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Relaxation and diffusion enhanced 
dispersive wavest 

BY SHI JINt AND JIAN-GUO LIU? 

Courant Institute of Mathematical Sciences, New York University, 
New York 10012, U.S.A. 

The development of shocks in nonlinear hyperbolic conservation laws may be reg- 
ularized through either diffusion or relaxation. However, we have observed sur- 
prisingly that for some physical problems, when both of the smoothing factors - 
diffusion and relaxation - coexist, under appropriate asymptotic assumptions, 
the dispersive waves are enhanced. This phenomenon is studied asymptotically 
in the sense of the Chapman-Enskog expansion and demonstrated numerically. 

1. Introduction 

Relaxation occurs when the underlying material is in non-equilibrium, and usu- 
ally takes the form of source terms in hyperbolic conservation laws. The relaxation 
is often stiff when the relaxation time is much shorter than the scales of other 
physical quantities. The effect of stiff relaxation is important in a wide range of 
problems of physical significance. In water waves, relaxation is associated with 
the balance of gravitational force and the friction with the riverbed (Stoker 1958). 
Sharp slope and rough riverbed give a stiff relaxation that causes the flooding. 
In thermo-non-equilibrium gases, the internal state variable satisfies a stiff rate 
equation that measures the departure of the relaxation from the local equilibrium 
(de Groot & Mazur 1984). In rarefied gas dynamics, the stiff relaxation describes 
the interaction of particles with small mean free path, and the small mean free 
path limit recovers the Euler and Navier-Stokes equations (Chapman & Cowl- 
ing 1970). Other relaxation phenomena occur in traffic flow, viscoelasticity with 
memory and magnetohydrodynamics, etc. 

In the spirit of the Chapman--Enskog expansion for kinetic equations, the 
asymptotic analysis on these stiff relaxation problems shows that stiff relaxation 
plays the role of diffusion to the leading order approximation with respect to the 
small relaxation time, provided that a suitable characteristic condition is met 
(Liu 1987; Chen et al. 1994). Thus, similar to the diffusion itself, the relaxation 
terms smooth the singularities - the shock waves - of the hyperbolic conservation 
laws. 

Although diffusion or relaxation each plays the role of smoothing out the shock 
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waves in hyperbolic conservation laws, the coexistence of both relaxation and dif- 
fusion in such systems has not been well understood. Whereas the real physical 
problems mentioned above usually involve both relaxation and diffusion, for sim- 
plicity the diffusion term is often ignored. Here we stress the problem of the 
coexistence of relaxation and diffusion. Surprisingly, we have found that, under 
some appropriate asymptotic assumptions, the dispersive waves are enhanced by 
the interaction of the relaxation and the diffusion. In a viscous water wave equa- 
tion that describes flooding we have found the solitary waves of the Korteweg-de 
Vries (KdV) type (Zabusky & Kruskal 1965). In a viscous isentropic thermo- 
non-equilibrium gas with a single relaxation process we have derived a dispersive 
equations of the Boussinesq type (Newell 1985). Similar behaviour also exists in a 
viscous Broadwell model of the nonlinear Boltzmann equation (Broadwell 1964). 

2. A relaxation model 

We begin with a simple model of the relaxation system proposed in Jin & 
Xin (1994). Although this is an artificial model, it does possess the key physical 
properties that we shall address, thus serving to illustrate our idea. Consider the 
relaxation system of Jin & Xin (1994) with a viscous term: 

Otv + Oxu -= 0, 

Otu + av =-- 
(u - f(v)) + v O(g(v)dOu). (2.1) 

Here v is some conserved physical quantity, u is some rate variable that measures 
the departure of the relaxation from the local equilibrium. E << 1 is the relaxation 
time, v is the constant viscosity coefficient, and a is a positive constant such that 

a - f'()2 > 0. (2.2) 

