proximation error. Define projections Πh on H2 ∩ H1
0 (Ω, RN ) and Ph on H1(Ω)/R as follows.

Given any a ∈ H2 ∩ H1
0 (Ω, RN ) and b ∈ H1(Ω)/R, we define

ah = Πha ∈ X0,h, bh = Phb ∈ Yh (2.7)

as the solutions of the following weak-form Poisson equations:

〈∆ah, ∆vh〉 = 〈∆a, ∆vh〉, ∀vh ∈ X0,h, (2.8)

〈∇bh,∇qh〉 = 〈∇b,∇qh〉, ∀ qh ∈ Yh. (2.9)

Notice that since 〈∆(a − ah), ∆ah〉 = 0,

‖∆a‖2 = ‖∆ah‖2 + ‖∆(a − ah)‖2. (2.10)

Moreover, we have the following basic estimates.

Lemma 2.1 For any a ∈ H2 ∩ H1
0 (Ω, RN ), b ∈ H1(Ω)/R,

‖∆(a − ah)‖ ≤ inf
vh∈X0,h

‖∆(a − vh)‖, (2.11)

‖∇(b − bh)‖ ≤ inf
qh∈Yh

‖∇(b − qh)‖, (2.12)

‖∇(a − ah)‖ ≤ Ch‖∆(a − ah)‖. (2.13)

Proof For any vh ∈ X0,h,

〈∆(a − ah), ∆(a − ah)〉 = 〈∆(a − ah), ∆(a − vh)〉 + 〈∆(a − ah), ∆(vh − ah)〉.

The last term is zero because of (2.8), hence the Cauchy-Schwartz inequality gives (2.11).

Similarly, one can prove (2.12). To prove (2.13), define w ∈ H3 ∩ H1
0 to be the solution of

−∆w = a − ah. (2.14)
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By assumption (2.3) with k = 2, there exists wh ∈ X0,h such that

‖∆(w − wh)‖ ≤ Ch‖w‖H3 ≤ Ch‖∇(a − ah)‖,

where we have used elliptic regularity for (2.14). So

‖∇(a − ah)‖2 = 〈−∆(a − ah), a − ah〉 = 〈∆(a − ah), ∆w〉
= 〈∆(a − ah), ∆(w − wh)〉
≤ ‖∆(a − ah)‖ · Ch‖∇(a − ah)‖.

This proves (2.13).

Given our regularity and approximation assumptions ( i ) and (ii), we can conclude that with

the notation

uh(tn) = Πhu(tn), ph(tn) = Php(tn), (2.15)

the error of approximating the solution by its projection is estimated by

‖∆(u(tn) − uh(tn))‖ ≤ Chm−1, ‖∇(p(tn) − ph(tn))‖ ≤ Chm′−1. (2.16)

2.2 Discretization error for pressure

It remains to estimate the discretization or scheme errors

en
h = uh(tn) − un

h, rn
h = ph(tn) − pn

h. (2.17)

We first focus on estimating the pressure error rn
h in this subsection. Our aim is to show that

for any ε0 > 0, there exists C > 0, such that whenever 0 < n∆t ≤ min(T, T∗), we have

‖∇rn
h‖2 ≤

(1

2
+ ε0

)
ν2‖∆en

h‖2 + C‖∇en
h‖2 + Ch2m−2. (2.18)

Recall that for any qh ∈ H1(Ω), the exact pressure satisfies

〈∇p(tn),∇qh〉 = 〈f(tn) − u(tn) · ∇u(tn),∇qh〉 − ν〈∇ ×∇× u(tn),∇qh〉
= 〈f(tn) − uh(tn) · ∇uh(tn),∇qh〉 − ν〈∇ ×∇× uh(tn),∇qh〉 − ℓn, (2.19)

where

ℓn = 〈(I − Πh)u(tn) · ∇u(tn) + uh(tn) · ∇(I − Πh)u(tn),∇qh〉
+ ν〈∇ ×∇× (I − Πh)u(tn),∇qh〉.

By Lemma 2.1, one has

|ℓn| ≤ C(hm + νhm−1)‖∇qh‖ ≤ Chm−1‖∇qh‖. (2.20)

Subtracting (2.1) from (2.19), we get

〈∇rn
h ,∇qh〉 = −〈en

h · ∇uh(tn) + un
h · ∇en

h,∇qh〉 − ν〈(I − P)∇×∇× en
h,∇qh〉 − ℓn, (2.21)
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where we have used 〈P∇ ×∇× en
h,∇qh〉 = 0. Take qh = rn

h and let

I1 = ν‖(I − P)∇×∇× en
h‖, I2 = ‖en

h · ∇uh(tn)‖, I3 = ‖un
h · ∇en

h‖.

By the Cauchy-Schwartz inequality, we get that for any ε1 > 0,

‖rn
h‖2 ≤ (I1 + I2 + I3 + Chm−1)2 ≤ I21(1 + ε1) +

1

ε1
(I2 + I3 + Chm−1)2. (2.22)

We estimate the terms as follows. By identity (3.2) and (1.10), we have

−(I − P)∇×∇× en
h = (∆P − P∆)en

h.

Therefore by Theorem 1.1, we get the estimate

‖(I − P)∇×∇× en
h‖2 ≤

(1

2
+ ε1

)
‖∆en

h‖2 + C‖∇en
h‖2. (2.23)

Next recall that, as in [20], by the Sobolev embedding theorems and Ladyzhenskaya’s inequal-

ities, we have

∫

Ω

|u · ∇v|2 ≤
(∫

Ω

|u|6
) 1

3
( ∫

Ω

|∇v|3
) 2

3 ≤ C‖∇u‖2‖∇v‖‖∇v‖H1 . (2.24)

We can use the regularity assumption (ii) together with the approximation bounds (2.16) to

bound terms involving uh(tn), and the stability result in Theorem 3.1 to conclude that as long

as (2.5) holds and 0 < n∆t ≤ min(T, T∗), we have ‖∇un
h‖ ≤ C and hence

‖en
h · ∇uh(tn)‖2 ≤ C‖∇en

h‖2‖∇uh(tn)‖‖∇uh(tn)‖H1 ≤ C‖∇en
h‖2, (2.25)

‖un
h · ∇en

h‖2 ≤ C‖∇un
h‖2‖∇en

h‖‖∇en
h‖H1 ≤ C‖∇en

h‖‖∆en
h‖. (2.26)

In particular, we obtain

2

ε1
I23 ≤ 2C

ε1
‖∇en

h‖‖∆en
h‖ ≤ ε1ν

2‖∆en
h‖2 +

C2

ε3
1ν

2
‖∇en

h‖2. (2.27)

Combining this with (2.25) and (2.23), from (2.22), we see that if ε1 is chosen sufficiently small

we get (2.18).

