
QUARTERLY OF APPLIED MATHEMATICS

VOLUME LXXVII, NUMBER 4

DECEMBER 2019, PAGES 811–829

https://doi.org/10.1090/qam/1541

Article electronically published on May 22, 2019

ON THE RATE OF CONVERGENCE OF EMPIRICAL MEASURE

IN ∞-WASSERSTEIN DISTANCE FOR UNBOUNDED

DENSITY FUNCTION

By

ANNING LIU (Department of Mathematical Sciences, Tsinghua University, Beijing 100084, People’s
Republic of China),

JIAN-GUO LIU (Department of Mathematics and Department of Physics, Duke University, Durham,
North Carolina 27708 ),

and

YULONG LU (Department of Mathematics, Duke University, Durham, North Carolina 27708 )

Abstract. We consider a sequence of identical independently distributed random

samples from an absolutely continuous probability measure in one dimension with un-

bounded density. We establish a new rate of convergence of the ∞-Wasserstein distance

between the empirical measure of the samples and the true distribution, which extends

the previous convergence result by Trillos and Slepčev to the case that the true distribu-

tion has an unbounded density.

1. Introduction. Consider a sequence of identical independently distributed (i.i.d.)

random variables {Xi}, i = 1, · · · , n, sampled from a given probability measure ν ∈
P(Rd) with probability density function ρ. Here P(Rd) denotes the space of all prob-

ability measures on R
d. We define the empirical measure νn associated to the samples

{Xi} by

νn :=
1

n

n∑
i=1

δXi
.

The well-known Glivenko–Cantelli theorem [20] states that νn converges weakly to ν

as n → ∞. In recent years, there has been growing interest in quantifying the rate
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812 A. LIU, J.-G. LIU, AND Y. LU

of convergence of νn to ν with respect to Wasserstein distances. Recall that the p-

Wasserstein distance between two probability measures μ, ν ∈ P(Rd) is defined as

Wp(μ, ν) :=
(

inf
π∈Π(μ,ν)

∫
Rd×Rd

|x− y|pΠ(dx, dy)
)1/p

, 1 ≤ p < ∞,

and

W∞(μ, ν) := inf
π∈Π(μ,ν)

esssupπ |x− y|,

where Π(μ, ν) is the set of all probability measures on R
d×R

d with two marginals μ and

ν.

The purpose of this paper is to prove the rate of convergence of νn to ν w.r.t. ∞-

Wasserstein distance W∞ when the density function ρ of ν is unbounded. For simplicity,

we will focus on the one dimensional case, but the arguments of the proof are expected

to be generalized to high dimensions.

1.1. Motivation and related work. Estimating the distance between the empirical mea-

sure of a sequence of i.i.d. random variables and its true distribution is a highly important

problem in probability and statistics. For example, in statistics, it is usually impossible

to access to the true distribution, e.g., the posterior distribution in a Bayesian proce-

dure. So in order to extract useful information from the true distribution, a common

approach is to generate i.i.d. samples from the true distribution via various sampling

algorithms (Markov chain Monte Carlo for instance), from which one can approximately

compute many statistical quantities of interest, such as the mean or variance by their

empirical counterparts. Hence understanding the statistical error in estimating the sta-

tistics requires a quantification of the distance between the empirical measure and the

true distribution.

The Wasserstein distance is a natural choice for measuring the closeness of two prob-

ability measures in the problem of consideration since it allows the probability measures

to be singular to each other, which typically allows including Dirac masses or the empir-

ical measures. This is prohibited if total variation distance or Hellinger distance [14] are

used. We are particularly interested in the ∞-Wasserstein distance for several reasons.

First, the ∞-Wasserstein distance W∞(μ, ν) reduces to the so-called min-max match-

ing distance [1,2,15] when both μ and ν are discrete measures with the same number of

Diracs. Such min-max matching distance plays an important role in the analysis of shape

matching problems in computer vision; see [9] and the references therein. Moreover, the

∞-Wasserstein distance is also useful in understanding the asymptotic performance of

spectral clustering [18,19]. In fact, in [18], the authors studied the consistency of spectral

clustering algorithms in the large graph limit. By formulating the clustering procedure

in a variational framework, they characterized the convergence of eigenvalues, eigenvec-

tors of a weighted graph Laplacian, and that of spectral clustering to their underlying

continuum limits using Γ-convergence. One crucial ingredient needed in their proof is

exactly a convergence rate estimate on the ∞-Wasserstein distance between the empirical

measures and the true distribution which was established in [19]. However, they made a

strong assumption that the density function of the true distribution is strictly bounded

from above and below. We aim to extend the result in [19] to the case where the true

distribution has an unbounded density in one dimensional space.
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CONVERGENCE OF EMPIRICAL MEASURE IN ∞-WASSERSTEIN DISTANCE 813

Let us briefly review some important previous works on the rate of convergence of

Wp(νn, ν) with p ≥ 1. For p = 1, it was shown by Dudley in [11] that when d ≥ 2,

C2 · n− 1
d ≤ E(W1(ν, νn)) ≤ C1 · n− 1

d .

Based on Sanov’s theorem, Bolley, Guillin, and Villani [6] proved a concentration estimate

on Wp(νn, ν) for 1 ≤ p ≤ 2 in any dimension

P
(
Wp(νn, ν) ≥ t

)
≤ C · e−Knt2 .

Boissard [4] extended this result to more general spaces rather than R
d when p = 1

and applied it to the occupation measure of a Markov chain. In [5], Boissard and Le

Gouic gave the rate of convergence for E(Wp(νn, ν)
p) when 1 ≤ p < ∞. Fournier and

Guillin [13] presented a better result than [4, 6] for non-asymptotic moment estimates

and concentration estimates. They showed that if ν has finite qth moment and p < d
2 ,

then

E(W p
p (ν, νn)) ≤ Cq,p · n− p

d

and

P
(
Wp(νn, ν) ≥ t

)
≤ C · exp(−Knt

d
p ).

