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A DISCRETIZATION OF CAPUTO DERIVATIVES WITH
APPLICATION TO TIME FRACTIONAL SDEs AND GRADIENT

FLOWS\ast 
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Abstract. We consider a discretization of Caputo derivatives resulted from deconvolving a
scheme for the corresponding Volterra integral. Properties of this discretization, including signs
of the coefficients, comparison principles, and stability of the corresponding implicit schemes, are
proved by its linkage to Volterra integrals with completely monotone kernels. We then apply the
backward scheme corresponding to this discretization to two time fractional dissipative problems, and
these implicit schemes are helpful for the analysis of the corresponding problems. In particular, we
show that the overdamped generalized Langevin equation with fractional noise has a unique limiting
measure for strongly convex potentials and we establish the convergence of numerical solutions to
the strong solutions of time fractional gradient flows. The proposed scheme and schemes derived
using the same philosophy can be useful for many other applications as well.

Key words. deconvolution, fractional SDE, fractional gradient flows, implicit scheme, com-
pletely monotone sequence
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1. Introduction. Continuous time fractional calculus has been used widely in
physics and engineering for the memory effect, viscoelasticity, porous media, etc.
[1, 2, 3]. Among them, the Caputo and Riemann--Liouville definitions are very popular
for power law memory kernels [4, 1, 2, 5]. Caputo's definition of fractional derivatives
was first introduced in [4] to study the memory effect of energy dissipation for some
anelastic materials and soon became a useful modeling tool in engineering and physical
sciences for nonlocal interactions in time (see [6, 7, 8]). Compared with Riemann--
Liouville derivatives, Caputo derivatives remove the singularities at the origin and
are suitable for initial value problems [5]. There are other models that have power
law kernels with certain cutoffs (especially exponential cutoffs) so that they can give
transitions between different behaviors [9, 10, 11, 12, 13]. In this paper, we are
interested in discretizing gradient type time fractional dissipative problems. Moreover,
we desire to use numerical discretization to investigate the properties of solutions
of time continuous dissipative problems. The first problem is the time fractional
stochastic differential equation (FSDE) of dissipative type, which is the overdamped
limit of the generalized Langevin equation with fractional noise. Another problem is
the time fractional gradient flows in a separable Hilbert space.

In some complex systems, the Langevin equations cannot give accurate predictions
and the interaction between the system and the surrounding heat bath can no longer
be modeled by white noise [14, 6]. The generalized Langevin equation (GLE)
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2096 LEI LI AND JIAN-GUO LIU

\.X = v,

m \.v =  - \nabla V (X) - 
\int t

t0

\gamma (t - s)v(s) ds+ \eta (t)
(1.1)

was then proposed by Mori [15] and Kubo [14] to describe such complex systems with

memory. In this model,  - 
\int t

t0
\gamma (t  - s)v(s) ds is the friction acting on the system we

consider and t0 is the point where the memory is counted from (usually 0 or  - \infty ).
The friction is the mean effect of the interaction between the system and the heat
bath. The last term \eta (t) is the noise which is the fluctuation part of the interaction
between the system and the heat bath. Later, the GLE was recovered by dimension
reduction from Ford--Kac and Kac--Zwanzig models using Mori--Zwanzig projection
[16, 17, 18, 19]. In the GLE models, the noise \eta and the kernel for the friction \gamma (\cdot )
satisfy the so-called fluctuation-dissipation theorem (FDT)

\BbbE (\eta (t)\eta (t+ \tau )) = kT\gamma (| \tau | ) \forall \tau \in \BbbR .(1.2)

Intuitively, the random force and the frictional kernel all originate from the interaction
between the system and the surrounding environment. When the energy balance is
reached, they must be related for the system to achieve the correct temperature.
In [6], Kou and Xie considered the GLE with fractional Gaussian noise to explain
the subdiffusive behaviors for a protein molecule in solution. Later, this model was
studied by many authors [20, 21]. The fractional Gaussian noise is the distributional
derivative of the fractional Brownian motion BH (see [22] and section 4.1 for more
details)

\eta = \sigma \.BH(t).(1.3)

Using FDT (1.2) and considering the overdamped limit, we obtain the FSDE as the
overdamped GLE (see section 4.1 for a simple derivation and the rigorous definition):

D2 - 2H
c X =  - \nabla V (X) + \sigma dBH ,(1.4)

where D\alpha 
c is the Caputo derivative (see section 2 for more explanation). In [3], the

FSDE has been studied theoretically. If the force is linear, it was shown that the
process converges in law to a unique limiting measure. Moreover, if the FDT is satis-
fied, the limiting measure is the Gibbs measure. The general potential V cases seem
hard to justify. In [23], numerical methods have been designed for the overdamped
GLE and the numerical results there give positive evidence. One of our goals in this
paper is to use the numerical schemes to prove that the limiting measure is unique if
the potential V is strongly convex.

Though there might not be strong physical interpretation, the time fractional
gradient flow is of its own mathematical interest and can be used for new phase field
models (see [24, 25] for the phase field models). In particular, consider a separable
Hilbert space H and a functional \phi : H \rightarrow \BbbR that is lower semicontinuous. The time
fractional gradient flow we consider is

D\alpha 
c u \in  - \partial \phi (u), u(0) = u0,(1.5)

where the Frech\'et subdifferential \partial \phi at u is a set defined as

\partial \phi (u) :=

\biggl\{ 
\xi \in H : lim inf

w\rightarrow u

\phi (w) - \phi (u) - \langle \xi , w  - u\rangle 
| w  - u| \geq 0

\biggr\} 
.(1.6)
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A DISCRETIZATION OF CAPUTO DERIVATIVES 2097

If \partial \phi contains a single point \xi , then we define grad\phi (u) := \xi . We aim to investigate
the discretization using our scheme in this paper and establish error estimates. For
related fractional gradient flow, one can see [9], where the memory kernel takes the
form t - \gamma e - \mu t with exponential decay. If \phi is convex, then \partial \phi is accretive, and some
related Volterra equations have been discussed in [26, 27], where the existence of
generalized solutions have been established using the Yosida approximations. The
equation we will consider is not included in these papers.

Numerical discretizations of time fractional differential equations and related
equations have already been investigated by many authors [28, 29, 30, 31, 32, 33,
34, 35, 36]. In particular, the authors of [30, 31] applied the L1 schemes, which ap-
proximate the Caputo derivative directly, for several dissipative problems. In [32],
some corrections are made for the first k  - 1 steps so that the nonsmoothness at
t = 0 does not pollute the desired accuracy of the schemes. In [35, 36], some spec-
tral methods have been developed for fractional differential equations. Moreover, in
[37], some comparison principles for the discrete fractional equations have been es-
tablished. Unfortunately, using these discretizations to study the FSDE and time
fractional gradient flows is not appropriate because the time continuous problems are
not well understood yet. Our approach is to consider the discretization of the integral
formulation first and apply the deconvolution (see [38]) to obtain the discretization
of the Caputo derivatives in differential form. Since the integral formulation is more
suitable for passing the limit, we are then able to conclude the important results re-
garding the time continuous problems and establish some error estimates. Note that
the new scheme is not just discretization of Volterra integrals since some important
properties will be proved based on the deconvolved sequence, which seems very hard
using the discretization of the integral form. Besides the problems considered in this
paper, the scheme proposed here or schemes derived using the same philosophy may
be applied for other problems [13, 39].

The rest of the paper is organized as follows. In section 2, we give the basic
notation and propose the discretization of the Caputo derivatives using deconvolution.
In section 3, we prove some important properties of the new discretization. Sections
4 and 5 are devoted to the FSDE and time fractional gradient flows. In particular, we
show that the overdamped GLE with fractional noise has a unique limiting measure
for strongly convex potentials; we also establish some error estimates for the strong
solutions of time fractional gradient flows.

2. Notation and setup for the discretization. Let B be a Banach space.
Consider the following equation for a mapping: X : [0, T ] \rightarrow B:

D\alpha 
c X(t) = f(t),(2.1)

where f : [0, T ] \rightarrow B is some mapping. D\alpha 
c represents the Caputo derivative of order

\alpha \in (0, 1) ([1, 2]). If X(\cdot ) is regular enough, for example, absolutely continuous, the
Caputo derivative traditionally is defined as

D\alpha 
c X(t) =

1

\Gamma (1 - \alpha )

\int t

0

\.X(s)

(t - s)\alpha 
ds.(2.2)

In [5, 40], a generalized definition of Caputo derivative based on convolution groups
was proposed. To explain this generalized defintion, we first recall the distributions
\{ g\beta \} in [5]:

D
ow

nl
oa

de
d 

09
/2

4/
19

 to
 1

52
.3

.4
3.

47
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2098 LEI LI AND JIAN-GUO LIU

g\beta (t) =

\Biggl\{ 
1

\Gamma (1+\beta )D
\bigl( 
\theta (t)t\beta 

\bigr) 
, \beta \in ( - 1, 0),

1
\Gamma (\beta ) t

\beta  - 1
+ , \beta > 0.