2.3 Discretization error for velocity

If we integrate (1.1) from tn to tn+1 and use the regularity assumption (ii), we see that the

exact solution satisfies, for any vh ∈ X0,h,

〈 1

∆t
(∇u(tn+1) −∇u(tn)),∇vh

〉
+ ν〈∆u(tn+1), ∆vh〉

= 〈∇p(tn) + u(tn) · ∇u(tn) − f (tn) + gn∆t, ∆vh〉, (2.28)

where ‖gn‖ is uniformly bounded in n. Using the projections in (2.15), we can rewrite this as

〈 1

∆t
(∇uh(tn+1) −∇uh(tn)),∇vh

〉
+ ν〈∆uh(tn+1), ∆vh〉

= 〈∇ph(tn) + uh(tn) · ∇uh(tn) − f(tn) + gn∆t, ∆vh〉 + ℓ̂n, (2.29)
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where, due to (2.8),

ℓ̂n = − 1

∆t
〈∇(I − Πh)(u(tn+1) − u(tn)),∇vh〉 + 〈∇(I − Ph)p(tn), ∆vh〉

+ 〈((I − Πh)u(tn)) · ∇u(tn) + (Πhu(tn)) · ∇(I − Πh)u(tn), ∆vh〉. (2.30)

By the regularity assumptions (ii), (2.16) and (2.13) and estimates like (2.25)–(2.26) (and the

elliptic regularity estimate ‖∇vh‖ ≤ ‖vh‖H2 ≤ C‖∆vh‖), we have

|ℓ̂n| ≤ Chm‖∇vh‖ + C(hm′−1 + hm− 1
2 )‖∆vh‖ ≤ ε2‖∆vh‖2 + C(h2m′−2 + h2m−1),

|〈gn∆t, ∆vh〉| ≤ ε2‖∆vh‖2 + C∆t2.

Subtracting (2.2) from (2.29), we find that the scheme errors en
h , rn

h satisfy

〈∇en+1
h −∇en

h

∆t
,∇vh

〉
+ ν〈∆en+1

h , ∆vh〉

= 〈∇rn
h , ∆vh〉 + 〈en

h · ∇uh(tn) + un
h · ∇en

h, ∆vh〉 + 〈gn∆t, ∆vh〉 + ℓ̂n. (2.31)

We will take vh = en+1
h and estimate terms on the right-hand side as follows. First, using

(2.18) we get

|〈∇rn
h , ∆en+1

h 〉| ≤ ν

2
‖∆en+1

h ‖2 +
1

2ν
‖∇rn

h‖2

≤ ν

2
‖∆en+1

h ‖2 +
(ν

4
+

ε0ν

2

)
‖∆en

h‖2 + C‖∇en
h‖2 + Ch2m−2. (2.32)

Using (2.25) and (2.26), we get

|〈en
h · ∇uh(tn) + un

h · ∇en
h, ∆en+1

h 〉| ≤ ε2‖∆en+1
h ‖2 +

C

ε2
(‖∇en

h‖2 + ‖∇en
h‖‖∆en

h‖)

≤ ε2‖∆en+1
h ‖2 + ε2‖∆en

h‖2 +
C

ε3
2

‖∇en
h‖2. (2.33)

Therefore, we find that

1

2∆t
(‖∇en+1

h ‖2 − ‖∇en
h‖2) +

(
ν − ν

2
− 3ε2

)
‖∆en+1

h ‖2

≤
(ν

4
+

ε0ν

2
+ ε2

)
‖∆en

h‖2 + C‖∇en
h‖2 + C(∆t2 + h2m′−2 + h2m−2). (2.34)

Now, we can choose ε0 and ε2 sufficiently small so that the quantities

ε̃1 = ν − 6ε2, ε̃2 =
ν

2
− ε0ν − 8ε2

are positive. Then we can rewrite (2.34) as

1

∆t
(‖∇en+1

h ‖2 − ‖∇en
h‖2) + ε̃1(‖∆en+1

h ‖2 − ‖∆en
h‖2) + ε̃2‖∆en

h‖2

≤C‖∇en
h‖2 + C(∆t2 + h2m′−2 + h2m−2). (2.35)

By a Gronwall-type argument similar to that in the next section below but without the cubic

nonlinear terms, we deduce, provided (2.5) holds and 0 ≤ n∆t ≤ min(T, T∗), that

sup
0≤k≤n

‖∇ek
h‖2 + ε̃1

n∑

k=0

‖∆ek
h‖2∆t

≤C(∆t2 + h2m−2 + h2m′−2 + ‖∇e0
h‖2 + ε̃2‖∆e0

h‖2∆t). (2.36)
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Going back to (2.18), we get

n∑

k=0

‖∇rk
h‖2∆t ≤ C(∆t2 + h2m−2 + h2m′−2 + ‖∇e0

h‖2 + ε̃2‖∆e0
h‖2∆t). (2.37)

Finally, using (2.16), we can replace ek
h and rk

h in the two inequalities above by ek and rk

respectively. This finishes the proof of the theorem.

3 Stability of a Projection Method

3.1 Divergence suppression by Leray projection

In numerical experiments, we have found that the simple scheme (2.1)–(2.2) (and variants

with higher-order time stepping) can work well when the solution is smooth. But for more

challenging problems, such as flow over a backward-facing step that involves vortex shedding

behind an obtuse corner, (2.1)–(2.2) need a little extra help to suppress divergence errors that

may generate sources or sinks that significantly affect the flow. Heuristically, one can see that for

the time-discrete, spatially continuous scheme corresponding to (2.2), the (generally nonzero)

quantity wn = ∇ · un satisfies

wn+1 − ν∆t∆wn+1 = wn, (3.1)

with boundary values determined by the solution of the Helmholtz equation satisfied by un+1.

Errors, introduced by spatial discretization perhaps, may build up due to the nearly neutral

stability of this equation.

For this reason, we find it useful to incorporate a projection step in the computation to

suppress the right-hand side of (3.1). We will replace un
h on the left-hand side of (2.2) by an

approximation to the Leray projection Pun
h. The resulting scheme is a finite-element version of

classical projection methods of Orszag et al [24] and Karniadakis et al [17], which incorporate

the curl-curl of velocity in the boundary condition for pressure (see (1.9)). We use backward-

Euler time differencing to get a scheme tractable to analysis.

It turns out that we can elegantly compute a projection of Pun
h into X0,h using the H1

0

inner product 〈∇u,∇v〉. The identity (see [20, Lemma 1])

∆Pu = ∆u −∇∇ · u = −∇×∇× u (3.2)

is valid for all u ∈ L2(Ω, RN ), and implies that given any uh, vh ∈ X0,h,

〈∇Puh,∇vh〉 = −〈∆Puh, vh〉 = 〈∇ × uh,∇× vh〉.

