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CONVERGENCE OF THE RANDOM BATCH METHOD FOR
INTERACTING PARTICLES WITH DISPARATE SPECIES AND

WEIGHTS\ast 

SHI JIN\dagger , LEI LI\ddagger , AND JIAN-GUO LIU\S 

Abstract. We consider in this work the convergence of the random batch method proposed in
our previous work [Jin et al., J. Comput. Phys., 400(2020), 108877] for interacting particles to the
case of disparate species and weights. We show that the strong error is of O(

\surd 
\tau ) while the weak

error is of O(\tau ) where \tau is the time step between two random divisions of batches. Both types of
convergence are uniform in N , the number of particles. The proof of strong convergence follows
closely the proof in [Jin et al., J. Comput. Phys., 400(2020), 108877] for indistinguishable particles,
but there are still some differences: Since there is no exchangeability now, we have to use a certain
weighted average of the errors; some refined auxiliary lemmas have to be proved compared with our
previous work. To show that the weak convergence of empirical measure is uniform in N , certain
sharp estimates for the derivatives of the backward equations have been used. The weak convergence
analysis is also illustrating for the convergence of the Random Batch Method for N -body Liouville
equations.

Key words. interacting particle systems, random batch, empirical measure, multispecies, semi-
group, N-body Liouville equation
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1. Introduction. Interacting particle systems are ubiquitous in nature, for ex-
ample, molecules in fluids [19], plasma [7], galaxy in universe. In addition, many
collective behaviors in natural and social sciences are due to interacting individuals,
and examples include swarming [45, 11, 10, 15], flocking [14, 23, 1], and chemotaxis
[24, 5] and consensus clusters in opinion dynamics [39]. In many models for these
phenomenon, individual particles can have weights. For example, in the point vortex
model [12, 22, 33], the ``particles"" correspond to different point vortices with different
strength and they interact each other through a Hamiltonian system. To approximate
the nonlinear Fokker--Planck equation for interacting particles, like the Keller--Segel
equation, one can use interacting particles with different masses to approximate the
dynamics and then compute the empirical density more efficiently [13, 34]. There
may also be several species, where the particles may have different features; for ex-
ample, in the microscopic description of the Poisson--Boltzmann equation, particles
with different charges interact with each other through Coulomb forces [2, 31].
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CONVERGENCE OF RBM FOR INTERACTING PARTICLES 747

The systems mentioned above can be written as the second order ordinary dif-
ferential equation (ODE) and/or stochastic differential equation (SDE) system for
1 \leq i \leq N

dXi = V i dt,

dV i =
1

N  - 1

N\sum 
j=1,j \not =i

qjF (Xi  - Xj) dt - \gamma V i dt+ \sigma dW i,
(1.1)

or the first order ODE/SDE system

dXi =
1

N  - 1

N\sum 
j=1:j \not =i

qjF (Xi  - Xj) dt+ \sigma dW i, i = 1, \cdot \cdot \cdot , N,(1.2)

where qj 's are the weights (they can be mass, charges, etc). Note that (1.1) contains
the Hamiltonian case when the force F is conservative and \gamma = \sigma = 0. If one
discretizes (1.1) or (1.2) directly, the computational cost per time step is O(N2),
which is undesired for large N . In the case of fast enough decaying interactions, the
fast multipole method (FMM) [43] can reduce the complexity per iteration to O(N).
However, the implementation is not easy, as it needs some advanced data structures.

The authors proposed in [25] a simple random algorithm, called the random batch
method (RBM), to reduce the computation cost per time step from O(N2) to O(N)
for indistinguishable particles (thus with the same weight). The idea was to apply
the ``mini-batch"" idea, famous for its application in the so-called stochastic gradient
descent (SGD) [42, 8, 9] in machine learning. Later on, the ``mini-batch"" was used to
develop a Markov chain Monte Carlo method, called the stochastic gradient Langevin
dynamics (SGLD), by Welling and Teh for Bayesian inference [46]. The random binary
collisions were also used to simulate the Boltzmann equation [6, 40, 4] or the mean-
field equation for flocking [1]. How to design the mini-batch strategy depends on the
specific applications. For interacting particle systems, the strategy in [25] is to do
random grouping at each time interval and then let the particles interact within the
groups on that small time interval. Compared with FMM, the accuracy is lower (halfth
order in time step), but RBM is simpler to implement and is valid for more general
potentials (e.g., the stochastic variational gradient descent (SVGD) ODE [35, 29]).
Intuitively, the method converges because there is time average in time, and thus the
convergence is like that in the law of large number, but in time (see [25] for a more
detailed explanation). Moreover, RBM converges in the regime of the mean field limit
([44, 20, 28]). In fact, the method is asymptotic-preserving regarding the mean-field
limit, which means the algorithm can approximate the one-marginal distribution with
error bound independent of N .

The error defined in [25] has a clean form and the proof there was simplified due
to the exchangeability of the particles. If the particles carry weights, they are not
exchangeable. Even so, it is clear that RBM can be equally well applied for interacting
particles in multispecies and with weights (see Algorithm 1 below). The goal of this
paper is to analyze the convergence of RBM for interacting particles with weights
or multispecies. We will discuss both strong and weak convergences, which rely on
different techniques so that the error estimates are independent of N . The proof
of strong convergence follows closely the proof in [25] for indistinguishable particles,
but there are still some differences: since there is no exchangeability, we have to use
a kind of weighted average of the errors; some refined auxiliary lemmas have to be
used here, compared with those in [25]. The weak convergence is for the empirical

D
ow

nl
oa

de
d 

03
/2

9/
21

 to
 1

52
.3

.1
02

.2
54

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

748 S. JIN, L. LI, AND J.-G. LIU

measures instead of the one marginal distribution as in [25]. The proof of the weak
convergence is based on the semigroup generated by the backward equations and the
one generated by RBM (see [18] for the semigroup techniques used for SGD). Some
sharp estimates for the derivatives of the backward equations have to be done so
that the weak convergence is uniform in N . The weak convergence analysis is also
illustrating for the convergence of RBM for N -body Liouville equations.

The rest of the paper is organized as follows. In section 2, we introduce some
basic notations and give a detailed description of RBM. Section 3 is devoted to the
proof of strong convergence. In section 4, we show the weak first order convergence,
where a key proposition for the estimates of derivatives of the backward equation is
needed.

2. Setup and notations. We consider interacting particles with weights. Since
in practice, there can be external field, and also there are some applications where
the interaction kernels depend on the two specific particles (for example, the SVGD
ODE [29]), we consider in general the following first order system

dXi = b(Xi) dt+
1

N  - 1

\sum 
j:j \not =i

mjKij(X
i, Xj) dt+ \sigma dW i, i = 1, 2, . . . , N.(2.1)

The argument in this paper can be generalized to second order systems without diffi-
culty, which we omit. In (2.1), b(\cdot ) is the external force field, \{ W i\} \prime s are some given
independent d dimensional Wiener processes (the standard Brownian motions) and
we impose

mj \geq 0.(2.2)

Note that this model includes the cases for particles with multispecies since the signs
of the interaction can be included into Kij and for (1.2) mj = | qj | .

For notational convenience, we define

Fi(x) := b(xi) +
1

N  - 1

\sum 
j:j \not =i

mjKij(xi, xj),(2.3)

where
x := (x1, . . . , xN ) \in RNd.