The viscosity term in (2.1) is the Navier-Stokes viscosity term if g(v) - v-. Let 
6 = 6/4; we look for the long wave asymptotic solution under a new scaling t V-4 6t 
and x ~-> 6x. Although this scaling does not fully resolve the small relaxation rate 
of 0(E), it does give a more detailed wave structure that becomes significant only 
in the transition regions such as shock layers or other layers of sharp gradient. 
Under this scaling, equation (2.1) becomes 

av +- Ou a 0, t,u + a Oxv -(1/63) (u - f(v)) + (v/6) a(g(v)Ou). (2.3) 

Case 1. The stiff relaxation. First we ignore the viscosity term by setting v = 0. 
When E << 1 (or equivalently 6 << 1), the leading term approximation of the 
relaxation system (2.3) gives the local equilibrium u = f(v) and the nonlinear 
hyperbolic conservation law 

atv + af (v) - 0. (2.4) 

The solution of (2.4) may develop shock waves in finite time even if the initial 
condition is smooth. One can use the Hilbert expansion or the Chapman-Enskog 
expansion to derive the higher order approximation. Adopting the strategy of the 
Chapman-Enskog expansion, which allows contributions of different orders in e to 
the time derivative from the space derivative, one obtains the convection-diffusion 
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equation 
Otv + a.f(v) = 63 a ([a- f'(v)2]0v) (2.5) 

The stability condition for this approximation is (2.2), usually referred to as the 
subcharacteristic condition (Whitham 1974; Liu 1987). This equation explains 
the smoothing effect of the stiff relaxation. 

One can obtain a closed equation for v from (2.3) by eliminating u: 

otV + af (v) = 6a (aO,v - OttV). (2.6) 

This can be viewed as a first-order wave equation perturbed by a second-order 
linear wave. The linear stability of this kind of wave hierarchy was studied in 
Whitham (1974). One can recover the convection-diffusion equation (2.5) by ap- 
plying the approximation Otv =- x f(v) + 0(63) in (2.6). 

Case 2. The diffusion. If the relaxation term is not present in (2.1), then the 
solution will be dissipative. For example, if g(v) = 1, a simple linear analysis 
shows that the normal modes solution is of the form eikx-t with the decay rate 
/3 - a6/v. The decay rate not only is independent of the frequency k but decays 
slower for larger viscosity coefficient v. 

Case 3. The coexistence of stiff relaxation and diffusion. When both stiff re- 
laxation and diffusion terms appear in equation (2.3), then contrary to physical 
intuition, we can obtain solitary waves. To see this, eliminating u from the relax- 
ation system (2.1) gives 

OtV + aOf (v) = 63 (aOxv - ttv) - v62 axx(g(v)0tv). (2.7) 

Applying the approximation 

tv = - axf (v) + 0(V62 + 63) (2.8) 

to (2.7), one arrives at 

atv + aof(v) = 63 a([a - f'(v)2]O,v) + v62 Ox(g(v)f'(v)Oxv) + 0(6). (2.9) 

When the diffusion coefficient dominates in the sense that v >> 6 1/4, the 
dispersion term in (2.9) dominates the dissipation term, and solitary waves will 
develop after the formation of shock waves, a well-known phenomenon for dis- 
persive waves. In fact, by taking 

f(v) = 3v2, g(v) = l/f'(v) (2.10) 

in (2.9) we recover the KdV equation 

Otv + 6 v &)v = vu2 Oxxv, (2.11) 

after ignoring the 0(63) term. This term can be ignored only if the subchar- 
acteristic condition (2.2) is satisfied. Otherwise this term becomes the ill-posed 
backward heat equation and the result will be quite different. 