Thus we get the following finite-element scheme with divergence suppression:

( i ) Given un
h ∈ X0,h, find u

n,∗
h ∈ X0,h (the H1

0 projection of Pun
h) so that

〈∇u
n,∗
h ,∇vh〉 = 〈∇ × un

h,∇× vh〉 (3.3)

for all vh ∈ X0,h.
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( ii ) Determine the pressure pn
h ∈ Yh by requiring that for all qh ∈ Yh,

〈∇pn
h,∇qh〉 = 〈fn − un

h · ∇un
h,∇qh〉 + ν〈∇ × un

h, n ×∇qh〉Γ. (3.4)

(iii) Update the velocity by finding un+1
h ∈ X0,h so that for all vh ∈ X0,h,

〈∇un+1
h −∇u

n,∗
h

∆t
,∇vh

〉
+ ν〈∆un+1

h , ∆vh〉 = 〈∇pn
h − fn + un

h · ∇un
h, ∆vh〉 (3.5)

for all qh ∈ Yh and vh ∈ X0,h. Of course, one can avoid the expense of computing u
n,∗
h by

substituting (3.3) directly in (3.5).

We remark that since we know UNSE is well-posed, we can regard the approximate pro-

jection step (i) as a supplementary measure to suppress divergence errors; it is not necessary

to maintain consistency. To save expense in related projection methods, a projection could be

performed only once every several time steps.

3.2 Stability theorem

Here we establish a stability theorem for the C1 finite element schemes (3.3)–(3.5). Similar

to the proof of stability in [20] for the scheme (2.1)–(2.2) without a projection step, the main

ingredient is the estimate on Stokes pressure in Theorem 1.1, thus the theorem is restricted to

domains with C3 boundary.

Theorem 3.1 Assume that Ω is a bounded domain in R
N (N = 2, 3) with C3 boundary.

Then for any M0, ν > 0, there exist positive constants T∗ and C∗ with the following property.

Suppose Yh ⊂ H1(Ω), u0
h ∈ X0,h ⊂ H2∩H1

0 (Ω, RN ), f ∈ C1([0, T ], L2(Ω, RN )) for some T > 0,

and suppose 0 < n∆t ≤ min(T, T∗) and

‖∇u0
h‖2 + ν∆t‖∆u0

h‖2 +
n∑

k=0

‖fk‖2∆t ≤ M0. (3.6)

Then the solution to the finite element scheme (3.3)–(3.5) satisfies

sup
0≤k≤n

‖∇uk
h‖2 +

n∑

k=0

(‖∆uk
h‖2 + ‖∇pk

h‖2)∆t ≤ C∗, (3.7)

n∑

k=0

‖∇ · un
h‖2∆t ≤ C∗∆t. (3.8)

Proof (1) First, we rewrite (3.4) using (1.8) as

〈∇pn
h ,∇qh〉 = 〈f(tn) − un

h · ∇un
h,∇qh〉 + ν〈∇p

S
(un

h),∇qh〉, (3.9)

where p
S
(un

h) is the Stokes pressure associated with un
h. Taking qh = pn

h, we get

‖∇pn
h‖ ≤ ‖f(tn) − un

h · ∇un
h‖ + ν‖∇p

S
(un

h)‖. (3.10)

Note

〈∇un+1
h −∇u

n,∗
h ,∇vh〉 = 〈∇ × un+1

h −∇× un
h,∇× vh〉 + 〈∇ · un+1

h ,∇ · vh〉. (3.11)
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Now, let vh = un+1
h in (3.5) and use (3.11) and (3.10). We get

1

2∆t
(‖∇un+1

h ‖2 − ‖∇un
h‖2 + ‖∇× un+1

h −∇× un
h‖2)

+
1

2∆t
(‖∇ · un+1

h ‖2 + ‖∇ · un
h‖2) + ν‖∆un+1

h ‖2

≤‖∆un+1
h ‖(2‖f(tn) − un

h · ∇un
h‖ + ν‖∇p

S
(un

h)‖)

≤ ε1

2
‖∆un+1

h ‖2 +
2

ε1
‖f(tn) − un

h · ∇un
h‖2 +

ν

2
(‖∆un+1

h ‖2 + ‖∇p
S
(un

h)‖2)

for any ε1 > 0. This gives

1

∆t
(‖∇un+1

h ‖2 − ‖∇un
h‖2) +

1

∆t
‖∇ · un‖2 + (ν − ε1)‖∆un+1

h ‖2

≤ 8

ε1
(‖f (tn)‖2 + ‖un

h · ∇un
h‖2) + ν‖∇p

S
(un

h)‖2. (3.12)

Fix any β with 1
2 < β < 1. Using Theorem 1.1 with u = un

h, one obtains

1

∆t
(‖∇un+1

h ‖2 − ‖∇un
h‖2) +

1

∆t
‖∇ · un‖2

+ (ν − ε1)(‖∆un+1
h ‖2 − ‖∆un

h‖2) + (ν − ε1 − νβ)‖∆un
h‖2

≤ 8

ε1
(‖f (tn)‖2 + ‖un

h · ∇un
h‖2) + νCβ‖∇un

h‖2. (3.13)

(2) The pressure no longer appears at this point. Now, as in [20], we use inequalities of

Ladyzhenskaya to obtain, for all g ∈ H1(Ω),

‖g‖2
L4 ≤ C‖g‖L2‖g‖H1 , N = 2, (3.14)

‖g‖2
L3 ≤ ‖g‖

2
3

L2‖g‖
4
3

L4 ≤ C‖g‖L2‖g‖H1 , N = 3. (3.15)

Since H1(Ω) ⊂ L4 and L6, for all u ∈ H2 ∩ H1
0 (Ω, RN ) we have

‖u · ∇u‖2 ≤
{
‖u‖2

L4‖∇u‖2
L4 ≤ C‖u‖L2‖∇u‖2

L2‖∇u‖H1 , N = 2,

‖u‖2
L6‖∇u‖2

L3 ≤ C‖∇u‖3
L2‖∇u‖H1 , N = 3.