The (random) empirical probability measure corresponding to (2.1) is given by

\mu N (t) :=
1

N

N\sum 
j=1

\omega j\delta (x - Xj(t)),(2.4)

where

\omega j =
Nmj\sum 
j mj

.

Assumption 2.1. We assume there are positive constants A,M independent of N
such that

1

N

N\sum 
j=1

mj = M, max
j

| mj | \leq A.(2.5)

With the assumption above, we find

\omega j = O(1).(2.6)

Below are some assumptions on the external field and interaction kernels.
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CONVERGENCE OF RBM FOR INTERACTING PARTICLES 749

Assumption 2.2. Moreover, we assume b(\cdot ) is one-sided Lipschitz:

(z1  - z2) \cdot (b(z1) - b(z2)) \leq \beta | z1  - z2| 2(2.7)

for some constant \beta and that b,\nabla b have polynomial growth

| b(z)| + | \nabla b| \leq C(1 + | z| )q.(2.8)

The functions Kij(\cdot , \cdot ) and their derivatives up to second order are uniformly bounded
in 1 \leq i, j \leq N .

2.1. RBM and mathematical setup. We now give some detailed explanation
of RBM proposed in [25], when applied on (2.1). Suppose the computational interval
is [0, T ]. We pick a small time step \tau and define the discrete time grids

tk := k\tau , k \in N.(2.9)

The number of iteration for the algorithm is

NT :=

\biggl\lceil 
T

\tau 

\biggr\rceil 
.(2.10)

At each time grid tk, we divide the

N = np

particles into n small batches with equal size p (p \ll N , often p = 2) randomly. We
have assumed p divides N for convenience. Denote the n batches by \scrC q, q = 1, . . . , n,
and then each particle only interacts particles within its own batch. The detail is
shown in Algorithm 1. Clearly, each iteration contains two main steps: (1) Randomly
dividing the particles into n batches (implemented by random permuation, costing
O(N) [17]); (2) particles interact inside batches only.

Algorithm 1 RBM

1: for k in 1 : [T/\tau ] do
2: Divide \{ 1, 2, . . . , pn\} into n batches randomly.
3: for each batch \scrC q do

4: Update \~Xi's (i \in \scrC q) by solving the following SDE with t \in [tk - 1, tk).

d \~Xi = b( \~Xi)dt+
1

p - 1

\sum 
j\in \scrC q,j \not =i

mjKij( \~X
i, \~Xj)dt+ \sigma dW i.(2.11)

5: end for
6: end for

Above, the Wiener process W i (Brownian motion) used is the same as in (2.1).

Remark 2.1. For particles with weights, it is desirable to get some random batches
by importance sampling. This is left for future study.

We denote \scrC (k)
q , 1 \leq q \leq n the batches at tk, and

\scrC (k) := \{ \scrC (k)
1 , . . . , \scrC (k)

n \} (2.12)
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750 S. JIN, L. LI, AND J.-G. LIU

will denote the random division of batches at tk. It is standard by the Kolmogorov
extension theorem [16] that there exists a probability space (\Omega ,\scrF ,P) so that the
random variables \{ Xi

0,W
i, \scrC (k) : 1 \leq i \leq N, k \geq 0\} are on this probability space, and

they are all independent. As usual, we use E to denote the integration on \Omega with
respect the probability measure P. For the convenience of the analysis, we introduce
the L2(P) norm as

\| v\| =
\sqrt{} 
E| v| 2.(2.13)

Define the filtration \{ \scrF k\} k\geq 0 by

\scrF k - 1 = \sigma (Xi
0,W

i(t), \scrC (j); t \leq tk - 1, j \leq k  - 1).(2.14)

In other words, \scrF k - 1 is the \sigma -algebra generated by the initial values Xi
0, W

i(t), and
\scrC (j) for i = 1, . . . , N , t \leq tk - 1 and j \leq k  - 1. Hence, \scrF k - 1 contains the information
of how batches are constructed for t \in [tk - 1, tk). We also introduce the filtration
\{ \scrG k\} k\geq 0 by

\scrG k - 1 = \sigma (Xi
0,W

i(t), \scrC (j); t \leq tk - 1, j \leq k  - 2).(2.15)

If we use \sigma (\scrC (k - 1)) to mean the \sigma -algebra generated by \scrC (k - 1), the random division
of batches at tk - 1, then \scrF k - 1 = \sigma (\scrG k - 1 \cup \sigma (\scrC (k - 1))).

For further discussion, given some random batches \scrC , we define the random vari-
ables

Iij =

\Biggl\{ 
1, i, j are in the same batch,

0, otherwise,
1 \leq i, j \leq N.(2.16)

We will focus on the approximation error of \~X for X for t \in [0, T ]. In particular,
we define the error process

Zi = \~Xi  - Xi, i = 1, . . . , N.(2.17)

2.2. A comment about interacting particles with multispecies. In appli-
cations, the most important cases where particles carry weights are the multispecies
cases. For example, when we simulate the microscopic particles for the Poisson--
Boltzmann equations [2, 31], we need to consider charged particles with different
valences, in particular

dXi =
1

N  - 1

N\sum 
j=1:j \not =i

QjzizjF (Xi  - Xj) dt+ \sigma dW i, i = 1, . . . , N,(2.18)

where zi = \pm 1 represents whether the charge is positive or negative and Qj \geq 0 is
the absolute value of the charges. In this case, we can define

Kij(x, y) = zizjF (x - y),(2.19)

and this reduces to (2.1).
Also, people may care about different densities for different species. Similar to

(2.4), one can compute the empirical measures for all these species separately. The
empirical measure (2.4) is then a mixture of them. Hence, the model (2.1) is rich
enough to include interacting particles with disparate species and weights. Below, we
will address these uniformly under the framework of (2.1).
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CONVERGENCE OF RBM FOR INTERACTING PARTICLES 751

3. The strong convergence. Since there is no exchangeability, we have to use
weighted average of the errors. We consider

J(t) :=
1

2N

N\sum 
i=1

miE| \~Xi  - Xi| 2,(3.1)

which can be used for the strong convergence. As a common convention, the `` 1
2""

prefactor is used for energies of quadratic forms. Recently, a certain quantum cor-
respondence of this error has been used by Golse et al. to prove the convergence of
RBM for N -body Schr\"odinger equations [21].

Theorem 3.1. Suppose Assumptions 2.1--2.2 hold. Then, for step size smaller
than some constant independent of N , it holds that

sup
t\leq T

J(t) \leq C(T )

\biggl( 
\tau 

p - 1
+ \tau 2

\biggr) 
(3.2)

for some constant C(T ) > 0 independent of N, p. Hence, the strong error is controlled
as

sup
t\leq T

\sqrt{} 
J(t) \lesssim 

\sqrt{} 
\tau 

p - 1
+ \tau 2.(3.3)

Define the error of the random approximation for the interacting force by

\chi i(x) :=
1

p - 1

\sum 
j\in \scrC \theta ,j \not =i

mjKij(xi, xj) - 
1

N  - 1

\sum 
j:j \not =i

mjKij(xi, xj)

=
1

p - 1

\sum 
j:j \not =i

IijmjKij(xi, xj) - 
1

N  - 1

\sum 
j:j \not =i

mjKij(xi, xj),

(3.4)

where xi \in Rd, \scrC \theta (1 \leq \theta \leq n) is the random batch that contains xi in a random
division, and again x = (x1, . . . , xN ) \in RNd.

