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SOME COMPACTNESS CRITERIA FOR WEAK SOLUTIONS
OF TIME FRACTIONAL PDEs∗

LEI LI† AND JIAN-GUO LIU‡

Abstract. The Aubin–Lions lemma and its variants play crucial roles for the existence of
weak solutions of nonlinear evolutionary PDEs. In this paper, we aim to develop some compactness
criteria that are analogies of the Aubin–Lions lemma for the existence of weak solutions to time
fractional PDEs. We first define the weak Caputo derivatives of order γ ∈ (0, 1) for functions valued
in general Banach spaces, consistent with the traditional definition if the space is Rd and functions
are absolutely continuous. Based on a Volterra-type integral form, we establish some time regularity
estimates of the functions provided that the weak Caputo derivatives are in certain spaces. The
compactness criteria are then established using the time regularity estimates. The existence of weak
solutions for a special case of time fractional compressible Navier–Stokes equations with constant
density and time fractional Keller–Segel equations in R2 are then proved as model problems. This
work provides a framework for studying weak solutions of nonlinear time fractional PDEs.
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1. Introduction. Memory effects are ubiquitous in physics and engineering;
e.g., particles in heat bath [1, 2] and soft matter with viscoelasticity [3, 4] can possess
memory effects. Evolutionary equations of convolution type (see, e.g., [5, 6]) can be
used to model these memory effects. When the memory effects have power law kernels,
we can use fractional calculus to describe them [7, 8, 9, 10, 11]. There are two types of
fractional derivatives that are commonly used: the Riemann–Liouville derivatives and
the Caputo derivatives (see [9]). Caputo’s definition of fractional derivatives was first
introduced in [12] to study the memory effect of energy dissipation for some anelastic
materials and soon became a useful modeling tool in engineering. The use of Caputo
derivatives can be justified, for example, from the generalized Langevin equation
model [13] and by certain limiting processes and probability [14, 15]. Compared
with Riemann–Liouville derivatives [7], Caputo derivatives remove singularities at
the origin and share many similarities with the ordinary derivative so that they are
suitable for initial value problems.

There are various definitions of Caputo derivatives in the literature, and they
are all generalizations of the traditional Caputo derivatives. More recent definitions
include those in [9, 16, 17, 18, 19]. In [9], the definition relies on Riemann–Liouville
derivatives and is valid for some functions that do not necessarily have first deriva-
tives; [16] relies on an integration by parts form, and the functions only need to be
Hölder continuous; in [17], some functional analysis approaches are used to extend
the traditional Caputo derivatives to certain Sobolev spaces; and the definition in [19]
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is based on the modified Riemann–Liouville operators and recovers the group struc-
ture. The underlying group structure mentioned in [19] is convenient for us to define
the Caputo derivatives in even weaker spaces. In this paper, we will generalize the
definition in [19] to weak Caputo derivatives for functions valued in general Banach
spaces so that we can propose compactness criteria and study time fractional PDEs.

There is a significant amount of literature studying time-fractional ODEs (us-
ing various definition of fractional derivatives) [8, 9, 10, 19, 20], and the theory is
well developed. Fractional stochastic differential equations have been discussed in
[13, 21, 22, 23]. The fractional SDEs in [21, 22] are driven by fractional noise without
fractional derivatives, while the fractional SDEs in [13, 23] involve fractional deriva-
tives. In [13], the authors argue that for physical systems, the derivatives paired
with fractional Brownian noise must be Caputo derivatives following “fluctuation-
dissipation theorem.” In other situations (e.g., the finance model in [23]), Caputo
derivatives and fractional Brownian motions may not be paired together.

For time fractional PDEs with Caputo derivatives, the study is limited. The time
fractional diffusion equations (using various definitions for Caputo derivatives) have
been studied by many authors [16, 24, 25, 26, 27, 28, 29], and the theory is rela-
tively well established. Time fractional Hamilton–Jacobi equations and the notion
of viscosity solutions have been discussed in [30, 31], for example. In [32], the au-
thor studied weak solutions of some linear evolutionary integro-differential equations,
which include linear time fractional differential equations as special cases. Since the
equation is linear, the weak solution can be obtained by weak compactness. The gen-
eral nonlinear fractional PDEs are more challenging. One important class of methods
used to study solutions of traditional nonlinear PDEs is to find some a priori esti-
mates of Lyapunov functions and then to apply some strong compactness criteria.
Some examples of (strong) compactness criteria include the Arzela–Ascoli theorem
[33, Chapter 16], the Kolmogorov–Riesz theorem [34], the Rellich theorem [35], and
the Aubin–Lions lemma [36, 37]. The Aubin–Lions lemma and its variants are for
the compactness of functions over space and time and are very useful for existence
of weak solutions to nonlinear evolutionary PDEs. In this work, we aim to find suit-
able compactness criteria for nonlinear time fractional PDEs that are analogies of the
Aubin–Lions lemma (see Theorems 4.1 and 4.2) and see how these criteria can be
used to prove the existence of weak solutions (Theorems 5.2 and 5.10).

The rest of the paper is organized as follows. In section 2, we generalize the
definition of Caputo derivatives to functions valued in general Banach spaces and
define the weak Caputo derivatives. Some basic properties of weak Caputo derivatives
are then explored. In section 3, we study the time regularity of functions from its
weak Caputo derivatives. In particular, we have a time shift estimate for functions
with weak Caputo derivatives in Lp. In section 4, we establish the strong compactness
criteria. Finally, in section 5, we study a special case of time fractional compressible
Navier–Stokes equations and time fractional Keller–Segel equations in R2 as model
problems to show how the compactness criteria are used for the existence of weak
solutions.

2. Caputo derivatives based on a convolution group. Before the general
discussion, let us clarify some notations we use throughout this paper.

Let X and B be Banach spaces and A ⊂ X be a connected Borel set in X. The
notation C∞c (A;B) represents all the smooth functions f : A → B with compact
supports. If the codomain B is clear from the context, we may simply use C∞c (A) for
short. (Usually, X = R and A = [a, b], (a, b], [a, b) or (a, b).) Similar notations are
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adopted for Lp spaces and Sobolev spaces W k,p. For example, Lp((0, T );B) means

all the Lebesgue measurable functions f : (0, T ) → B so that
∫ T

0
‖f‖pBdt < ∞. If B

is clear, we may simply use Lp(0, T ). f ∈ Lploc(A;B) means for any compact subset
K ⊂ A, f ∈ Lp(K;B). If A is compact, then Lploc is the same as Lp.

As we have mentioned, there are many definitions of Caputo derivatives; all reduce
to the classical one if the function is smooth enough. In this paper, we work on
mapping into general Banach spaces, so we must extend the definition of Caputo
derivatives. We find that the approach in [19] is convenient for this generalization.
For this purpose, we introduce more concepts and notations as follows.

Definition 2.1. Let B be a Banach space. For a locally integrable function u ∈
L1

loc((0, T );B), if there exists u0 ∈ B such that

lim
t→0+

1

t

∫ t

0

‖u(s)− u0‖Bds = 0,(2.1)

then we call u0 the right limit of u at t = 0, denoted as u(0+) = u0. Similarly, we
define u(T−) to be the constant uT ∈ B such that

lim
t→T−

1

T − t

∫ T

t

‖u(s)− uT ‖Bds = 0.(2.2)

The “right limit” and “left limit” should be understood in a weak sense. This
is in fact the notion of the Lebesgue point. Indeed, there may not exist a Lebesgue
measure zero set N such that limt→0+,t/∈N ‖u(t)−u0‖B = 0. As an example, consider
u : [0, 1)→ R such that u(t) = n for t ∈ [ 1

n ,
1
n + 1

n4 ] and n ≥ 2. Otherwise, u(t) = 0.
Then u(0+) = 0 in the sense of Definition 2.1, but limt→0+,t/∈N |u(t) − 0| = 0 does
not hold for any Lebesgue measure zero set N .

As in [19], we use the following distributions {gβ} as the convolution kernels for
β > −1:

gβ(t) :=


θ(t)
Γ(β) t

β−1, β > 0,

δ(t), β = 0,
1

Γ(1+β)D
(
θ(t)tβ

)
, β ∈ (−1, 0).

(2.3)

Here θ is the standard Heaviside step function, Γ(·) is the gamma function, and D
means the distributional derivative with respect to t.

gβ can also be defined for β ≤ −1 (see [19]) so that these distributions form a
convolution group {gβ : β ∈ R}, and consequently we have

gβ1
∗ gβ2

= gβ1+β2
,(2.4)

where the convolution between distributions with one-sided bounded supports can be
defined [38, Chapter 1].

2.1. Functions valued in Rd. The fractional derivatives of a function valued
in Rd can be defined by componentwise. Hence, it suffices to consider the derivatives
for a function u : (0, T )→ R, where T ∈ (0,∞].

In [19], the following modified Riemann–Liouville operators have been introduced:

Jαu := gα ∗ (θu).(2.5)
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If u is a distribution, θu is defined as the weak limit (if it exists) of χnu as n → ∞,
where χn ∈ C∞c (−1/n,∞) is a smooth function that is 1 on [0,∞). The operators
{Jα : α ∈ R} have group properties when acting on u if θu = u [19]. It is clear that
if α > 0 and u ∈ L1

loc(0, T ), then Jα is the fractional integral operator

Jαu(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s) ds.(2.6)

Definition 2.2 ([19]). Let 0 < γ < 1 and u ∈ L1
loc[0, T ). Given any u0 ∈ R,

the γth order generalized Caputo derivative of u from t = 0 associated with u0 is a
distribution in D ′(−∞, T ) with support in [0, T ) given by

Dγ
c u := J−γu− u0g1−γ = g−γ ∗

(
θ(t)(u− u0)

)
.(2.7)

If u(0+) exists in the sense of Definition 2.1 and u0 = u(0+), then we call Dγ
c u the

Caputo derivative of u.

Remark 2.1. The generalized Caputo derivative depends on the choice of u0. For
example, u(t) = 1. If we choose u0 = 1, then the weak Caputo derivative is zero,

while if we choose u0 = 0, then the generalized Caputo derivative is θ(t)
Γ(1−γ) t

−γ . t−γ

is like the Dirac delta for first derivative (if f(t) = 1 + t and we choose f0 = 0, then
the first derivative becomes δ(t) + 1, while choosing f0 = 1 yields that f ′ = 1).

From here on, without mentioning it, we always use Dγ
c u to mean the Caputo

derivative if u(0+) exists (i.e., u0 = u(0+)).

Remark 2.2. If T < ∞, then g−γ ∗ u should be understood as the restriction of
the convolution onto D ′(−∞, T ). One can refer to [19] for the technical details.

Remark 2.3. If there is a version of u that is absolutely continuous on (0, T ) (still
denoted as u), then the Caputo derivative is reduced to the traditional definition of
Caputo derivative [19]:

Dγ
c u(t) =

1

Γ(1− γ)

∫ t

0

u̇(s)

(t− s)γ
ds,(2.8)

where u̇ means the time derivative of u.