In figure 1 we display and compare the numerical computations on the relax- 
ation system (2.3) for the above three cases with a = 4, f(v) = 0.5v2 and g(v) = 1. 
We start with the initial data v(0, x) = 0.5(1 + cos(2x)) and u(0, x) = 0.5v(0, )2. 
We solve (2.3) with the relaxation time e = 10-6, and plot all solutions at t = 3. 
For case 1, we take v = 0 so there is no viscosity and the solution is plotted 
by the dashed line. We see that a shock wave corresponding to the leading term 
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1.6 

Figure 1. Relaxation (dashed line), diffusion (dotted line), and the enhanced solitary waves 
(solid line) of the relaxation system (2.3). t = 3. 

approximation (2.5) develops, moves to the right and decays. For case 2, as- 
sume there is no relaxation terms and the viscosity coefficient in (2.3) equals 100 
(corresponding to small 6). We plot the solution with the dotted line. We see a 
diffusive behaviour that forces the solution to decay exponentially with a rate of 
eatF e . For case 3 both the relaxation and the diffusion terms are present, and 
we plot the solution by the solid line. It can be seen that after the formation of 
the shock wave the solution develops oscillations behind the shock, which even- 
tually become solitary waves. This is a typical dispersive behaviour that is solely 
enhanced by the interaction of the relaxation and the diffusion. 

3. Water wave 

To apply this analysis to physical problems, we first consider a viscous water 
wave equation that describes the flooding down a sharply inclined open channel 
with large riverbed friction. Using dimensionless variables, this flooding flow can 
be described by the following equations for mass and momentum in the lagrangian 
coordinates (Stoker 1958): 

tv - 0xu = -, 
(/ v = F ) (3.1) 

atU-_-v-3,v= /?) I(V F-2U2 ) + V3(V-1,ux) . 

Here v, the specific volume, is the reciprocal of the height of the river, u is the 
mean velocity of the flow, e is the dimensionless small parameter that measures 
the sharpness of the riverbed slope and the friction of the riverbed, and v is 
the viscosity coefficient. The Froude number F is the dimensionless speed of 
undisturbed flow of unit height with friction and gravitational forces in perfect 
balance. Let 6 = 61/4. Under the long wave asymptotic scaling t E-* 6t and x E - 6x, 
equation (3.1) becomes 

qtu ' v-3,v = (1/3)(V-1 _ F-2u2) + (v/6)Ox(V-l ). (3.2) 
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The second equation in (3.2) gives 

- - F-22 + 620&(v-l1,U) = 63(tU - v-O3U) - 63 (3.3) 

where u1 will be further evaluated later. From (3.3), 

u-Fv-1 + 2FV2x(V-1) 63Fv1/2U1 + 0(54). (3.4) 

Applying u = Fv-1/2 + 0(62) to the right-hand side of (3.4) yields 

Fv-1/2 + 1 z62 F2 v1/2 -(v3/2) - 63 Fv/2u + 0(6) . (3.5) 

By using (3.3) and (3.5), 
U1 = OtU - v-3_xV 

=--Fv-3/2tv _ v-30~v + 0(2) - Fv-3/20V _ v-30xv + 0(62) -1 -3/20XU V-30 v3 V + 0(62) 

- 
1F-3/2ax(Fv-1/2) 

_ v-3dxv + 0()2) 

(F2 _ 1)v-30v + 0(). (3.6) 
Now plugging ul back into (3.5) and using the first equation of (3.2) we have 

Otv - Fx(v-1/2) = 
1 

yV2 F2 O3x(V1/2Ox(v-3/)) 

+ 163 F ((1 - F2/4)v-5/20X) + O(4). (3.7) 
This is a nonlinear convection-diffusion-dispersion equation. Clearly the stability 
requirement imposes the well-known stability condition F < 2 that corresponds 
to the subcharacteristic condition (2.2) for the relaxation system (2.1). In the 
stable case, we can ignore the 0(63) term in (3.7) to get the following dispersive 
equation, 

atv - Fx(v-1/2) = I 
v62 F2 aX (V1/2aX(V-3/2)). (3.8) 

This results the development of solitary waves after the formation of the shock 
waves, a dispersive behaviour similar to that of the KdV equation. 

In (3.8) v is a conserved quantity. Let h be the height of the flooding river. 
By definition h = v-1. Some algebraic manipulation on (3.8) gives the following 
conservation for h: 

th+ FOx(h5/2)= - v2F2 Ox(h3/2Fxx(h(h3/2))_2 9 2)]2). (3.9) 

We can also determine the travelling wave of (3.8) that moves with a constant 
speed a. Set v(x, t) = 1/3(E) and x = x- t, then (3.8) becomes 

_ F- -1lV -3a - 2FP1/2. (3.10) 3 

The solution of the ordinary differential equation (3.10) gives the desirable travel- 
ling wave. It exists when a is negative. Because we use the lagrangian coordinates, 
this indicates that the solitary waves always move slower than the flow. 