We have the following facts.

Lemma 3.2. For i \not = j, it holds that

EIij =
p - 1

N  - 1
,(3.5)

and for distinct i, j, \ell , it holds that

EIijIi\ell =
(p - 1)(p - 2)

(N  - 1)(N  - 2)
.(3.6)

They have been proved in the proof of [25, Lemma 3.1] so we omit the proofs
here. Using Lemma 3.2, one obtains the following consistency of RBM.

Lemma 3.3. For given x = (x1, . . . , xN ) \in RNd, it holds that

E\chi i(x) = 0.(3.7)

Moreover, the second moment is given by

E| \chi i(x)| 2 =

\biggl( 
1

p - 1
 - 1

N  - 1

\biggr) 
\Lambda i(x),(3.8)

where

\Lambda i(x) :=
1

N  - 2

\sum 
j:j \not =i

\bigm| \bigm| \bigm| mjKij(xi, xj) - 
1

N  - 1

\sum 
\ell :\ell \not =i

m\ell Ki\ell (xi, x\ell )
\bigm| \bigm| \bigm| 2.(3.9)
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752 S. JIN, L. LI, AND J.-G. LIU

Though slightly different from [25, Lemma 3.1], the proof is essentially the same,
and we omit.

We move to some important additional estimates.

Lemma 3.4. Let Xi and \~Xi be solutions to (2.1) and (2.11), respectively. Suppose
Assumptions 2.1--2.2 hold. Then,

sup
t\leq T

(E| Xi(t)| q + E| \~Xi(t)| q) \leq Cq.(3.10)

Besides, for any k > 0 and q \geq 2,

sup
t\in [tk - 1,tk)

\bigm| \bigm| \bigm| E(| \~Xi(t)| q| \scrF k - 1)
\bigm| \bigm| \bigm| \leq C1| \~Xi(tk - 1)| q + C2(3.11)

holds almost surely.
Moreover, almost surely, it holds that

| E( \~Xi(t) - \~Xi(tk - 1)| \scrF k - 1)| \leq C(1 + | \~Xi(tk - 1)| q)\tau ,\bigm| \bigm| \bigm| E\Bigl( | \~Xi(t) - \~Xi(tk - 1)| 2| \scrF k - 1

\Bigr) \bigm| \bigm| \bigm| \leq C(1 + | \~Xi(tk - 1)| q)\tau .
(3.12)

Note that the second equation in (3.12) is different from that in [25]. In fact, the
proof in [25] has a small gap, and one needs this refined estimate to fill in that gap
as well ([25], page 13, from line 17 to line 19, the variable E(| \delta \~Xi| 2 + | \delta \~Xj | 2| \scrF m - 1) is
not independent of \scrC \theta ; to get line 19, we need this refined version). Though the proof
is not hard, we still attach it in Appendix A for a reference.

The following lemma is an improved version of [25, Lemma 3.2], which is very
important to establish the strong convergence for particles with weights considered in
this paper.

Lemma 3.5. Fix i \in \{ 1, . . . , N\} . Let \scrC \theta be the random batch of size p that contains
i in the random division. Let Yj (1 \leq j \leq N) be N random variables (or random
vectors) that are independent of \scrC \theta . Then, for p \geq 2,\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1

p - 1

\sum 
j\in \scrC \theta ,j \not =i

Yj

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \leq 

\left(  1

N  - 1

\sum 
j:j \not =i

\| Yj\| 2
\right)  1/2

.(3.13)

Proof. By the definition and independence,\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1

p - 1

\sum 
j\in \scrC \theta ,j \not =i

Yj

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

=
1

(p - 1)2
E

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
j:j \not =i

IijYj

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
2

=
1

(p - 1)2

\sum 
j,\ell :j \not =i,\ell \not =i

E(IijIi\ell )E(Yj \cdot Y\ell )

\leq 1

(p - 1)2

\Biggl[ \sum 
j,\ell :j \not =i,\ell \not =i,j \not =\ell 

(p - 1)(p - 2)

(N  - 1)(N  - 2)
\| Yj\| \| Y\ell \| 

+
\sum 
j:j \not =i

EIij\| Yj\| 2
\Biggr] 

=: R1 +R2.
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CONVERGENCE OF RBM FOR INTERACTING PARTICLES 753

Note that the independence is used in the second equality. The first inequality is due
to Lemma 3.2.

It is easy to calculate

R1 \leq p - 2

(p - 1)(N  - 1)(N  - 2)

\sum 
j,\ell :j \not =i,\ell \not =i,j \not =\ell 

\biggl( 
1

2
\| Yj\| 2 +

1

2
\| Y\ell \| 2

\biggr) 
=

p - 2

(p - 1)(N  - 1)

\sum 
j:j \not =i

\| Yj\| 2,

while

R2 =
1

(p - 1)(N  - 1)

\sum 
j:j \not =i

\| Yj\| 2.

Hence,

R1 +R2 \leq 1

N  - 1

\sum 
j:j \not =i

\| Yj\| 2.

The claim thus follows.

We now consider the error process defined in (2.17). The derivative of Zi is clearly
given by

(3.14)
d

dt
Zi = [b( \~Xi) - b(Xi)]+

1

p - 1

\sum 
j\in \scrC \theta ,j \not =i

mjKij( \~X
i, \~Xj) - 1

N  - 1

\sum 
j:j \not =i

mjKij(X
i, Xj),

where again \scrC \theta is the random batch in \scrC that contains i.
Define

\delta Kij(t) := Kij( \~X
i(t), \~Xj(t)) - Kij(X

i(t), Xj(t)).(3.15)

The right-hand side of (3.14) can then be written as

d

dt
Zi = [b( \~Xi) - b(Xi)] +

1

N  - 1

\sum 
j:j \not =i

mj\delta Kij + \chi i( \~X)

= [b( \~Xi) - b(Xi)] +
1

p - 1

\sum 
j\in \scrC \theta ,j \not =i

mj\delta Kij + \chi i(X).

(3.16)

With this, one can obtain the following simple lemma.

Lemma 3.6. For t \in [tk - 1, tk),

\| Zi(t) - Zi(tk - 1)\| \leq C\tau .(3.17)

Also, almost surely,

| Zi(t)| \leq | Zi(tk - 1)| (1 + C\tau ) + C\tau .(3.18)
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754 S. JIN, L. LI, AND J.-G. LIU

Proof. Integrating (3.16) from tk - 1 to t, since b has polynomial growth, the claim
for \| Zi(t)  - Zi(tk - 1)\| is then an easy consequence of the q-moment estimates in
Lemma 3.4.

Dotting (3.16) with Zi and using the one-sided Lipschitz condition in Assumption
2.2, one has

1

2

d

dt
| Zi| 2 \leq C| Zi| 2 + C| Zi| .

Hence, almost surely, it holds that

d

dt
| Zi| \leq C| Zi| + C.

By Gr\"onwall's inequality, the second claim then follows (for \tau less than some constant
independent of N).

We now give the proof of the strong convergence in Theorem 3.1.

Proof of Theorem 3.1. First,

dJ(t)

dt
=

1

N

N\sum 
i=1

miE
\Bigl\{ 
Zi \cdot [(Fi( \~X) - Fi(X)) + \chi i( \~X)]

\Bigr\} 
.

