A note on Monge-Ampère Keller-Segel equation

Hui Huang ${ }^{\text {a,b,*, }}$, Jian-Guo Liu ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
${ }^{\mathrm{b}}$ Departments of Physics and Mathematics, Duke University, Durham, NC 27708, USA

A R T I C L E I N F O

Article history:

Received 8 April 2016
Received in revised form 5 May 2016
Accepted 5 May 2016
Available online 13 May 2016

Keywords:

Chemotaxis
Polar factorization
Convex potential
Brenier map
Global existence

Abstract

This note studies the Monge-Ampère Keller-Segel equation in a periodic domain $\mathbb{T}^{d}(d \geq 2)$, a fully nonlinear modification of the Keller-Segel equation where the Monge-Ampère equation $\operatorname{det}\left(I+\nabla^{2} v\right)=u+1$ substitutes for the usual Poisson equation $\Delta v=u$. The existence of global weak solutions is obtained for this modified equation. Moreover, we prove the regularity in $L^{\infty}\left(0, T ; L^{\infty} \cap W^{1,1+\gamma}\left(\mathbb{T}^{d}\right)\right)$ for some $\gamma>0$.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Keller-Segel (KS) model was firstly presented in 1970 to describe the chemotaxis of cellular slime molds [1]. The original model was considered in 2-dimension,

$$
\left\{\begin{array}{l}
\partial_{t} u=\Delta u+\nabla \cdot(u \nabla v), \quad x \in \mathbb{R}^{2}, t>0 \tag{1}\\
\Delta v=u(t, x) \\
u(0, x)=u_{0}(x)
\end{array}\right.
$$

In the context of biological aggregation, $u(t, x)$ represents the bacteria density, and $v(t, x)$ represents the chemical substance concentration.

In this note, we study the Monge-Ampère Keller-Segel (MAKS) model in a periodic domain $\mathbb{T}^{d}=\mathbb{R}^{d} / \mathbb{Z}^{d}$ $(d \geq 2)$:

$$
\left\{\begin{array}{l}
\partial_{t} u=\Delta u+\nabla \cdot(u \nabla v), \quad x \in \mathbb{T}^{d}, t>0 \tag{2}\\
\operatorname{det}\left(I+\nabla^{2} v\right)=u+1, \\
u(0, x)=u_{0}(x)
\end{array}\right.
$$

[^0]where I is the identity matrix. In the absence of Δu term in (2), this model was introduced by Brenier $[2,(5.34),(5.36)]$ as a fully nonlinear version of popular models in chemotaxis theory, such as the celebrated Keller-Segel model or similar models in astrophysics. We will prove the global existence of weak solutions to MAKS model (2) in a weak sense, which is made precise in Section 2.

Monge-Ampère Keller-Segel system (2) is an approximation of the original KS system (1) in the following re-scaling. Let us recast the equation (2) by introducing the new unknowns:

$$
u^{\delta}(t, x)=\frac{1}{\delta} u\left(\frac{t}{\delta}, \frac{x}{\sqrt{\delta}}\right) ; \quad v^{\delta}(t, x)=v\left(\frac{t}{\delta}, \frac{x}{\sqrt{\delta}}\right) .
$$

Then we have

$$
u(t, x)=\delta u^{\delta}(\delta t, \sqrt{\delta} x) ; \quad v(t, x)=v^{\delta}(\delta t, \sqrt{\delta} x) .
$$

Moreover, these new unknowns should be governed by the following MAKS system

$$
\left\{\begin{array}{l}
\partial_{t} u^{\delta}=\Delta u^{\delta}+\nabla \cdot\left(u^{\delta} \nabla v^{\delta}\right), \tag{3}\\
\operatorname{det}\left(I+\delta \nabla^{2} v^{\delta}\right)=1+\delta u^{\delta} .
\end{array}\right.
$$

We formally linearize the determinant $\operatorname{det}\left(I+\delta \nabla^{2} v^{\delta}\right)$ around the identity matrix and obtain

$$
\begin{equation*}
1+\delta u^{\delta}=\operatorname{det}\left(I+\delta \nabla^{2} v^{\delta}\right)=1+\delta \Delta v^{\delta}+O\left(\delta^{2}\right) \tag{4}
\end{equation*}
$$

Then the Monge-Ampère equation turns into the Poisson equation $\Delta v^{\delta}=u^{\delta}+O(\delta)$, from which, when we set $O(\delta)=0$, we recognize the MAKS system (3) as the original KS system showed in (1).