(We only list the case p < d
2 here. For other cases, one can refer to Theorems 1 and 2

in [13].) Weed and Bach gave a new definition of the upper Wasserstein dimension d∗(ν)

for measure ν. They proved that for 1 ≤ p < ∞ and s < d∗(ν),

E(Wp(ν, νn)) ≤ C · n− 1
s .

As for W∞(ν, νn), its rate of convergence is less studied than that of Wp(ν, νn) with

p < ∞. As far as we know, most results on W∞(ν, νn) are obtained when ν and νn are

both discrete measures. As mentioned above, the ∞-Wasserstein distance between two

discrete measures is closely linked to the min-max matching problem. Many results have

been obtained for the latter when ν is a uniform distribution. Let S = [0, 1]d. Define a

regularly spaced array of n grid points on S (with n = kd for some k ∈ N ) by Yi and

the i.i.d. random samples with uniform distribution on S by Xi. Leighton and Shor [15],

and Shor and Yukich [16] showed that as n → ∞, it holds with high probability that

min
π

max
i

|Xπi
− Yi| ∼

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
O

(
(logn)

3
4

n
1
2

)
, d = 2,

O

((
log n

n

) 1
d

)
, d ≥ 3,

where π is a permutation of {1, 2, · · · , n}. When ν has a Lebesgue density which is

bounded from above and away from zero, Trillos and Slepčev [19] proved that the above

estimate still holds for W∞(ν, νn). Davis and Sethuraman [10] showed that in 1-D, the

following estimate holds:

W∞(ν, νn) ≤ C ·
(
log (log(n))

n

) 1
2

,
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814 A. LIU, J.-G. LIU, AND Y. LU

provided that the density function is bounded above and below by positive constants and

satisfies additional Lipschitz conditions. We will prove a similar result in Theorem 1.1

without the upper bound assumption on the density.

1.2. Main results. The purpose of this paper is to improve the results of [19] in 1-D

by removing the boundedness constraint on ρ(x). Our first result is a rate of convergence

result in the case where the density function ρ(x) is bounded from below, but not from

above.

Theorem 1.1. Let D = (0, 1) ⊆ R and ν be a probability measure in D with a density

function ρ : D → (0,∞). Assume that there exists a constant λ ∈ (0, 1) such that for

any x ∈ D,

ρ(x) ≥ λ.

Let X1, · · · , Xn, · · · be i.i.d. random variables sampled from ν and let νn be the corre-

sponding empirical measure. Then for any t > 0,

P

(
W∞(ν, νn) ≥

t

λ

)
≤ 2 exp(−2nt2).

In particular, except on a set with probability 2n−2,

W∞(ν, νn) ≤
1

λ

(
log n

n

) 1
2

. (1)

Remark 1.1. Note that the right hand side of (1) will blow up if λ → 0. That’s why

we assume that ρ(x) has a uniform positive lower bound in Theorem 1.1. Moreover, the

exponent one half is sharp owing to the central limit theorem.

We proceed to discussing the case when the density function is not strictly bounded

away from zero. We first comment that if the density function of ν is zero in a connected

region, then by definition the ∞-Wasserstein distance between νn and ν can not go to

zero as n goes to infinity. In fact, consider the probability measure ν0 with the density

function

ρ0(x) =

⎧⎪⎪⎨⎪⎪⎩
3

2
, x ∈

(
0,

1

3

)
∪
(
2

3
, 1

)
,

0, x ∈
[
1

3
,
2

3

]
.

Let νn,0 be the empirical measure of ν0. Since νn,0 depends on a sequence of random

variables, there is no guarantee that νn,0((0,
1
3 )) = ν0((0,

1
3 )). Assume that νn,0((0,

1
3 )) =

ν0((0,
1
3 )) + δn, where 1 
 δn > 0 is a small parameter. Since W∞(νn,0, νn) is also the

maximal distance that an optimal transportation map from νn,0 to ν0 moves the mass

by (which will be mentioned later in Lemma 2.2), it follows that

W∞(νn,0, ν0) ≥ diam

((
1

3
,
2

3

))
=

1

3
> 0.
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CONVERGENCE OF EMPIRICAL MEASURE IN ∞-WASSERSTEIN DISTANCE 815

Therefore, for the validity of Theorem 1.2, we assume that ρ(x) satisfies the following

conditions:

(A-1) There are only N points x1, · · · , xN in D satisfying ρ(xi) = 0.

(A-2) For each zero point xi,

mi|xi − x|ki ≤ ρ(x) ∀ x ∈ Bi, (2)

where Bi = (xi −Δi, xi + Δi) is a small neighborhood of xi and Δi, ki,mi are

positive numbers.

Theorem 1.2. Let D = (0, 1) ⊆ R and let ν be a probability measure in D with a

density function ρ : D → (0,∞). Assume that ρ satisfies assumptions (A-1) and (A-2).

Assume further that there exists a constant Λ > 0 such that for all x ∈ D,

ρ(x) ≤ Λ.

Then there exists a positive constant C = C(ki,mi,Λ) such that except on a set with

probability O
(

1
logn

)
,

W∞(ν, νn) ≤ C ·max
i

( log n
n

) 1
2(ki+1)

.

We would like to sketch the proof of the theorems above. To prove Theorem 1.1, we

use the fact that in one dimension, W∞ distance between two measures can be written

as the L∞ norm of the difference of their quantile functions. Moreover, thanks to the
1
λ -Lipschitz continuity of the quantile function of ν, which follows by the assumption that

ρ ≥ λ, the L∞ norm of the difference of the quantile functions can be bounded from above

by the difference between the cumulative distribution function of the true distribution ν

and that of the empirical distribution νn. Finally, the latter can be bounded by using

the Dvoretzky-Kiefer-Wolfowitz inequality [12].

For the proof of Theorem 1.2, we first divide the domain D into a family of sub-

domains according to the value of ρ(x). Then, we use the following scaling equality in

each sub-domain

W∞(ν, νn) = W∞(θν, θνn),

with an appropriate scaling parameter θ such that after rescaling, the Lebesgue density

of the rescaled measure θν is bounded from above and below. With the density being

bounded, we can estimate the ∞-Wasserstein distance by using the same method in [19].