Definition 2.2 is more useful than the traditional definition in (2.8) (see, for in-
stance, [8, 9, 10, 25]) theoretically since it reveals the underlying group structure.
With the assumption that u is locally integrable and has a right limit at t = 0,
Definition 2.2 and the group property (2.4) reveal that

(2.9) u(t) = u0 + Jγ(Dγ
c u)(t) = u0 +

1

Γ(γ)

∫ t

0

(t− s)γ−1Dγ
c u(s) ds.

Note that the integral simply means convolution gγ ∗Dγ
c u. If Dγ

c u ∈ L1
loc[0, T ), then

it can be understood in the Lebesgue integral sense. This simply means that the frac-
tional integral of Caputo derivative recovers the function, so it is a fractional version
of the fundamental theorem of calculus. Consequently, we conclude the following.

Lemma 2.3. Suppose E(·) : [0,∞) → R is continuous. If there exists f(t) ∈
L1

loc([0,∞),R) such that on (0,∞)

Dγ
cE ≤ f,
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where this inequality means that f −Dγ
cE is a nonnegative distribution on (0,∞) (see

[19]), then

E(t) ≤ E(0) +
1

Γ(γ)

∫ t

0

(t− s)γ−1f(s) ds a.e.(2.10)

Another property regarding convex functional that is important to us is as follows.
For a detailed discussion, one can refer to [19, Proposition 3.11]. For the convenience
of the reader, we provide a simple version and its concise proof here.

Lemma 2.4. If u : [0, T )→ Rd is C1((0, T );Rd) ∩ C([0, T );Rd) and u 7→ E(u) is
a C1 convex function on Rd, then the Caputo derivative is given by

Dγ
c u(t) =

1

Γ(1− γ)

(
u(t)− u(0)

tγ
+ γ

∫ t

0

u(t)− u(s)

(t− s)γ+1
ds

)
(2.11)

and

Dγ
cE(u(t)) ≤ ∇uE(u(t)) ·Dγ

c u.(2.12)

Proof. The first claim follows from integration by parts of (2.8). For the second
one, we note

E(u(t))− E(b) ≤ ∇uE(u(t)) · (u(t)− b) ∀b ∈ Rd

since E(·) is a convex function. Combining with the fact that E(u(·)) ∈ C1((0, T );R)∩
C([0, T );R) (thus absolutely continuous), we have

Dγ
cE(u(t)) =

1

Γ(1− γ)

(
E(u(t))− E(u(0))

tγ
+ γ

∫ t

0

E(u(t))− E(u(s))

(t− s)γ+1
ds

)
≤ ∇uE(u(t)) ·Dγ

c u.

Now we move onto the right derivatives and integration by parts for fractional
derivatives. In [19], there is another group given by

C̃ := {g̃α : g̃α(t) = gα(−t), α ∈ R}.

Clearly, supp g̃ ⊂ (−∞, 0]. For γ ∈ (0, 1),

g̃−γ(t) = − 1

Γ(1− γ)
D(θ(−t)(−t)−γ) = −Dg̃1−γ(t),(2.13)

where D means the distributional derivative on t. Suppose φ is absolutely continuous
and φ = 0 for t > T ; then it can be verified directly that

g̃−γ ∗ φ(t) = − 1

Γ(1− γ)

d

dt

∫ ∞
t

(s− t)−γφ(s) ds

= − 1

Γ(1− γ)

d

dt

∫ T

t

(s− t)−γφ(s) ds.

By the definition of g̃α, we have the following.

Lemma 2.5. Suppose φ1, φ2 are distributions in D ′ and there exist t1, t2 ∈ R such
that suppφ1 ⊂ (−∞, t1) while suppφ2 ⊂ (t2,∞). Then, if one of them is in C∞c (R)
or both are absolutely continuous so that both 〈g−γ ∗ φ1, φ2〉 and 〈φ1, g̃−γ ∗ φ2〉 are
defined, it holds that

〈g−γ ∗ φ1, φ2〉 = 〈φ1, g̃−γ ∗ φ2〉.(2.14)
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Using the group C̃ , we define the right Caputo derivative as follows.

Definition 2.6. Let 0 < γ < 1. Consider u ∈ L1
loc(−∞, T ]. Given uT ∈ R, the

γth order generalized right Caputo derivative (up to T ) of u associated with uT is a
distribution in D ′(R) with support in (−∞, T ] given by

D̃γ
c;Tu := g̃−γ ∗ (θ(T − t)(u(t)− uT )).(2.15)

If u has a left limit at t = T in the sense of Definition 2.1 and uT = u(T−), we call
D̃γ
c;Tu the right Caputo derivative (up to T ).

From here on, without mentioning it, we always use D̃γ
c;Tu to mean the right

Caputo derivative with the natural terminal value u(T−) if this limit exists.

Remark 2.4. If u ∈ L1
loc(a, T ), a < T and u has a left limit u(T−) at t = T , we do

a similar trick as that for Dγ
c u in [19]; i.e., we extend u to (−∞, T ] by considering uχn

where the smooth function χn is supported in (a+ 1
2n ,∞) and equals 1 on (a+1/n,∞).

The weak limit of D̃γ
c;T (uχn) as n→∞ in D ′(a, T ) is defined to be the right Caputo

derivative.

Similar as in [19], we can show the following.

Lemma 2.7. If u is absolutely continuous on (a, T ), a < T , then

D̃γ
c;Tu(t) = − 1

Γ(1− γ)

∫ T

t

(s− t)−γ u̇(s) ds ∀t ∈ (a, T ).(2.16)

Consequently, if ϕ ∈ C∞c (−∞, T ), then

D̃γ
c;Tϕ(t) =

−1

Γ(1− γ)

∫ T

t

(s− t)−γϕ̇(s) ds

= g̃−γ ∗ ϕ(t)

=
−1

Γ(1− γ)

d

dt

∫ T

t

(s− t)−γϕ(s) ds.

We only sketch the proof and leave the details for the reader here. For the first
claim, we note that if u is absolutely continuous, then u̇ ∈ L1(a, T ). The distributional
derivative of θ(T − t)(u(t) − u(T−)) is simply θ(T − t)u̇. Using the fact that g̃−γ =

−Dg̃1−γ yields the claim. For the second claim, we only have to justify D̃γ
c;Tϕ(t) =

g̃−γ ∗ϕ(t), which follows from the fact that θ(T−t)(ϕ−ϕ(T )) = ϕ if ϕ ∈ C∞c (−∞, T ).
Using Lemma 2.5 and Definition 2.6, it is easy to obtain the integration by parts

formula (we omit the proof as well).

Lemma 2.8. Let u, v be absolutely continuous on (0, T ); then we have the inte-
gration by parts formula for Caputo derivatives∫ T

0

(Dγ
c u(t))(v(t)− v(T−)) dt =

∫ T

0

(u(t)− u(0+))(D̃γ
c;T v(t)) dt.(2.17)

This relation also holds if u ∈ L1
loc(0, T ), u(0+) is replaced with the assigned initial

value u0 and v ∈ C∞c (−∞, T ).

Remark 2.5. If γ → 1, then it is not hard to see that D̃γ
c;Tu → −u′(t) weakly.

Hence, the right derivatives carry a natural negative sign.
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This identity is indeed not new under the classical definition [8, 9]. Using the
convolution groups, the identity here becomes very natural and holds for a larger
class of functions.

Remark 2.6. For Lemma 2.8, it might be illustrative to write out the computation
for smooth u and v using traditional definitions:∫ T

0

(Dγ
c u)(v(t)− v(T ))dt =

∫ T

0

1

Γ(1− γ)

∫ t

0

u̇(s)

(t− s)γ
ds(v(t)− v(T ))dt

=

∫ T

0

u̇(s)

Γ(1− γ)

∫ T

s

v(t)− v(T )

(t− s)γ
dtds = −

∫ T

0

u(s)− u(0)

Γ(1− γ)

d

ds

∫ T

s

v(t)− v(T )

(t− s)γ
dtds.

Moreover,

− d

ds

∫ T

s

v(t)− v(T )

(t− s)γ
dt = − d

ds

∫ T−s

0

v(t+ s)− v(T )

tγ
dt = −

∫ T−s

0

v̇(t+ s)

tγ
dt.

Hence, the identity is verified.

2.2. Functions valued in general Banach spaces. Now we move onto Ca-
puto derivatives for functions valued in general Banach spaces. We first define the
weak Caputo derivatives as abstract linear functionals from C∞c ((−∞, T );R) to a Ba-
nach space B for theoretical purposes. These functionals can be understood as the
generalization of distributions (if B = R, then they are reduced to the usual distribu-
tions, as studied already in [19]). However, for practical purposes, we care more about
those functions such that the Caputo derivatives are in L1

loc([0, T );B), for which we
identity the action of the functionals with the L2 pairing (see (2.25)).

We now fix T > 0 and introduce the following set:

D ′ :=
{
v
∣∣∣ v : C∞c ((−∞, T );R)→ B is a bounded linear operator

}
.(2.18)

In other words, D ′ consists of functionals from C∞c ((−∞, T );R) to B. This is the
analogy of the distributions D ′(R) used in [19]. For v ∈ D ′, we say supp v ⊂ K for
K that is a closed subset of (−∞, T ) (under the topology of (−∞, T )), if for any
ϕ ∈ C∞c ((−∞, T );R) with suppϕ ⊂ (−∞, T ) \K, we have

〈v, ϕ〉 = 0.

With this notion, we can introduce

D ′+ := {v ∈ D ′| supp v ⊂ [0, T )}.(2.19)

Motivated by the usual weak derivatives of the functions valued in Banach spaces
([35, section 5.9.2]) and the integration by parts formula (Lemma 2.8), we define the
following.

Definition 2.9. Let B be a Banach space and u ∈ L1
loc([0, T );B). Let u0 ∈ B.

We define the weak Caputo derivative of u associated with initial data u0 to be Dγ
c u ∈

D ′ such that for any test function ϕ ∈ C∞c ((−∞, T );R),

〈Dγ
c u, ϕ〉 :=

∫ T

−∞
(u− u0)θ(t)(D̃γ

c;Tϕ) dt =

∫ T

0

(u− u0)D̃γ
c;Tϕdt.(2.20)

If u(0+) = u0 in the sense of Definition 2.1 under the norm of the underlying Banach
space B, then we call Dγ

c u the Caputo derivative.
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Remark 2.7. Similar as in Remark 2.1, the choice of u0 affects Dγ
c u. If u(0+)

exists, choosing u0 = u(0+) kills the singularity brought by the jump at t = 0, and
we will make this convention default. We remark that the idea of using pairing to
define fractional derivatives also appeared in [18].

We have the following observation.

Lemma 2.10. Dγ
c u ∈ D ′+. In other words, suppDγ

c u ⊂ [0, T ).

Proof. By the explicit formula D̃γ
c;Tϕ(t) = − 1

Γ(1−γ)

∫ T
t

(s − t)−γϕ̇(s)ds, we find

that if suppϕ ⊂ (−∞, 0), then the integral in Definition 2.9 is zero.

We now check that Definition 2.9 is consistent with the usual definitions.

Lemma 2.11. If B = Rd, then the weak Caputo derivative in Definition 2.9 agrees
with Definition 2.2.

Proof. We only have to focus on d = 1 because for general d, we define them
componentwise. Take ϕ ∈ C∞c ((−∞, T );R). By Lemma 2.7,

D̃γ
c;Tϕ = g̃−γ ∗ ϕ.