The density u in the original KS system (1) is driven by the gradient of Newtonian potential $\nabla v=\nabla N * u$, where N is the fundamental solution of Laplacian equation, and potential v has the superposition principle relation with u. Moreover, it has an important property: if $0 \leq u \in L^{\infty}\left(\mathbb{T}^{d}\right)$, then ∇v is \log-Lipschitz continuous. However, for MAKS model (2), the Newtonian potential is replaced by a convex potential $V[u]$ discovered by Brenier [3]. The advantage is that $\nabla v=\nabla V[u]-x$ is globally convex and has uniform L^{∞} bound if $0 \leq u \in L^{1}\left(\mathbb{T}^{d}\right)$. But the convex potential will lose the superposition principle relation with the density.

There are many mathematical models involved substituting the fully nonlinear Monge-Ampère equation for the Poisson equation. For example, the semigeotrophic equations in meteorology have a long history. After suitable changes of variables, they can be reformulated as a coupled Monge-Ampère/transport problem [4], which appear as a variant of the two-dimensional incompressible Euler equations in vorticity form, where the Poisson equation that relates to the stream function and the vorticity field is replaced by the Monge-Ampère equation [4-7]. Moreover, in [8], Brenier and Loeper studied the Vlasov-Monge-Ampère system, a fully non-linear version of the Vlasov-Poisson system. Similarly, Brenier [9], by substituting the Monge-Ampère equation for the linear Poisson equation to model gravitation, he introduced a modified Zeldovich approximate model related to the early universe reconstruction problem.

2. The polar decomposition theorem

The polar factorization of maps has been discovered by Brenier [3]. It was later extended to the general case of Riemannian manifolds by McCann in [10].

Let us consider a mapping $X: \mathbb{R}^{d} \mapsto \mathbb{R}^{d}$ such that for all $\vec{p} \in \mathbb{Z}^{d}, X(\cdot+\vec{p})=X+\vec{p}$. We use the push-forward of Lebesgue measure of \mathbb{R}^{d} by X, and it is denoted by $u=X_{\sharp} d x$. Then u is a probability measure on \mathbb{T}^{d} and we have the following theorem:

Theorem 1 (Theorem 1.2 [6]). Let $X: \mathbb{R}^{d} \mapsto \mathbb{R}^{d}$ be described as above with $u=X_{\sharp} d x$.

1. Up to a constant, there exists a unique convex function $\widehat{V}[u]$ such that $\widehat{V}[u]-x^{2} / 2$ is \mathbb{Z}^{d}-periodic (and thus $\nabla \widehat{V}[u]-x$ is \mathbb{Z}^{d}-periodic), and

$$
\begin{equation*}
\forall \varphi \in C^{0}\left(\mathbb{T}^{d}\right), \quad \int_{\mathbb{T}^{d}} \varphi(\nabla \widehat{V}[u](x)) d x=\int_{\mathbb{T}^{d}} \varphi(x) d u(x) \tag{5}
\end{equation*}
$$

2. Let $V[u]$ be the Legendre transform of $\widehat{V}[u]$. If u is Lebesgue integrable, then $V[u]$ is a convex function satisfying that $V[u]-x^{2} / 2$ is \mathbb{Z}^{d}-periodic (and thus $\nabla V[u]-x$ is \mathbb{Z}^{d}-periodic), unique up to a constant, and

$$
\begin{equation*}
\forall \varphi \in C^{0}\left(\mathbb{T}^{d}\right), \quad \int_{\mathbb{T}^{d}} \varphi(\nabla V[u](x)) d u(x)=\int_{\mathbb{T}^{d}} \varphi(x) d x \tag{6}
\end{equation*}
$$

Moreover we have the bound $\|\nabla V[u]-x\|_{L^{\infty}\left(\mathbb{T}^{d}\right)} \leq \sqrt{d} / 2$.
Link with the Monge-Ampère equation. We can interpret (5) as a weak version of the MongeAmpère equation

$$
\begin{equation*}
u(\nabla \widehat{V}) \operatorname{det} \nabla^{2} \widehat{V}=1 \tag{7}
\end{equation*}
$$

and (6) can be seen as a weak version of another Monge-Ampère equation

$$
\begin{equation*}
\operatorname{det} \nabla^{2} V=u \tag{8}
\end{equation*}
$$

Moreover, we will also use the following result originally from [3]. The first one establishes the continuity of the polar decomposition.