However, the mass of ν and νn may not be equal in each sub-domain. To resolve this

issue, we introduce a new measure ν̃ such that ν̃ has the same mass as νn in each sub-

domain. Since the distance between ν̃ and νn can be bounded by an argument similar

to Theorem 1.1 in [19], it suffices to estimate the distance between ν and ν̃.

The following corollary is a direct consequence of Theorems 1.1 and 1.2.

Corollary 1.1. LetD = (0, 1) ⊆ R and let ν be a probability measure inD with density

ρ : D → (0,∞). Assume that ρ(x) satisfies (A-1), (A-2). Let X1, · · · , Xn, · · · be i.i.d.

random variables sampled from ν. Then there exists a positive constant C = C(ki,mi)
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such that except on a set with probability O
(

1
logn

)
,

W∞(ν, νn) ≤ C ·max
i

( log n
n

) 1
2(ki+1)

. (3)

1.3. Discussion. As we mentioned earlier, quantifying the rate of convergence of νn
to ν with respect to ∞-Wasserstein distance is very useful for understanding the consis-

tency of spectral clustering [18]. Our new convergence rate estimates will reshape the

convergence of spectral clustering in the case where the density of true distribution is

unbounded, as we discuss in what follows.

Let V = {x1, · · · , xn} be a set of data points in R
d sampled from a probability

measure ν. For each pair of points xi and xj , we construct a weight W εn
i,j between them

to characterize their similarities. In general, the weight has the form of

W εn
i,j = ηεn(xi − xj),

where ηεn(z) =
1
εdn
η( z

εn
) and η is an appropriate kernel function(for example, Gaussian

kernel). The weight matrix W εn ∈ R
n×n is then defined by W εn

i,j . Let Dεn ∈ R
n×n

be a diagonal matrix with Dεn
ii =

∑
j W

εn
i,j . Then the discrete Dirichlet energy and the

relevant continuum Dirichlet energy are defined by

Gn,εn(u
n) =

1

ε2nn
2

∑
i,j

W εn
i,j (u

n (xi)− un (xj))
2 , un ∈ L2(νn),

and

G(u) =

∫
D

|∇u|2ρ2(x)dx, u ∈ L2(ν),

where ρ(x) is the density function of the underlying measure ν. The unnormalized graph

Laplacian Ln,εn is defined by

Ln,εn = Dεn −W εn .

The aim of spectral clustering is to partition the data points x1, · · · , xn into k mean-

ingful groups. To do this, the spectrum of unnormalized graph Laplacian Ln,εn is used to

embed the data points into a low dimensional space. Then we can apply some clustering

algorithms like k-means to these points. For more details about spectral clustering, one

can see [22].

In [18], the authors proved that when the density function ρ(x) of ν is bounded from

above and below, the spectrum of unnormalized graph Laplacian Ln,εn converges to the

spectrum of the corresponding continuum operator L, which implies the consistency of

spectral clustering. They also gave a lower bound of the convergence rate at which the

connectivity radius εn → 0 as n → ∞. With our theorems, the results in [18] can be

generalized to the case when ρ(x) is unbounded. In particular, the kernel width εn should

be chosen to be slightly larger than the right side of (3), which is different from [18].

The proof will not be included in this paper since it is similar to the proof in [18]. We

sketch the outline of the proof as follows.

First, we prove the Γ-convergence of Dirichlet energy Gn,εn to G. Note that Gn,εn(u
n)

and G(u) are defined in different function spaces. In order to show the Γ-convergence,
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CONVERGENCE OF EMPIRICAL MEASURE IN ∞-WASSERSTEIN DISTANCE 817

we need to construct an approximate function to un ∈ L2(νn) in L2(ν) by

ũ = un ◦ Tn,

where Tn is the transportation map between ν and νn. Our theorems are used in this

step to establish the probabilistic estimates and the constraint on εn. By Corollary 1.1

and Lemma 2.2 below, we can give an upper bound on ‖Tn − I‖

lim sup
n→∞

min
i

n
1

2(ki+1) ‖Tn − I‖
(log n)

1
2(ki+1)

≤ C.

Then by requiring that εn 
 maxi

(
log n
n

) 1
2(ki+1)

we can give upper and lower bounds on

Gn,εn(u
n) in terms of G(ũ). Hence the Γ-convergence of Dirichlet energy Gn,εn to G can

be proved.

Next, by min-max theorem, we know that the eigenvalues of Ln,εn(or L) can be written

as the minimizers of Gn,εn(or G). Therefore, the convergence of spectrum is equivalent

to the convergence of the minimizers of Gn,εn , which can be proved by the Γ-convergence

and compactness properties of Gn,εn . Finally, with the convergence of spectrum, we can

prove the consistency of spectral clustering.

The paper is organized as follows. In section 2, we introduce some preliminaries and

notation. In sections 3.1 and 3.2, we prove Theorems 1.1 and 1.2, respectively. Finally,

the proof of Corollary 1.1 is presented in section 3.3.

2. Preliminaries and notations.

2.1. Notations. Let D = (0, 1) ⊂ R and let P(D) be the set of all probability measures

on D. Given a probability measure μ ∈ P(D) and a Borel-measurable map T , we define

the pushforward ν of measure μ under the map T by setting

ν(A) = T�μ(A) = μ(T−1(A))

for any measurable set A ⊂ D. We call T the transportation map between μ and ν.

The ∞-Wasserstein distance W∞(μ, ν) is defined by

W∞(μ, ν) = inf
π∈Π(μ,ν)

esssupπ |x− y|,

where Π(μ, ν) is the set of all couplings between μ and ν, i.e.,

Π(μ, ν) =
{
π ∈ P((0, 1)2)|π(A× (0, 1)) = μ(A),

π((0, 1)×B) = ν(B) for all Borel sets A,B ⊂ (0, 1)
}
.