The claim then follows from

〈Dγ
c u, ϕ〉 =

∫ T

0

(u− u0)D̃γ
c;Tϕdt

=

∫ T

0

(u− u0)(g̃−γ ∗ ϕ) dt

= 〈g−γ ∗ ((u− u0)θ(t)), ϕ〉.

Now we investigate the properties of weak Caputo derivatives. The proof in
Lemma 2.11 actually motivates us to consider the convolution between g−γ and dis-
tributions in D ′. Let v ∈ D ′ with supp v ⊂ [0, T ). Consider a sequence of smooth
functions χn that is 1 on (−n, T − 1

n ) and zero on [T − 1
2n ,+∞). Then χnv is a

distribution for ϕ ∈ C∞c (R;R). Then gα ∗ (χnv) can be defined as in [19, Definition
2.1] and becomes a functional in D ′.

Definition 2.12. We define the convolution between v and gα as gα ∗ v ∈ D ′:

gα ∗ v := lim
n→∞

gα ∗ (χnv) in D ′.(2.21)

Similar as the cases for Rd discusses in [19], we define the following.

Definition 2.13. Jα : D ′+ → D ′+ as

Jαv := gα ∗ v.(2.22)

When α > 0, we call Jα the fractional integral operator with order α.

Remark 2.8. For a general distribution w ∈ D ′, Jαw is defined to be Jα(θw),
where θw is the restriction of w onto D ′+ if it exists (see [19, Def. 2.14]). We will not
consider this general case in this paper.

The first property is the fractional fundamental theorem of calculus for functions
valued in general Banach spaces.
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Lemma 2.14. Let u ∈ L1
loc((0, T );B). Assume that the weak Caputo derivative

for an assigned initial value u0 is Dγ
c u. We have in D ′ that

(u− u0)θ(t) = Jγ(Dγ
c u) = gγ ∗Dγ

c u.(2.23)

Proof. To be convenient, we extend u to be defined on [0,∞) by defining its values
to be zero outside [0, T ).

We now pick η ∈ C∞c (0, 1), 0 ≤ η ≤ 1 and
∫

(0,1)
η dt = 1. We define ηε = 1

ε η
(
t
ε

)
.

We note first that ηε ∗ [(u−u0)θ(t)] is zero at t = 0 and supported in [0, T +ε]. Hence,

Dγ
c (ηε ∗ [(u− u0)θ(t)]) = g−γ ∗ (ηε ∗ [(u− u0)θ(t)]).

It follows that

ηε ∗ [(u− u0)θ(t)] = gγ ∗Dγ
c (ηε ∗ [(u− u0)θ(t)]).(2.24)

For any ϕ ∈ C∞c (−∞, T ), there is ε0 > 0 such that for all ε ∈ (0, ε0), we have
η̃ε ∗ ϕ ∈ C∞c (−∞, T ), and the following holds:

〈Dγ
c (ηε ∗ (u− u0)θ), ϕ〉 = 〈(u− u0)θ, η̃ε ∗ g̃−γ ∗ ϕ〉

= 〈(u− u0)θ, D̃γ
c;T (η̃ε ∗ ϕ)〉 = 〈Dγ

c u, η̃ε ∗ ϕ〉 = 〈ηε ∗Dγ
c u, ϕ〉.

It follows that in D ′, it holds that

lim
ε→0

Dγ
c (ηε ∗ (u− u0)θ) = lim

ε→0
ηε ∗Dγ

c u.

Using (2.24), we find in D ′ that

lim
ε→0

ηε ∗ (u− u0)θ = lim
ε→0

gγ ∗Dγ
c (ηε ∗ [(u− u0)θ(t)]) = lim

ε→0
gγ ∗ ηε ∗Dγ

c u.

The claim then follows.

In general, Dγ
c u ∈ D ′ is a functional from C∞c ((−∞, T );R) to B. We say Dγ

c u ∈
L1

loc([0, T );B) if there exists a function f ∈ L1
loc([0, T );B) such that for any ϕ ∈

C∞c ((−∞, T );R), we have

〈Dγ
c u, ϕ〉 =

∫ T

0

f(t)ϕ(t) dt.(2.25)

In this case, we will identify Dγ
c u with f while identifying the pairing between

C∞c ((−∞, T );R) and D ′ with the integral (2.25). With this notion, we have the
following observation, for which we omit the proof.

Proposition 2.15. Let γ ∈ (0, 1). If f := Dγ
c u ∈ L1

loc([0, T );B), then

u(t) = Jγ(f)(t) = u0 +
1

Γ(γ)

∫ t

0

(t− s)γ−1f(s) ds a.e. on (0, T ),

where the integral is understood in the Lebesgue sense.

Corollary 2.16. If the weak Caputo derivative associated with initial value u0

satisfies Dγ
c u ∈ L

1/γ
loc ([0, T ), B), then u(0+) = u0 in the sense of Definition 2.1.
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Proof. We can estimate directly that as t→ 0+,

1

t

∫ t

0

‖u(t)− u0‖Bdt ≤
1

tΓ(γ)

∫ t

0

∫ τ

0

(τ − s)γ−1‖Dγ
c u‖Bdsdτ

≤ 1

tΓ(γ)

∫ t

0

‖Dγ
c ‖B(s)

∫ t

s

(τ − s)γ−1dτds

=
1

tΓ(1 + γ)

∫ t

0

(t− s)γ‖Dγ
c u‖B(s) ds

≤ 1

tΓ(1 + γ)
‖(t− s)γ‖L1/(1−γ)(0,t)‖Dγ

c u‖L1/γ((0,t);B)

≤ 1

Γ(1 + γ)
‖Dγ

c u‖L1/γ((0,t);B) → 0.

The last term goes to zero because ‖Dγ
c u‖

1/γ
B is integrable on [0, T − δ]

for some δ > 0.

The following property verifies that our definition agrees with the traditional
Caputo derivative if the function has enough regularity.

Lemma 2.17. Let γ ∈ (0, 1). If u is absolutely continuous on (0, T ), then Dγ
c u ∈

L1
loc([0, T );B) and

Dγ
c u(t) =

1

Γ(1− γ)

∫ t

0

u̇(s)

(t− s)γ
ds, t ∈ [0, T ).(2.26)

Proof. We just need to check that the expression given here satisfies the definition.
Since u is absolutely continuous, then u̇ ∈ L1((0, T );B). Then by Young’s inequality,

f(t) :=
1

Γ(1− γ)

∫ t

0

u̇(s)

(t− s)γ
ds ∈ L1((0, T );B).

We compute directly that

1

Γ(1− γ)

∫ T

0

ϕ(t)

∫ t

0

u̇(s)

(t− s)γ
dsdt =

1

Γ(1− γ)

∫ T

0

u̇(s)

∫ T

s

ϕ(t)

(t− s)γ
dtds

=
−1

Γ(1− γ)

∫ T

0

(u(t)− u(0+))
d

ds

∫ T

s

ϕ(t)

(t− s)γ
dt ds.

Recall that ϕ ∈ C∞c ((−∞, T );R); we can do integration by parts. Using again that
ϕ(t) vanishes at T ,

d

ds

∫ T

s

ϕ(t)

(t− s)γ
dt =

∫ T

s

ϕ̇(t)

(t− s)γ
dt.

This verifies that f is the Caputo derivative.

The following is similar as Lemma 2.4. We omit the proof here.

Proposition 2.18. Let γ ∈ (0, 1). If the mapping u : [0, T )→ B satisfies

u ∈ C1((0, T );B) ∩ C([0, T );B)

and u 7→ E(u) ∈ R is a C1 convex functional on B, then
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Dγ
c u(t) =

1

Γ(1− γ)

(
u(t)− u(0)

tγ
+ γ

∫ t

0

u(t)− u(s)

(t− s)γ+1
ds

)
(2.27)

and

Dγ
cE(u(t)) ≤ 〈DuE(u), Dγ

c u〉 ,(2.28)

where DuE(·) : B → B′ is the Fréchet differential and 〈·, ·〉 is understood as the dual
pairing between B′ and B.

3. Functions with weak Caputo derivatives in Lp and Hölder spaces.
By Proposition 2.15, the functions can be recovered by the fractional integrals of its
weak Caputo derivatives. Hence, we can study the time regularity of the functions by
studying the regularity improvement of fractional integrals.

The following were proved by Hardy and Littlewood for fractional integrals [39].

Lemma 3.1. Let B be a Banach space and T > 0. Suppose

f := Dγ
c u ∈ L1

loc([0, T );B).(3.1)

(i) If f ∈ L1((0, T );B), then ∀ε ∈ (0, γ
1−γ ],

‖u− u0‖
L

1
1−γ−ε((0,T );B)

≤ K‖f‖L1((0,T );B).(3.2)

(ii) If f ∈ Lp((0, T );B) for some p ∈ (1, 1/γ), then

‖u− u0‖
L

p
1−pγ (0,T ;B)

≤ K‖f‖Lp((0,T );B).(3.3)

(iii) If f ∈ Lp((0, T );B) for some p > 1/γ, then u continuous on [0, T ] such that

‖u(t+ h)− u(t)‖B ≤ Chγ−1/p(3.4)

for 0 ≤ t < t+ h ≤ T and C is independent of t.

For the convenience of the readers, the first result of Lemma 3.1 is section 3.5 (iii)
in [39], the second result is Theorem 4, and the third result is Theorem 12 in [39].

We now focus on the regularity of functions with weak Caputo derivatives in
Hölder spaces Cm,β(U), β > 0 (see [35, section 5.1], [7, Chapter 1]). Recall that
f ∈ Cm,β(U), β ∈ (0, 1] means that f ∈ Cm(U) and v = f (m) satisfies

sup
x,y∈U,x 6=y

|v(x)− v(y)|
|x− y|β

<∞.

If β = 0, we define Cm,β := Cm, where Cm means the set of mth order continuously
differentiable functions. Cm,1 means f (m) is Lipschitz continuous, and clearly Cm+1 ⊂
Cm,1.

It turns out that Cm,β is sometimes not convenient to use if β = 1. We introduce
the Hölder space Cm,β;k, k > 0 [7, Definition 1.7], which means f ∈ Cm, and v = f (m)

satisfies
|v(x)− v(y)| ≤ C|x− y|β | ln |x− y||k, |x− y| < 1/2.

Note that we use different notations from [7] to distinguish with the Sobolev spacesHα.
From Lemma 3.1, we can easily infer that if f ∈ C([0, T ];B), then

u(t) = u0 +
1

Γ(γ)

∫ t

0

(t− s)γ−1f(s) ds
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is (γ − ε)-Hölder continuous for any ε > 0. However, the order of Hölder continuity
generally cannot be improved higher than γ. For example, if f = 1, which is smooth,
then u(t) = u0 +C1t

γ , which is only γ-Hölder continuous at t = 0 though smooth for
t > 0. Actually, this observation is quite general. We have the following.

Lemma 3.2 ([7, Theorem 3.1]). Suppose f ∈ C0,β([0, T ];B) for a Banach space
B and 0 ≤ β ≤ 1. Let γ ∈ (0, 1) and

u(t) = u0 +
1

Γ(γ)

∫ t

0

(t− s)γ−1f(s) ds.