The first term is easy to bound by the one-sided Lipschitz condition of b and the
conditions of Kij in Assumption 2.2:

1

N

N\sum 
i=1

miE
\Bigl\{ 
Zi \cdot (Fi( \~X) - Fi(X))

\Bigr\} 
\leq C

N

\sum 
i

miE| Zi| 2

+
C

N(N  - 1)

\sum 
i\not =j

mimjE(| Zi| 2 + | Zi| | Zj | ).

This is clearly bounded by J(t).
Now, we focus on the second term. The technique is the same as in our previous

work [25], but some special modifications are needed for our problem here:

1

N

N\sum 
i=1

miE
\Bigl\{ 
Zi(t) \cdot \chi i( \~X(t))

\Bigr\} 
=

1

N

N\sum 
i=1

miE
\Bigl\{ 
Zi(tk - 1) \cdot \chi i( \~X(t))

\Bigr\} 
+

1

N

N\sum 
i=1

miE
\Bigl\{ 
(Zi(t) - Zi(tk - 1)) \cdot \chi i( \~X(t))

\Bigr\} 
=: I1 + I2.

Step 1---Estimate of I1.
For I1, using the consistency result in Lemma 3.3, one has

I1 =
1

N

N\sum 
i=1

miE
\Bigl\{ 
Zi(tk - 1) \cdot 

\Bigl[ 
\chi i( \~X(t)) - \chi i( \~X(tk - 1))

\Bigr] \Bigr\} 
.

In fact,

E
\Bigl\{ 
Zi(tk - 1) \cdot \chi i( \~X(tk - 1))

\Bigr\} 
= E

\Bigl\{ 
Zi(tk - 1) \cdot E

\Bigl[ 
\chi i( \~X(tk - 1))| \scrG k - 1

\Bigr] \Bigr\} 
= E0 = 0.
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This is the only place where the \sigma -algebra \scrG k - 1 is used.
Note that

E
\Bigl\{ 
Zi(tk - 1) \cdot 

\Bigl[ 
\chi i( \~X(t)) - \chi i( \~X(tk - 1))

\Bigr] \Bigr\} 
= E

\Bigl( 
Zi(tk - 1) \cdot E(\chi i( \~X(t)) - \chi i( \~X(tk - 1))| \scrF k - 1)

\Bigr) 
\leq C\| Zi(tk - 1)\| 

\bigm\| \bigm\| \bigm\| E[\chi i( \~X(t)) - \chi i( \~X(tk - 1))| \scrF k - 1]
\bigm\| \bigm\| \bigm\| .

Using the definition of \chi i (3.4), one has

E
\Bigl[ 
\chi i( \~X(s)) - \chi i( \~X(tk - 1))| \scrF k - 1

\Bigr] 
=

1

p - 1

\sum 
j\in \scrC \theta ,j \not =i

mjE(\delta \~Kij | \scrF k - 1) - 
1

N  - 1

\sum 
j:j \not =i

mjE(\delta \~Kij | \scrF k - 1),

where
\delta \~Kij = Kij( \~X

i(s), \~Xj(s)) - Kij( \~X
i(tk - 1), \~X

j(tk - 1)).

We first estimate E(\delta \~Kij | \scrF k - 1). Denote \delta \~Xj := \~Xj(s)  - \~Xj(tk - 1). Performing
Taylor expansion around tk - 1, one has

\delta \~Kij = (\nabla xi
Kij | tk - 1

\cdot \delta \~Xi +\nabla xj
Kij | tk - 1

\cdot \delta \~Xj) +
1

2
M : [\delta \~Xi, \delta \~Xj ]\otimes [\delta \~Xi, \delta \~Xj ],

with M being a random variable (tensor) bounded by \| \nabla 2Kij\| \infty . By (3.12), one
finds that

| E(\delta \~Kij | \scrF k - 1)| \leq C(1 + | \~Xi(tk - 1)| q + | \~Xj(tk - 1)| q)\tau .
The right-hand side is independent of \scrC \theta , and this is the place where we need the
almost surely bound (3.12). Applying Lemma 3.5, one has\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1

p - 1

\sum 
j\in \scrC \theta ,j \not =i

mjE(\delta \~Kij | \scrF k - 1)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \leq C\tau 

\left(   1 +
\left(  1

N  - 1

\sum 
j:j \not =i

\| | \~Xj(tk - 1)| q1\| 2
\right)  1/2

\right)   \leq C\tau .

The term \| 1
N - 1

\sum 
j:j \not =i mjE(\delta \~Kij | \scrF k - 1)\| is much easier to estimate, and it is also

bounded by C\tau .
Hence

EZi(tk - 1) \cdot 
\Bigl[ 
\chi i( \~X(t)) - \chi i( \~X(tk - 1))

\Bigr] 
\leq C\| Zi(tk - 1)\| \tau \leq C\| Zi(t)\| \tau + C\tau 2.

Then,

I1 \leq 

\Biggl( 
C

N

N\sum 
i=1

mi\| Zi(t)\| \tau 

\Biggr) 
+ C\tau 2 \leq \delta 

1

N

N\sum 
i=1

mi\| Zi(t)\| 2 + C(\delta )\tau 2.

Step 2---Estimate of I2.
We decompose

I2 =
1

N

N\sum 
i=1

miE(Zi(t) - Zi(tk - 1)) \cdot [\chi i( \~X(t)) - \chi i(X(t))]

+
1

N

N\sum 
i=1

miE(Zi(t) - Zi(tk - 1)) \cdot \chi i(X(t)) =: I21 + I22.
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We first consider I21.Clearly,

I21 \leq 1

N

N\sum 
i=1

miC\tau \| \chi i( \~X(t)) - \chi i(X(t))\| .

Note that

\| \chi i( \~X(t)) - \chi i(X(t))\| \leq 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1

p - 1

\sum 
j\in \scrC \theta ,j \not =i

mj\delta Kij(t)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| +
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1

N  - 1

\sum 
j:j \not =i

mj\delta Kij(t)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| .
(3.19)

Since Kij is Lipschitz continuous with Lipschitz constant L independent of i, j,

| \delta Kij(t)| \leq L(| Zi(t)| + | Zj(t)| ),

and one thus has\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1

p - 1

\sum 
j\in \scrC \theta ,j \not =i

mj\delta Kij(t)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \leq L

\left(  \| Zi(t)\| +

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1

p - 1

\sum 
j\in \scrC \theta ,j \not =i

mj | Zj(t)| 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\right)  .(3.20)

Note that Zj(t) depends on \scrC \theta , and we cannot apply Lemma 3.5. Instead, by Lemma
3.6, one has that

| Zi(t)| \leq C| Zi(tk - 1)| + C\tau .

Since Zi(tk - 1) is independent of \scrC \theta , Lemma 3.5 then gives us that\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1

p - 1

\sum 
j\in \scrC \theta ,j \not =i

mj | Zj(t)| 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \leq C

\left(  1

N  - 1

\sum 
j:j \not =i

m2
j\| Zj(tk - 1)\| 2

\right)  1/2

+ C\tau 

\leq C

\left(  1

N  - 1

\sum 
j:j \not =i

mj\| Zj(tk - 1)\| 2
\right)  1/2

+ C\tau .

(3.21)

Remark 3.7. This is where we need Lemma 3.5, a refined version of [25, Lemma
3.2]. If using [25, Lemma 3.2], one controls \| 1

p - 1

\sum 
j\in \scrC \theta ,j \not =i mj | Zj(tk - 1)| \| by

supj mj\| Zj(tk - 1)\| , which is not enough to close the estimate.