(2.3)

Here \theta (t) is the standard Heaviside step function, \Gamma (\cdot ) is the gamma function, t+ =
\theta (t)t = max(t, 0), and D means the distributional derivative on \BbbR . Indeed, g\beta can
be defined for \beta \in \BbbR (see [5]) so that \{ g\beta : \beta \in \BbbR \} forms a convolution group. In
particular, we have

g\beta 1
\ast g\beta 2

= g\beta 1+\beta 2
.(2.4)

Note that the support of g\beta i (i = 1, 2) is bounded from the left, so the convolution is
well defined.

Definition 2.1 (see [5, 40]). Let 0 < \alpha < 1. Consider X \in L1
loc([0, T ), B).

Given X0 \in B, we define the \alpha th order generalized Caputo derivative of X, associated
with initial value X0, to be a distribution as D\alpha 

c X : C\infty 
c ( - \infty , T ;\BbbR ) \rightarrow B with support

in [0, T ), given by

D\alpha 
c X = g - \alpha \ast 

\Bigl( 
(X  - X0)\theta (t)

\Bigr) 
.(2.5)

If limt\rightarrow 0+
1
t

\int t

0
\| X(s) - X0\| Bds = 0, we call D\alpha 

c X the Caputo derivative of X.

The weak Caputo derivatives in [40] for mappings in general Banach spaces was
defined through a dual equality using right derivatives. One can verify easily that the
one in [40] agrees with Definition 2.1. This generalized definition appears complicated.
However, it is theoretically more convenient, since it allows us to take advantage of the
underlying group structure. In fact, making use of the convolutional group structure
(2.4) (see [5] for more details), it is straightforward to convert (2.1) with (2.5) into
the Volterra type equation

X(t) = X0 +
1

\Gamma (\alpha )

\int t

0

(t - s)\alpha  - 1f(s) ds.(2.6)

Indeed (2.6) is well known for regular enough f ; see [41, Lemma 2.3]. The theory in
[5, 40] tells us that it still holds for f to be distributions.

For absolutely continuous functions, Definition 2.1 reduces to (2.2). In this paper,
we sometimes need the generalized definition, Definition 2.1, and its equivalence to
(2.6) since we need to consider the Caputo derivative of a continuous function later.

For numerical setup, we fix the terminal time T and consider time step

k = T/N.(2.7)

Define tn = nk. We will use Xn to represent the numerical solution at tn.

2.1. Discretization of the fractional derivatives: Two options. Depend-
ing on whether we discretize (2.1) or (2.6), we can possibly have different schemes
(see [37, section 6] for some relevant discussions). Discretization of (2.6) and de-
convolution yields a discretization of the Caputo derivative, whose implicit scheme
turns out to be very useful for studying two important time fractional dissipative
problems. In particular, we can conclude the asymptotic behavior of the FSDEs and
study the time fractional gradient flows in separable Hilbert spaces (see sections 4
and 5, respectively).
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A DISCRETIZATION OF CAPUTO DERIVATIVES 2099

2.1.1. Discretization of the differential form. Discretizing (2.1) directly is
well studied in literature (see [42, 29]). The L1 scheme in [42, 29] is widely used in
applications due to the good sign of the coefficients (see [31, 43]). The scheme is given
by

( \=\scrD \alpha X)n = k - \alpha (\=c0Xn  - \=c1Xn - 1  - \cdot \cdot \cdot  - \=cnnX0).(2.8)

Here, the coefficients are given by

\Gamma (2 - \alpha )\=c0 = 1,

\Gamma (2 - \alpha )\=cj =  - ((j + 1)1 - \alpha  - 2j1 - \alpha + (j  - 1)1 - \alpha ), 1 \leq j \leq n - 1,

\Gamma (2 - \alpha )\=cnn = (n1 - \alpha  - (n - 1)1 - \alpha ).

(2.9)

We have the following observations: (i) \=cj > 0, \=cnn > 0; (ii) \=c0  - 
\sum n - 1

j=1 \=cj  - \=cnn = 0;
(iii)

\=cj =
 - 1

\Gamma ( - \alpha )
j - 1 - \alpha 

\biggl( 
1 +O

\biggl( 
1

j

\biggr) \biggr) 
, j \rightarrow \infty , \=cnn =

n - \alpha 

\Gamma (1 - \alpha )

\biggl( 
1 +O

\biggl( 
1

n

\biggr) \biggr) 
.(2.10)

2.1.2. Discretization of the integral form and deconvolution. Alterna-
tively, we can consider the discretization of the integral form (2.6) and then take
deconvolution to get the approximation for the Caputo derivative. In fact, discretiz-
ing the integral form has been well studied in literature (see, for example, [28, 44]).
Slightly different from the discretizations in these works, what we choose to do is to
approximate f with piecewise constant functions. Then, we take deconvolution and
get the approximation to the differential form.

To start, we approximate f(t) by

\~f(t) = Fn, t \in (tn - 1, tn].(2.11)

Then, (2.6) gives the scheme

Xn  - X0 = k\alpha 
n\sum 

m=1

an - mFm =: (JkF )n,(2.12)

where the right-hand side is a discrete integral and the sequence a is given by

a = (a0, a1, . . . , an, . . .) =
1

\Gamma (1 + \alpha )
(1, 2\alpha  - 1, 3\alpha  - 2\alpha , . . .).(2.13)

For convenience, we define F0 = 0 and introduce the sequence F \in B\BbbN by

F = (F0, F1, . . . , Fn, . . .),(2.14)

so that for n \geq 0, Xn  - X0 = k\alpha (a \ast F )n. The convolution between u and v is given
by

(u \ast v)n =

n\sum 
m=0

umvn - m = (v \ast u)n.(2.15)

Let a( - 1) be the convolution inverse of a such that

a \ast a( - 1) = a( - 1) \ast a = \delta d := (1, 0, 0, . . .).(2.16)
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2100 LEI LI AND JIAN-GUO LIU

Then, we obtain for n \geq 0 that k - \alpha (a( - 1) \ast (X  - X0))n = Fn. We therefore obtain a
new scheme for discretizing the Caputo derivative

(\scrD \alpha X)n = k - \alpha (a( - 1) \ast (X  - X0))n.(2.17)

Though equivalent to the discretization of Volterra integral, we regard this as a new
scheme because some important properties (e.g., Theorem 3.3(2)--(3) and (5.15)) will
be proved based on this differential form (2.17), which will be hard using the integral
form (2.12).

3. Properties of the discretization. In this section, we discuss in detail the
properties of discretization (2.17). One can refer to [38] for some discussion of using
deconvolution to define discrete fractional calculus.

We first introduce some definitions for the discussion. We say a sequence v =
(v0, v1, . . .) is completely monotone if ((I  - S)jv)k \geq 0 for any j \geq 0, k \geq 0, where
(Sv)j = vj+1. A sequence is completely monotone if and only if it is the moment
sequence of a Hausdorff measure (a finite nonnegative measure on [0, 1]) [45]. Another
description is given below in Lemma 3.1. The generating function of a sequence
v = (v0, v1, . . .) is defined by

Fv(z) =

\infty \sum 
n=0

vnz
n.(3.1)

Another concept we introduce is the Pick function. A function f : \BbbC + \rightarrow \BbbC (where
\BbbC + denotes the upper half plane, not including the real line) is Pick if it is analytic
such that Im(z) > 0 \Rightarrow Im(f(z)) \geq 0. Now, we state some properties of sequences in
terms of the generating functions, for which we omit the proofs.

Lemma 3.1.
(1) For convolution, Fu\ast v(z) = Fu(z)Fv(z), and Fv( - 1)(z) = (Fv(z))

 - 1.
(2) [46, Corollary VI.1] Assume Fv(z) is analytic on \Delta := \{ z : | z| < R, z \not =

1, | arg(z  - 1)| > \theta \} , for some R > 1, \theta \in (0, \pi 
2 ). If Fv(z) \sim (1  - z) - \beta as

z \rightarrow 1, z \in \Delta for \beta \not = 0, - 1, - 2, - 3, . . ., then vn \sim 1
\Gamma (\beta )n

\beta  - 1, n \rightarrow \infty .

(3) limn\rightarrow \infty vn = limz\rightarrow 1 - (1 - z)Fv(z).
(4) [47] A sequence v is completely monotone if and only if the generating function

Fv(z) =
\sum \infty 

j=0 vjz
j is a Pick function that is analytic and nonnegative on

( - \infty , 1).

For convenience, define a sequence c = (c0, c1, . . . , cn, . . .) as (see (2.13) for a)

c0 = a
( - 1)
0 , ci =  - a

( - 1)
i , \forall i \geq 1.(3.2)

Moreover, it is convenient to introduce

cnn = c0  - 
n - 1\sum 
i=1

ci.(3.3)

Then, (2.17) can be reformulated as

(\scrD \alpha X)n = k - \alpha 
\Bigl( 
c0(Xn  - X0) - 

n - 1\sum 
i=1

ci(Xn - i  - X0)
\Bigr) 

= k - \alpha 
\Bigl( 
c0Xn  - 

n - 1\sum 
i=1

ciXn - i  - cnnX0

\Bigr) 
.