Then

u(t) = u0 +
f(0)

Γ(1 + γ)
tγ + ψ(t),(3.5)

where

ψ ∈


C0,β+γ([0, T ];B), β + γ < 1,

C1,β+γ−1([0, T ];B), β + γ > 1,

C0,1;1([0, T ];B), β + γ = 1.

(3.6)

We have the following results about the regularity improvement.

Proposition 3.3. Let B be a Banach space and T > 0 and γ ∈ (0, 1). Suppose
u ∈ L1

loc((0, T );B) and f = Dγ
c u with an assigned initial value u0 ∈ B.

(i) If f ∈ L∞((0, T );B), then u is (γ − ε)-Hölder continuous for any ε ∈ (0, γ).
If f is continuous, then u is γ-Hölder continuous.

(ii) If there exists δ > 0 such that f ∈ Cm,β([δ/4, T ];B) with β ∈ [0, 1], then

u ∈


Cm,β+γ([δ, T ];B), β + γ < 1,

Cm+1,β+γ−1([δ, T ];B), β + γ > 1,

Cm,1;1([δ, T ];B), β + γ = 1.

(3.7)

The claims are not true in general if δ = 0.
(iii) If there exists δ > 0 such that f ∈ Hs((δ/4, T );B) (Hs denotes the Sobolev

space W s,2 in time), then

u ∈ Hs+γ((δ, T );B).

The claim is not true in general if δ = 0.

Proof. (i) is the result of Lemma 3.1 (iii) and Lemma 3.2.
For (ii) and (iii), we do the decomposition

f = f1 + f2

so that supp f1 ⊂ [0, 3δ/4] while supp f2 ⊂ [δ/2, T ] and f2 is again in Cm,β([δ/4, T ];B)
or in Hs([δ/4, T ];B). This is doable, for example, by setting fi = fζi, i = 1, 2, where
ζi are smooth functions such that supp ζ1 ⊂ (−∞, 3δ/4], supp ζ2 ⊂ [δ/2,+∞), and
ζ1 + ζ2 = 1. Then we have

u(t) =

(
u0 +

1

Γ(γ)

∫ 3δ/4

0

(t− s)γ−1f1(s)ds

)
+

1

Γ(γ)

∫ t

0

(t− s)γ−1f2(s)ds

=: u1(t) + u2(t).
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The first term u1 is a smooth function on [δ, T ]. u2 is treated as follows.

For (ii), we can easily check that u2 ∈ Cm and v = u
(m)
2 satisfies

v(t) =
1

Γ(γ)

∫ t

0

(t− s)γ−1f
(m)
2 (s) ds.

The claim then follows from Lemma 3.2.
For (iii), the claim follows from [19, Theorem 2.18].

Now we move on to the time shift estimates that are useful for our compactness
theorems. We first define the shift operator τh as

τhu(t) := u(t+ h).(3.8)

We have the following claim.

Proposition 3.4. Fix T > 0. Let B be a Banach space and γ ∈ (0, 1). Suppose
u ∈ L1

loc((0, T );B) has a weak Caputo derivative Dγ
c u ∈ Lp((0, T );B) associated with

initial value u0 ∈ B. If pγ ≥ 1, then we set r0 = ∞, and if pγ < 1, then we set
r0 = p/(1− pγ). Then there exists C > 0 independent of h and u such that

‖τhu− u‖Lr((0,T−h);B) ≤

{
Chγ+ 1

r−
1
p ‖Dγ

c u‖Lp((0,T );B), r ∈ [p, r0),

Chγ‖Dγ
c u‖Lp((0,T );B), r ∈ [1, p].

(3.9)

Proof. To be convenient, we denote

f := Dγ
c u ∈ Lp((0, T );B).

By Proposition 2.15, u(t) = u(0) + 1
Γ(γ)

∫ t
0
(t− s)γ−1f(s) ds.

Denote

K1(s, t;h) := (t+ h− s)γ−1,

K2(s, t;h) := (t− s)γ−1 − (t+ h− s)γ−1.
(3.10)

We then have

τhu(t)− u(t) =
1

Γ(γ)

(∫ t+h

t

K1(s, t;h)f(s) ds+

∫ t

0

K2(s, t;h)f(s) ds

)
(3.11)

so that∫ T−h

0

‖τhu− u‖rB dt ≤
2r

(Γ(γ))r

(∫ T−h

0

(∫ t+h

t

K1‖f‖B(s) ds

)r
dt

+

∫ T−h

0

(∫ t

0

K2‖f‖B(s)ds

)r
dt

)
.(3.12)

Case 1: r ≥ p and 1
r >

1
p − γ.

We denote I1 = (t, t+ h) and I2 = (0, t). Let 1/r + 1 = 1/q + 1/p, and we apply
Hölder inequality for i = 1, 2:∫

Ii

Ki‖f‖B(s) ds ≤
(∫

Ii

Kq
i ‖f‖

p
B ds

) 1
r
(∫

Ii

Kq
i ds

) r−q
qr
(∫

Ii

‖f‖pB ds
) r−p

pr

.(3.13)
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We have (∫
Ii

‖f‖pB ds
) r−p

pr

≤ ‖f‖1−p/rLp((0,T );B).(3.14)

Direct computation shows∫ t+h

t

Kq
1 ds =

1

q(γ − 1) + 1
hq(γ−1)+1.(3.15)

Note that for q ≥ 1, a ≥ 0, b ≥ 0, we have (a+ b)q ≥ aq + bq. Hence,

Kq
2 ≤ (t− s)q(γ−1) − (t+ h− s)q(γ−1).

Since q(γ − 1) + 1 > 0, we find

∫ t

0

Kq
2 ds =

1

q(γ − 1) + 1
(tq(γ−1)+1 − (t+ h)q(γ−1)+1 + hq(γ−1)+1) ≤ Chq(γ−1)+1.

(3.16)

Therefore, combining (3.12)–(3.16), we have∫ T−h

0

‖τhu− u‖rB dt ≤ Ch
(q(γ−1)+1) r−qq

(∫ T

0

ds‖f‖pB(s)

∫ s

0∧s−h
Kq

1 dt

+

∫ T−h

0

ds‖f‖pB(s)

∫ T−h

s

Kq
2 dt

)
.

Direct computation shows
∫ s

0∧s−hK
q
1dt ≤ 1

q(γ−1)+1h
q(γ−1)+1, while∫ T−h

s

Kq
2 dt ≤

∫ T−h

s

(t− s)q(γ−1)dt−
∫ T−h

s

(t− s+ h)q(γ−1)dt

≤ 1

q(γ − 1) + 1
hq(γ−1)+1.

Hence, ∫ T−h

0

‖τhu− u‖rB dt ≤ Ch
(q(γ−1)+1) rq )‖f‖rLp((0,T );B).

In other words,

‖τhu− u‖Lr((0,T );B) ≤ Chγ+ 1
r−

1
p ‖Dγ

c u‖Lp((0,T );B).(3.17)

Case 2: r < p.
We first note that we have for r = p,

‖τhu− u‖Lp((0,T );B) ≤ Chγ‖Dγ
c u‖Lp((0,T );B)

by Case 1.
Then by Hölder’s inequality,

‖τhu− u‖Lr((0,T );B) ≤ ‖1‖Lr∗(p/(p−r))((0,T );B)‖τhu− u‖Lr∗(p/r)((0,T );B)

= T 1/r−1/p‖τhu− u‖Lp((0,T );B).
(3.18)

This finishes the proof.



COMPACTNESS CRITERIA FOR TIME FRACTIONAL PDEs 3977

Proposition 3.5. Suppose Y is a reflexive Banach space, γ ∈ (0, 1) and T > 0.
Assume un → u in Lp((0, T );Y ), p ≥ 1. If there is an assignment of initial values
u0,n for un such that the weak Caputo derivatives Dγ

c un are bounded in Lr((0, T );Y )
(r ∈ [1,∞)), then

(i) there this a subsequence such that u0,n converges weakly to some value u0 ∈ Y ;
(ii) if r > 1, then there exists a subsequence such that Dγ

c unk converges weakly to
f and u0,nk converges weakly to u0. Moreover, f is the Caputo derivative of
u with initial value u0 so that

u(t) = u0 +
1

Γ(γ)

∫ t

0

(t− s)γ−1f(s) ds.

Further, if r ≥ 1/γ, then u(0+) = u0 in Y under the sense of Definition 2.1.

Proof. Let fn = Dγ
c un.

(i) By Lemma 3.1, un(t)−u0,n is bounded in Lr1((0, T );Y ), where r1 ∈ [1, r
1−rγ−ε)

if r < 1/γ or r1 ∈ [1,∞) if r > 1/γ. Take p1 = min(r1, p). Then un(t) − u0,n

is bounded in Lp1(0, T ;Y ). Since un converges in Lp and thus in Lp1 , then u0,n is
bounded in Lp1((0, T );Y ). Hence, u0,n is actually bounded in Y . Since Y is reflexive,
there is a subsequence u0,nk that converges weakly to u0 in Y .

(ii) We can take a subsequence such that both u0,nk converges weakly to u0 and
fnk := Dγ

c unk converges to f weakly in Lr((0, T );Y ) since r > 1. Take ϕ ∈ C∞c [0, T )
and w ∈ Y ′. We have∫ T

0

D̃γ
c;T (t)ϕ(unk(t)− u0,nk) dt =

∫ T

0

ϕ(t)fnk(t) dt.(3.19)

Since wϕ,wD̃γ
c;Tϕ ∈ Lr/(r−1)(0, T ;Y ′), we have by (3.19) that

〈wD̃γ
c;Tϕ, unk(t)− u0,nk〉 = 〈wϕ, fnk〉,

where the pairing is between Lr/(r−1)((0, T );Y ′) and Lr((0, T );Y ). Taking the limit
k →∞ and using the weak convergence, we have〈

wD̃γ
c;Tϕ, u− u0

〉
= 〈wϕ, f〉.

Since w is arbitrary and f ∈ Lr(0, T ;Y ), it must hold that∫ T

0

D̃γ
c;Tϕ(u(t)− u0) dt =

∫ T

0

ϕf dt.(3.20)

Hence, f is the weak Caputo derivative of u with initial value u0. By Proposition
2.15, we have

u(t) = u0 + (gγ ∗ f)(t) = u0 +
1

Γ(γ)

∫ t

0

(t− s)γ−1f(s) ds.

The last claim follows from Corollary 2.16.

4. Compactness criteria for time fractional PDEs. For linear evolutionary
equations, establishing the existence of weak solutions is relatively easy. Indeed, one
only needs the weak compactness, which is guaranteed by boundedness in reflexive
spaces. For integro-differential equations, one may refer to [32]. However, for nonlin-
ear evolutionary equations, strong compactness criteria, like the Aubin–Lions lemma,
are often needed. In this section, we present and prove some strong compactness
criteria which may not be sharp but are useful for time fractional PDEs.
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Theorem 4.1. Let T > 0,γ ∈ (0, 1) and p ∈ [1,∞). Let M,B, Y be Banach
spaces. M ↪→ B compactly and B ↪→ Y continuously. Suppose W ⊂ L1

loc((0, T );M)
satisfies the following:

(i) There exists C1 > 0 such that ∀u ∈W ,

sup
t∈(0,T )

Jγ(‖u‖pM ) = sup
t∈(0,T )

1

Γ(γ)

∫ t

0

(t− s)γ−1‖u‖pM (s) ds ≤ C1.(4.1)

(ii) There exist r ∈ ( p
1+pγ ,∞) ∩ [1,∞) and C3 > 0 such that for any u ∈ W ,

there is an assignment of initial value u0 to make the weak Caputo derivative
satisfy

‖Dγ
c u‖Lr((0,T );Y ) ≤ C3.(4.2)

Then W is relatively compact in Lp((0, T );B).