It is straightforward to obtain

1

N

N\sum 
i=1

mi\tau 

\left(  1

N  - 1

\sum 
j:j \not =i

mj\| Zj(tk - 1)\| 2
\right)  1/2

\leq \delta 
1

N

\sum 
i

mi\| Zi(tk - 1)\| 2 + C(\delta )\tau 2,

where Assumption 2.1 has been used, and

1

N

N\sum 
i=1

mi\tau \| Zi(t)\| \leq \delta 
1

N

N\sum 
i=1

mi\| Zi(t)\| 2 + C(\delta )\tau 2.
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Also, the second term in (3.19) is similarly estimated (but much simpler), so we omit
the details. Moreover,

\| Zi(tk - 1)\| 2 \leq (\| Zi(t)\| + C\tau )2 \leq 2\| Zi(t)\| 2 + 2C2\tau 2.(3.22)

With these, we find (with \delta redefined)

I21 \leq \delta 
1

N

\sum 
i

mi\| Zi(t)\| 2 + C(\delta )\tau 2.

We now consider I22. We first recall

d

dt
Zi = [b( \~Xi) - b(Xi)] +

1

p - 1

\sum 
j\in \scrC \theta ,j \not =i

mj\delta Kij(t) + \chi i(X(t)).(3.23)

Note

| b( \~Xi) - b(Xi)| \leq 
\int 1

0

| ( \~Xi  - Xi) \cdot \nabla b((1 - \sigma ) \~Xi + \sigma Xi)| d\sigma ,

and \nabla b((1 - \sigma ) \~Xi + \sigma Xi) is controlled by C(| \~Xi| q + | Xi| q) for some q > 0. Hence,

E| b( \~Xi) - b(Xi)| | \chi i(X(t\prime ))| \leq \| \chi i(X(t\prime ))\| \infty \| \~Xi  - Xi\| (E(| \~Xi| q1 + | Xi| q1)2)1/2

\leq C\| Zi(t)\| ,

by (3.10).
Integrating (3.23) in time over [tk - 1, t], then dotting with \chi i(X(t)), and taking

the expectation, one gets

(3.24)
\bigm| \bigm| E((Zi(t) - Zi(tk - 1)) \cdot \chi m,i(X(t)))

\bigm| \bigm| \leq C

\int t

tk - 1

\| Zi(s)\| ds

+

\int t

tk - 1

E

\left[  \left(  1

p - 1

\sum 
j\in \scrC \theta ,j \not =i

mj\delta Kij(s)

\right)  \cdot \chi i(X(t))

\right]  ds+E
\int t

tk - 1

\chi i(X(s))\cdot \chi i(X(t)) ds.

Applying (3.20) and (3.21), the second term on the right-hand side of (3.24) is
bounded by

C

\left(  1

N  - 1

\sum 
j:j \not =i

m2
j\| Zj(tk - 1)\| 2

\right)  1/2

\tau + C\tau 2.

Similarly as we estimate I21, this is controlled by \delta 1
N

\sum 
i mi\| Zi(tk - 1)\| 2 + C(\delta )\tau 2.

The last term on the right hand of (3.24) is controlled by Lemma 3.3 (in particular,
(3.8)): \biggl[ 

1

p - 1
 - 1

N  - 1

\biggr] 
\| \Lambda i\| \infty \tau .

Therefore,

I22 \leq \delta 
1

N

\sum 
i

mi\| Zi(tk - 1)\| 2 + C(\delta )\tau 2 +

\biggl[ 
1

p - 1
 - 1

N  - 1

\biggr] 
\| \Lambda i\| \infty \tau .

Finally, taking all those estimates together and noting (3.22), one has the following
estimate:

d

dt
J \leq CJ + C(\delta )\tau 2 +

\biggl[ 
1

p - 1
 - 1

N  - 1

\biggr] 
\| \Lambda i\| \infty \tau .

The claim then follows by Gr\"onwall's lemma.
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Remark 3.8. The strong convergence can imply the convergence of marginal dis-
tribution for indistinguishable particles. See [25] for more details. The weak conver-
gence discussed below, however, is for empirical measure (2.4).

4. The weak convergence and RBM for backward equations. In prac-
tice, one may be more interested in the distributions of the particles instead of the
trajectories of Xi(t). Hence, the error (3.1) is not suitable for this purpose, and we
seek to study the distributions, and the weak convergence, as commonly used in the
numerical SDE literature [38, 27]. Roughly speaking, we say a family of measures \nu \lambda 

converges to some measure \nu weakly under some limit \lambda \rightarrow \lambda 0 if for any suitable test
function \varphi , it holds that\int 

\varphi d\nu \lambda =: \langle \nu \lambda , \varphi \rangle \rightarrow \langle \nu , \varphi \rangle :=
\int 

\varphi d\nu , \lambda \rightarrow \lambda 0.

For our problem, we consider the empirical measure corresponding to (2.11)

\mu N,\tau (t) :=
1

N

N\sum 
j=1

\omega j\delta (x - \~Xj(t)),(4.1)

where again

\omega j =
Nmj\sum 
j mj

.

Now, we care about the convergence of RBM in weak sense. Both \mu N,\tau defined in
(4.1) and \mu N in (4.1) are random measures defined on Borel sets that are subsets of
Rd. Taking into consideration the distribution of the random measures, they finally
give some measures on Rd by

\nu N,\tau (E) := E\mu N,\tau (E), \nu N (E) := E\mu N (E),

for all E \subset Rd that are Borel measurable. The convergence of RBM in weak sense
then reduces to the weak convergence of \nu N,\tau to \nu N as \tau \rightarrow 0. Hence, to show that
the empirical measures given by X and \~X are close in law, we pick a test function
\varphi \in C\infty 

b (Rd) and hope to show that the weak error defined below is small:

Ek :=

\bigm| \bigm| \bigm| \bigm| \bigm| 1N
N\sum 
i=1

\omega iE\varphi ( \~Xi(k\tau )) - 1

N

N\sum 
i=1

\omega iE\varphi (Xi(k\tau ))

\bigm| \bigm| \bigm| \bigm| \bigm| .(4.2)

Remark 4.1. Traditionally, the test functions used for schemes of numerical SDEs
are those with polynomial growth at infinity [37, 38]. We used C\infty 

b as the test functions
as done nowadays [3, 32], which will induce a weaker topology that disregards high
order moments. If one has the corresponding moments control, the convergence using
these two types of test functions will be the same.

For the weak convergence, we need some different assumptions on b and Kij .

Assumption 4.1. The functions b,Kij are C4 and the derivatives of b and Kij up
to order 4 are uniformly bounded (uniform in i, j).

Remark 4.2. Proof of weak convergence using Assumption 2.2 instead of 4.1
should also be completed. Using Assumption 4.1 makes the proof based on semi-
group technique elegant (see the details below).

We now state the main theorem for the weak convergence of RBM.
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Theorem 4.3. Under Assumptions 2.1 and 4.1, the RBM system (2.11) converges
weakly with first order to (2.1), in terms of the empirical measures (4.1) and (2.4).
In particular, the weak error defined in (4.2) satisfies

sup
k:k\tau \leq T

Ek \leq C\tau ,(4.3)

where C = C(\varphi , T ) is independent of N, \tau but depends on \varphi and T .