(3.4)

Using the result in [38], we have the following claims.
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Proposition 3.2. Consider scheme (3.4). The following claims hold:
(1) ci > 0 for i \geq 0 and c0 =

\sum \infty 
i=1 ci = \Gamma (1+\alpha ). Consequently, cnn =

\sum \infty 
i=n ci > 0

and c0 =
\sum n - 1

i=1 ci + cnn.
(2) We have the following asymptotics for the coefficients:

cj =
 - 1

\Gamma ( - \alpha )
j - 1 - \alpha (1 + o(1)) , j \rightarrow \infty , cnn =

n - \alpha 

\Gamma (1 - \alpha )
(1 + o(1)) .(3.5)

Proof. (1) First of all, we recall that (see (2.3) for the definition of g\alpha )

an =

\int n+1

n

g\alpha (t) dt.

Since g\alpha (\cdot ) is completely monotone (which means ( - 1)m dm

dtm g\alpha (t) \geq 0 for any t \in 
(0,\infty )), then the sequence a = \{ an\} is completely monotone. Since

a( - 1) = (c0, - c1, - c2, . . .),

by [38, Theorem 2.3], one has that c0 > 0 while (c1, c2, . . .) is a completely monotone
sequence. The sign of ci is thus proved.

Using the explicit formula for an, Fa(z) \rightarrow \infty as z \rightarrow 1 - . Hence, we find that
Fa( - 1)(z) \rightarrow 0, z \rightarrow 1 - . Noting the sign of elements for a( - 1), the monotone con-

vergence theorem holds and thus
\sum \infty 

i=0 a
( - 1)
i = 0. The other claims then follow

accordingly.
(2) We consider the function

H(z) = Fa(z) - (1 - z) - \alpha =:

\infty \sum 
n=0

dnz
n.

By [46, Theorem VI.1], we have [zn](1 - z) - \alpha = 1
\Gamma (\alpha )n

\alpha  - 1(1 +O( 1n )), n \rightarrow \infty , where

[zn]F (z) means the coefficient of zn in the series expansion of F (z) about 0. Hence,
| dn| \leq C 1

n2 - \alpha , and H(z) is a locally bounded function (bounded on any compact set).
Hence,

Fa( - 1)(z) =
(1 - z)\alpha 

1 + (1 - z)\alpha H(z)
.

Clearly, this function is analytic in \{ z : | z| < 1 + \varepsilon , z \not = 1, | arg(z  - 1)| > \pi 
4 \} for some

\varepsilon > 0. Applying the second claim in Lemma 3.1 gives the asymptotics for cj =  - a
( - 1)
j

(j \geq 1). Using the fact cnn =
\sum \infty 

i=n ci, the asymptotics for cnn then follows.

The comparison principles are important for stability of numerical schemes. Be-
low, we prove several important comparison criteria that are helpful for the stability
of the implicit schemes. For the stability of some explicit schemes, one may refer to
[37].

Theorem 3.3. Consider discretization (3.4). Let u = \{ un\} , v = \{ vn\} and w =
\{ wn\} be three sequences in \BbbR \BbbN , with u0 \leq v0 \leq w0.

(1) (Convex functional) Suppose E(\cdot ) : \BbbR d \rightarrow \BbbR , X \mapsto \rightarrow E(X) is convex. Then,

(\scrD \alpha E(X))n \leq (\scrD \alpha X)n \cdot \nabla E(Xn).

(2) (Comparison principle for nonincreasing f) Suppose f(s, \cdot ) is nonincreasing.
Assume u, v, w satisfy the discrete implicit relations

(\scrD \alpha u)n \leq f(tn, un), (\scrD \alpha v)n = f(tn, vn), (\scrD \alpha w)n \geq f(tn, wn).

Then, un \leq vn \leq wn.
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2102 LEI LI AND JIAN-GUO LIU

(3) (Comparison principle for Lipschitz f) Assume f is Lipschitz continuous in
the second variable with Lipschitz constant L. If

(\scrD \alpha u)n \leq f(tn, un), (\scrD \alpha v)n = f(tn, vn), (\scrD \alpha w)n \geq f(tn, wn),

then for step size k with c0 > k\alpha L, un \leq vn \leq wn.
(4) (Comparison principle for integral form) Assume f(s, \cdot ) is nondecreasing and

Lipschitz continuous in the second variable with Lipschitz constant L. Intro-
duce fu, fv, fw by, for example, fu = (0, f(t1, u1), f(t2, u2), . . .). If

un \leq u0 + (Jkfu)n, vn = v0 + (Jkfv)n, wn \geq w0 + (Jkfw)n,

then for step size k with k\alpha a0L = k\alpha L/c0 < 1, un \leq vn \leq wn.

Proof.
(1) By (3.4), Proposition 3.2, and the convexity of E(\cdot ), we have

(\scrD \alpha X)n \cdot \nabla E(Xn) = \nabla E(Xn) \cdot k - \alpha 

\Biggl( 
n - 1\sum 
i=1

(Xn  - Xn - 1) + cnn(Xn  - X0)

\Biggr) 

\geq k - \alpha 

\Biggl( 
n - 1\sum 
i=1

(E(Xn) - E(Xn - 1)) + cnn(E(Xn) - E(X0))

\Biggr) 
= (\scrD \alpha E(X))n.

(2) Let \xi n = un  - vn. Then,

\scrD \alpha \xi \leq f(tn, un) - f(tn, vn).

Multiplying 1(\xi n \geq 0) on both sides, and defining \eta n = \xi n \vee 0 = max(\xi n, 0),
we have

1(\xi n \geq 0)k - \alpha 

\Biggl( 
c0\xi n - 

n - 1\sum 
i=1

ci\xi n - i - cnn\xi 0

\Biggr) 
\leq 1(\xi n \geq 0)(f(tn, un) - f(tn, vn)) \leq 0.

Since \xi n1(\xi n \geq 0) = \xi n \vee 0 = \eta n, \xi i1(\xi n \geq 0) \leq \xi i \vee 0 = \eta i, one easily finds
that

(\scrD \alpha \eta )n \leq 1(\xi n \geq 0)(\scrD \alpha \xi )n \leq 0.

Since \eta 0 = 0, one easily finds \eta n \leq 0, and hence un \leq vn. It is similar to
compare vn and wn.

(3) We compare un with vn. We know already u0 \leq v0. Now, suppose n \geq 1 and
assume for all m \leq n - 1, we have proved um \leq vm already. We now consider
m = n.

k - \alpha c0(un  - vn) \leq (\scrD \alpha (u - v))n \leq f(tn, un) - f(tn, vn) \leq L| un  - vn| .
If un > vn, we then have (k - \alpha c0  - L)(un  - vn) \leq 0, which is clearly not
true. Hence, induction shows that the claim is true for all n. Comparing the
sequence v with w is similar and we omit.

(4) Direct computation shows that

un  - vn \leq u0  - v0 + k\alpha a0(f(tn, un) - f(tn, vn))

+ k\alpha 
n - 1\sum 
m=1

an - m(f(tm, um) - f(tm, vm)).
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A DISCRETIZATION OF CAPUTO DERIVATIVES 2103

If we have proved that um \leq vm for m \leq n - 1, then un - vn \leq k\alpha a0L| un - vn| .
The proof then follows by induction similarly as in 3. Comparing the sequence
v with w is similar and we omit.

We now consider the stability of the implicit scheme applied to the simple frac-
tioanl ODEs (FODEs)

D\alpha 
c X = \lambda X, X(0) = x0 > 0,(3.6)

whose solution is given by X(t) = x0E\alpha (\lambda t
\alpha ), where

E\alpha (z) =

\infty \sum 
n=0

zn

\Gamma (n\alpha + 1)

is the Mittag--Leffler function [48].

Theorem 3.4. Consider the implicit scheme applied on the FODE (3.6) with
X0 = X(0). Then, for n \geq 1:

(\scrD \alpha X)n = \lambda Xn \leftrightarrow Xn = X0 + \lambda k\alpha 
n\sum 

m=1

an - mXm.(3.7)

(1) If \lambda > 0 and k\alpha \lambda < c0, then X(tn) \leq Xn \leq Xn+1. If otherwise \lambda < 0,
limn\rightarrow \infty Xn = 0.

(2) Consider \lambda > 0. Suppose ki, i = 1, 2, satisfy k\alpha i \lambda < c0 and k1 = 2m1k2 for

some m1 \in \BbbN . Let X
(i)
n be the numerical solutions. Define the piecewise

constant functions \=Xi(t) by \=Xi(t) = X
(i)
n , t \in (t

(i)
n - 1, t

(i)
n ] for t

(i)
n = nki (i =

1, 2). Then, \=X1(t) \geq \=X2(t). Consequently, there exists a constant C(\alpha , T ) >
0 such that for any k with k\alpha \lambda \leq 1

2c0,

sup
n:nk\leq T

Xn \leq C(\alpha , T )X0.(3.8)

(3) When k is sufficiently small, supn:nk\leq T | Xn  - X(tn)| \leq C(\alpha , T )k\alpha .