Another compactness theorem is as follows.

Theorem 4.2. Let T > 0,γ ∈ (0, 1) and p ∈ [1,∞). Let M,B, Y be Banach
spaces. M ↪→ B compactly and B ↪→ Y continuously. Suppose W ⊂ L1

loc((0, T );M)
satisfies the following:

(i) There exists r1 ∈ [1,∞) and C1 > 0 such that ∀u ∈W ,

sup
t∈(0,T )

Jγ(‖u‖r1M ) = sup
t∈(0,T )

1

Γ(γ)

∫ t

0

(t− s)γ−1‖u‖r1M (s) ds ≤ C1.(4.3)

(ii) There exists p1 ∈ (p,∞] such that W is bounded in Lp1((0, T );B).
(iii) There exist r2 ∈ [1,∞) and C2 > 0 such that ∀u ∈W , there is an assignment

of initial value u0 so that the weak Caputo derivative satisfies

‖Dγ
c u‖Lr2 ((0,T );Y ) ≤ C2.(4.4)

Then W is relatively compact in Lp((0, T );B).

To prove the theorems, we need several preliminary results.

4.1. Bounded fractional integrals. Regarding the fractional integral, we find
it convenient to define ‖ · ‖Lpγ for γ ∈ (0, 1) and p ≥ 1 as

‖u‖Lpγ(0,T ;M) := sup
t∈(0,T )

(∣∣∣ ∫ t

0

(t− s)γ−1‖u‖pM (s) ds
∣∣∣)1/p

<∞.(4.5)

It is easy to verify that the mapping ‖ · ‖Lpγ(0,T ;M) satisfies the triangle inequality so
that it is a norm. A simple observation is the following.

Lemma 4.3. Let γ ∈ (0, 1). If ‖f‖Lpγ((0,T );‖·‖M ) <∞; then f ∈ Lp((0, T );M).

Proof. The result follows from the simple observation that∫ T

0

‖f‖pM (s) ds ≤ T 1−γ
∫ T

0

(T − s)γ−1‖f‖pM ds.(4.6)

It is tempting to prove f ∈ Lpr((0, T );M) for some r > 1 in Lemma 4.3 by
performing more careful estimates. Indeed, if {t : ‖f(t)‖M ≥ z} is a single interval,
then we can improve the results, but we also have evidence that the improvement
may not be possible in some cases. See Claim 1 for the cases when we can improve
and Claim 2 for the evidence below.
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Claim 1. If Az = {t ∈ [0, T ] : ‖f(t)‖M ≥ z} is a single interval for any z > 0 (for
example, ‖f(·)‖M is monotone) and ‖f‖Lpγ((0,T );‖·‖M ) < ∞, then f ∈ Lpr((0, T );M)
for any r ∈ [1, 1/γ).

Proof. Let g = ‖f(·)‖pM . The fact that ‖f‖Lpγ((0,T );‖·‖M ) <∞ implies that

sup
0≤t≤T

∫ t

0

(t− s)γ−1g(s) ds <∞.(4.7)

The problem is then reduced to showing that g ∈ Lr(0, T ) with r ∈ [1, 1/γ).
For the Lr(0, T ) norm of g, we have

‖g‖rLr(0,T ) ∼
∫ ∞

0

zr−1λ(z) dz,(4.8)

where λ(z) = |{t : |g(t)| ≥ z}|. Note that {t : |g(t)| ≥ z} = Az1/p is an interval. Let
the two endpoints be az, bz. Then (4.7) implies that

z

∫ bz

az

(bz − s)γ−1ds ≤ sup
0≤t≤T

∫ t

0

(t− s)γ−1g(s) ds ≤ C.

Then we have zλ(z)γ ≤ C1 and thus λ(z) . Cz−1/γ . Hence, (4.8) converges for
r ∈ [1, 1/γ). The claim then follows.

Combining with the results in Lemma 3.1 (ii), the upper bound 1/γ of r seems
to be optimal. One question is whether we can improve f ∈ Lpr for general data.
Unfortunately, we believe this is not true.

Recall that a Borel measure is said to be Ahlfors-regular of degree (dimension)
α ∈ (0, 1) [40, Definition 2.11] if there exist C1 > 0, C2 > 0 such that it holds for all
x ∈ suppµ that

C1r
α ≤ µ(B(x, r)) ≤ C2r

α.(4.9)

Claim 2. Suppose µ is the middle 1/3 Cantor measure [41] that is Ahlfors-regular
of degree (or dimension) α = ln 2/ ln 3. Then if γ > 1− α, then

sup
t∈[0,1]

∫ 1

0

|t− s|γ−1dµ(s) <∞.

Proof. We perform the dyadic decomposition of the interval:

Ik = [(1− 2−k)t, (1− 2−k−1)t) ∪ (t+ (1− t)2−k−1, t+ (1− t)2−k] =: Ik1 ∪ Ik2.

Clearly, ∪∞k=0Ik = [0, 1] \ {t}. Since µ{t} = 0, it suffices to show that∑
k≥0

∫
Ik

|t− s|γ−1dµ(s) <∞.

If s ∈ Ik1, then we have

|t− s|γ−1 ≤ 2(k+1)(1−γ)tγ−1 = |Ik1|γ−1.

If s ∈ Ik2, then we have

|t− s|γ−1 ≤ 2(k+1)(1−γ)(1− t)γ−1 = |Ik2|γ−1.
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It follows that∫
Ik

|t− s|γ−1dµ(s) ≤ C2(|Ik1|α+γ−1 + |Ik2|α+γ−1)

= C2

(
2−(k+1)(α+γ−1)tα+γ−1 + 2−(k+1)(α+γ−1)(1− t)α+γ−1

)
.

It follows that if δ = α+ γ − 1 > 0, then∫ 1

0

|t− s|γ−1dµ(s) ≤ C2
2−δ

1− 2−δ
(tδ + (1− t)δ) ≤ 2C2

2−δ

1− 2−δ
.

Using the result in Claim 2, we can have some function g that is close to µ (we

mean the measure g dt is close to µ) and sup0≤t≤T
∫ t

0
(t − s)γ−1g(s) ds < ∞, but

the Lr (r > 1) norm can be as large as possible. In fact, since µ is supported on
a Lebesgue measure zero set, it is clear that µ ∗ ηε (with ηε being a mollifier) is a
Lebesgue measurable function but supε>0 ‖µ ∗ ηε‖Lr = ∞. This essentially forbids
any improvement of the result in Lemma 4.3. Furthermore, for an arbitrary degree
α ∈ (0, 1), there is a corresponding Cantor measure, so α = ln 2/ ln 3 is not really a
critical value.

4.2. Proof of the compactness criteria. We first recall some classical results
for compact sets in Lp((0, T );B). The first is the following.

Lemma 4.4 ([36, Theorem 5]). Suppose M,B, Y are three Banach spaces. M ↪→
B ↪→ Y with the embedding M → B being compact. Assume that 1 ≤ p < ∞ and
W ⊂ L1

loc((0, T );M) satisfies the following:
(i) W is bounded in Lp((0, T );M).
(ii) ‖τhf − f‖Lp((0,T−h);Y ) → 0 uniformly for f ∈W as h→ 0.
Then W is relatively compact in Lp((0, T );B).

The second one is the following.

Lemma 4.5 ([36, Lemma 3]). Let 1 < p1 ≤ ∞. If W is a bounded set in
Lp1((0, T );B) and relatively compact in L1

loc((0, T );B), then it is relatively compact
in Lp((0, T );B) for all 1 ≤ p < p1.

With all the preparation made, we are able to prove the compactness criteria
now.

Proof of Theorem 4.1. Condition (i) implies that W is bounded in Lp((0, T );B)
by Lemma 4.3. Consider condition (ii). Let r0 be the number in Proposition 3.4. If
r < 1/γ, then

r0 =
r

1− rγ
> p

since r > p/(1 + pγ). Otherwise, r0 = ∞ > p. Together with the condition r ≥ 1,
condition (ii) therefore implies that ‖τhu−u‖Lp((0,T );B) → 0 uniformly by Proposition
3.4. Hence, the second condition of Lemma 4.4 is verified. By Lemma 4.4, the relative
compactness of W in Lp((0, T );B) follows.

Proof of Theorem 4.2. Condition (i) implies that W is bounded in Lp((0, T );B)
by Lemma 4.3. By condition (iii) and Proposition 3.4, ‖τhu − u‖L1((0,T );B) → 0
uniformly. Hence, by Lemma 4.4, W is relatively compact in L1((0, T );B). Since
W is bounded in Lp1((0, T );B) with p1 > p according to condition (ii), the relative
compactness of W in Lp((0, T );B) follows from Lemma 4.5.
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5. Time fractional PDE examples. In this section, we look at two nonlin-
ear fractional PDEs and see how our compactness theorems can be used to give the
existence of weak solutions. The first example is a special case of the time fractional
compressible Navier–Stokes equations (with constant density), while the second ex-
ample is the time fractional Keller–Segel equations.

5.1. Time fractional compressible Navier–Stokes equations. The famous
Navier–Stokes equations (compressible or incompressible) describe the dynamics of
Newtonian fluids [42, 43, 44]. For the incompressible case with constant density,
the existence and uniqueness of weak solution in two dimensions have been proved.
However, in the three-dimensional case, the global weak solutions may not be unique.
The existence and uniqueness of global smooth solutions are still open [45]. For
compressible cases, one can refer to [46].

In this subsection, we use the compressible Navier–Stokes equations with con-
stant density as a base model and replace the time derivative with the fractional
time derivative. We will use our compactness criteria to show the existence of weak
solutions for this model problem.

Let

Ω ⊂ Rd, d = 2, 3(5.1)

be a bounded open set with smooth boundary. The following special case of time frac-
tional compressible Navier–Stokes equations (for usual time derivatives, the equations
are also known as Euler–Poincare equations or multidimensional Burgers equations
[47]) we consider are given by

Dγ
c u+ u · ∇u+ (∇u) · u+ (∇ · u)u = ∆u, x ∈ Ω,

u|∂Ω = 0.

Here the tensor ∇u is given by (∇u)ij = ∂iuj . This can also be formulated as the
conservative form

Dγ
c u+∇ · (u⊗ u) +

1

2
∇(|u|2) = ∆u,

u|∂Ω = 0.
(5.2)

The tensor product u⊗ u is given by (u⊗ u)ij = uiuj .