Remark 2.1. Note that the definition of W∞(μ, ν) can be generalized to the case

where μ and ν have the same mass on D. Therefore, in the sequential, we still write

W∞(μ, ν) when μ(D) = ν(D) even though μ and ν are not necessarily probability mea-

sures.
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818 A. LIU, J.-G. LIU, AND Y. LU

It was proved in [7] that if μ is absolutely continuous with respect to the Lebesgue

measure, then for any optimal transport plan π ofW∞(μ, ν), there exists a transportation

map T : D → D such that T�μ = ν and π = (I × T )�μ. In particular, the optimal

transportation plan of W∞(ν, νn) with νn being the empirical measure of the absolutely

continuous probability measure ν is unique.

2.2. Useful lemmas. The following lemma collects some properties on W∞ to be used

in subsequent sections. The proof is trivial and thus is omitted.

Lemma 2.1. Given measures μ1, μ2, μ3 defined on D with μ1(D) = μ2(D) = μ3(D), the

following hold:

(1) Triangle inequality: W∞(μ1, μ3) ≤ W∞(μ1, μ2) +W∞(μ2, μ3).

(2) Scaling equality: W∞(μ1, μ2) = W∞(αμ1, αμ2) ∀α > 0.

(3) W∞(μ1, μ2) ≤ diam(D).

(4) If D =
⊔

j Dj , then

W∞(μ1, μ2) ≤ max
j

W∞(μ1|Dj
, μ2|Dj

).

The following two lemmas give two different characterizations of W∞(μ, ν).

Lemma 2.2 ([7]). Let μ, ν be two Borel measures with μ absolutely continuous with

respect to the Lebesgue measure and μ(D) = ν(D). Then there exists an optimal

transportation map T : D → D such that T�μ = ν and

W∞(μ, ν) = ‖I − T‖L∞(D).

Furthermore, if ν =
∑k

i=1 aiδyi
with yi ∈ D and positive numbers ai, i = 1, · · · , k, then

there exists a unique transportation map T � : D → D such that

W∞(μ, ν) = ‖I − T �‖L∞(D).

Lemma 2.3 ([21, Remark 2.19]). Let μ, ν be two probability measures on R. Denote the

cumulative distribution functions of μ and ν by F (x) and G(x), respectively. Then we

have the following equality:

W∞(μ, ν) =
∥∥F−1 −G−1

∥∥
L∞ .

Lemma 2.4 ([19, Lemma 2.2]). Let ν1 and ν2 be two probability measures defined on D

with density functions ρ1(x) and ρ2(x), respectively. Assume that there exists a positive

constant λ > 0 such that

ρi(x) ≥ λ > 0, i = 1, 2.

Then there exists C > 0 such that

W∞(ν1, ν2) ≤
C

λ
· diam(D)‖ρ1(x)− ρ2(x)‖L∞(D).

The following three probability inequalities on binomial random variables and the

Dvoretzky-Kiefer-Wolfowitz inequality will be used in the proofs of the main results.
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CONVERGENCE OF EMPIRICAL MEASURE IN ∞-WASSERSTEIN DISTANCE 819

Lemma 2.5. Let Sn ∼ Bin(n, p) be the independent binomial random variables. For

t > 0, Chebychev’s inequality [17] states that

P

(
|Sn − n · p|√
np(1− p)

≥ t

)
≤ 1

t2
.

Chernoff’s inequality [8] states that

P

(∣∣∣∣Sn

n
− p

∣∣∣∣ ≥ t

)
≤ 2 exp(−2nt2).

Bernstein’s inequality [3] states that

P

(∣∣∣∣Sn

n
− p

∣∣∣∣ ≥ t

)
≤ 2 exp

(
−

1
2n

2t2

np(1− p) + 1
3nt

)
.

Lemma 2.6 (Dvoretzky-Kiefer-Wolfowitz inequality [12]). Let {Xi}ni=1 be the i.i.d. ran-

dom variables sampled from a probability measure ν. Let F (x) be the cumulative distri-

bution function of ν and let Fn(x) be the cumulative distribution function of νn. Then

∀t > 0,

P

(
sup
x

|Fn(x)− F (x)| ≥ t

)
≤ 2 exp(−2nt2).

3. Convergence of empirical measure.

3.1. Proof of Theorem 1.1.

Proof. Denote the cumulative distribution function of νn by Fn(x) and that of ν by

F (x). Thanks to the Dvoretzky-Kiefer-Wolfowitz inequality [12],

P

(
sup
x

|Fn(x)− F (x)| ≥ t

)
≤ 2 exp(−2nt2).

From this, we claim that

P

(
sup
y

∣∣F−1
n (y)− F−1(y)

∣∣ ≥ t

λ

)
≤ P

(
sup
x

|Fn(x)− F (x)| ≥ t

)
(4)

which implies that

P

(
sup
y

∣∣F−1
n (y)− F−1(y)

∣∣ ≥ t

λ

)
≤ 2 exp(−2nt2).

To prove (4), it suffices to show that supx |Fn(x)− F (x)| ≤ t implies

sup
y

∣∣F−1
n (y)− F−1(y)

∣∣ ≤ t

λ
.

To this end, fix y ∈ [0, 1]. Let x1 = F−1
n (y) and x2 = F−1(y). Then from the fact that

the density function ρ(x) has a lower bound λ we know that

|F (x1)− F (x2)|
|x1 − x2|

≥ λ.

It follows that

λ|x1 − x2| ≤ |F (x1)− F (x2)| = |F (x1)− Fn(x1)| ≤ t,
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820 A. LIU, J.-G. LIU, AND Y. LU

where the last inequality is obtained from supx |Fn(x)− F (x)| ≤ t. Therefore, for any y,∣∣F−1
n (y)− F−1(y)

∣∣ ≤ t

λ
,

which completes the proof of (4). It follows from (4) and Lemma 2.3 that

P

(
W∞(ν, νn) ≥

t

λ

)
≤ 2 exp(−2nt2).

By taking t =
(

logn
n

) 1
2

we get that except on a set with probability 2n−2,

W∞(ν, νn) ≤
1

λ

(
log n

n

) 1
2

.

�
3.2. Proof of Theorem 1.2.

Lemma 3.1. If a > b > 0, then ak − bk ≥ (a− b)k.