Proof. (1) Consider \lambda > 0. The induction formula from the differential form reads

(c0  - k\alpha \lambda )Xn =

n - 1\sum 
i=1

ciXn - i + cnnX0.

If n = 1, c11 = c0. Then, we clearly have X1 = c0
c0 - k\alpha \lambda X0 > X0. Suppose we have

proved Xm \geq Xm - 1 for m \leq n with n \geq 1. For n+ 1,

(c0 - k\alpha \lambda )Xn+1 =

n - 1\sum 
i=1

ciXn+1 - i+(cnX1+ cn+1
n+1X0) \geq 

n - 1\sum 
i=1

ciXn - i+(cnX0+ cn+1
n+1X0).

Since cn + cn+1
n+1 = cnn, the claim then follows.

Now, consider the equivalent integral form (second in (3.7))

Xn = X0 +
\lambda 

\Gamma (\alpha )

n\sum 
j=1

\int tj

tj - 1

(tn  - s)\alpha  - 1Xj ds.

The accurate solution satisfies
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2104 LEI LI AND JIAN-GUO LIU

X(tn) = X0 +
\lambda 

\Gamma (\alpha )

n\sum 
j=1

\int tj

tj - 1

(tn  - s)\alpha  - 1X(s) ds

\leq X0 +
\lambda 

\Gamma (\alpha )

n\sum 
j=1

\int tj

tj - 1

(tn  - s)\alpha  - 1X(tj) ds.

By the third claim in Theorem 3.3, X(tn) \leq Xn.
Now, we consider \lambda < 0. Recall that F0 = 0 and

Xn  - X0 = k\alpha \lambda a \ast (X  - X0\delta n0).

The generating function of Xn is thus given by

FX(z) = X0
(1 - z) - 1  - k\alpha \lambda Fa(z)

1 - k\alpha \lambda Fa(z)
.

As z \rightarrow 1 - , Fa(z) \rightarrow \infty , (1 - z)Fa(z) \rightarrow 0, and hence

lim
n\rightarrow \infty 

Xn = lim
z\rightarrow 1 - 

(1 - z)FX(z) = 0.

(2) We only need to consider m1 = 1 (or k1 = 2k2). By (1), the piecewise constant
functions \=Xi(t)'s are nondecreasing. Suppose that for n \geq 1, one has \=X1(t) \geq \=X2(t),
t \in [0, (n - 1)k1]. Then, for t \in ((n - 1)k1, nk1], one only needs \=X1(nk1) \geq \=X2(nk1) =
\=X2(2nk2) since \=X2 is nondecreasing. By the integral formulation (second in (3.7)),

\=X1(nk1)

= X0 +
\lambda 

\Gamma (\alpha )

\int t
(1)
n - 1

0

(nk1  - s)\alpha  - 1 \=X1(s) ds+
\lambda 

\Gamma (\alpha )

\int t(1)n

t
(1)
n - 1

(nk1  - s)\alpha  - 1 \=X1(nk1) ds

\geq X0 +
\lambda 

\Gamma (\alpha )

\int (n - 1)k1

0

(nk1  - s)\alpha  - 1 \=X2(s) ds+
\lambda k\alpha 1

\Gamma (1 + \alpha )
\=X1(nk1).

On the other hand,

\=X2(nk1) = X0 +
\lambda 

\Gamma (\alpha )

\int t
(1)
n - 1

0

(nk1  - s)\alpha  - 1 \=X2(s) ds

+
\lambda 

\Gamma (\alpha )

\int t(1)n

t
(1)
n - 1

(nk1  - s)\alpha  - 1 \=X2(s) ds.

The last term is simply controlled by
\lambda k\alpha 

1

\Gamma (1+\alpha )
\=X2(2nk2) due to monotonicity of \=X2.

Since c0 = \Gamma (1 + \alpha ) and \=X2(2nk2) = \=X2(nk1), we then find

\=X1(nk1) \geq 
1

1 - k\alpha 1 \lambda /c0

\Biggl( 
X0 +

\lambda 

\Gamma (\alpha )

\int (n - 1)k1

0

(nk1  - s)\alpha  - 1 \=X2(s) ds

\Biggr) 
\geq \=X2(2nk2).

We now prove the stability. For any step size k, we choose k0 = 2mk such that
k\alpha 0 \lambda \in ( c0

21+\alpha ,
c0
2 ]. Then, with time step k0, there are

N0 =
T

k0
\leq T (21+\alpha \lambda /c0)

1/\alpha 
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A DISCRETIZATION OF CAPUTO DERIVATIVES 2105

steps. Then, consider the induction using the differential form

(c0  - k\alpha 0 \lambda )Xn \leq 
n - 1\sum 
i=1

ciXn - m + cnnX0 \leq c0Xn - 1.

Hence, Xn \leq 2Xn - 1 \leq 2N0X0. The claim then follows.
(3) By the explicit formula of the solution for (3.6), we know X is \alpha -H\"older

continuous, and for t > 0, it is smooth. Inserting X(\cdot ) into the integral form, we have

X(tn) = X0 +
\lambda 

\Gamma (\alpha )

n\sum 
m=1

\int tm

tm - 1

(tn  - s)\alpha  - 1X(s) ds

= X0 + \lambda k\alpha 
n\sum 

m=1

an - mX(tm) +Rn,

where

Rn =
\lambda 

\Gamma (\alpha )

n\sum 
m=1

\int tm

tm - 1

(tn  - s)\alpha  - 1(X(s) - X(tm)) ds,

and thus

| Rn| \leq C(T )k\alpha 
\lambda 

\Gamma (\alpha )

n\sum 
m=1

\int tm

tm - 1

(tn  - s)\alpha  - 1 ds = C(\alpha , T )k\alpha .

Hence, the error En := | Xn  - X(tn)| satisfies

En \leq k\alpha | \lambda | 
n\sum 

m=1

an - mEm + Ck\alpha .

Using the comparison principle for integral formulation in Theorem 3.3 and the sta-
bility result (3.8), we have for k sufficiently small that En \leq C(\alpha , T )k\alpha .

By Theorem 3.4, the following claims hold when we compare the numerical solu-
tion with the exact solutions of some FODEs.

Corollary 3.5. Suppose f(\cdot ) \in C2[A,\infty ) is nondecreasing and globally Lip-
schitz for some A \in \BbbR . Let u(\cdot ) be the solution to the FODE D\alpha 

c u = f(u) with u(0) =
U > A and f(U) > 0. Let \{ un\} be the numerical solution of the implicit scheme
(\scrD \alpha u)n = f(un), u0 = u(0). Then, for k sufficiently small, u(tn) \leq un \leq un+1.
Moreover, for any T such that u exists on [0, T ], we have for some C(T ) > 0 that

sup
n:nk\leq T

| u(tn) - un| \leq C(T )k\alpha .(3.9)

Proof. The solution to the FODE satisfies the following [37]:

u(tn) = u0 +
1

\Gamma (\alpha )

n\sum 
j=1

\int tj

tj - 1

(tn  - s)\alpha  - 1f(u(tj)) ds+Rn,(3.10)

where

Rn =
1

\Gamma (\alpha )

n\sum 
j=1

\int tj

tj - 1

(tn  - s)\alpha  - 1
\Bigl( 
f(u(s)) - f(u(tj))

\Bigr) 
ds.
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2106 LEI LI AND JIAN-GUO LIU

By the theory in [37], u(\cdot ) is nondecreasing and thus Rn \leq 0. Consequently, applying
Theorem 3.3(4), we have u(tn) \leq un.

To prove that \{ un\} is nondecreasing, we use induction. It is clear that u0 \leq u1.
Now, assume we have proved u0 \leq u1 \leq \cdot \cdot \cdot \leq un for n \geq 1. We now prove un \leq un+1.
Using the equivalent integral form, we find

un  - k\alpha a0f(un) = u0 +
1

\Gamma (\alpha )

n - 1\sum 
j=1

\int tj

tj - 1

(tn  - s)\alpha  - 1f(uj) ds

\leq u0 +
1

\Gamma (\alpha )

n\sum 
j=2

\int tj

tj - 1

(tn+1  - s)\alpha  - 1f(uj) ds

\leq un+1  - k\alpha a0f(un+1).

(3.11)

This implies that un \leq un+1 when k is sufficiently small.
Finally, by (3.10) and (3.11), we have

| u(tn) - un| \leq 
1

\Gamma (\alpha )

n\sum 
j=1

\int tj

tj - 1

(tn  - s)\alpha  - 1| f(u(tj)) - f(uj)| ds+ | Rn| .

It is well known that u is \alpha -H\"older continuous on [0, T ] (one can, for example, combine
[37, Lemma 3.1] and [49, Theorem 3.1]). Consequently, supn:nk\leq T | Rn| \leq C(T )k\alpha .
Hence,

| u(tn) - un| \leq 
L

\Gamma (\alpha )

n\sum 
j=1

| u(tj) - uj | 
\int tj

tj - 1

(tn  - s)\alpha  - 1 ds+ C(T )k\alpha .