5.1.1. Weak formulation. Motivated by the integration by parts (Lemma 2.8
and Definition 2.9), we define the following.

Definition 5.1. Let γ ∈ (0, 1). We say

u ∈ L∞((0, T );L2(Ω)) ∩ L2((0, T );H1
0 (Ω))

with
Dγ
c u ∈ Lq1((0, T );H−1(Ω)), q1 = min(2, 4/d),

is a weak solution to (5.2) with initial data u0 ∈ L2(Ω) if

(5.3)

∫ T

0

∫
Ω

(u(x, t)− u0)D̃γ
c;Tϕdxdt−

∫ T

0

∫
Ω

∇ϕ : u⊗ u dxdt

− 1

2

∫ T

0

∫
Ω

∇ · ϕ|u|2 dxdt =

∫ T

0

∫
Ω

u ·∆ϕdxdt
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for any ϕ ∈ C∞c ([0, T )×Ω;Rd). We say a weak solution is a regular weak solution if
u(0+) = u0 under H−1(Ω) in the sense of Definition 2.1.

If u is a function defined on (0,∞) so that its restriction on any interval [0, T ),
T > 0 is a (regular) weak solution, we say u is a global (regular) weak solution.

Remark 5.1. Usually, the test functions ϕ are chosen in a suitable Banach space
that makes all the integrals meaningful. The smooth test functions, however, are
general enough by a density argument.

5.1.2. Preliminary a priori estimates. Note that if we assume that Propo-
sition 2.18 holds for u and note that 1

2‖u‖
2
2 is a convex functional, we have

Dγ
c

1

2
‖u‖22 ≤ 〈u,Dγ

c u〉 = −
∫

Ω

∇ ·
(

1

2
|u|2u

)
dx−

∫
Ω

|∇u|2dx = −
∫

Ω

|∇u|2dx.

In other words,

Dγ
c

1

2
‖u‖22 ≤ −‖∇u‖2L2 .

We have therefore by Lemma 2.3 that

1

2
‖u(t)‖22 +

1

Γ(γ)

∫ t

0

(t− s)γ−1‖∇u‖2L2(s)ds ≤ 1

2
‖u0‖22.(5.4)

Consequently, u ∈ L∞((0, T );L2(Ω)) ∩ L2((0, T );H1
0 (Ω)).

Consider that d = 2, 3. Let p1 = max
(

2, 4
4−d

)
and q1 = min(2, 4/d) be the

conjugate index of p1. Let ϕ ∈ Lp1(0, T ;H1
0 (Ω)):

|〈Dγ
c u, ϕ〉x,t| =

∣∣∣∣∣
〈
−∇ · (uu)− 1

2
∇(|u|2) + ∆u, ϕ

〉
x,t

∣∣∣∣∣
≤ C

∫ T

0

‖∇ϕ|u|2‖1 dt+

∫ T

0

‖∇ϕ‖2‖∇u‖2 dt.(5.5)

Using the Gagliardo–Nirenberg inequality ‖u‖4 ≤ C‖u‖1−d/42 ‖Du‖d/42 , the first term
is estimated as∫ T

0

‖∇ϕ|u|2‖1 dt ≤
∫ T

0

‖∇ϕ‖2‖u‖24 dt

≤ C

(∫ T

0

‖∇ϕ‖4/(4−d)
2 dt

)(4−d)/4(∫ T

0

‖Du‖22 dt

)d/4
,

(5.6)

where we have used the fact ‖u‖L∞(0,T ;L2) ≤ ‖u0‖2. It is then clear that

Dγ
c u ∈ Lq1((0, T );H−1(Ω)).(5.7)

Theorem 4.2 can be used to give the compactness for the approximation sequences
if these a priori estimates are preserved for the approximation sequences.

5.1.3. Existence of weak solutions: A Galerkin method. With the a priori
energy estimates, the existence of weak solutions can be performed by the standard
techniques. We first of all state the results as follows.
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Theorem 5.2. Suppose u0 ∈ L2(Ω). Then there exists a global weak solution to
(5.2) with initial data u0 under Definition 5.1. Further, if max( 1

2 ,
d
4 ) ≤ γ < 1, then

there is a global weak solution continuous at t = 0 under the H−1(Ω) norm and hence
a global regular weak solution.

Remark 5.2. To guarantee the continuity of u at t = 0 for all γ, we need Dγ
c u ∈

Lq1((0, T );H−1(Ω)) for all q1 ∈ (1,∞). Claim 2 forbids us to conclude that ∇u ∈
Lr(0, T ;L2) for r > 2. We cannot improve q1 even if we consider the weaker norm of
Dγ
c u (for example, Lq1(0, T ;Hα(Ω)) norm with α < −1) due to ∇ϕ|u|2 term in (5.6).

We use the Galerkin method to prove this. Let {wn}∞n=1 be a basis of both H1
0 (Ω)

and L2(Ω) and orthonormal in L2(Ω), which as well known exists (see [35, section
6.5]).

We first introduce Pm to be the projection that projects v onto the first m modes.
In other words, for any v ∈ H1

0 (Ω),

v =

∞∑
k=1

αkwk,(5.8)

we define

Pmv :=

m∑
k=1

αkwk.(5.9)

Note that one can first of all assume (5.8) holds in H1
0 . Then it must also hold in

L2 since H1
0 ⊂ L2. This means that the expansion coefficients of v in H1

0 and L2

are the same. We first note that for a general Banach space B and a Schauder basis
{wk} ⊂ B, the so-defined projection Pm is a bounded operator, and one may refer
to [48, Page 32]. As a consequence of the uniform boundedness principle (Banach–
Steinhaus theorem) [49], one has the following well-known fact.

Lemma 5.3. Suppose {wk}∞k=1 is a Schauder basis of a Banach space B. Consider
the projection operator {Pm} as in (5.9). Then Pm : B → B is a bounded linear
operator and

sup
m≥1
‖Pm‖ <∞,

where

‖Pm‖ := sup
v∈B,v 6=0

‖Pmv‖B
‖v‖B

.(5.10)

Let u0 =
∑∞
k=1 α

kwk(x) in L2(Ω). We pursue the function

um(t) =

m∑
k=1

ckm(t)wk(5.11)

such that cm := (c1m, . . . , c
m
m) is continuous in time and um satisfies the following

equations:

〈Dγ
c um, wj〉+ 〈∇ · (um ⊗ um), wj〉+

1

2
〈∇|um|2, wj〉 = 〈∆um, wj〉,

um(0) =

m∑
k=1

ckm(0)wk =

m∑
k=1

αkwk.
(5.12)



3984 LEI LI AND JIAN-GUO LIU

Since cm is continuous, Dγ
c um is the Caputo derivative (with natural initial value).

Equation (5.12) can be reduced to the following FODE system for cm:

Dγ
c cm = Fm(cm),

cm(0) = (α1, . . . , αm),
(5.13)

where Fm is clearly a quadratic vector-valued function of cm and hence smooth. By
studying the FODE system (5.13), we have the following.

Lemma 5.4.
(i) For any m ≥ 1, there exists a unique solution um of the form (5.11) to (5.12)

that is continuous on [0,∞), satisfying

‖um‖L∞((0,∞);L2(Ω)) ≤ ‖u0‖2, sup
0≤t<∞

∫ t

0

(t− s)γ−1‖∇um‖22 ds ≤
1

2
Γ(γ)‖u0‖2.

(5.14)

(ii) There exists u ∈ L∞((0,∞);L2(Ω)) ∩ L2
loc([0,∞);H1

0 (Ω)) and a subsequence
mk such that

umk → u, in L2
loc([0,∞);L2(Ω)).

Further, u has a weak Caputo derivative Dγ
c u ∈ L

q1
loc([0,∞);H−1(Ω)), where

q1 = min
(
2, 4

d

)
.

Proof. (i). By the results for FODE in [19], cm(t) exists on [0, Tmb ), where ei-

ther Tmb = ∞ or Tmb < ∞ and lim supt→Tmb − |cm| = ∞, where |cm| =
√∑

j(c
j
m)2.

Note that the norm for cm is not important because any norms are equivalent for
finite dimensional vectors. Further, since Fm is quadratic, by [20, Lemma 3.1],
cm ∈ C1(0,∞) ∩ C[0,∞) and consequently

um ∈ C1((0, Tmb );H1
0 (Ω)) ∩ C([0, Tmb );H1

0 (Ω)).

By Proposition 2.18, we have

Dγ
c

(
1

2
‖um‖22

)
(t) ≤ 〈um, Dγ

c um〉.

Since um =
∑m
k=1 c

k
m(t)wk, using (5.12),

〈um, Dγ
c um〉+

∫
Ω

um · ∇ · (um ⊗ um) dx+
1

2

∫
Ω

um · ∇|um|2dx = −
∫

Ω

|∇um|2dx.

(5.15)

Hence, we have

Dγ
c

(
1

2
‖um‖22

)
(t) ≤ 〈um, Dγ

c um〉 = −‖∇um‖22.

This implies that

‖um‖22 +
2

Γ(γ)

∫ t

0

(t− s)γ−1‖∇um(s)‖22 ds ≤ ‖u0‖22.

Consequently, we find that Tmb =∞. The first claim follows.
(ii).
Take a test function v ∈ Lp1((0, T );H1

0 ) (p1 = max(2, 4
4−d )) with

‖v‖Lp1 ((0,T );H1
0 ) ≤ 1.
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Denote

vm := Pmv,(5.16)

where Pm is defined in (5.9). Then by Lemma 5.3, there exists C(Ω, T ) such that

‖vm‖Lp1 ((0,T );H1
0 ) ≤ C.

We have

〈Dγ
c um, v〉 = 〈Dγ

c um, vm〉 = −〈∇ · (um ⊗ um), vm〉 −
1

2
〈∇|um|2, vm〉+ 〈∆um, vm〉.

Note that the second equality holds because vm ∈ span{w1, . . . , wm}.
Using similar tricks as we did in (5.5)–(5.6), we find

〈Dγ
c um, v〉 ≤ C, q1 = min

(
2,

4

d

)
.(5.17)

Hence, ‖Dγ
c um‖Lq1 (0,T ;H−1) ≤ C for all m.

Now we have

sup
0≤t≤T

Jγ(‖∇um‖22) ≤ C, um ∈ L∞(0, T ;L2(Ω)), ‖Dγ
c um‖Lq1 (0,T ;H−1) ≤ C.

By Theorem 4.2, there is a subsequence {umk} that converges in Lp((0, T );L2(Ω)) for
any p ∈ [1,∞). In particular, we choose p = 2.

According to Proposition 3.5, u has a weak Caputo derivative with initial value
u0 such that

Dγ
c u ∈ Lq1((0, T );H−1(Ω)).

By a standard diagonal argument, u is defined on (0,∞) and Dγ
c u ∈ L

q1
loc([0,∞);H−1)

such that
umk → u, in L2

loc([0,∞);L2(Ω)).

By taking a further subsequence, we can assume that umk also converges a.e. to
u in [0,∞)× Ω. It is easy to see that∫ t2

t1

‖um‖22 dt ≤ ‖u0‖22(t2 − t1).

According to Fatou’s lemma, we find∫ t2

t1

‖u‖22 dt ≤ ‖u0‖22(t2 − t1)

for any t1 < t2. This then implies that u ∈ L∞((0,∞);L2(Ω)).
Fix any T > 0. Since umk is bounded in L2((0, T );H1

0 (Ω)), it has a further subse-
quence that converges weakly in L2((0, T );H1

0 (Ω)). By a standard diagonal argument,
there is a subsequence that converges weakly in L2

loc([0,∞);H1
0 (Ω)). The limit must

be u by pairing with a smooth test function. Hence, u∈L2
loc([0,∞);H1

0 (Ω)).