Proof. By induction, we only need to prove that ak−bk ≥ (a−b)k implies ak+1−bk+1 ≥
(a− b)k+1. From a > b > 0 we know 2bk+1 ≤ abk + bak. Therefore,

(a−b)k+1 = (a−b)(a−b)k ≤ (a−b)(ak−bk) = ak+1+bk+1−abk−bak ≤ ak+1−bk+1. (5)

�
In Theorem 1.2, we give the rate of convergence of W∞(νn, ν) when the density func-

tion ρ(x) is not strictly bounded away from zero. The proof is a refinement of the proof

of [19, Theorem 1.1], which deals with the case where ρ(x) is bounded. We sketch the

rough idea of our proof in the following before we give the details.

To prove the theorem, we would like to use Lemma 2.1(4) to reduce the estimate of

W∞(ν, νn) to that of W∞(ν|Bi
, νn|Bi

), where Bi is a small neighborhood of the zero point

xi. For doing so, we need to modify the measure ν locally (denote the new measure to

be ν̃ after modification) so that ν̃ has the same mass as νn on Bi. Then, we divide Bi

into a family of sub-domains {Aj}j∈N according to the value of ρ(x) so that ρ is bounded

from above and below on Aj . Thus we can adapt similar arguments from [19] to obtain

bounds on W∞(ν̃|Aj
, νn|Aj

). However, νn may not have the same mass as ν̃ on each Aj .

So, in order to remove this mass discrepancy, we introduce another new measure ν such

that ν(Aj) = νn(Aj). At last, thanks to Lemma 2.1, we can establish an upper bound

on W∞(ν|Bi
, νn|Bi

) with the estimates of W∞(ν|Aj
, νn|Aj

).

Proof. Let BN+1 = (0, 1)\
⋃N

1 Bi. Then {Bi}N+1
i=1 is a partition of D. Let εi =

νn(Bi)
ν(Bi)

− 1 for i = 1, · · · , N + 1 and let ν̃ be a probability measure defined on D

dν̃ =

(
N+1∑
i=1

(1 + εi)ρ(x)�Bi

)
dx. (6)

Then it’s clear that

ν̃(Bi) = (1 + εi)ν(Bi) = νn(Bi).

Combining this with Lemma 2.1, we obtain that

W∞(ν, νn) ≤ W∞(ν, ν̃) +W∞(ν̃, νn) ≤ W∞(ν, ν̃) + max
i=1,··· ,N+1

W∞(ν̃|Bi
, νn|Bi

).
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Choose β > 2. To estimate W∞(ν̃|Bi
, νn|Bi

)(i = 1, · · · , N), we divide Bi into a family

of sub-domains {Aj}j∈N and use scaling property to bound W∞ distance on each sub-

domain Aj .

Define {Aj}j∈N by

A0 = {x : 1 < ρ(x) ≤ Λ} ∩Bi,

Aj =

{
x :

1

(j + 1)β
< ρ(x) ≤ 1

jβ

}
∩Bi

(If Aj is empty, just neglect it.) Then,

Bi =
⊔
j

Aj .

Let δj =
νn(Aj)
ν(Aj)

− 1 and define a measure ν on Bi by

dν =
∑
j

�Aj
(1 + δj)ρ(x)dx.

Then it’s easy to see that

ν(Aj) = (1 + δj)ν(Aj) = νn(Aj).

Again, with this and Lemma 2.1, we can boundW∞(ν̃|Bi
, νn|Bi

)(i = 1, · · · , N) as follows:

W∞(ν̃|Bi
, νn|Bi

) ≤ W∞(ν̃|Bi
, ν|Bi

) +W∞(ν|Bi
, νn|Bi

)

≤ W∞(ν̃|Bi
, ν|Bi

) + sup
j

W∞(ν|Aj
, νn|Aj

).

Therefore, to estimate W∞(ν, νn), it suffices to estimate W∞ (ν, ν̃), W∞ (ν̃|Bi
, ν|Bi

),

W∞
(
ν|Aj

, νn|Aj

)
, and W∞

(
ν̃|BN+1

, νn|BN+1

)
, respectively.

Step 1. We first estimate W∞
(
ν̃|BN+1

, νn|BN+1

)
. It’s easy to deduce, via Lemma 2.1,

that

W∞
(
ν̃|BN+1

, νn|BN+1

)
= W∞

(
1

ν̃(BN+1)
ν̃|BN+1

,
1

ν̃(BN+1)
νn|BN+1

)

= W∞

⎛⎝ 1

ν(BN+1)
ν|BN+1

,
1∑

δXi
(BN+1)

∑
Xi∈BN+1

δXi
|BN+1

⎞⎠ .

To ease the notation, we write

νN+1 =
1

ν(BN+1)
ν|BN+1

and

νn,N+1 =
1∑

δXi
(BN+1)

∑
Xi∈BN+1

δXi
|BN+1

.

Clearly, νN+1 is the restriction of ν to BN+1 and νn,N+1 is the empirical measure of

νN+1. Furthermore, we note that ρ(x) is bounded from below in BN+1 due to the fact

that Bi(i = 1, · · · , N) is a small neighborhood of zero point xi and BN+1 = D \
⋃N

1 Bi.

Therefore, we can use Theorem 1.1 to give an estimate on W∞
(
ν̃|BN+1

, νn|BN+1

)
. (We

remark that Theorem 1.1 holds true for any domain (a, b) ⊂ R by replacing D = (0, 1)

with D = (a, b) in the proof.)
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822 A. LIU, J.-G. LIU, AND Y. LU

Let λN+1 := minx∈BN+1
ρ(x). Then we have 0 < λN+1

ν(BN+1)
≤ 1

ν(BN+1)
ρ(x)|BN+1

. It

follows from Theorem 1.1 that there exists a constant C = ν(BN+1)
λN+1

such that except on

a set with probability 2n−2,

W∞
(
ν̃|BN+1

, νn|BN+1

)
≤ C

(
log n

n

) 1
2

.

Step 2. We then estimate W∞
(
ν|Aj

, νn|Aj

)
. To achieve this, set

J0 =

⎢⎢⎢⎣( n

log n

) ki
2β(ki+1)

⎥⎥⎥⎦− 1

and consider the following two cases: 1) j < J0 and 2) j ≥ J0.