Applying Theorem 3.4(2), we thus find supn:nk\leq T | u(tn) - un| \leq C(T )k\alpha .

4. Limiting behavior of the FSDE. In this section, we use the implicit scheme
corresponding to the discretization (3.4) to study the FSDE as advertised in the
introduction. In particular, we first of all provide some details for the derivation
of the FSDE, and then prove that when the potential is strongly convex, there is a
unique limiting measure for the FSDE.

4.1. A formal derivation of the FSDE. We first of all derive the autocorre-
lation function for the fractional noise. Recall that the fractional Brownian motion
has the following:

\BbbE (BH
t BH

s ) = RH(s, t) :=
1

2

\bigl( 
s2H + t2H  - | t - s| 2H

\bigr) 
.(4.1)

Fix \tau \not = 0. Formally, for t > 0 with t+ \tau > 0, it holds that

\BbbE ( \.BH(t) \.BH(\tau + t))

= lim
h\rightarrow 0,h1\rightarrow 0

\BbbE 
\biggl( 
BH(t+ h1) - BH(t)

h1

BH(t+ \tau + h) - Bh(t+ \tau )

h

\biggr) 
= lim

h\rightarrow 0,h1\rightarrow 0

1

2hh1

\bigl( 
| \tau + h| 2H  - | \tau + h - h1| 2H  - | \tau | 2H + | \tau  - h1| 2H

\bigr) 
= H(2H  - 1)| \tau | 2H - 2.

(4.2)

Assume there is no extra singularity for \tau = 0; we check formally for s < t:
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A DISCRETIZATION OF CAPUTO DERIVATIVES 2107

\BbbE (BH
t BH

s ) =

\int t

0

\int s

0

\BbbE 
\Bigl( 
\.BH(z) \.BH(w)

\Bigr) 
dzdw

=

\int s

0

\int t

0

H(2H  - 1)| z  - w| 2H - 2dzdw =
1

2
(s2H + t2H  - (t - s)2H).

(4.3)

Now (4.3) agrees with (4.1). Hence, the assumption for no extra singularity at \tau = 0
is reasonable. According to FDT (1.2), the GLE (1.1) is then reduced to the following
dimensionless equation:

\varepsilon \.v =  - \nabla V  - 1

\Gamma (2H  - 1)

\int t

0

(t - s)2H - 2v(s) ds+

\surd 
2\sqrt{} 

\Gamma (2H + 1)
\.BH .

Here, \varepsilon = mT 2H

\gamma 0
with T being the scale for time and \gamma 0 being the typical scale for

the friction (see [3] for details). In the overdamped regime, \varepsilon \ll 1, the GLE with
fractional Gaussian noise formally corresponds to the fractional SDE

D\alpha 
c X =  - \nabla V (X) + \sigma \.BH(4.4)

with \alpha = 2 - 2H, \sigma =
\surd 
2\surd 

\Gamma (2H+1)
. This overdamped GLE is rigorously defined through

the following integral formulation:

X(t) = X0 +
1

\Gamma (\alpha )

\int t

0

(t - s)\alpha  - 1b(X(s)) ds+G(t),(4.5)

where

G(t) :=
\sigma 

\Gamma (\alpha )

\int t

0

(t - s)\alpha  - 1dBH(s).(4.6)

We can consider generally \alpha \in (0, 1) and \sigma > 0 for FSDEs. Of course, only the one
with \alpha = 2 - 2H has physical significance, which is the overdamped GLE. It has been

shown in [3] that when \alpha = 2  - 2H and \sigma =
\surd 
2\surd 

\Gamma (2H+1)
, G(t) is another fractional

Brownian motion with Hurst parameter 1  - H up to some multiplicative constant:

G(t) \sim \beta HB1 - H with \beta H =
\surd 
2\surd 

\Gamma (3 - 2H)
.

When the force  - \nabla V (x) is linear, the distribution of X converges algebraically to
the Gibbs measure [3]. For general cases, whether it converges to the Gibbs measure
is unknown. Recently, in the case of overdamped GLE, some numerical experiments
indicate that the law of X still converges algebraically to the corresponding Gibbs
measure for general potential [23].

4.2. Convergence to equilibrium for strongly convex potentials. In this
subsection, we will try to use our discretization to study the limit behaviors of the
FSDE for the strongly convex potential V . In particular, we show that there is a
unique limiting measure as t \rightarrow \infty . Letting

b(x) =  - \nabla V (x),(4.7)

we will assume the following.
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2108 LEI LI AND JIAN-GUO LIU

Assumption 4.1. There exists some \mu > 0 such that

(x - y) \cdot (b(x) - b(y)) \leq  - \mu | x - y| 2 \forall x, y \in \BbbR d.(4.8)

Moreover, b(\cdot ) is Lipschitz continuous so that for some L > 0,

| b(x) - b(y)| \leq L| x - y| .(4.9)

The Lipschitz condition of b may be relaxed by proving that the probability
density of the process decays fast at infinity. Since this is not our focus, we assume
the Lipschitz condition for simplicity. As proved in [3] and [23], with assumption
(4.9), the FSDE (4.5) has a unique strong solution and for any T > 0 there exists
C(T ) > 0 such that the following hold:

sup
t\geq T

\BbbE | X(t)| 2 \leq C(T ), sup
t\geq T

\sqrt{} 
\BbbE | X(t+ \delta ) - X(t)| 2 \leq C(T )\delta H+\alpha  - 1.(4.10)

Now, we consider the limiting behavior of the law for X(t). Given two different
initial data X(i)(0), i = 1, 2, we consider the strong solutions of (4.5). We will use the
synchronization coupling to compare the distributions of the two processes. Taking
the difference between two solutions, we have

X(1)(t) - X(2)(t) = X(1)(0) - X(2)(0)+
1

\Gamma (\alpha )

\int t

0

(t - s)\alpha  - 1(b(X(1)(s)) - b(X(2)(s))) ds.

To get the idea of a proof, we apply the theory in [5] so that the Caputo derivatives
can be defined pathwise for X(1)  - X(2) (see also section 2 for a brief introduction).
In the distributional sense, it holds that

D\alpha 
c (X

(1)  - X(2))(t) = b(X(1)(t)) - b(X(2)(t)) almost surely.(4.11)

If X(1)  - X(2) is regular enough, applying [5, Proposition 3.11], we have

1

2
D\alpha 

c | X(1)  - X(2)| 2(t) \leq (X(1)  - X(2)) \cdot (b(X(1)) - b(X(2))) \leq  - \mu | X(1)  - X(2)| 2.
(4.12)

If we define u(t) := \BbbE (| X(1)(t) - X(2)(t)| 2), it then holds that

D\alpha 
c u(t) \leq  - 2\mu u(t).

Applying the comparison principle for D\alpha 
c u = f(t, u) with nonincreasing f(t, \cdot ) (see,

for example, [50, Theorem 2.1]) yields

u(t) \leq u(0)E\alpha ( - 2\mu t\alpha ).(4.13)

If this is true, we then are able to compare the laws of the two strong solutions of
(4.5) under Wasserstein-2 distance. Recall that the Wasserstein-2 distance is given
by [51, pp. 99--102]

W2(\mu , \nu ) =

\biggl( 
inf

\gamma \in \Pi (\mu ,\nu )

\int 
\BbbR d\times \BbbR d

| x - y| 2d\gamma 
\biggr) 1/2

,(4.14)

where \Pi (\mu , \nu ) is the set of joint distributions whose marginal distributions are \mu and
\nu , respectively. Equation (4.13) will imply the convergence of the law of the process
to the unique limiting measure.

The issue in the above argument is that (4.12) is not justified rigorously. In the
following, we shall utilize an implicit scheme based on discretization (3.4) to prove
the convergence of the law. In fact, we have the following claims.
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A DISCRETIZATION OF CAPUTO DERIVATIVES 2109

Theorem 4.2. Suppose assumption (4.9) holds and X(i)(t) are the two strong

solutions to the FSDE (4.5) with initial data Xi(0) = X
(i)
0 \sim \mu 

(i)
0 (i = 1, 2), where \mu 

(i)
0

are some given probability measures. Then, the laws of X(i)(t) satisfy in Wasserstein-
2 distance that

W2(\mu 
(1)(t), \mu (2)(t)) \leq W2(\mu 

(1)
0 , \mu 

(2)
0 )
\sqrt{} 
E\alpha ( - 2\mu t\alpha ).(4.15)

Consequently, the FSDE model has a unique limiting measure \pi .

We will apply the following backward Euler scheme based on (3.4) to FSDE (4.5):

Xn = X(0) + k\alpha 
n\sum 

m=1

an - mb(Xm) +G(tn).(4.16)

We need some preparation for the complete proof. The first is the following conver-
gence result of the scheme (4.16).