Remark 5.3. One may want to show that u ∈ L2
γ(0, T ;H1

0 (Ω)) since um ∈ L2
γ

(0, T ;H1
0 (Ω)) for all m. To this end, we may want to prove that the space L2

γ defined
in section 4.1 is reflexive, which is left for the future.
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Now we can prove Theorem 5.2.

Proof of Theorem 5.2. By Lemma 5.4, there is a subsequence that converges in
Lp((0, T );L2(Ω)) for any p ∈ [1,∞). Let the limit function be u.

Now for any test function ϕ ∈ C∞c ([0, T )× Ω;Rd), we expand

ϕ =

∞∑
k=1

βkwk,(5.18)

and we define

ϕm :=

m∑
k=1

βkwk.(5.19)

Since ϕ is a smooth function in t that vanishes at T , so is ϕm, and D̃γ
c;Tϕm → D̃γ

c;Tϕ

in Lp1((0, T );H1
0 ).

We first of all fix m0 ≥ 1, and for mj ≥ m0, we have

〈umj − u0, D̃
γ
c;Tϕm0

〉x,t = 〈Dγ
c umj , ϕm0

〉x,t

=

∫ T

0

∫
Ω

∇ϕm0
: umj ⊗ umjdxdt

+
1

2

∫ T

0

∫
Ω

∇ · ϕm0
|umj |2dxdt−

∫ T

0

∫
Ω

∇ϕm0
: ∇umjdxdt.

The first equality here holds by the integration by parts formula, while the second
one holds because ϕm0 ∈ span{w1, . . . , wmj}.

According to the convergence proved in Lemma 5.4, taking j →∞, we have

(5.20)

∫ T

0

∫
Ω

(u− u0)D̃γ
c;Tϕm0

dxdt =

∫ T

0

∫
Ω

∇ϕm0
: u⊗ u dxdt

+
1

2

∫ T

0

∫
Ω

∇ · ϕm0
|u|2dxdt−

∫ T

0

∫
Ω

∇ϕm0
: ∇u dxdt.

Then taking m0 → ∞, by the convergence ϕm → ϕ in Lp((0, T );H1
0 (Ω)) for any

p ∈ (1,∞), we find that the weak formulation holds.
Further, if q1 ≥ 1/γ or γ ≥ max(1/2, d/4), by Lemma 5.4 (ii) and Corollary 2.16,

it is a regular weak solution.

Remark 5.4. For the incompressible fractional Navier–Stokes equations{
Dγ
c u+ u · ∇u = −∇p+ ∆u,

∇ · u = 0,
(5.21)

the existence of weak solutions can also be shown. The a priori estimates follow by
dotting u and integrating on x:

1

2
Dγ
c ‖u‖2L2 ≤ −‖∇u‖2L2 .

For the Galerkin approximation, we need to find a basis for the divergence-free sub-
space of H1. Consider the projection operator Pm that projects a function into the
subspace spanned by the first m basis functions that are divergence free. Then

Dγ
c um + Pm(um · ∇um) = ∆um.

Using similar techniques, we can show the existence of weak solutions.
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5.2. Time fractional Keller–Segel equations. The Keller–Segel equations
are a model for the chemotaxis of bacteria [50, 51, 52]. This model has attracted a lot
of attention due to its mathematical structures. The weak solutions for Keller–Segel
equations in two dimensions have been totally solved in [52]. The discussion of weak
solutions of extended models can be found in [53, 54, 55].

As a toy example for our compactness theory, we replace the usual time derivative
in the Keller–Segel equations with the Caputo derivatives and consider the following
fractional Keller–Segel equations in R2:{

Dγ
c ρ+∇ · (ρ∇c) = ∆ρ, x ∈ R2,

−∆c = ρ, x ∈ R2.
(5.22)

We first of all introduce the definition of weak solutions.

Definition 5.5. Given ρ0 ≥ 0 and ρ0 ∈ L1(R2) ∩ L2(R2), we say that

ρ ∈ L∞(0, T ;L1(R2)) ∩ L∞(0, T ;L2(R2)) ∩ L2(0, T ;H1(R2))

is a weak solution to the fractional Keller–Segel equation (5.22) with initial data ρ0 if
(i) ρ(x, t) ≥ 0;

(ii) there exists q ∈ (1, 2) such that Dγ
c ρ ∈ Lq1((0, T );W−2,q(R2)) for any q1 ∈

(1,∞);
(iii) for any ϕ ∈ C∞c ([0, T )× R2),∫ T

0

∫
R2

(ρ−ρ0)D̃γ
c;Tϕdxdt−

∫ T

0

∫
R2

∇ϕ · (∇(−∆)−1ρ)ρ dxdt =

∫ T

0

∫
R2

ρ∆ϕdxdt.

We say a weak solution is a regular weak solution if ρ(0+) = ρ0 under W−2,q in the
sense of Definition 2.1, where q is given as in (ii).

If ρ is a function defined on (0,∞) so that its restriction on any interval [0, T )
(T > 0) is a (regular) weak solution, then we say ρ is a global (regular) weak solution.

To study the existence of weak solutions, we first of all investigate the fractional
advection diffusion equation

Dγ
c ρ+∇ · (ρa(x, t)) = ∆ρ(5.23)

with initial condition
ρ(x, 0) = ρ0(x).

Introduce the Mittag–Leffler function

Eγ(z) :=

∞∑
n=0

zn

Γ(nγ + 1)
,(5.24)

and denote A = −∆, which is a self-joint positive operator. By taking the Laplace
transform of the equation, one has the following analogy of Duhamel’s principle
(though the dynamics is not Markovian) [25, sections 8–9]:

ρ(x, t) = Eγ(−tγA)ρ0 + γ

∫ t

0

τγ−1E′γ(−τγA)(−∇ · (ρa)|t−τ ) dτ.(5.25)
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Definition 5.6. Suppose X is a Banach space in space and time. If ρ ∈ X
satisfies (5.25), then we say ρ is a mild solution of (5.23) in X.

We have the following lemma regarding (5.23), whose proof is in Appendix A.

Lemma 5.7. Suppose a(x, t) is smooth and all the derivatives are bounded. Then
the following hold:

(i) If
ρ0 ∈ L1(R2) ∩Hα(R2),

then ∀T > 0, (5.23) has a unique mild solution in C([0, T ];Hα(R2)).
(ii) For the unique mild solution in (i), ∀T > 0,

ρ ∈ C0,γ([0, T ];Hα(R2)) ∩ C∞((0, T );Hα(R2)).(5.26)

Moreover, the following holds strongly in C([0, T ];Hα−2):

Dγ
c ρ =

1

Γ(1− γ)

∫ t

0

ρ̇(s)

(t− s)γ
ds = −∇ · (ρa(x, t)) + ∆ρ.(5.27)

(iii) If ρ0 ∈ H1(R2) ∩ L1(R2) and ρ0 ≥ 0, then ρ(x, t) ≥ 0 and∫
R2

ρ dx =

∫
R2

ρ0 dx.(5.28)

Based on Lemma 5.7, we are motivated to consider the mollified equation. Let
J(x) ∈ C∞c (R2) such that J(x) ≥ 0 and

∫
R2 J(x)dx = 1. Introduce

Jε =
1

ε2
J
(x
ε

)
.(5.29)

The mollified equations read{
Dγ
c ρ
ε +∇ · (ρε∇cε) = ∆ρε,

−∆cε = ρε ∗ Jε,
(5.30)

with initial data
ρε0 = ρ0 ∗ Jε,

which has the same L1 norm as ρ0.
Note that the system (5.30) is nonlinear, but the system is similar to the lin-

ear problem (5.23) because ρε ∗ Jε (and hence ∇cε) is smooth and bounded and its
derivatives are bounded. Actually, we have the following.

Lemma 5.8. Given ρ0 ∈ L1(R2) ∩ L2(R2) and ρ0 ≥ 0, the regularized system
(5.30) has a unique global mild solution. Further, this mild solution ρε is a strong
solution and ρε ∈ C([0,∞), Ck(R2)) for any k ≥ 0 and further ρε ≥ 0.

Proof. The existence and uniqueness of the mild solution is similar to what we
do for the linear problem (see the proof of Lemma 5.7 in Appendix A), and we omit
the details. The key idea is to use formula (5.25) and to notice

∇cε = C
x

|x|2
∗ Jε ∗ ρε,

which is smooth and bounded, with derivatives bounded. For a similar discussion,
one can refer to [56], but our problem is much easier compared with [56] since ∇cε is
bounded.
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Now one can consider the following problem with initial data ρ0:

Dγ
c v +∇ · (v∇cε) = ∆v.

By Lemma 5.7, this problem has a unique mild solution, which is also a strong solution
v ∈ C([0,∞), Ck(R2)) for any k ≥ 0 and v ≥ 0. However, ρε is also a mild solution,
so we must have v = ρε, which implies that ρε is also a strong solution to (5.30) with
the desired properties.

We have the following estimates of ρε.

Lemma 5.9. Suppose ρ0 ≥ 0 satisfies that ρ0 ∈ L1 ∩ L2 and M0 = ‖ρ0‖1 is
sufficiently small. Then ρε ≥ 0, and for any fixed T > 0, there are constants C(q, T ) >
0 and C(T ) > 0 such that

‖ρε‖L∞(0,T ;Lq) ≤ C(q, T ),∀q ∈ [1, 2],

sup
0≤t≤T

∫ t

0

(t− s)γ−1‖∇ρε‖22 ds ≤ C(T ).
(5.31)

Moreover, there exists q ∈ (1, 2) such that Dγ
c ρ
ε is uniformly bounded in the space

Lq1([0, T ];W−2,q(R2)) for any q1 ∈ (1,∞).

Proof. By Lemma 5.8, (5.30) has a strong solution ρε ∈ C([0,∞), Ck(R2)) for
any k ≥ 0 and ρε ≥ 0.

We now perform the estimates of ρε. First of all, it is clear that

Dγ
c

∫
R2

ρεdx = 0⇒ ‖ρε‖1 = ‖ρε0‖1 = ‖ρ0‖1.

Since ρ 7→ ‖ρ‖qq is convex for q > 1, by Proposition 2.18,

1

q
Dγ
c ‖ρε‖qq ≤ 〈(ρε)q−1, Dγ

c ρ
ε〉 =

q − 1

q
‖(ρε)qρε ∗ Jε‖1 − (q − 1)‖∇(ρε)q/2‖22.

Using Hölder’s inequality,

‖(ρε)qρε ∗ Jε‖1 ≤ ‖ρε ∗ Jε‖q+1‖(ρε)q‖(q+1)/q ≤ ‖ρε‖q+1
q+1.

For q = 2, using the Gargliardo–Nirenberg inequality,

‖ρε‖3 ≤ C‖∇ρε‖2/32 ‖ρε‖
1/3
1 .