Usually, in numerical SDEs, to prove the weak convergence, one makes use of the
backward Kolmogorov equation (``backward equation"" for short) which is defined in
the same Euclidean space where the process takes values. For our problem, we need
to lift the Euclidean space from Rd to RNd. In particular, define

u(x, t) :=
1

N

N\sum 
i=1

\omega iE[\varphi (Xi(t))| X(0) = x],(4.4)

where x \in RNd and X is the solution to (2.1). Then, we make use of this function to
study the weak convergence. This function u satisfies the following backward equation
[41]

\partial tu = \scrL u :=

N\sum 
i=1

\left[  b(xi) +
1

N  - 1

\sum 
j:j \not =i

mjKij(xi, xj)

\right]  \cdot \nabla xiu+

N\sum 
i=1

1

2
\sigma 2\Delta xiu.(4.5)

The operator \scrL is called the generator of the ODE/SDE (2.1). The Laplacian \Delta xi is
given by

\Delta xi
:=

d\sum 
j=1

\partial 
x
(j)
i x

(j)
i
, xi = (x

(1)
i , . . . , x

(d)
i ) \in Rd.(4.6)

The solution semigroup for (4.5) will be denoted by

et\scrL u(\cdot , 0) := u(x, t).(4.7)

By the well-known property of backward equation [41, 30], one has

\| u(\cdot , t)\| \infty = \| et\scrL u(\cdot , 0)\| \infty \leq \| u(\cdot , 0)\| \infty .(4.8)

The function u is defined on RNd, and naive estimates of the norms for the
derivatives will depend on N . This is not sufficient for us to show the N independence
of weak convergence for the empirical measure. In fact, it is clear that

\| u\| \infty \leq C(4.9)

independent of N . The following proposition then gives the crucial estimates of the
derivatives of u.

Proposition 4.4. For any i and j \not = i, one has

\| \nabla xi
u\| \infty + \| \nabla 2

xi
u\| \infty + \| \nabla 3

xi
u\| \infty + \| \nabla 4

xi
u\| \infty \leq C(T )

1

N
,(4.10)

and

\| \nabla xi\nabla xju\| \infty + \| \nabla xi\nabla 2
xj
u\| \infty + \| \nabla 2

xi
\nabla 2

xj
u\| \infty \leq C(T )

1

N2
.(4.11)
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Here, \nabla 2
xi

is the Hessian matrix. Similarly, \nabla 4
xi
u is the fourth order tensor with

derivatives of the form (
\prod 4

k=1 \partial x(jk)

i

)u and jk \in \{ 1, . . . , d\} . The norm \| \nabla 4
xi
u\| \infty is

understood as

sup
x

\left[  \sum 
j1,j2,j3,j4

\Biggl( \Biggl( 
4\prod 

k=1

\partial 
x
(jk)

i

\Biggr) 
u

\Biggr) 2
\right]  1/2

.

The proof is kind of tedious and is given in Appendix B.
For further discussion, we introduce the generator corresponding to RBM. For

t \in (tk - 1, tk]

\scrL C :=
N\sum 
i=1

\left[  b(xi) +
1

p - 1

\sum 
j:j \not =i

I
(k - 1)
ij mjKij(xi, xj)

\right]  \cdot \nabla xi
+

N\sum 
i=1

1

2
\sigma 2\Delta xi

.

We recall that Iij is the indicator for i, j being in the same batch, and we use I
(k - 1)
ij

to mean the indicator corresponding to \scrC (k - 1).
The importance of Proposition 4.4 is that one can bound \scrL iu uniformly in N ,

where \scrL i means the composition of \scrL for i times (if i = 0, it is the identity operator).
This is crucial for establishing the weak convergence uniformly in N . In particular,
we have the following.

Lemma 4.5. For the function u defined in (4.4), it holds that for i = 0, 1, 2 that

\| \scrL iu\| \leq C, \| \scrL i
\scrC u\| \leq C.(4.12)

Moreover,

E\scrL \scrC = \scrL .(4.13)

Proof. The first assertion is a corollary of Proposition 4.4. The second claim is
the one proved in Lemma 3.3.

To go further, we need to introduce a semigroup associated to RBM. Consider the
transition \~X(tk - 1) \rightarrow \~X(tk); it is clear that this transition gives a time homogeneous
Markov chain. Define the operator \scrS (k) : Cb(RNd) \rightarrow Cb(RNd) as

\scrS (k)\phi := E[\phi ( \~X(k\tau ))| \~X(0) = x].(4.14)

Below, we sometimes use Ex to mean E(\cdot | \~X(0) = x) for convenience. Then, by the
Markov property [16], it can be shown that

\scrS (k) = \scrS k := \scrS \circ \cdot \cdot \cdot \circ \scrS .(4.15)

In fact, for any test function \phi , we let uk := \scrS (k)\phi . Then, it holds that

uk(x) = E[\phi ( \~X(tk))| \~X(0) = x]

= E[E[\phi ( \~X(tk))| \~X(t1)]| \~X(0) = x]

= E[uk - 1( \~X(t1))| \~X(0) = x],

where the third equality holds by the Markov property. This means

\scrS (k) = \scrS \circ \scrS (k - 1).
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This then shows that \{ \scrS (k) : k \geq 0\} forms a semigroup. Clearly, \scrS (k) is nonexpansive
in L\infty (RNd); i.e.,

\| \scrS (k)\phi \| \infty \leq \| \phi \| \infty .(4.16)

Our goal is then to show that the semigroup \{ \scrS (k) : k \geq 0\} is close to etk\scrL weakly on
test functions of the form

\phi (x) =
1

N

N\sum 
i=1

\omega i\varphi (xi), \varphi \in C\infty 
b (Rd),

instead of all test functions \phi \in C\infty 
b (RNd) for our purpose.

Remark 4.6. The operator \scrS (k) is standard for Markov chains, and see [36, sec-
tion 3.4.2]. Using the semigroup \{ \scrS (k)\} to show weak convergence of Markov chains
to time-continuous stochastic processes is not so common in literature. One of such
examples is [3] where the semigroup technique is used implicitly for a weak scheme
of SDEs. In [18], the semigroup generated by SGD was used explicitly to show its
approximation to a time-continuous diffusion process. Using the semigroup \scrS (k) gen-
erated by RBM in this work to show the weak convergence shares similarity with the
proof in [18] for SGD, but there is a big difference. Here, we aim to prove the conver-
gence of empirical measures independent of N , so we need to lift the test functions
from Rd to RNd, and thus the test functions in RNd is a subclass of C\infty 

b (RNd). We
also need to control the derivatives of the backward equations for such test functions
independent of N .

We now give the proof of the weak convergence.

Proof of Theorem 4.3. The weak error in (4.2) is to compare u in (4.4) and \scrS n\phi 
for test function

\phi (x) =
1

N

N\sum 
i=1

\omega i\varphi (xi).(4.17)

By (4.15) (\scrS (k) = \scrS k), we need to estimate

\scrS n\phi (x) - u(x, n\tau ) =
n\sum 

k=1

\Bigl[ 
\scrS ku(x, (n - k)\tau ) - \scrS k - 1u(x, (n - k + 1)\tau )

\Bigr] 
.

Clearly, by (4.16), one has

| \scrS n\phi (x) - u(x, n\tau )| \leq 
n\sum 

k=1

\| \scrS u(x, (n - k)\tau ) - u(x, (n - k + 1)\tau )\| \infty .