Lemma 4.3. Suppose assumption (4.9) holds and X(t) is the unique strong so-
lution to (4.5). Let Xn be the numerical solution to (4.16). Then, for k with
k\alpha L < c0/2,

sup
n:nk\leq T

\sqrt{} 
\BbbE (| Xn  - X(nk)| 2) \leq C(\alpha , T )k\alpha +H - 1.(4.17)

Proof. The proof is very similar to that for the third claim in Theorem 3.4. In
fact, the strong solution of (4.5) satisfies

X(tn) = X(0) + k\alpha 
n\sum 

m=1

an - mb(X(tm)) +Rn,(4.18)

where

Rn :=
1

\Gamma (\alpha )

n\sum 
m=1

\int tm

tm - 1

(b(X(s)) - b(X(tm))).

Using (4.9) and (4.10), one finds

(\BbbE | Rn| 2)1/2 \leq Ck\alpha +H - 1.

Taking the difference between (4.16) and (4.18) and defining En := (\BbbE | Xn - X(tn)| 2)1/2,
one then has

En \leq k\alpha L

n\sum 
m=1

an - mEm + Ck\alpha +H - 1.(4.19)

Finally, using the comparison principle for integral formulation in Theorem 3.3 and
the stability result (3.8), the claim follows.

Consider two numerical solutions \{ X(1)
n \} and \{ X(2)

n \} with initial data X
(i)
0 (i =

1, 2), with synchronization coupling. The variable Zn := X
(1)
n  - X

(2)
n satisfies the

following relation:

Zn = Z0 + k\alpha 
n\sum 

m=1

an - m(b(X(1)
m ) - b(X(2)

m )).(4.20)
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Equivalently, one has almost surely that

k - \alpha 

\left(  n - 1\sum 
j=1

cj(Zn  - Zn - j) + cnn(Zn  - Z0)

\right)  = b(X(1)
n ) - b(X(2)

n ).

Applying the first claim in Theorem 3.3 for E(u) = 1
2u

2, one has almost surely that

(\scrD \alpha | Z| 2)n \leq  - 2Zn \cdot (b(X(1)
n ) - b(X(2)

n )) \leq  - 2\mu | Zn| 2.(4.21)

The point is that one may pass this inequality somehow to the strong solutions of
(4.5) by taking k \rightarrow 0.

Proof of Theorem 4.2. Define

un := \BbbE (| Zn| 2),

and correspondingly

Z(t) := X(1)(t) - X(2)(t), u(t) := \BbbE (| Z(t)| 2).

A direct consequence of inequality (4.21) is

sup
n\geq 0

un \leq u0.

Applying Theorem 3.3(2), un \leq vn, where vn solves the following induction formula:

(\scrD \alpha v)n =  - 2\mu vn, v0 = u0 = \BbbE (| Z0| 2).

Let v(t) solve the FODE, D\alpha 
c v =  - 2\mu v, v(0) = u0. By Theorem 3.4, | vn  - v(tn)| \leq 

Ck\alpha .
Applying (4.10) and Lemma 4.3, one has

| u(tn) - un| \leq (
\surd 
u0 + C1(T ))

\sqrt{} 
\BbbE (| Zn  - Z(tn)| 2) \leq Ck\alpha +H - 1.

Hence, for all n, nk \leq T , it holds that

u(tn) \leq v(tn) + C(k\alpha +H - 1 + k\alpha ).

Taking k \rightarrow 0 then gives

u(t) \leq v(t) \leq u0E\alpha ( - 2\mu t\alpha ).(4.22)

This inequality clearly implies the claim about the Wasserstein distance
using (4.14).

As in section 4.1, the overdamped GLE with fractional noise corresponds to

\alpha = 2 - 2H, \sigma =

\surd 
2\sqrt{} 

\Gamma (2H + 1)
.(4.23)

We guess that the limiting measure is the Gibbs measure \pi (x) \propto exp( - V (x)). Rig-
orously justifying this seems challenging, and we leave it for the future.
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Fig. 1. Means square distance of the FSDE with potential (4.24) for H = 0.6 and H = 0.8.

4.3. A numerical simulation. In this section, we apply the implicit numerical
scheme (4.16) to a one-dimensional FSDE example with

V (x) =
1

4
x4.(4.24)

We choose \alpha = 2  - 2H so that G \sim \beta HB1 - H as we have mentioned. This potential
is convex but not strongly convex, and the corresponding force  - \nabla V (x) =  - x3 is
nonlinear. Justification of convergence to a limiting measure is by no means easy, not
to mention whether the limiting measure is the Gibbs distribution

\pi (x) \propto exp

\biggl( 
 - 1

4
x4

\biggr) 
.

Figure 1 shows the trend of mean square distance \BbbE X2 =: \langle X2\rangle with X(0) =
X0 = 1. Figure 1(b) enlarges the portion t \in [0, 5] of Figure 1(a). If the distribution
of the FSDE converges to the Gibbs measure, then \BbbE X2 \rightarrow 0.675. In the figures, the
green curve is the numerical simulation for H = 0.6 with k = 5/27 \approx 0.391 and Ns :=
104 samples, while the red solid curve is the fitting curve 0.675 + 0.02(0.12 + t)4H - 4.
The blue curve is the numerical simulation for H = 0.8 with the same k and number
of samples, while the black curve is the fitting curve 0.675 + 0.015(0.05 + t)4H - 4 +
0.04(3 + t)4H - 4. We use 4H  - 4 power to fit because the variance of X in the linear
forcing case has been shown to converge with rate t4H - 4 in [3]. In this sense, the rate
in Theorem 4.2 might not be optimal.

When H = 0.6 and \alpha = 0.8, the mean square distance already converges after
t = 5 or so. However, for H = 0.8 or \alpha = 0.4, the mean square distance has a
rapid drop at the early stage, but then the memory lingers for long time so that the
convergence is very slow. This is also the case for normal FODE [37]. In fact, in
Figure 2, we plot the empirical density versus the Gibbs measure (black line). When
\alpha = 2 - 2H = 0.8, the distribution is already close to the desired Gibbs distribution
at t = 7.5. However, when \alpha = 2  - 2H = 0.4, the distribution is roughly like the
Gibbs distribution but still has some difference even at t = 20. In fact, this kind of
distribution stays for long time (t \sim 102). We expect that when t is very large, it
can be close to the Gibbs distribution as in [23]. We choose not to do the simulation
for H = 0.8 and t \sim 103 since the complexity for obtaining a sample path is O(N2)
and the simulation is expensive (we need 104 samples). For long time simulation
when H is close to 1 (like H = 0.8 for T \gtrsim 100), it is good to adopt the fast scheme
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Fig. 2. Empirical density. When \alpha = 2  - 2H = 0.8, the convergence is obtained after a
reasonable time; when \alpha = 2  - 2H = 0.4, an intermediate distribution lingers for long time before
converging to the final equilibrium.

in [23]. However, our scheme here is appropriate for dissipative problems due to its
good stability properties and can be used to analyze the time continuous problems
compared with the one in [23].

5. Time fractional gradient flows. In this section, we investigate the time
fractional gradient flows using the implicit scheme based on our discretization (3.4)
and establish the error estimates of the numerical scheme. We will use \langle \cdot , \cdot \rangle to denote
the inner product in H and \| \cdot \| to denote the norm on H. We will focus on convex
functionals \phi .

Assumption 5.1. Suppose the functional \phi is lower semicontinuous and convex
and infu\in \BbbR d \phi (u) >  - \infty .

Remark 5.2. All the claims in section 5 regarding convex functionals have analo-
gies for \lambda -convex functionals (i.e., \exists \lambda \geq 0, u \mapsto \rightarrow \phi (u) + \lambda 

2 | u| 2 is convex; of course, the
proof is more involved). Considering clarity of presentation, we only focus on convex
functionals.

The Frech\'et subdifferential of convex \phi satisfies

\xi \in \partial \phi (u) \leftrightarrow \partial \phi (v) \not = \emptyset \forall w \in H,\phi (w) - \phi (v) - \langle \xi , w  - v\rangle \geq 0.(5.1)

The following strong-weak closure property is a straightforward consequence of this
characterization.

Lemma 5.3. Suppose Assumption 5.1 holds. Assume sequences \{ \xi n\} and \{ un\} 
satisfy \xi n \in \partial \phi (un) for all n, un \rightarrow u strongly, and that \xi n \rightharpoonup \xi weakly. Then
\xi \in \partial \phi (u).

Fix time T > 0. Similarly as in [52, Definition 2.2], we define as follows.

Definition 5.4. u \in L1
loc([0, T ), H) is called a strong solution to (1.5) if (i) D\alpha 

c u

is locally integrable on [0, T ); (ii) limt\rightarrow 0+
1
t

\int t

0
\| u(s)  - u0\| ds = 0; (iii) for almost

every t \in [0, T ), we have D\alpha 
c u \in  - \partial \phi (u).

Remark 5.5. If \alpha = 1, the local integrability of the distributional derivative Du
clearly implies that u is absolutely continuous on [0, T1] for any T1 \in (0, T ). The
conditions (i)--(iii) in [52, Definition 2.2] are automatically satisfied. For \alpha \in (0, 1),
imposing D\alpha 

c u \in L1
loc[0, T ) does not ensure the uniqueness of u0 (see [40]). To kill

this ambiguity, we impose limt\rightarrow 0+
1
t

\int t

0
\| u(s) - u0\| ds = 0.
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We aim to approximate the solutions of (1.5) (though the existence is unclear at
this point), following the method of De Giorgi [53, 54].