The numerical calculation in which these phenomena were observed were made 
by solving the flooding water equation (3.2) with 6 = 10-2 (thus E = 10-8), 
y = 1, F = and the periodic initial condition v(0, x) = (1 +0.5 cos(2x))-2/ and 

u(0, x) = Fv/v(0, x). We depict the solution of h = v-1 in Figure 2 at t = 0 (the 
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2.2- 

1.4 

0.6 
' ??? - - 

" 

0 1 2 3 

Figure 2. Solitary waves of the viscous flooding river equation (3.2). , t = 6.5; - -, 
t = 1.75; ..... ,t 0. 

dotted line), 1.75 (the dashed line) and 6.5 (the solid line). Although starting 
with smooth initial data, the solution will develop shock waves in the breakdown 
time. Due to the dispersion effect, some oscillations form behind the shock. At 
later time these oscillations become the solitary waves, each of them preserves 
the original shape and velocity after passing through the others. These results 
are quite similar to those of the KdV equation, and agree with the experiment 
carried out directly on the reduced equation (3.8). 

4. Thermo-non-equilibrium gases 

Such dispersive phenomenon may also exist in thermo-non-equilibrium gases. 
Consider an isentropic flow of a gas in lagrangian coordinates with a single re- 
laxation process (de Groot & Mazur 1984): 

Qtv - Qxu = 0, QtU + 0p(v, ) = 0, 0 

at = (1i/)(1*(V) 
- 

O) + V&z(g(V)&O). J 

Here v is the specific volume, u is the velocity, p = p(v, J) is the pressure such 
that 0vp < 0. The internal variable ~ satisfies a rate equation that measures the 
departure of the relaxation process from the local thermal equilibrium. *(v) is 
the equilibrium state, E is the relaxation time, and v is the viscosity coefficient. 
Let 6 = 6/4. Under the long wave asymptotic scaling t E- 6t and x - 6x, 
equation (4.1) becomes 

0tv - 0au = o, a + 0p(V, ) , 
.) 

at =- (1/63)(*(V)- () + (i /6)Ox(g(v)Ox). 
(4.2) 

By using the third equation of (4.2) we have 

E = (*(V) -+ v62 0(g(v)(ax) -+ 631, (4.3) 
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where &1 is given by 

1 = -0t - = -0v*0V + 0(2) - -,,* &u + o(82). (4.4) 

Now, by (4.3) and (4.4) 

p(v, e) - p(v, 6*) + v2 0p(v, (*) a (g(V) * (V)) 

- 63 OEp(V, r*) ar9* axU + 0(64). (4.5) 

This implies 

&tv - Oau = O, 

oat + O,p(v,) *) =- v62 Ox(Ap(v, *) Ox[g(v) x*(V)I) 
+63 a (Ovr* aep(v, C*) aOu) + 0(64). (4.6) 

The stability condition is 

av*(v) Op(v, (*) > 0. (4.7) 
With proper choice of the equilibrium state S*, equation (4.6) is a dispersive- 
dissipative hyperbolic system. Clearly the dispersion term dominates the dissipa- 
tion, thus solitary waves will emerge after the formation of shock waves. Elimi- 
nating u from (4.6) and ignoring the O(63) term, we get the following Boussinesq 
type equation 

Ottv + axxp(v, *(v)) - -2 aS (a&p(v, (*) oX[g(v)OX(*(v)]). (4.8) 

A simple choice of p is p(v, ~) = q(v) - a for some positive constant a, which 
only takes into account the first order deviations from the thermodynamical equi- 
librium. Let g(v) = 1/llv*(v) and q(v) = -v, {*(v) = -3v2/a. Then (4.8) be- 
comes the exact Boussinesq equation 