(3.16)

With u = un
h, using the elliptic regularity estimate ‖un

h‖H2 ≤ C‖∆un
h‖, we find that for any

ε2 > 0 there exists C > 0 such that

‖un
h · ∇un

h‖2 ≤ C‖∇un
h‖3‖∆un

h‖ ≤ ε2‖∆un
h‖2 +

C

ε2
‖∇un

h‖6. (3.17)

Using this in (3.13) and taking ε1, ε2 > 0 small, we get, for some ε > 0,

1

∆t
(‖∇un+1

h ‖2 − ‖∇un
h‖2) +

1

∆t
‖∇ · un‖2 + (ν − ε1)(‖∆un+1

h ‖2 − ‖∆un
h‖2) + ε‖∆un

h‖2

≤ 8

ε1
‖f(tn)‖2 +

8C

ε1ε2
‖∇un

h‖6 + νCβ‖∇un
h‖2. (3.18)

(3) The last step is a discrete Gronwall-type argument. (A general result of this type of

argument is formulated in [21].) Put bn = ‖f(tn)‖2 and

zn = ‖∇un
h‖2 + (ν − ε1)∆t‖∆un

h‖2, wn = ε‖∆un
h‖2 +

1

∆t
‖∇ · un

h‖2. (3.19)
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Then by (3.18), we get zn+1 + wn∆t ≤ zn + C∆t(bn + zn + z3
n). Summing from 0 to n− 1 and

using (3.6) yields

zn +

n−1∑

k=0

wk∆t ≤ CM0 + C∆t

n−1∑

k=0

(zk + z3
k) =: yn. (3.20)

Then yn increases with n and yn+1−yn = C∆t(zn+z3
n) ≤ C∆t(yn+y3

n). Let F (y) = ln
(

y√
1+y2

)

so that F ′(y) = (y +y3)−1. Then on (0,∞), F is negative, increasing and concave, and we have

F (yn+1) − F (yn) ≤ F ′(yn)(yn+1 − yn) =
yn+1 − yn

yn + y3
n

≤ C∆t, (3.21)

hence F (yn) ≤ F (y0) + Cn∆t = F (CM0) + Cn∆t. Choosing T∗ > 0 so that C∗ := F (CM0) +

CT∗ < 0, we deduce that for n∆t ≤ T∗ we have yn ≤ F−1(C∗), and this with (3.20) yields (3.7)

and (3.8).

Remark 3.1 If nonlinear terms were absent, T∗ could be fixed arbitrarily — we get un-

conditional stability in the case of the linear Stokes equation. In general, T∗ is independent of

the spatial discretization, but is limited in size by nonlinearity, even in two dimensions when

solutions exist globally in time. We apply the same remarks to the error estimates proved in

the next section for the scheme (2.1), (2.2) without a projection step. Also, we point out that

although the data u0
h are required to be in H2, the weak dependence of the bound (3.6) on

∆u0
h allows one to approximate any data uin ∈ H1

0 (Ω, RN ) with zero divergence by a suitable

u0
h ∈ X0,h. In [20], a similar smoothing step was used to prove the existence and uniqueness of

the solution of UNSE with any initial data uin ∈ H1
0 (Ω, RN ), having the regularity

u ∈ L2(0, T∗; H
2(Ω, RN )) ∩ H1(0, T∗; L

2(Ω, RN )). (3.22)

4 Practical Issues

4.1 Non-homogeneous boundary conditions

We handle non-homogeneous boundary conditions for the velocity in the way described in

[20]. Suppose that the no-slip boundary condition (1.3) is replaced by

u = g on Γ. (4.1)

The boundary data g is required to satisfy the compatibility condition

∫

Γ

n · g = 0 for t > 0.

In [20] we proved unconditional stability and convergence of the following time-discrete scheme

for the NSE equations (1.1)–(1.2) and (4.1), under appropriate conditions on regularity and

initial compatibility for the data. Given un ∈ H2(Ω, RN ), we determine ∇pn ∈ L2(Ω, RN ) so

that for all q ∈ H1(Ω),

〈∇pn,∇q〉 = 〈fn − un · ∇un,∇q〉 + ν〈∇ × un, n ×∇q〉Γ −
〈n · (gn+1 − gn)

∆t
, q

〉

Γ
, (4.2)
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then determine un+1 ∈ H2(Ω, RN ) from the boundary value problem

un+1 − un

∆t
− ν∆un+1 = fn − un · ∇un −∇pn, (4.3)

un+1|Γ = gn+1. (4.4)

To incorporate divergence suppression, we want to approximate a divergence-free projection

un,∗ to un that preserves the normal component, with n ·un,∗ = n ·un on Γ. In practice, it is

convenient to use L2-projection for this rather than the H1
0 -projection of the previous section.

Given un
h, we determine an approximation u

n,∗
h to Pun

h in terms of φn
h ∈ Yh so that

u
n,∗
h = un

h −∇φn
h , 〈∇φn

h ,∇qh〉 = −〈∇ · un
h, qh〉, ∀ qh ∈ Yh. (4.5)

To save computation, we combine the determination of φn
h and pn

h and simply compute p̂n
h =

pn
h +

φn
h

∆t
. Thus, in the first step of a fully discrete finite-element scheme, we determine p̂n

h ∈ Yh

so that for all qh ∈ Yh,

〈∇p̂n
h,∇qh〉 = 〈fn − un

h · ∇un
h,∇qh〉 + ν〈∇ × un

h, n ×∇qh〉Γ

−
〈n · (gn+1 − gn)

∆t
, qh

〉

Γ
− 1

∆t
〈∇ · un

h, qh〉. (4.6)

To update velocity, we look for un
h in a space of C1 finite elements Xh ⊇ X0,h, with

Xh ⊂ H2(Ω, RN ). Using ∂τ to denote tangential derivatives, we require

un+1
h = g(tn+1), ∂τun+1

h = ∂τg(tn+1) (4.7)

for all corresponding boundary degrees of freedom (DOF, i.e., those parameters which uniquely

define a function in the space Xh). Once the DOF at the boundary are taken care of, the DOF

at interior points of the triangulated domain are determined by solving the following equation

for any vh ∈ X0,h,

〈un+1
h − un

h

∆t
, ∆vh

〉
− ν〈∆un+1

h , ∆vh〉 = 〈fn − un
h · ∇un

h −∇p̂n
h, ∆vh〉. (4.8)

4.2 Obtuse corners, C1 finite elements and recycling

It is well-known that even for the linear Poisson equation with zero boundary condition, the

exact solution in an L-shaped domain may fail to be in H2(Ω), even though the forcing term is

C∞ and zero near the corners — a simple example is based on a cut-off of the function written

in polar coordinates as

u(r, θ) = r
2
3 sin

(2θ

3

)
, (4.9)

which is harmonic and satisfies u(r, 0) = 0 = u(r, 3π
2 ). For the Navier-Stokes equations, similar

singularities are known to occur and may be responsible for poor performance of C1 finite

element methods in problems in domains with re-entrant corners, such as flow over a backward

facing step.