We claim that, when j ≥ J0, diam(Aj) ≤ C ·
(

logn
n

) 1
2(ki+1)

. To show the claim, we

first recall the definition that Aj =
{
x : 1

(j+1)β
< ρ(x) ≤ 1

jβ

}
∩ Bi and the assumption

that mi|xi − x|ki ≤ ρ(x) in Bi. To simplify the notation, we denote mi|x − xi|ki by

ρ1(x). Let xR be a positive constant satisfying ρ1(xR) =
1
jβ
.

From ρ1(x) ≤ ρ(x) we know that diam(Aj) ≤ 2xR. Moreover, when n is large enough,

xR =
1

mi

1
ki

· j−
β
ki ≤ C · J

− β
ki

0 = C ·

⎛⎝⎢⎢⎢⎣( n

log n

) ki
2β(ki+1)

⎥⎥⎥⎦− 1

⎞⎠− β
ki

≤ C ·

⎛⎝1

2
·
(

n

log n

) ki
2β(ki+1)

⎞⎠− β
ki

≤ C ·
(
log n

n

) 1
2(ki+1)

,

where C = C(ki,mi, β) .

Therefore, when j ≥ J0, diam(Aj) ≤ C ·
(

logn
n

) 1
2(ki+1)

. By Lemma 2.1, when j ≥ J0,

W∞(ν|Aj
, νn|Aj

) ≤ diam(Aj) ≤ C ·
(
log n

n

) 1
2(ki+1)

,

where C = C(ki,mi, β).

We then turn to the case that j < J0. We first consider the case that j �= 0 and use

the scaling equality W∞(ν|Aj
, νn|Aj

) = W∞(jβν|Aj
, jβνn|Aj

). For simple notation, let

νn,j = jβνn|Aj
, νj = jβν|Aj

.

Then the density function of νj is defined by

ρj(x) = jβ(1 + δj)ρ(x).

For every k ∈ N, we partition Aj into 2k sub-domains. Each of them has a νj-mass of
1
2k
νj(Aj). Let Fk,j be the set of these sub-domains. F0,j = Aj and Fk+1,j is obtained
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by bisecting each box in Fk,j , according to νj . Thus, for any Q ∈ Fk,j ,

νj(Q) =
1

2k
νj(Aj), ν(Q) =

1

2k
ν(Aj).

We define a series of new measures {μk,j} by setting dμk,j(x) = ρk,j(x)dx with

ρk,j(x) =
νn,j(Q)

νj(Q)
· ρj(x) =

νn(Q)

ν(Q)
jβρ(x), ∀ x ∈ Q ∈ Fk,j .

We claim that for any Q ∈ Fk,j and any k ≤ kn = log2

(
nν(Aj)
10 logn

)
, there exists a constant

C such that the following inequality holds true with probability at least 1− 2n−1:

W∞(μk,j |Q, μk+1,j |Q) ≤ C · (j + 1)β ·
(
ν(Aj) logn

2kn

) 1
2

. (7)

Assume that the claim holds. Note that diam(Q) =
∫
Q
dx ≤

∫
Q
(j + 1)βρ(x)dx =

(j + 1)βν(Q). Then for j = 1, · · · , J0 − 1, we have

W∞(νn|Aj
, ν|Aj

) = W∞(νn,j , νj)

≤
kn∑
k=1

W∞(μk−1,j , μk,j) +W∞(μkn,j , νn,j)

≤
kn∑
k=1

(
C · (j + 1)β

(
ν(Aj) logn

2kn

) 1
2
)
+ max

Q∈Fk

diam(Q)

≤
( kn∑

k=1

(
C ·
(
ν(Aj) log n

2kn

) 1
2
)
+

1

2kn
· ν(Aj)

)
· (j + 1)β

≤ C

((
log n

n

) 1
2

+ C
log n

n

)
(J0 + 1)β

= C ·
(
log n

n

) 1
2

·
⌊
(

n

logn
)

ki
2β(ki+1)

⌋β
≤ C

(
log n

n

) 1
2(ki+1)

.

A similar estimate holds when j = 0 with the constant C depends on Λ. Therefore, for

all j ∈ N,

W∞(νn|Aj
, ν|Aj

) ≤ C

(
log n

n

) 1
2(ki+1)

,

where C depends on β, ki,mi,Λ

Now we return to the proof of the claim (7). Actually, from the definition of μk,j and

ρk,j it follows that for all x ∈ Q ∈ Fk,j ,

νn(Q)

ν(Q)
· jβ

(j + 1)β
≤ ρk,j(x) ≤

νn(Q)

ν(Q)

and

μk,j(Q) = μk+1,j(Q) = νn,j(Q).
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Therefore, by Lemma 2.1 we know that

W∞(μk+1,j , μk,j) ≤ max
Q∈Fk,j

W∞(μk+1,j |Q, μk,j |Q).

Let Q1 be a sub-domain bisected from Q. Then Q1 ∈ Fk+1,j . According to Lemma 2.4,

W∞(μk+1,j |Q, μk,j |Q) = W∞

(
ν(Q)

νn(Q)
μk+1,j |Q,

ν(Q)

νn(Q)
μk,j |Q

)
≤ C

ρmin
· diam(Q) ·

∣∣∣∣νn(Q1)ν(Q)

ν(Q1)νn(Q)
− 1

∣∣∣∣ · ∥∥jβρ(x)∥∥L∞(Q)

=
C

ρmin
· diam(Q) ·

∣∣∣∣2νn(Q1)

νn(Q)
− 1

∣∣∣∣ · ∥∥jβρ(x)∥∥L∞(Q)

≤ C

ρmin
· diam(Q) ·

∣∣∣∣2νn(Q1)

νn(Q)
− 1

∣∣∣∣ ,
where

ρmin =
jβ

(j + 1)β
min

{
1,

νn(Q1)ν(Q)

ν(Q1)νn(Q)

}
=

jβ

(j + 1)β
min

{
1,

2νn(Q1)

νn(Q)

}
.