By the definition of S, one has

\scrS u(x, (n - k)\tau ) = Exu( \~X(\tau ), (n - k)\tau )

= E\scrC Ex(u( \~X(\tau ), (n - k)\tau )| \scrC )
= E\scrC e

\tau \scrL \scrC u(x, (n - k)\tau ).

The second equality means that we fix a division of batches to compute the expecta-
tion with respect to the Brownian motions, and then average out about the random
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batches. For the last equality, we recall that e\tau \scrL \scrC means the solution semigroup by
\partial tv = \scrL \scrC v.

Note

e\tau \scrL \scrC u(x, (n - k)\tau ) =u(x, (n - k)\tau ) + \tau \scrL \scrC u(x, (n - k)\tau )

+

\int \tau 

0

(\tau  - z)\scrL 2
\scrC e

z\scrL \scrC u(x, (n - k)\tau ) dz.

For the remainder term, by Lemma 4.5, it holds for every partition of batches that

\| \scrL 2
\scrC e

z\scrL \scrC u(x, (n - k)\tau )\| \infty = \| ez\scrL \scrC \scrL 2
\scrC u(x, (n - k)\tau )\| \infty 

\leq \| \scrL 2
\scrC u(x, (n - k)\tau )\| \infty \leq C.

Hence,

\| \scrS u(x, (n - k)\tau ) - u(x, (n - k)\tau ) - E\tau \scrL \scrC u(x, (n - k)\tau )\| \infty \leq C\tau 2,

with C independent of N . Here, we used the fact that e\tau \scrL \scrC is nonexpansive in L\infty ,
similar as in (4.8).

Similarly,

u(x, (n - k + 1)\tau ) = e\tau \scrL u(x, (n - k)\tau ) = u(x, (n - k)\tau )

+ \tau \scrL u(x, (n - k)\tau ) +

\int \tau 

0

(\tau  - z)\scrL 2ez\scrL u(x, (n - k)\tau ) dz.

The remainder term is again bounded by C\tau 2. Since

E\scrL \scrC = \scrL ,

one finds that

\| \scrS u(x, (n - k)\tau ) - u(x, (n - k + 1)\tau )\| \infty \leq C\tau 2,

with C independent of N .
Hence,

| \scrS n\phi (x) - u(x, n\tau )| \leq 
n\sum 

k=1

\| \scrS u(x, (n - k)\tau ) - u(x, (n - k + 1)\tau )\| \infty \leq Cn\tau 2 \leq C(T )\tau ,

because n\tau \leq T . The claim is then proved.

Remark 4.7. This result is reminiscent of the results by Golse et al. [21], where
the average of one marginal density matrices for N body quantum system has been
used for the convergence of RBM, and the convergence rate is also O(\tau ) under a
certain weak norm.

The backward equation for the random batch system is given by

\partial t\~u =
N\sum 
i=1

\left[  b(xi) +
1

p - 1

\sum 
j:j \not =i

I
(k - 1)
ij mjKij(xi, xj)

\right]  \cdot \nabla xi
\~u+

N\sum 
i=1

1

2
\sigma 2\Delta xi

\~u.(4.18)

Hence, Theorem 4.3 in fact says the following result when we apply RBM to
backward equations or Liouville equations (\sigma = 0).
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Theorem 4.8. Consider the backward equation (4.5) and its corresponding equa-
tion using RBM (4.18). If the initial value is given by

u| t=0 = \~u| t=0 =
1

N

N\sum 
i=1

\omega i\varphi (xi),(4.19)

then it holds that

sup
t\leq T

\| u(t) - \~u(t)\| \infty \leq C(T )\tau .(4.20)

Remark 4.9. For general initial data, the approximation in L\infty given by RBM
for backward equation (Liouville equation when \sigma = 0) cannot be uniform in N .

Remark 4.10. The situation can be different if one considers the Liouville equa-
tion of second order system for the density distribution [26]. Clearly, in this case, we
cannot use the L\infty norm to gauge the difference. Instead, a certain weak norm for
the combination of one marginals should be considered as in [21]. This is left for the
future.

Appendix A. Proof of Lemma 3.4.

Proof. The first part is similar as in [25] except that for b(\cdot ) terms, we need to
use the one-sided Lipschitz condition. Hence, we omit the proof.

We now prove (3.12). Consider a realization so that the equation is written as

d \~Xi(t) = b( \~Xi) dt+
1

p - 1

\sum 
j\in \scrC \theta ,j \not =i

mjKij( \~X
i, \~Xj) + \sigma dBi,

where \scrC \theta again is the random batch that contains i from the random division at tk - 1,
i.e., \scrC (k - 1). It follows that

E
\Bigl( 
\~Xi(t) - \~Xi(tk - 1)

\bigm| \bigm| \bigm| \scrF k - 1

\Bigr) 
=

\int t

tk - 1

E(b( \~Xi)| \scrF k - 1) ds

+

\int t

tk - 1

E

\left(  1

p - 1

\sum 
j\in \scrC \theta ,j \not =i

mjKij( \~X
i, \~Xj)

\bigm| \bigm| \bigm| \scrF k - 1

\right)  ds.

Note that K is bounded and | b(x)| \leq C(1 + | x| q) for some q > 0. Together with
(3.11), this implies the first estimate in (3.12).

For the second equation in (3.12), It\^o's formula implies that

d

dt
E
\Bigl[ 
| \~Xi(t) - \~Xi(tk - 1)| 2| \scrF k - 1

\Bigr] 
= 2E

\left[  \Bigl( \~Xi(t) - \~Xi(tk - 1)
\Bigr) 
\cdot 

\left(  b( \~Xi) +
1

p - 1

\sum 
j\in \scrC \theta ,j \not =i

mjKij( \~X
i, \~Xj)

\right)  \bigm| \bigm| \bigm| \scrF k - 1

\right]  + \sigma 2d.

Note that\Bigl( 
\~Xi(t) - \~Xi(tk - 1)

\Bigr) 
\cdot b( \~Xi) \leq \beta | \~Xi(t) - \~Xi(tk - 1)| 2 +

\Bigl( 
\~Xi(t) - \~Xi(tk - 1)

\Bigr) 
\cdot b( \~Xi(tk - 1))

\leq C| \~Xi(t) - \~Xi(tk - 1)| 2 + C(1 + | \~Xi(tk - 1)| q).
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Hence,

d

dt
E
\Bigl[ 
| \~Xi(t) - \~Xi(tk - 1)| 2| \scrF k - 1

\Bigr] 
\leq CE

\Bigl[ 
| \~Xi(t) - \~Xi(tk - 1)| 2| \scrF k - 1

\Bigr] 
+C(1+| \~Xi(tk - 1)| q).

The claim then follows.

Appendix B. Proof of Proposition 4.4.
Step 1---Estimates of \nabla xiu.
Taking \nabla x\ell 

in (4.5), one has

\partial t\nabla x\ell 
u = \scrL \nabla x\ell 

u+ f\ell (x)(B.1)

with

f\ell (x, t) =

\left[  \nabla x\ell 
b(x\ell ) +

1

N  - 1

N\sum 
j=1

mj\nabla x\ell 
K\ell j(x\ell , xj)

\right]  \cdot \nabla x\ell 
u(B.2)

+
1

N  - 1

N\sum 
j=1

m\ell \nabla x\ell 
Kj\ell (xj , x\ell ) \cdot \nabla xj

u.