A practical approach that we have used to recover reasonable results using C1 finite elements

in this situation is to expand the C1 finite element space for velocity, by “recycling” some
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basis functions associated with tangential derivatives at the corner, whose associated degrees

of freedom are otherwise discarded when imposing the no-slip condition. These recycled C1

basis functions are then crudely truncated to make them only C0. This will allow jumps in

directional derivatives at the corner.

To be more specific, we will illustrate the problem in 2D with a particular kind of C1

finite element that we have used in our computation, namely, the Fraeijs de Veubeke-Sander

(FVS) type C1 finite elements (see [6, Exercises 6.1.5] and [8, 19]). It will be evident that this

recycling technique does not depend on a detailed understanding of corner singularities, and

can be extended to other C1 finite elements in both R
2 and R

3. FVS elements are piecewise

3rd-order polynomials with 16 degrees of freedom in each FVS element. See Figure 1 for a

descriptive diagram — the arrows stand for evaluating directional derivatives, and the dots

mean taking values at the associated points.

Figure 1 FVS finite element.

If we have an obtuse corner, we need to put three elements (or rectangles) around the corner.

See Figure 2 for an illustration. For globally C1 functions in the finite-element space, there are

three degrees of freedom at the vertex of the corner: one value and two directional derivatives.

The problem comes from the directional derivatives, which we will denote by a and b for the

horizontal and vertical derivatives, respectively. The basis function associated with a and b are

denoted by φa and φb, which are supported in the rectangles I, II and III in Figure 2. Any

component of uh = (uh, vh), say, uh, is represented as

uh = aφa + bφb + · · · . (4.10)

In Figure 2, we intentionally use ai and bi (i = 1, 2, 3) to denote the a and b evaluated separately

in different rectangles at the vertex since φa and φb are supported in all three rectangles.

b

a

a

bb

a

3

3

2

2

1

1

III

III

Figure 2 FEs around the corner.
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(1) No-slip boundary values. No-slip boundary conditions require a1 = b3 = 0. To use C1

finite elements in the standard way, since derivatives of φa and φb are continuous, one must set

ai = bi = 0 for i = 1, 2, 3. Hence the first two terms in (4.10) drop, and φa and φb are never

used. As reported below in Section 5, this leads to poor results for flow over a backward facing

step.

The way to “recycle” φa and φb and improve the situation is very simple: We truncate φa

so that it is zero in rectangle I, and remains unchanged in rectangles II and III. We call it φ̃a.

We truncate φb so that it is zero in rectangle III, and remains unchanged in rectangles I and II.

We call it φ̃b. Then, we put φ̃a and φ̃b back into (4.10) (with a tilde on top) so that now the a

represents the x derivatives along the edge between rectangles II and III; b represents the the

y derivatives along the edge between rectangles I and II.

If we recycle basis elements in this way, using U0,h to denote the original FVS finite element

space, we get an expanded FVS finite-element space

Ũ0,h = U0,h ⊕ span{φ̃a, φ̃b} (4.11)

and a new finite-element space for velocity,

X̃0,h = Ũ0,h × Ũ0,h. (4.12)

We can then use the same equations, say, (4.6) and (4.8) to solve for p̂n
h and velocity un+1

h . The

space Yh remains unchanged. However, terms containing second derivatives of un
h, un+1

h and vh

are now being computed and integrated element-wise. For example, the term 〈un
h ·∇un

h, ∆vh〉Ω
is now replaced by

∑
k

〈un
h · ∇un

h, ∆vh〉Tk
, where {Tk} is the triangulation of Ω associated with

X̃0,h. (We do not add jump terms on the element boundaries. Numerical experiments that

we performed including such jump terms showed no essential difference.) Note that the matrix

that we need to invert in order to solve for un+1
h remains symmetric positive definite when

corners are handled in this way.

(2) Non-homogeneous boundary values. In the case that the boundary data g 6= 0, the

space Xh is modified as follows: we use the traditional approach to treat the x-derivative in

rectangle I and y-derivatives in rectangle III. The other derivatives at the corner in rectangle

I and III, and the two derivatives at the corner in rectangle II are set to be unknown and

to be determined from momentum equations (4.21). So, for example, for the x-component of

uh = (uh, vh), suppose that g1 is the x-component of g,

uh = (∂xg1)φa + bφb + · · · in rectangle I, (4.13)

uh = aφa + bφb + · · · in rectangle II, (4.14)

uh = aφa + (∂yg1)φb + · · · in rectangle III, (4.15)

where a and b are unknowns to be determined from the momentum equation as before, after we

enlarge the test function space X0,h ⊂ H2 ∩ H1
0 (Ω, RN ) to (4.12). The information from ∂τg

has been fully taken care of and the stiffness and mass matrices from the momentum equation

are still symmetric positive definite.

A different approach of handling reentrant corners has been introduced by Soane and Ros-

tamian [26], who use weighted variational problems to determine the Stokes pressure.
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4.3 Higher-order time integration

We get a basic 2nd-order scheme by discretizing the momentum equation using 2nd-order

backward differentiation formula for the viscosity and 2nd-order extrapolation formulas for

explicit treatment of pressure and convection terms. Using the notation

hn = un · ∇un, (4.16)

we get the following semi-discrete BD2/X2 scheme:

3un+1 − 4un + un−1

2∆t
+ 2(∇pn + h

n) − (∇pn−1 + h
n−1) = ν∆un+1 + f

n+1 (4.17)

with un+1 = 0 on Γ. The pressure equation is (see [20] or (4.6))

〈∇pn,∇q〉 = 〈fn − hn,∇q〉 + ν〈∇ × un, n ×∇q〉Γ − 〈n · ∂tg(tn), q〉Γ (4.18)

for any q ∈ H1(Ω). The divergence suppression we mentioned before can be easily incorporated

into the above scheme, and we get the following fully discrete scheme (a finite-element variant

of the projection methods of [17]):

uh = − 1

2∆t
(4un

h − un−1
h ) + (2h

n
h − h

n−1
h ) − f

n+1, (4.19)

〈∇P h,∇qh〉 = −〈uh,∇qh〉 + ν〈∇ × (2un
h − un−1

h ), n ×∇qh〉Γ

− 3

2∆t
〈n · gn+1, qh〉Γ, ∀ qh ∈ Yh, (4.20)

〈3un+1
h

2∆t
, ∆vh

〉
− ν〈∆un+1

h , ∆vh〉 = −〈uh + ∇P h, ∆vh〉, ∀vh ∈ X0,h, (4.21)

where h
n
h = un

h ·∇un
h. On the boundary Γ, we assign the associated degrees of freedom of un+1

h

equal to either gn+1 or tangential derivative of gn+1. Note that there is only one pressure-like

quantity computed in each time step.