To bound W∞(μk+1,j |Q, μk,j |Q), it suffices to estimate 1
ρmin

and
∣∣∣2νn(Q1)

νn(Q) − 1
∣∣∣, respec-

tively. We first give a probabilistic estimate on 1
ρmin

.

Note that for all Q ∈ Fk,j ,
nνn,j(Q)

jβ
∼ Bin(n, ν(Q)). Thus, we can use Bernstein’s

inequality and deduce that for all k ≤ kn = log2

(
nν(Aj)
10 logn

)
,

P

(
|νn,j(Q)

jβ
− ν(Q)| ≥ 1

2
ν(Q)

)
≤ 2 · exp

(
−

1
2n
(

ν(Q)
2

)2
ν(Q) (1− ν(Q)) + 1

3 · 1
2ν(Q)

)

≤ 2 · exp
(
− 1

10
· n · ν(Q)

)
= 2 · exp

(
− 1

10
· n · 1

2k
ν(Aj)

)
≤ 2n−1.

That is, with probability at least 1− 2n−1,∣∣∣∣ 1jβ · νn,j(Q)

ν(Q)
− 1

∣∣∣∣ ≤ 1

2
.

From the definition of νk,j we know

3

2
≥ νn(Q)

ν(Q)
≥ 1

2
,
3

2
≥ νn(Q1)

ν(Q1)
≥ 1

2
. (8)

Therefore,

2νn(Q1)

νn(Q)
≥ ν(Q1)

νn(Q)
=

1

2
· ν(Q)

νn(Q)
≥ 1

3
,
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and 1
ρmin

can be bounded with probability at least 1− 2n−1

1

ρmin
=

1

jβ

(j+1)β
min

{
1, 2νn(Q1)

νn(Q)

} ≤ 3(j + 1)β

jβ
≤ 3 · 3(1 + β).

We then estimate
∣∣∣2νn(Q1)

νn(Q) − 1
∣∣∣.

Notice that if we set m = n · 1
jβ

· νn,j(Q), then

m · νn,j(Q1)

νn,j(Q)
=

n∑
1

δXi
(Q1) ∼ Bin

(
m,

ν(Q1)

ν(Q)

)
= Bin

(
m,

1

2

)
.

Using Chernoff’s inequality we get that

P

(∣∣∣∣νn,j(Q1)

νn,j(Q)
− 1

2

∣∣∣∣ ≥ (2k log n

nν(Aj)

) 1
2

)
≤ 2 exp

(
−2 · m2k log n

nν(Aj)

)
≤ 2 exp(− log n)

= 2n−1,

where the last inequality is obtained from (8). Therefore, with probability at least

1− 2n−1, ∣∣∣∣2νn(Q1)

νn(Q)
− 1

∣∣∣∣ = ∣∣∣∣2νn,j(Q1)

νn,j(Q)
− 1

∣∣∣∣ ≤ 2

(
2k log n

nν(Aj)

) 1
2

.

Finally, using the fact that diam(Q) =
∫
Q
dx ≤ (j + 1)βν(Q), we know that with proba-

bility at least 1− 2n−1,

W∞(μk,j |Q, μk+1,j |Q) ≤ C · ν(Q)

(
2k log n

nν(Aj)

) 1
2

· (j + 1)β

≤ C · (j + 1)β ·
(
ν(Aj) logn

2kn

) 1
2

,

which completes the proof of claim (7).

Step 3. We then estimate W∞(ν|Bi
, ν̃|Bi

). We first recall that Bi = (xi−Δi, xi+Δi)

and

dν̃|Bi
= (1 + εi)ρ(x)dx, dν|Bi

=
∑
j

�Aj
(1 + δj)ρ(x)dx,

where εi =
νn(Bi)
ν(Bi)

− 1 and δj =
νn(Aj)
ν(Aj)

− 1. Let T be the transportation map between

ν|Bi
and ν̃|Bi

. Thus for any x ∈ Bi and y = Tx,∫ y

xi−Δi

ρ̃(s)ds =

∫ x

xi−Δi

ρ(s)ds.

Without loss of generality, we assume y > x. Then∫ y

x

ρ̃(s)ds =

∫ y

xi−Δi

(ρ(s)− ρ̃(s))ds ≤
∫ y

xi−Δi

|ρ̃(s)− ρ(s)|ds ≤
∑
j

|εi − δj |ν(Aj). (9)
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Let Sn := nνn(Aj). Then Sn =
∑n

i=1 δXi
(Aj) ∼ Bin(n, ν(Aj)). According to Cheby-

chev’s inequality we know that

P

(
|Sn − n · ν(Aj)|√
nν(Aj)(1− ν(Aj))

≥
√

log n

)
≤ (log n)−1,

which means that with probability at least 1− (log n)−1,

|nνn(Aj)− n · ν(Aj)|√
nν(Aj)(1− ν(Aj))

≤
√

log n.

Then by the definition of δj we know that with probability at least 1− (log n)−1,

|δjν(Aj)| ≤
( log n · ν(Aj)(1− ν(Aj))

n

) 1
2

.

With a similar method we derive that with probability at least 1− (log n)−1,

|εiν(Bi)| ≤
( log n · ν(Bi)(1− ν(Bi))

n

) 1
2

.

Note that in Aj , ρ(s) ≤ 1
jβ
, which implies ν(Aj) =

∫
Aj

ρ(s)ds ≤
∫
Aj

1
jβ
ds ≤ 1

jβ
.

Therefore,∑
j

|δj |ν(Aj) ≤
∑
j

(ν(Aj))
1
2

(
log n

n

) 1
2

≤
∑
j

1

j
β
2

(
log n

n

) 1
2

≤ C ·
(
log n

n

) 1
2

.

From the fact that Bi =
⊔

j Aj we know

∑
j

|εi|ν(Aj) = |εi|ν(Bi) ≤
( log n · ν(Bi)(1− ν(Bi))

n

) 1
2 ≤ C ·

(
log n

n

) 1
2

.