Ottv - Oxxv + 30xx(v2) = Ya62dxXv. (4.9) 

5. A viscous Broadwell model 

We have also observed similar dispersive phenomenon in 'viscous' rarefied gas 
dynamics. Consider the Broadwell model of the nonlinear Boltzmann equation 
that describes a gas as composed of only four speeds with a binary collision law 
and spatial variation in only one direction (Broadwell 1964): 

Otf+ + Otf+ = (1/8)(f2 - f+f_), 

Otfo - (1/e)(f+f_ - fo2), (5.1) 

tf_ - -SOf- - (1/E)(f2 - f+f_). 

Here f+, fo and f_ denote the mass densities of gas particle with speed 1,0 and 
-1 respectively, E is the mean free path. Introducing the fluid moment quantities 
of density p, momentum m and z as 

p= f++ 2fo+f_, m= f+-f_, z= f++ f-, (5.2) 
Proc. R. Soc. Lond. A (1994) 
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the Broadwell equation (5.1) is then equivalent to 

OtP + Om O, t,m + Oxz =, , 
M2) + Vpo~ (5.3) 

tZ + 0m n -(1/2) (2pz - p2 - m2) + V Z, J 

after addition of an artificial viscosity term vpOxxz in the third equation, which is 
introduced here to study the interaction between the relaxation and the diffusion. 
Let 6 = e1/4. Using the long wave time and space variables t H-> 6t and x -> Sx, 
equation (5.3) becomes 

&tP + Oxm = 0, &tm + Oxz = , 0 
} (5.4) 

tz + Oxm= -(1/263) (2pz - p2 - m2) + (v./)poXz. 

First, from (5.4), 

Z pm2/p) + V62Z _ 63 Otz -+ Oxm z (p + 2/p) + TZ & - 3. (5.5) 2 X~~~p 

Taking the derivative with respective to x and use the second equation of (5.4), 
one has 

aOt + x(p + m2/p) - V62 atzm =- 63O t + n (5.6) 

Let u = m/p. Taking t derivative on (5.5) leads to 

tZ = I(atp - u20tp 2t) + 2() + (2) 
- (1 -u2)Oxm+ utm+0(62). (5.7) 

Similarly, taking x derivative on (5.5) gives 

atm = _-X = - (1 - U2)Op - uOm + 0(^2). (5.8) 

Applying (5.8) in (5.7) gives 

tz + m - l(1 - u2)au + ) +0(62). (5.9) 
p 

Now substituting (5.5) and (5.9) in (5.6) yields 

Otm + &a(p + m2/p) = -V62 a,(p + m2/p) 

+ 6530 ((1 
_ 
-2)x) )+ 0(64). (5.10) 

Here the stability criterion implies the subcharacteristic condition lul < 1, indi- 
cating that the macroscopic fluid speed u should not exceed the microscopic speed 
of the particles. After ignoring 0(63) term, we arrive at the dispersive equations 

tp + o,m = 0, atm + ax(P + 2/p) -V6 x(p+m2/p). (5.11) 

6. Conclusion 

In conclusion we have found that the interaction of relaxation and diffusion 
enhances the dispersive waves under some appropriate asymptotic scalings. This 
important phenomenon cannot occur if either the relaxation or the diffusion is 
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neglected. Our analysis provides an effective tool to study such behaviour, and 
can also be applied to other physical problems with similar structure of relaxation 
and diffusion. 

For stiff relaxation problems without the viscosity term, Hunter has also derived 
a set of dispersive wave equations using the Chapman-Enskog expansion (Hunter 
1993). His expansion was based on long wave and weak nonlinearity assumptions, 
thus differs from our phenomena here. 

We are grateful to the useful discussions and support of Professor Peter D. Lax, Professor George 
Papanicolaou and Proefessor Robert Kohn. The research of S.J. was supported by AFOSR Grant 
F49620-92-J0098 and NSF Grant DMS-9404157. The research of J.-G.L. was supported by NSF 
Grant DMS-9114456 and ARO Grant DAAL03-92-G-0143. 
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