4.4 How to solve for the pressure

We want to briefly indicate how we solve the pressure equation (2.1), because typically one

has to deal with a singular mass matrix A = (〈∇φi,∇φj〉), where {φi}D
i=1 is a basis for the

finite-element pressure space Yh. Here D is the number of degrees of freedom in Yh. If we write

pn
h =

∑
i

piφi and

bi = 〈fn − un
h · ∇un

h,∇φi〉 + ν〈∇ × un
h, n ×∇φi〉Γ, (4.22)

the pressure equation (2.1) is equivalent to the system of equations

Ap = b (4.23)

with p = (pi) and b = (bi). If Ap = 0 for some p ∈ R
D, then correspondingly, pTAp =∫

Ω
|∇pn

h |2 = 0 and hence pn
h must be a constant in Ω. Thus A is singular if and only if

the constant 1 ∈ Yh, which is typical. A solution of (4.23) always exists, however, since if

1 =
∑
i

ciφi ∈ Yh then b in (4.22) naturally satisfies the solvability condition cTb = 0.
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What we can do to compute a solution is simply remove some single basis element φj from

the set {φi}D
i=1, such that if 1 =

∑
i

ciφi then cj 6= 0. In practice, this usually means deleting

a single basis element φj , such that the value pj corresponds to a nodal value of pn
h. Then

it follows 1 /∈ Ŷh = span{φi : i 6= j}. Hence we can solve (4.23) by deleting the jth row

and column from matrix A, and the jth row from b, solving the resulting (D − 1) × (D − 1)

(symmetric, positive definite) system, and setting pj = 0 afterward.

5 Numerical Tests

In this section, we document the numerical performance of the C1 finite element schemes

described in this paper. We (i) check the stability and spatial accuracy of our schemes, and

(ii) apply our methods to benchmark problems involving driven cavity flow and flow over a

backward-facing step.

For C1 finite element computations, we use Fraeijs de Veubeke-Sander (FVS) type elements,

which are piecewise 3rd-order polynomials with 16 degrees of freedom in each FVS quadrilateral.

See Figure 1 and the discussion in Section 4.2.

We will report results for the following smooth test problem. We take the domain to be

[−1, 1]× [−1, 1] and let the exact solution be




u(x, y, t)

v(x, y, t)

p(x, y, t)


 =




g(t) cos2(πx
2 ) sin(πy)

−g(t) sin(πx) cos2(πy

2 )

g(t) cos(πx
2 ) sin(πy

2 )


 , (5.1)

where g(t) = cos(t). The forcing term f is chosen so that this is a solution of NSE. We take

ν = 1.

5.1 Stability checks

We studied the stability of the schemes treated in Theorems 2.1 and 3.1, and the schemes

(4.17)–(4.18) and (4.19)–(4.21) which are formally second-order accurate in time. We fixed a

16 × 16 finite-element mesh and integrated to T = 10000 by using time steps ∆t as large as 8.

For the exact solution in (5.1), the errors of velocity and pressure remained bounded, indicating

that these schemes are stable for time steps large of order O(1) when ν = 1. In general, the

maximum time step for nonlinear stability appears to depend on viscosity and nonlinearity in a

problem-dependent way; when viscosity is small, the stability of these implicit-explicit methods

is limited by the explicit treatment of the nonlinear terms. See Section 5.3 for examples.

5.2 Spatial accuracy checks

In Table 1, we study the spatial accuracy for the projection method (4.19)–(4.21) by using

FVS elements. The main quantity tabulated is − log10 E where E is the quantity listed in the

left-hand column. (This indicates the number of essentially correct digits in E.) We have used

a scheme formally second-order accurate in time and taken ∆t small enough so that the error

is mainly due to spatial discretization. In parentheses, we also list the local convergence rate α
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for E, determined from the formula

α =
log

(
Ek

Ek−1

)

log
(

hk

hk−1

) . (5.2)

Values of α in the first column of Table 1 are based on values of E for a larger h not shown.

Essentially similar results were obtained for this test problem with the scheme (4.17)–(4.18)

that does not involve a projection of velocity.

Table 1 Spatial accuracy check with FVS elements. − log
10

E (and local order α) vs h.

Scheme (4.19)–(4.21) with ∆t = h
2

2
, ν = 1, T = 2.

E \ h 2
32

2
45

2
64

2
91

‖p − ph‖∞ 5.81 (4.39) 6.42 (4.14) 7.06 (4.18) 7.68 (4.09)
‖u − uh‖∞ 6.18 (4.0) 6.78 (3.99) 7.39 (4.0) 8.0 (3.99)
‖∇ · uh‖∞ 4.45 (2.99) 4.89 (3.0) 5.35 (3.0) 5.81 (3.0)
‖p̃ − ph‖ 5.95 (3.94) 6.55 (4.08) 7.16 (3.99) 7.78 (4.04)
‖ũ − uh‖ 6.26 (3.99) 6.86 (4.0) 7.47 (4.0) 8.08 (3.99)
‖∇ · uh‖ 5.59 (3.63) 6.12 (3.58) 6.66 (3.54) 7.20 (3.52)
‖∇(p̃ − ph)‖ 4.28 (3.50) 4.80 (3.51) 5.33 (3.51) 5.87 (3.51)
‖∇(ũ − uh)‖ 5.27 (3.61) 5.80 (3.58) 6.35 (3.56) 6.89 (3.54)
‖∇(p − ph)‖∞ 3.22 (2.93) 3.66 (2.97) 4.12 (2.98) 4.58 (3.0)
‖∇(u − uh)‖∞ 4.45 (2.99) 4.89 (3.0) 5.35 (3.0) 5.81 (3.0)

The tabulated L2 errors compare the numerical solution with the interpolants p̃ and ũ of

the exact solution. For both velocity and pressure errors, Table 1 indicates that for this C1

finite element scheme, the error of gradients is of order O(h3), the optimal rate achieved by

the interpolation error ∇(u − ũ) with FVS elements. (In L2-norm, the gradient of differences

between the numerical solution and the interpolant is one-half order more accurate. This may

be related to well-known superconvergence results for the difference between the numerical

solution and a projection of the exact solution, for method-of-lines finite-element solutions of

parabolic problems such as the heat equation.)

This result is consistent with the (time-integrated) error estimate O(h2) for the Laplacian

of velocity from Theorem 2.1 for the Backward-Euler/Forward-Euler version of this scheme

without projection in smooth domains. The O(h3) convergence rate indicated for the pressure

gradient error is better, though, than the O(h2) rate that would be provided by the theorem

for time-integrated error, were it applicable.

5.3 Driven cavity and backward-facing step tests

In this subsection, we test our finite element schemes for driven cavity flow (with Re = 1000)

and flow over a backward facing step (with Re = 100 and 600).