Un = argmin

\left(  1

2k\alpha 

\left(  n - 1\sum 
j=1

cj\| u - Un - j\| 2 + cnn\| u - U0\| 2
\right)  + \phi (u)

\right)  .(5.2)

Note that the functional on the right-hand side of (5.2) is the sum of a convex function
and some quadratic functions. Then

\partial 

\left(  1

2k\alpha 

\left(  n - 1\sum 
j=1

cj\| u - Un - j\| 2 + cnn\| u - U0\| 2
\right)  + \phi (u)

\right)  (5.3)

= k - \alpha 

\left(  c0u - 

\left(  n - 1\sum 
j=1

cjUn - j + cnnU0

\right)  \right)  + \partial \phi (u),

and the numerical solution satisfies

 - \xi n := (\scrD \alpha U)n \in  - \partial \phi (Un).(5.4)

Motivated by the proof of Theorem 3.4, we consider the set of time steps

ET = \{ k > 0 : k = 2 - mT, m \in \BbbN \} .(5.5)

The following results from (5.3) and the strong convexity of the functional in (5.2)
(proof omitted).

Lemma 5.6. Suppose Assumption 5.1 holds. Then, for sufficiently small k \in ET ,
the discrete schemes (5.2) and (5.4) are equivalent and they have a unique solution
\{ Un\} .

5.1. Properties of the discrete solutions. Consider the solution given by
(5.4). Define the function V (t) such that

V (t) :=  - \xi n, t \in (tn - 1, tn].(5.6)

Using the function V , define a natural continuous version interpolation of Un by

U(t) = U0 +
1

\Gamma (\alpha )

\int t

0

(t - s)\alpha  - 1V (s) ds(5.7)

with U(tm) = Um. This continuous interplocation justifies why the discretization
(3.4) is suitable for (1.5). By (2.4) and the generalized definition (Definition 2.1), one
has

D\alpha 
c U(t) = V (t).(5.8)

Lemma 5.7. Assume Assumption 5.1. For k \in ET small enough, it holds that

sup
n:nk\leq T

| \phi (Un)| \leq C(U0, T )(5.9)

and that

sup
t\leq T

1

\Gamma (\alpha )

\int t

0

(t - s)\alpha  - 1\| V (s)\| 2 ds \leq C(U0, T ).(5.10)
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Proof. Paring with \xi n =  - (\scrD \alpha U)n \in \partial \phi (Un), and noting \langle \xi n, Un - Uj\rangle \geq \phi (Un) - 
\phi (Uj), one has

 - \| \xi n\| 2 = k - \alpha 

\left(  n - 1\sum 
j=1

cj\langle \xi n, Un  - Un - j\rangle + cnn\langle \xi n, Un  - U0\rangle 

\right)  \geq (\scrD \alpha \phi (U))n.

Using the equivalence between (2.17) and (2.12), and nonnegativity of \{ am\} , one has

\phi (Un) - \phi (U0) \leq  - k\alpha 
n\sum 

m=1

an - m\| \xi m\| 2 =  - 1

\Gamma (\alpha )

\int tn

0

(tn  - s)\alpha  - 1\| V (s)\| 2 ds.

The first claim and the second claim with t = tn hold. For general t \in (tn - 1, tn),
the following trivial observation with the result just proved yields the claim in the
statement of the lemma.\int t

0

(t - s)\alpha  - 1\| V (s)\| 2 ds

=

\int tn - 1

0

(t - s)\alpha  - 1\| V (s)\| 2 ds+ \| \xi n\| 2
\int t

tn - 1

(t - s)\alpha  - 1 ds

\leq 
\int tn - 1

0

(tn - 1  - s)\alpha  - 1\| V (s)\| 2 ds+ \| \xi n\| 2
\int tn

tn - 1

(tn  - s)\alpha  - 1 ds

\leq 
\int tn - 1

0

(tn - 1  - s)\alpha  - 1\| V (s)\| 2 ds+
\int tn

0

(tn  - s)\alpha  - 1\| V (s)\| 2 ds.

Now, we compare the numerical solutions with different time steps.

Lemma 5.8. There exists C(U0, T ) independent of k such that when k is small
enough,

\| U(t) - U(t+ \delta )\| \leq C(U0, T )| \delta | \alpha /2 if max(t, t+ \delta ) \leq T.(5.11)

Let Ui(t) be two functions given by (5.7) for step sizes ki \in ET (i = 1, 2). Then,

sup
0\leq t\leq T

\| U1(t) - U2(t)\| 2 \leq C(U0, T )(k
\alpha /2
1 + k

\alpha /2
2 ).(5.12)

Proof. Without loss of generality, we assume \delta > 0. Then, by (5.7),

\| U(t) - U(t+ \delta )\| \leq 1

\Gamma (\alpha )

\biggl( \int t

0

[(t - s)\alpha  - 1  - (t+ \delta  - s)\alpha  - 1]\| V (s)\| ds

+

\int t+\delta 

t

(t+ \delta  - s)\alpha  - 1\| V (s)\| ds
\Biggr) 

=: I1 + I2.

The second term is estimated easily by

I2 \leq 1

\Gamma (\alpha )

\Biggl( \int t+\delta 

t

\| V (s)\| 2(t+ \delta  - s)\alpha  - 1 ds

\Biggr) 1/2\Biggl( \int t+\delta 

t

(t+ \delta  - s)\alpha  - 1 ds

\Biggr) 1/2

\leq C\delta \alpha /2.

For the first term I1, we have by the H\"older inequality
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I1 \leq 1

\Gamma (\alpha )

\left(  \int t

0

(t - s)\alpha  - 1

\Biggl( 
1 - 

\biggl( 
t+ \delta  - s

t - s

\biggr) \alpha  - 1
\Biggr) 2

ds

\right)  1/2

(5.13)

\times 
\biggl( \int t

0

(t - s)\alpha  - 1\| V (s)\| 2 ds
\biggr) 1/2

.

Clearly,

\int t

0

(t - s)\alpha  - 1

\Biggl( 
1 - 

\biggl( 
t+ \delta  - s

t - s

\biggr) \alpha  - 1
\Biggr) 2

ds \leq 
\int t

0

((t - s)\alpha  - 1  - (t+ \delta  - s)\alpha  - 1) ds

\leq C\delta \alpha .

(5.14)

The claim follows.
To compare the numerical solutions with steps ki, i = 1, 2 (Vi, \xi 

(i)
n , i = 1, 2,

similarly defined), we fix t \in [0, T ]. Then, there exist n1 and n2 such thatt \in ((n1  - 
1)k1, n1k1] \cap ((n2  - 2)k2, n2k2] and such that Vi(t) =  - \xi 

(i)
ni . Denote

\Delta i(t) := U (i)
ni

 - Ui(t), i = 1, 2.

By the definition of Ui(t) and convexity of \phi , one has

\langle D\gamma 
cU1  - D\gamma 

cU2, U1  - U2\rangle = \langle V1(t) - V2(t), U1(t) - U2(t)\rangle 
=  - \langle \xi (1)n1

 - \xi (2)n2
, U (1)

n1
 - U (2)

n2
\rangle +R(t) \leq R(t),

(5.15)

where \langle \xi (1)n1  - \xi 
(2)
n2 , U

(1)
n1  - U

(2)
n2 \rangle \geq 0 by convexity of \phi and

R(t) =  - \langle V1(t) - V2(t),\Delta 1(t)\rangle + \langle V1(t) - V2(t),\Delta 2(t)\rangle .

It suffices to estimate \Delta i(t). We take i = 1 as the example. By the definition of U1(t),

\Gamma (\alpha )\Delta 1(t) =  - 
\int n1k1

t

(n1k1  - s)\alpha  - 1\xi (1)n1
ds+

\int t

0

[(n1k1  - s)\alpha  - 1  - (t - s)\alpha  - 1]V1(s) ds

=: I11 + I21 .

The terms corresponding to I11 are controlled by (noting 0 < n1k1  - t \leq k1)

| \langle V1(t) - V2(t), I
1
1 \rangle | = | \langle \xi (1)n1

 - \xi (2)n2
, I11 \rangle | 

=
(n1k1  - t)\alpha 

\Gamma (1 + \alpha )
| \langle \xi (1)n1

 - \xi (2)n2
, \xi (1)n1

\rangle | 

\leq Ck\alpha 1 (\| V1(t)\| 2 + \| V2(t)\| 2).

The terms corresponding to I21 can be estimated similarly as in (5.13)--(5.14),

| \langle \xi (1)n1
 - \xi (2)n2

, I21 \rangle | \leq 
1

\Gamma (\alpha )
\| V1(t) - V2(t)\| 

\int t

0

\bigl[ 
(t - s)\alpha  - 1  - (n1k1  - s)\alpha  - 1

\bigr] 
\| V1(s)\| ds

\leq C\| V1(t) - V2(t)\| k\alpha /21 .