Hence,
1

2
Dγ
c ‖ρε‖22 ≤ (C‖ρε‖1 − 1)‖∇ρε‖22 = (C‖ρ0‖1 − 1)‖∇ρε‖22.

If the initial mass M0 =
∫
R2 ρ0 dx is small enough such that

CM0 − 1 < 0,

then we have that ρε is uniformly bounded in L∞(0, T ;L2(R2))∩L2
γ,loc(0, T ;H1(R2))

according to Lemma 2.3.
Since ρε is uniformly bounded in L1 ∩ L2, it is so in Lp for any p ∈ [1, 2]. Since

cε = (−∆)−1ρε, we have

∇cε = C1
x

|x|2
∗ ρε.
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By the Hardy–Littlewood–Sobolev inequality,

‖∇cε‖2p/(2−p) ≤ C2‖ρε‖p, 1 < p < 2.

Hence, ∇cε is bounded in L∞(0, T ;Lr(R2)) for r ∈ (2,∞).
We now take test function ϕ with

‖ϕ‖Lp1 (0,T ;W 2,p
0 ) ≤ 1, p > 2, p1 > 1.

Then

〈Dγ
c ρ
ε, ϕ〉x,t = 〈ρε∇cε,∇ϕ〉x,t + 〈ρε,∆ϕ〉x,t

≤ ‖ρε‖L∞(0,T ;L2)‖∇cε‖L∞(0,T ;L2p/(p−2))

∫ T

0

‖∇ϕ‖Lp dt

+

∫ T

0

‖∆ϕ‖p‖ρε‖L∞(0,T ;Lq) dt.

This means
‖Dγ

c ρ
ε‖Lq1 (0,T ;W−2,q) ≤ C(q1, q, T ).

The existence of weak solutions is summarized as follows, which is a standard
consequence of Lemma 5.9 and Theorem 4.1, and we omit the proof.

Theorem 5.10. Let γ ∈ (0, 1). If ρ0 ≥ 0, ρ0 ∈ L1(R2) ∩ L2(R2), and the ini-
tial mass M0 =

∫
R2 ρ0 dx is sufficiently small, then the time fractional Keller–Segel

equation (5.22) with initial data ρ0 has a global (nonnegative) regular weak solution.

Appendix A. Proof of Lemma 5.7.

Proof of Lemma 5.7. (i). Since Eγ(z) is an analytic function in the whole z ∈ C
plane and

E′γ(−s) ∼ −C0s
−2 as s→ +∞,

we conclude that
sup

s∈[0,∞)

E′γ(−s)sσ ≤ C ∀σ ≤ 2.

Consequently,

‖E′γ(−τγA)∇f‖2Hα ≤ C
∫
R2

E′γ(−τγ |k|2)2|k|2|f̂k|2(1 + |k|2α)dk

≤ Cτ−γ
∫
R2

|f̂k|2(1 + |k|2α)dk = Cτ−γ‖f‖2Hα .

We construct the iterative sequence

ρ0(t) = ρ0, ρn(t) = Eγ(−tγA)ρ0 + γ

∫ t

0

τγ−1E′γ(−τγA)(−∇ · (ρn−1a)|t−τ ) dτ.

(A.1)

We fix T > 0. Define En = ρn − ρn−1. We can compute directly that

‖ρ1‖C[0,T ;Hα] ≤ ‖ρ0‖Hα
(

1 + C1γ

∫ t

0

τγ/2−1dτ

)
≤ ‖ρ0‖Hα(1 + 2C1T

γ/2).

Consequently,
‖E1‖C[0,t;Hα] ≤M ∀t ∈ [0, T ].
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The induction formula reads

En(x, t) = γ

∫ t

0

τγ−1E′γ(−τγA)(−∇ · (En−1a)|t−τ )dτ.

Hence,

‖En‖C([0,t];Hα) ≤ C1γ sup
0≤z≤t

∫ z

0

τγ/2−1‖En−1‖C([0,z−τ ];Hα)dτ

= C1γ

∫ t

0

τγ/2−1‖En−1‖C([0,t−τ ];Hα)dτ

= C2gγ/2 ∗ ‖En−1‖C([0,·];Hα).

From this induction formula, we have

‖E2‖C[0,t;Hα] ≤ C2Mgγ/2+1(t).

By induction,
‖En‖C[0,t;Hα] ≤ Cn−1

2 Mg(n−1)∗γ/2+1(t).

It follows that

ρ = ρ0 +

∞∑
n=1

En

converges in C([0, T ];Hα(R2)), and, in other words, ρn → ρ in C([0, T ];Hα(R2)).
Hence, ρ is a mild solution.

The uniqueness follows in a similar way. Consider two mild solutions ρ1 and ρ2.
Define σ = ρ1 − ρ2. Then

σ(x, t) = γ

∫ t

0

τγ−1E′γ(−τγA)(−∇ · (σa)|t−τ )dτ.

Then

‖σ‖C([0,t];Hα) ≤ C sup
0≤z≤t

∫ z

0

τγ/2−1‖σ‖C([0,z−τ ];Hα)dτ.

This implies that ‖σ‖C([0,t];Hα) = 0 for t ∈ [0, T ]. The uniqueness is then shown.
(ii).
Assume ρ(x, t) is the mild solution, which satisfies

ρ(x, t) = Eγ(−tγA)ρ0 + γ

∫ t

0

(t− s)γ/2−1((t− s)γ/2E′γ(−(t− s)γA)(−∇ · (ρa)|s)) ds.

For the integral, we have done change of variables s = t−τ . Note that Eγ(−tγA)ρ0 ∈
Cγ([0, T ];Hα(R2)) ∩ C∞((0,∞);Hα(R2)) by [25, equation (8.13)]. Since

(t− s)γ/2E′γ(−(t− s)γA)∇ : Hα(R2)→ Hα(R2)

is a bounded operator and ρ ∈ C([0,∞), Hα(R2)), we apply Proposition 3.3 repeat-
edly, and find that for any T > 0,

ρ ∈ C0,γ([0, T ];Hα(R2)) ∩ C∞((0,∞);Hα(R2)).

Since Eγ(−tγA)ϕ solves the fractional diffusion equation, we have

Eγ(−tγA)ϕ = ϕ− 1

Γ(γ)

∫ t

0

(t− s)γ−1AEγ(−sγA)ϕds.
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Second, taking the derivative on t, we find the operator identity

−γtγ−1E′(−tγA) = − 1

Γ(γ)
tγ−1I +

γ

Γ(γ)

∫ t

0

(t− s)γ−1Asγ−1E′(−sγA) ds.

Using these two identities and the fact Aρ ∈ C([0,∞);Hα−2(R2)), we find that the
mild solution satisfies in Cγ([0, T ];Hα−2(R2)) ∩ C∞((0,∞);Hα−2(R2)) that

ρ(x, t) = ρ0 +
1

Γ(γ)

∫ t

0

(t− s)γ−1(−Aρ(s)−∇ · (ρa)(s)) ds.(A.2)

Using these time regularity estimates and (A.2), we find that

Dγ
c ρ =

1

Γ(1− γ)

∫ t

0

ρ̇(s)

(t− s)γ
ds = −∇ · (ρa) + ∆ρ

holds in C([0, T ];Hα−2(R2)).
(iii).
For the positivity, it is a little tricky. We first introduce the following notations:

v+ = max(v, 0), v− = −min(v, 0).(A.3)

Then if v ∈ H1(R2), then v± ∈ H1(R2) and ‖v±‖H1 ≤ ‖v‖H1 .
The idea is then to consider a modified equation

Dγ
c v = −∇ · (v+a(x, t)) + ∆v.

By the same techniques as in the proof for (i), this equation has a unique global mild
solution in C([0, T ];H1(R2)) and v ∈ C0([0, T ];H−1(R2)) ∩ C1((0, T );H−1(R2)) so
that in C([0, T ];H−1(R2)), we have

1

Γ(1− γ)

∫ t

0

v̇(s)

(t− s)γ
ds = −∇ · (v+a) + ∆v.

By Proposition 2.18, we have in C([0, T ];H−1(R2))

1

Γ(1− γ)

(
v(t)− v(0)

tγ
+ γ

∫ t

0

v(t)− v(s)

(t− s)γ+1
ds

)
= −∇ · (v+a(x, t)) + ∆v.

Since H−1(R2) is the dual space of H1(R2), we can multiply v− = −min(v, 0) ≥ 0,
which is in H1(R2), and integrate,

Γ(1− γ)‖∇v−‖22 =

(
−‖v−‖22 −

∫
ρ0v
−dx

tγ

+ γ

∫ t

0

−‖v+(s)v−(t)‖1
(t− s)γ+1

ds− γ
∫ t

0

∫
(v−(t)− v−(s))v−(t) dx

(t− s)γ+1
ds

)

≤
(
−‖v−‖22

2tγ
− γ

∫ t

0

∫
(v−(t)− v−(s))v−(t)dx

(t− s)γ+1
ds

)
.

Further, noting that −(v−(t)− v−(s))v−(t) ≤ − 1
2 ((v−(t))2 − (v−(s))2), we have

‖∇v−‖22 ≤ −
1

2
Dγ
c ‖v−‖22,
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or
1

2
Dγ
c ‖v−‖22 ≤ −‖∇v−‖22.

By Lemma 2.3, we find that v− = 0. This means that v also solves the original
equation, and thus v = ρ a.e. by the uniqueness of mild solutions. Hence, ρ ≥ 0.

For the mass conservation, we consider the approximation sequence (A.1) again.
Note that ρ ∈ C([0, T ];L2). Let Y be defined in [29, equation (2.20)]. We have∥∥∥∥∫ t

0

τγ−1E′γ(−τγA)∇ · (ρn−1a)|t−τ dτ
∥∥∥∥

1

≤
∫ t

0

∥∥∥∥∫
R2

∇Y (x− y, τ) · (ρn−1a)(y, t− τ) dy

∥∥∥∥
1

d τ.

Using the estimates for ∇Y in [29, Lemma 4.7], we have ‖∇Y (·, t)‖1 ≤ Ct
γ
2−1. We

therefore find that

‖ρn‖1(t) ≤ ‖ρ0‖1 +
α

Γ(γ/2)

∫ t

0

τ
γ
2−1‖ρn−1‖1(t− τ) dτ

for some constant α. Consequently, ‖ρn‖1 is controlled by the solution to D
γ/2
c u = αu

with initial value ‖ρ0‖1. Hence, we conclude that ‖ρ‖1(t) ≤ u(t) as well. Consider
(5.25). It is easy to see that∫

R2

Eγ(−tγA)ρ0 dx =

∫
R2

ρ0 dx.

The function in the second term is integrable under the product measure dxdτ since
‖ρ‖1(t) ≤ u(t). Then, by Fubini, we can integrate in x first and thus have∫

R2

∫ t

0

τγ−1E′γ(−τγA)∇ · (ρa)|t−τ dτdx =

∫ t

0

∫
R2

τγ−1E′γ(−τγA)∇ · (ρa)|t−τ dxdτ.

For τ > 0, ∇Y is integrable, and its integral must be zero. Hence, for a.e. τ ∈ (0, t),∫
R2

∇E′γ(−τγA) · (ρa|t−τ ) dx = 0.

The second term is therefore zero.

Acknowledgments. The authors would like to thank Xianghong Chen for pro-
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