For the driven cavity flow, we compute the flow in the domain [0, 1] × [0, 1] and start from

rest, impulsively imposing horizontal velocity u = 1 on the top boundary for t > 0. Following

[5], we plot the contours of vorticity with values [−5,−4,−3,−2,−1,−0.5, 0, 0.5, 1, 2, 3]. We

also follow [18] to plot normalized velocity fields in order to visualize flow details near the

corner. These plots also show the non-uniform mesh used. We refer to computational results of
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[5, 18] for comparison. Although we use a rather coarse mesh, the vorticity contour plots agree

quite well with [5].

For the backward-facing step, we use FVS finite elements to compute the flow in the domain

Ω = [0, L]× [−0.5, 0.5] \ [0, 0.5] × [−0.5, 0]

with no-slip boundary conditions everywhere except at the inflow boundary x = 0 and the

outflow boundary x = L. We take L = 8 when Re = 100, and take L = 20 when Re = 600.

We start from rest and gradually increase the boundary velocity (u, v) to (12y(1 − 2y), 0) at

the inflow boundary and (−3y2 + 3
4 , 0) at the outflow boundary, with no net influx at each

time. The time-dependent function we used for gradually increasing velocity is 1−cos(πt)
2 on

[0, 1]. Once the velocity field is obtained, we use the streamline function in MATLAB to plot

the streamlines. The mesh used is shown in Figure 3.

0 1 2 3 4 5 6 7 8
−0.5

0

0.5

Figure 3 Mesh used in backward facing step flow computation when Re = 100.
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Figure 4 Driven cavity, Re = 1000. 32 × 32 C1 FVS elements for each variable, hmin =
0.0131. No recycling. Scheme (4.19)–(4.21), ∆t = 0.0075, T = 50.

From Figure 5, we can see that a straight forward application of C1 finite elements in

domains with reentrant corner can lead to wrong results where continuity of derivatives across

elements touching the reentrant corner is maintained. For those wrong results, we have tried

to use finer grids and smaller time steps, but they are not very helpful. It seems that the

problem is not due to under-resolution, because the computation works once we turn on the

recycling. Figure 5 compares results with and without recycling at different times. It also shows

the (approximately constant) flux
∫

uh(x, y)dy integrated along vertical lines x = const plotted

against the distance x downstream from the inlet. Obviously the recycling techniques save the

computation. The results for Re = 600 with recycling are shown in Figure 6. Even though

we use a rather coarse mesh, the ratios between the size of the step (S) and the reattachment

length and other characteristic lengths (X1, X2, X3 as indicated in Figure 6) agree quite well

with what is in the literature results [1, 18].
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T Without recycling With recycling
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Figure 5 Backward facing step. Re = 100. Scheme (4.19)–(4.21) with recycling (right
plots) and without recycling (left plots). 594 FVS elements for each variable. hmin =
0.0301. ∆t = 0.006. Flow at times T = 1.002, 1.5, 19.998. Above each streamline plot we
plot the flux

R
uh(x, y)dy vs. x.
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Figure 6 Backward facing step. Re = 600. Scheme (4.19)–(4.21) with recycling. 1107 FVS
elements for each variable. hmin = 0.0301. ∆t = 0.003. T = 120. X1

S
= 8.9. X2

S
= 15.4.

X3

S
= 10.
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The time step is listed in the caption of each figure together with hmin, the side length of the

smallest finite element of the mesh (FVS rectangle). We have taken care to show the results of

a large time step for Figures 4 and 6. If the time steps are increased by 20%, the computations

blow up for these two cases. To have a rough idea of the CFL number in our finite element

computations, keep in mind that the maximum velocities are 1 and 3
2 for these two benchmark

problems.

6 Discussion

In this paper, we have provided rigorous stability and error analysis of schemes that employ

C1 finite elements for velocity, and numerical tests, that lend credence to the notion that simple

and efficient finite-element schemes based on the use of the well-posed pressure formula (1.4)

may work well even if the standard inf-sup (LBB) stability condition does not hold.

As the inf-sup condition is most readily understood in the time-independent linear case,

however, it seems worthwhile to briefly discuss that case in order to better understand how

finite element methods based on UNSE may work regardless of whether the inf-sup condition

holds or not.

6.1 Inf-sup condition for steady flow

Recall, for the mixed inhomogeneous Stokes problem

∇p − ∆u = f , ∇ · u = 0, u|Γ = 0, (6.1)

that standard mixed methods with finite-element approximation spaces Xh and Yh for velocity

and pressure take the form

〈∇uh,∇vh〉 − 〈ph,∇ · vh〉 = 〈f , vh〉, ∀vh ∈ Xh, (6.2)

〈∇ · uh, qh〉 = 0, ∀ q ∈ Yh. (6.3)

A fundamental fact for this system is that the existence and boundedness of the solution map

from f ∈ H−1 to (uh, ph) in H1
0 ×L2 is equivalent to the famous inf-sup condition: there should

exist ch > 0 such that

inf
qh∈Yh

sup
vh∈Xh

〈∇ · vh, qh〉
‖∇vh‖‖qh‖

≥ ch > 0. (6.4)

Also, the solution map is uniformly bounded in h if and only if ch is uniformly bounded away

from zero (see [9]). The main role of the inf-sup condition (6.4) lies in ensuring uniformly

bounded solvability for the pressure from (6.2). If the condition fails to hold, methods typically

encounter spurious pressure modes that destroy solvability or degrade accuracy.

6.2 Reformulation

Despite the well-known existence of a global Leray weak solution, well-posedness (existence

and uniqueness) for the Navier-Stokes equations at present requires one to consider more regular
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strong solutions locally in time, and this is the framework in which we proved local-time well-

posedness for UNSE in [20]. By analogy, we introduce a corresponding strong reformulation of

the Stokes problem above. Let λ ≥ 0 and consider

∇p − ∆u = f , u|Γ = 0, (6.5)

〈∇p,∇q〉 = 〈f + λu,∇q〉 + 〈∇ × u, n ×∇q〉Γ, ∀ q ∈ H1(Ω). (6.6)

We require f ∈ L2(Ω, RN ) and seek u ∈ H2 ∩ H1
0 (Ω, RN ), p ∈ H1(Ω)/R.