Here \nabla x\ell 
K\ell j is a second order tensor, and we use the convention that (A \cdot v)i :=\sum 

j Aijvj .
Hence,

\nabla x\ell 
u(t) = et\scrL \nabla x\ell 

u(0) +

\int t

0

e(t - s)\scrL f\ell (x, s) ds.

Since the semigroup et\scrL is nonexpansive in L\infty as in (4.8), we find

\| \nabla x\ell 
u(t)\| \infty \leq \| \nabla x\ell 

u(0)\| \infty +

\int t

0

\| f\ell (x, s)\| \infty ds.

However, by (B.2), the linear transform from [\nabla x1u, . . . ,\nabla xN
u] to [f1, . . . , fN ] is a

block matrix with the L\infty norm bounded. This is because all the off-diagonal blocks
are of order O( 1

N ). Hence,

\| f\ell (x, s)\| \infty \leq Cmax
\ell 

\| \nabla x\ell 
u(t)\| \infty =: a(t).

Therefore,

a(t) \leq a(0) + C

\int t

0

a(s) ds.

This means
sup
t\leq T

a(t) \leq C(T )a(0).

Clearly since

u(0) =
1

N

\sum 
i

\omega i\varphi (xi) \Rightarrow \| \nabla xi
u(0)\| \infty \leq C

1

N
,

the estimate for \nabla xi
u follows by Gr\"onwall's lemma.

Step 2---Second order derivatives.
We first compute the \nabla 2

xi
derivatives (the xi Hessian).

\partial t\nabla 2
x\ell 
u = \scrL \nabla 2

x\ell 
u+ \~f\ell ,(B.3)
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with

\~f\ell =2\nabla x\ell 
b \cdot \nabla 2

x\ell 
u+

1

N  - 1

\sum 
j

2mj\nabla x\ell 
K\ell j(x\ell , xj) \cdot \nabla 2

x\ell 
u

+
1

N  - 1

\sum 
i:i\not =\ell 

2m\ell \nabla x\ell 
Ki\ell (xi, x\ell ) \cdot \nabla xi

\nabla x\ell 
u

+

\left(  2\nabla x\ell 
b+

1

N  - 1

\sum 
j

mj\nabla 2
x\ell 
K\ell j(x\ell , xj)

\right)  \cdot \nabla x\ell 
u

+
1

N  - 1

\sum 
i

m\ell \nabla 2
x\ell 
Ki\ell (xi, x\ell ) \cdot \nabla xiu.

(B.4)

Again, \nabla xib for a vector field b is a second order tensor with (\nabla xib)rs = \partial 
x
(r)
i
b(s).

For the dot product between tensors: A \cdot B means the contraction between the last
index of A and the first index of B. For example, we use the convention that

(\nabla x\ell 
Ki\ell (xi, x\ell ) \cdot \nabla xi

\nabla x\ell 
u)rs :=

d\sum 
q=1

\partial 
x
(r)
\ell 

K
(q)
i\ell \partial 

x
(q)
i
\partial 
x
(s)
\ell 

u.

Thus,

\~f\ell = \~A1
\ell \cdot \nabla 2

x\ell 
u+

1

N  - 1

\sum 
i

\~A2
i\ell \cdot \nabla xi\nabla x\ell 

u

+ \~A3
\ell \cdot \nabla \ell u+

1

N  - 1

\sum 
i

\~A4
i\ell \cdot \nabla xiu.

Here, all the \~A tensors are bounded independent of N . There are O(N) terms in
the summation in the first line, and thus the linear transform is again bounded in
L\infty \rightarrow L\infty independent of N . The terms on the second line is clearly controlled as
C 1

N by the estimates of \nabla xi
u.

Similarly, one can compute for \ell \not = q that

\partial t\nabla x\ell 
\nabla xqu = \scrL \nabla x\ell 

\nabla xqu+ g\ell q,(B.5)

where the expression of g\ell q is complicated but it is of the following form

g\ell q =A1
\ell m \cdot \nabla x\ell 

\nabla xqu+
1

N  - 1

\sum 
j

(A2
j\ell \cdot \nabla xj\nabla x\ell 

u+A3
jq \cdot \nabla xj\nabla xqu)(B.6)

+
1

N  - 1
(m\ell \nabla x\ell 

\nabla xqK\ell q(x\ell , xq) \cdot \nabla \ell u+mq\nabla xq\nabla x\ell 
Kq\ell (xq, x\ell ) \cdot \nabla xqu).

Here, Ak's are second order tensors that are made up of the derivatives of b,Kij , and
thus bounded by constants independent of N . Note that there are O(N) terms in the
summation in the first line, and therefore the linear transform is again bounded in
L\infty \rightarrow L\infty independent of N . The terms on the second line is clearly controlled as
C 1

N2 by the estimates of \nabla xi
u.

We first of all consider all the second order derivatives \nabla x\ell 
\nabla xq

where \ell can be
equal or not equal to q . By similar argument as for \nabla xi

u, one can get the estimate

\| \nabla x\ell 
\nabla xq

u(t)\| \infty \leq \| \nabla x\ell 
\nabla xq

u(0)\| \infty + C

\int t

0

max
\ell ,q

\| \nabla x\ell 
\nabla xq

u(s)\| \infty ds+ C(T )
1

N
.

(B.7)
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Moreover,

\| \nabla 2
x\ell 
u(0)\| \infty \leq C

1

N
, \| \nabla x\ell 

\nabla xqu(0)\| \infty = 0.

Then, Gr\"onwall's inequality tells us that

max
\ell ,q

\| \nabla x\ell 
\nabla xq

u(t)\| \infty \leq C(T )
1

N
.(B.8)

Now, we focus on (B.5) for \ell \not = q. To do this, we need to separate out the j = \ell 
and j = q terms in (B.6), which are of order O( 1

N ), and thus with the prefactor
1/(N  - 1), they contribute O(1/N2) to g\ell q. Hence, one has for \ell \not = q that

\| \nabla x\ell 
\nabla xq

u(t)\| \infty \leq \| \nabla x\ell 
\nabla xq

u(0)\| \infty + C

\int t

0

max
\ell \not =q

\| \nabla x\ell 
\nabla xq

u(s)\| \infty ds+ C(T )
1

N2
.

(B.9)

Since \| \nabla x\ell 
\nabla xqu(0)\| \infty = 0 for \ell \not = q, one then has

max
\ell \not =q

\| \nabla x\ell 
\nabla xqu(t)\| \infty \leq C

\int t

0

max
\ell \not =q

\| \nabla x\ell 
\nabla xqu(s)\| \infty ds+ C(T )

1

N2
.(B.10)

Gr\"onwall's lemma then tells us that

max
\ell \not =q

\| \nabla x\ell 
\nabla xqu(t)\| \infty \leq C

1

N2
.(B.11)

Step 3---Higher order derivatives.
The higher order derivatives can be similarly estimated using induction. For these

proofs, some derivatives that are not listed in Proposition 4.4 should be involved. For
example, for third order derivatives, one should expect

\| \nabla xi
\nabla xj

\nabla xk
u\| \infty = O(1/N3)

for distinct i, j, k. These proofs are tedious but the essential ideas are the same as we
prove the claims for the Hessian. We omit the details.
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