Therefore from (9) we derive that with probability at least 1− (logn)−1,∫ y

x

ρ̃(s)ds ≤
∑
j

|εi − δj |ν(Aj) ≤
∑
j

(
|εi|+ |δj |

)
ν(Aj) ≤ C ·

(
log n

n

) 1
2

.

Since in Bi, ρ̃(s) ≥ (1 + εi)mi|xi − s|ki , it follows that
∫ y

x
ρ̃(s)ds can be bounded from

below in the following two cases, respectively:∫ y

x

ρ̃(s)ds ≥
{
(1 + εi)mi

[
(xi − x)ki+1 + (y − xi)

ki+1
]
, xi ∈ (x, y),

(1 + εi)mi

[
(y − x)ki+1

]
, xi /∈ (x, y).

The results are obtained by direct calculations so the proof is omitted here. In both

cases, we can derive by Lemma 3.1 that

|y − x| ≤ C

{( ( logn
n

) 1
2

(1 + εi)mi

) 1
ki+1
}
.

Therefore,

W∞(ν|Bi
, ν̃|Bi

) ≤ ||T − I||L∞(Bi) ≤ max
x∈Bi

|y − x| ≤ C

(
log n

n

) 1
2(ki+1)

,

where C depends on mi and ki.
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Step 4. Finally, for W∞(ν, ν̃), we use the same method as in Step 3 and deduce that

W∞(ν, ν̃) ≤ C ·
(
log n

n

) 1
2

,

where C depends on ki and mi.

To sum up, with Steps 1-4, we know that

W∞(ν, νn) ≤ W∞(ν, ν̃)

+ max

{
max

i=1,··· ,N

[
W∞(ν̃|Bi

, ν|Bi
) + sup

j
W∞(ν|Aj

, νn|Aj
)
]
,W∞(ν̃|BN+1

, νn|BN+1
)

}

≤ C ·max
i

(
log n

n

) 1
2(ki+1)

,

where C depends on ki, mi and Λ. This completes the proof of Theorem 1.2. �
3.3. Proof of Corollary 1.1.

Proof. Let A = {x : ρ(x) < 1}, B = {x : ρ(x) ≥ 1} and assume that they both are

connected sets (otherwise we can divide them into connected sets).

Define a probability measure on D by dν̃ = ((1 + εA)�Aρ(x) + (1 + εB)�Bρ(x)) dx,
where

εA =
νn(A)

ν(A)
− 1, εB =

νn(B)

ν(B)
− 1.

Thus, it’s easy to see that

ν̃(A) = νn(A) and ν̃(B) = νn(B). (10)

In order to estimate W∞(ν, νn), it suffices to estimate W∞(ν, ν̃) and W∞(ν̃, νn), re-

spectively.

Step 1. We first estimate W∞(νn, ν̃). Using Lemma 2.1 and (10) we know that

W∞(ν̃, νn) ≤ max {W∞ (ν̃|A, νn|A) ,W∞ (ν̃|B, νn|B)}

= max

{
W∞

(
1

ν̃(A)
ν̃|A,

1

ν̃(A)
νn|A

)
,W∞

(
1

ν̃(B)
ν̃|B ,

1

ν̃(B)
νn|B

)}
.

Note that
1

ν̃(A)
ν̃|A =

1

ν(A)
ν|A

and

1

ν̃(A)
νn|A =

1

nν̃(A)

n∑
i=1

δXi
|A =

1

nνn(A)

n∑
i=1

δXi
|A =

1∑n
i=1 δXi

(A)

∑
Xi∈A

δXi
|A.

Therefore, 1
ν̃(A)νn|A is the empirical measure of 1

ν̃(A) ν̃|A. By Theorem 1.1 we know that

W∞(ν̃|A, νn|A) ≤ C ·
(

logn
n

) 1
2

.

Similarly, we can deduce that W∞(ν̃|B, νn|B) ≤ C ·maxi

(
logn
n

) 1
2(ki+1)

. Therefore,

W∞(ν̃, νn) ≤ C ·max
i

(
log n

n

) 1
2(ki+1)

.
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Step 2. We then estimate W∞(ν̃, ν).

Let T be the transportation map between ν̃ and ν. Then for all x ∈ D and y = Tx,∫ x

0

ρ̃(s)ds =

∫ y

0

ρ(s)ds.

Without loss of generality, we assume y > x. Then it follows that∫ y

x

ρ(s)ds =

∫ x

0

ρ̃(s)− ρ(s)ds ≤
∫ x

0

|ρ̃(s)− ρ(s)|ds ≤ |εA|ν(A) + |εB |ν(B).

By Chebychev’s inequality we know that with probability at least 1− (log n)−1,

|εA|ν(A) + |εB |ν(B) ≤ C

(
log n

n

) 1
2

.

Thus, ∫
(x,y)∩A

ρ(s)ds+

∫
(x,y)∩B

ρ(s)ds ≤ C ·
(
log n

n

) 1
2

.

By the same method as in the proof of Theorem 1.2, we can give a lower bound on∫
(x,y)∩A

ρ(s)ds and
∫
(x,y)∩B

ρ(s)ds, respectively, and conclude that with probability at

least 1− (log n)−1,

W∞(ν, νn) ≤ C ·max
i

(
log n

n

) 1
2(ki+1)

.

This completes the proof of Corollary 1.1. �
Remark 3.1. We showed the rate of convergence of νn to ν when the density function

ρ(x) is unbounded in one dimension. We expect that similar results also hold true in

high dimensions. However, the idea of the proof needs to be adapted. In particular, the

estimate of W∞(ν̃, ν) becomes quite technical in high dimensions, where ν̃ is an auxiliary

measure introduced in (6) for the purpose of removing the mass discrepancy between ν

and νn in local regions. In fact, in one dimension we estimate W∞(ν, ν̃) by using that

W∞(ν, ν̃) ≤ ||T − I||L∞ ≤ max
x∈D

|y − x| ≤ 1

λ

∫ y

x

ρ(s)ds,

where T is the transportation map between ν̃ and ν and y = Tx. In high dimensions,

it is not clear to us how to bound W∞(ν, ν̃) in terms of certain integral of the density.

This is to be investigated in our future work.
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