We claim that if Ω is bounded with C3 boundary, this PDE problem is always well-posed

and yields the solution of (6.1). A clean way to prove this is by operator theory. (We point out

immediately that the usual inf-sup condition as in (6.4) will not be relevant for this formulation,

because the pressure is stably determined by a Poisson equation, not from (6.2).) The pressure

gradient in (6.6) is given by

∇p = (I − P)f + Bλu, where Bλu = λ(I − P)u + ∇p
S
(u), (6.7)

in terms of the Stokes pressure ∇p
S
(u). Thus (6.5) can be written as

Au + Bλu = Pf , (6.8)

where the operator A = −∆, regarded as an unbounded operator on L2(Ω, RN ) with domain

D(A) = H2 ∩ H1
0 (Ω, RN ), is a positive self-adjoint operator with compact resolvent. It is a

simple consequence of Theorem 1.1 and interpolation that there exist positive constants a and

K with a < 1, such that for all u ∈ D(A),

‖Bλu‖ ≤ a‖Au‖ + K‖u‖. (6.9)

From a theorem on perturbation of sectorial operators (see [14, Theorem 1.3.2]), it is not difficult

to show, by using expansions in eigenfunctions of A (details omitted), that A + Bλ is sectorial

with the same domain as A. Due to the identity

(µ − A − Bλ)−1 = (µ − A)−1 + (µ − A)−1Bλ(µ − A − Bλ)−1,

the resolvent is compact, and it follows that the spectrum of A+Bλ is discrete, consisting only

of isolated eigenvalues of finite multiplicity.

It remains to show that zero is not an eigenvalue of A+Bλ. Suppose that u ∈ H2∩H1
0 (Ω, RN )

satisfies (A + Bλ)u = 0. This means

0 = −∆u + (I − P)∆u −∇∇ · u + λ(I − P)u, (6.10)

hence dotting with ∇q where q = −∇ · u, we find

0 = ‖∇∇ · u‖2 + λ‖∇ · u‖2. (6.11)

It follows ∇ ·u = 0 (if λ = 0 the integral of the constant ∇ ·u is zero by boundary conditions)

and therefore u = Pu. Hence u = 0, since by (6.10) it now follows

0 = 〈−P∆u, u〉 = 〈−∆u,Pu〉 = ‖∇u‖2.
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By consequence, zero lies in the resolvent set of A + Bλ, so that (A + Bλ)−1 is bounded

on L2(Ω, RN ) and equation (6.8) always has a solution bounded by the data (even if Pf is

replaced by any g ∈ L2(Ω, RN )). This solution, in fact, has zero divergence, which follows by

dotting (6.8) with ∇q where q = ∇ · u. Again, we get (6.11), hence ∇ · u = 0.

6.3 A stable discretization

In discretizing the reformulation (6.5)–(6.6), of course u and p are coupled together; there

is no simple decoupling analogous to splitting time steps in the time-dependent case. It is

nevertheless relevant to note that if the velocity is known, pressure will be determined by

solving a discrete Poisson equation. For this reason, we can expect that the inf-sup condition

(6.4) will have no role in determining the stability or accuracy of pressure in this approach, and

we can expect no spurious pressure modes.

Instead the issue becomes whether the velocity can be stably determined by approximation

schemes without regard to (6.4). A typical finite-element discretization will provide an approx-

imation to the operator A + Bλ in (6.8) acting in a finite-element space X0,h for velocity. The

issue is whether this non-selfadjoint discrete operator has a uniformly bounded inverse.

This question does not seem easy to resolve in general, but we will illustrate by proving

stability for a finite-element scheme from [23] for (6.5)–(6.6), that uses C1 elements for velocity

and C0 elements for pressure with no need for the inf-sup condition (6.4). (The method is not

practical, but that is not the point.) The idea behind the scheme comes from the identity

〈−∆u + λ(I − P)u,−∆u + λPu〉 = ‖∆u‖2 + λ‖∇u‖2, (6.12)

together with the estimate coming from Theorem 1.1,

|〈∇p
S
(u), ∆u〉| ≤ 1

2
‖∇p

S
‖2 +

1

2
‖∆u‖2 ≤ a‖∆u‖2 + Ca‖∇u‖2 (6.13)

for a ∈ (0, 1) independent of u. If λ > Ca, then for any nonzero u ∈ H2 ∩ H1
0 (Ω, RN ),

〈−∆u + Bλu,−∆u + λPu〉 ≥ (1 − a)‖∆u‖2 + (λ − Ca)‖∇u‖2. (6.14)

Thus the bilinear form on the left-hand side is coercive in H2 ∩ H1
0 (Ω, RN ), meaning that the

bounded solvability of (6.5)–(6.6) can be ensured by applying the Lax-Milgram theorem to the

weak-form problem of finding u ∈ X = H2 ∩ H1
0 (Ω, RN ) such that

〈−∆u + Bλu,−∆v + λPv〉 = 〈Pf ,−∆v + λPv〉, ∀v ∈ X. (6.15)

A corresponding stable finite-element scheme can be obtained as follows. Let X0,h ⊂ H2 ∩
H1

0 (Ω, RN ) and Yh ⊂ H1(Ω)/R be spaces for approximate velocity and pressure as before. A

discrete Leray projection Ph is defined as follows: For any a ∈ L2(Ω, RN ), define φh ∈ Yh by

solving

〈∇φh,∇qh〉 = 〈a,∇qh〉, ∀ qh ∈ Yh. (6.16)

Then Pha := a−∇φh. Note 〈Pha, (I −Ph)b〉 = 0 for any a, b ∈ L2(Ω, RN ), and ‖I −Ph‖ = 1.

By dotting (6.5) by the test function −∆v + λPv and discretizing (for convenience letting ph
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denote an approximation to p−Qf where ∇Qf = (I −P)f), we obtain the following C1 finite

element scheme for steady-state Stokes equations: Find uh ∈ X0,h and ph ∈ Yh so that

〈−∆uh + ∇ph,−∆vh + λPhvh〉 = 〈Phf ,−∆vh + λPhvh〉, (6.17)

〈∇ph − λuh − ∆uh + ∇∇ · uh,∇qh〉 = 0 (6.18)

for all vh ∈ X0,h and qh ∈ Yh.

For large λ > 0 this scheme has a solution uniformly bounded in terms of the data, for

arbitrary spaces X0,h and Yh regardless of (6.4). For the proof, note (6.18) yields

∇ph = λ(I − Ph)uh + (I − Ph)∇p
S
(uh), (6.19)

since the Stokes pressure satisfies (1.8). Plug this into the left-hand side of (6.17). The resulting

bilinear form on the left-hand side of (6.17) is coercive, since choosing vh = uh and arguing as

in (6.12)–(6.14) above yields

〈−∆uh + λ(I − Ph)uh,−∆uh + λPhuh〉 − 〈(I − Ph)∇p
S
(uh), ∆uh〉

≥ (1 − a)‖∆uh‖2 + (λ − Ca)‖∇uh‖2. (6.20)

A standard use of the Lax-Milgram theorem finishes the proof.

For further details, error estimates and related results, see the Ph. D. thesis of the second

author [23].

Acknowledgement R. L. Pego thanks Noel Walkington for helpful discussions.
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