By the explicit formula (5.7), Ui(t) is absolutely continuous. Proposition 3.11 in
[5] can be easily generalized to show that
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1

2
D\alpha 

c \| U1(t) - U2(t)\| 2 \leq \langle D\alpha 
c (U1  - U2), U1(t) - U2(t)\rangle .

Overall,

D\alpha 
c (\| U1(t) - U2(t)\| 2) \leq C(k

\alpha /2
1 + k

\alpha /2
2 )(\| V1(t)\| 2 + \| V2(t)\| 2).

Lemma 5.7 then yields the result.

5.2. Well-posedness and numerical error estimates. In this subsection, we
establish the existence and uniqueness of the time fractional gradient flow under some
assumptions and give the error estimate of the numerical scheme. Besides Assumption
5.1, we also need a certain regularity property of the subdifferential mapping \partial \phi .

Assumption 5.9. Let Assumption 5.1 hold. Moreover, vn \rightarrow v strongly implies
any sequence \{ \xi n\} with \xi n \in \partial \phi (vn) converges weakly to some \xi \in H.

Theorem 5.10. Suppose Assumption 5.9 holds. For any T > 0, the fractional
gradient flow (1.5) has a unique strong solution u on [0, T ) in the sense of Definition
(5.4). The strong solution is H\"older continuous on [0, T ):

\| u(t+ \delta ) - u(t)\| \leq C| \delta | \alpha /2.(5.16)

Besides, we have the following error estimates for the numerical solution (5.2):

sup
n:nk\leq T

\| Un  - u(tn)\| \leq C(U0, T )k
\alpha /4.(5.17)

Proof of Theorem 5.10. By Lemma 5.8, the family \{ Ui(\cdot ) : i \in ET \} is a Cauchy
sequence in C([0, T ], H). Therefore, there exists u(\cdot ) \in C([0, T ];H) such that Ui(\cdot )
converges to u in C([0, T ];H).

Consider the piecewise constant interpolation of the numerical fractional deriv-
ative, \{ Vi(t)\} . Lemma 5.7 implies that Vi(t) \in L2(0, T ) with the L2(0, T ) norm
uniformly bounded. Then, there is a further subsequence so that we have the weak
convergent sequence Vi(t) \rightharpoonup v(t) in L2(0, T ;H), with the estimate

sup
t\leq T

1

\Gamma (\alpha )

\int t

0

(t - s)\alpha  - 1\| v(s)\| 2 ds \leq C(U0, T ).

With this convergence in hand, u(t) = u0 +
1

\Gamma (\alpha )

\int t

0
(t  - s)\alpha  - 1v(s) ds. Hence, in the

distributional sense,

D\alpha 
c u = v(t).(5.18)

Similarly as in the proof of Lemma 5.8, u(\cdot ) is H\"older continuous with order at least
\alpha /2.

By Lemma 5.7, we have found that \phi (Un) is uniformly bounded. Now we consider
piecewise linear interpolation of \{ Un\} , denoted by \=Ui(\cdot ),

\=Ui(t) = U (i)
n , t \in (tn - 1, tn].

Then, Vi(t) \in  - \partial \phi ( \=Ui(t)) for all t \in [0, T ), for all i. By the uniform H\"older continuity
of Ui(\cdot ) in Lemma 5.8 and \=Ui(t) = Ui(tn) for t \in (tn - 1, tn], we find that for all t, \=Ui(t)
converges strongly to u(t). With Assumption 5.9, we find that for all t,

Vi(t) \rightharpoonup \=v(t), H,(5.19)

so that

\=v(t) \in  - \partial \phi (u(t)),(5.20)

by the weak-strong closure property.
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Hence, for any w \in H so that w1[0,T ] \in L2(0, T ;H), we find that \langle Vi(t), w\rangle 
converges in L2(0, T ;\BbbR ) to \langle v(t), w\rangle . By (5.19), we also have \langle Vi(t), w\rangle \rightarrow \langle \=v(t), w\rangle 
for all t \in [0, T ]. Consequently, for a.e. t \in [0, T ], we have

\langle v(t), w\rangle = \langle \=v(t), w\rangle .

Since H is separable, we can find a basis consisting of countable elements \{ wn\} .
Consequently, we have

\langle v(t) - \=v(t), wn\rangle = 0 \forall n, a.e.t \in [0, T ]

Moreover, v  - \=v \in L2(0, T ;H \prime ) (where H \prime means H equipped with the weak star
topology), we have then \int T

0

\langle v(t) - \=v(t), w(t)\rangle dt = 0

for w(t) to be simple functions, and then L2(0, T ;H) functions. Hence, v(t) = \=v(t)
for a.e. t \in [0, T ]. By (5.20) and (5.18), we find that u(t) is a strong solution under

Definition 5.4. Taking limit k2 \rightarrow 0 in \| U1(t) - U2(t)\| 2 \leq C(U0, T )(k
\alpha /2
1 +k

\alpha /2
2 ) yields

\| U1(t) - u(t)\| 2 \leq C(U0, T )k
\alpha /2
1 .

For the uniqueness, suppose we have two strong solutions ui(t), i = 1, 2, such
that  - \xi i(t) := D\alpha 

c ui(t) \in  - \partial \phi (ui(t)). Then, \langle u1  - u2, D
\alpha 
c (u1  - u2)\rangle \leq 0. Some

regularization procedure can yield 1
2D

\alpha 
c \| u1 - u2\| 2 \leq \langle u1 - u2, D

\alpha 
c (u1 - u2)\rangle \leq 0. This

then implies uniqueness.

As a concluding remark, the orders of estimates in Theorem 5.10 are not optimal.
If one can show that \xi n is bounded, then one can improve the orders. Last, we give
a quick glimpse of the case H = \BbbR d, \phi \in C1(\BbbR d) (instead of requiring \nabla \phi to be
Lipschitz as in [5, 37]) so that (1.5) becomes the FODE:

D\alpha 
c u =  - \nabla \phi (u).(5.21)

The following asymptotic behavior holds when \phi is strongly convex.

Proposition 5.11. Assume that \phi \in C1(\BbbR d) and \phi  - \mu 
2 | u| 2 is convex for some

\mu > 0. Let u\ast be the global minimizer of \phi . Then, for some C depending on u0, \mu ,

\phi (u(t)) - \phi (u\ast ) \leq (\phi (u0) - \phi (u\ast ))E\alpha ( - Ct\alpha ) .

Moreover, | u(t) - u\ast | \leq C(1 + t) - \alpha .

Proof. Consider the implicit scheme

(\scrD \alpha U)n =  - \nabla \phi (Un).

Using the first claim in Theorem 3.3, one has

(\scrD \alpha \phi (U))n \leq  - | \nabla \phi (Un)| 2 \leq 0.

Hence \phi (Un) is bounded. Since \phi is strongly convex and thus limR\rightarrow \infty inf | u| \geq R \phi (u) =
+\infty , \{ Un\} is in a compact domain K that only depends on u0. By Theorem 3.3 and
the Polyak--Lojasiewicz inequality (| \nabla \phi (x)| 2 \geq 2\mu (\phi (x) - \phi (u\ast ))), one has

(\scrD \alpha (\phi (U) - \phi (u\ast )))n = (\scrD \alpha \phi (U))n \leq  - | \nabla \phi (Un)| 2 \leq  - 2\mu (\phi (Un) - \phi (u\ast )).

D
ow

nl
oa

de
d 

09
/2

4/
19

 to
 1

52
.3

.4
3.

47
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2118 LEI LI AND JIAN-GUO LIU

The Polyak--Lojasiewicz inequality is obtained by

\phi (y) \geq \phi (u) +\nabla \phi (u) \cdot (y  - u) +
\mu 

2
| y  - u| 2 \geq \phi (u) - 1

2\mu 
| \nabla \phi (u)| 2.

By the second claim in Theorem 3.3 and the third claim in Theorem 3.4, it holds
for any nk \leq T that

\phi (Un) - \phi (u\ast ) \leq (\phi (u0) - \phi (u\ast ))E\alpha ( - 2\mu (nk)\alpha ) + o(k).

Taking k \rightarrow 0 and by Theorem 5.10 (convergence and continuity of u(t)), one thus
has for any t \leq T :

\phi (u(t)) - \phi (u\ast ) \leq (\phi (u0) - \phi (u\ast ))E\alpha ( - 2\mu t\alpha ).

Since T is arbitrary, the first claim is true for all t.
Similarly, (\scrD \alpha | U  - u\ast | )n \leq 1

| Un - u\ast | \langle Un  - u\ast , - \nabla \phi (Un)\rangle \leq  - \mu | Un  - u\ast | . Theorem
5.10 allows us to take k \rightarrow 0 to obtain | u(t)  - u\ast | \leq | u0  - u\ast | E\alpha ( - \mu t\alpha ). Since
E\alpha ( - s) \sim C1s

 - 1 as s \rightarrow \infty , the second claim follows.
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