Theorem 2 (Theorem 2.6[6]). Let u_{n} be a sequence of Lebesgue integrable positive measures on \mathbb{T}^{d}, such that for all $n, \int_{\mathbb{T}_{d}} d u_{n} \leq C$ and let $\widehat{V}_{n}=\widehat{V}\left[u_{n}\right], V_{n}=V\left[u_{n}\right]$ be as defined in Theorem 1. If for any $\varphi \in C^{0}\left(\mathbb{T}^{d}\right)$ such that $\int \varphi d u_{n}$ converges to $\int \varphi d u$, then the sequence \widehat{V}_{n} can be chosen in such a way that \widehat{V}_{n} converges to $\widehat{V}[u]$ uniformly on \mathbb{T}^{d} and strongly in $W^{1,1}\left(\mathbb{T}^{d}\right)$, and V_{n} converges to $V[u]$ uniformly on \mathbb{T}^{d} and strongly in $W^{1,1}\left(\mathbb{T}^{d}\right)$.

Theorem 1 allows us to recast MAKS equation (2) as

$$
\begin{align*}
& \partial_{t} u=\Delta u+\nabla \cdot(u(\nabla V[u+1]-x)), \quad x \in \mathbb{T}^{d}, t>0 \tag{9a}\\
& u(0, x)=u_{0}(x) \tag{9b}
\end{align*}
$$

where $V[u+1]$ is as defined in Theorem 1. For simplicity, we denote $V[u+1]$ as $V[u]$.
Remark 1. If u is continuous and satisfies $0 \leq u \leq C_{1}$, it has been proved in [11] that $\nabla V[u](x)$ is log-Lipschitz continuous. The log-Lipschitz continuity usually ensures the uniqueness and stability in the Wasserstein distance. Moreover, according to [8, Theorem 4.4], if $u \in C^{\alpha}\left(\mathbb{T}^{d}\right), \alpha \in(0,1)$, then $V[u]$ is a classical solution of

$$
\begin{equation*}
\operatorname{det} \nabla^{2} V[u]=u+1 \tag{10}
\end{equation*}
$$

3. Existence of global weak solutions

To begin this section, we give the following definition of the weak solution to the MAKS equation (9).

Definition 1. Let initial data $0 \leq u_{0} \in L^{1}\left(\mathbb{T}^{d}\right)$. Then (u, V) is a global weak solution to (9) if it satisfies for any $T>0$:

1. $u \in L^{\infty}\left(0, T ; L^{1}\left(\mathbb{T}^{d}\right)\right) \cap L^{2}\left(0, T ; H^{1}\left(\mathbb{T}^{d}\right)\right)$ and $\partial_{t} u \in L^{2}\left(0, T ; H^{-1}\left(\mathbb{T}^{d}\right)\right)$.
2. $\forall \varphi \in C_{c}^{\infty}\left([0, T) \times \mathbb{T}^{d}\right)$,

$$
\int_{0}^{T} \int_{\mathbb{T}^{d}} u \partial_{t} \varphi d x d t=\int_{0}^{T} \int_{\mathbb{T}^{d}}(\nabla u \nabla \varphi+u(\nabla V-x) \cdot \nabla \varphi) d x d t-\int_{\mathbb{T}^{d}} u_{0} \varphi(0, x) d x
$$

where V is defined as in Theorem 1.

The main result of this note is as follows:

Theorem 3. Let initial data $0 \leq u_{0} \in L^{2}\left(\mathbb{T}^{d}\right)$. Then the MAKS system (2) admits a global non-negative weak solution (u, V) in $t \in[0, T]$ for any $T>0$. And the conservation of mass holds: $\int_{\mathbb{T}^{d}} u(t, x) d x=\int_{\mathbb{T}^{d}} u_{0}(x) d x$.

Proof. We build a sequence of approximate solutions $\left(u_{\varepsilon}, V_{\varepsilon}\right)_{\varepsilon>0}$ by regularization and let ε goes to zero. To do the limiting process, the non-linear term will be treated with the help of Theorem 2.

Step 1: Construction of a sequence of approximate solutions. We consider a mollifier $\psi(x) \in$ $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ such that $\psi(x) \geq 0, \quad \int_{\mathbb{T}^{d}} \psi(x) d x=1$ and $\psi_{\varepsilon}(x)=\varepsilon^{-d} \psi(x / \varepsilon)$. And we can define the mollification as $\psi_{\varepsilon} * u_{0}:=\int_{\mathbb{T}^{d}} \psi_{\varepsilon}(x-y) u_{0}(y) d y$. Then we study solutions to the following approximate problem

$$
\begin{align*}
& \partial_{t} u_{\varepsilon}=\Delta u_{\varepsilon}+\nabla \cdot\left(u_{\varepsilon}\left(\nabla V_{\varepsilon}(x)-x\right)\right), \quad x \in \mathbb{T}^{d}, t>0 \tag{11a}\\
& u_{\varepsilon, 0}(x)=\psi_{\varepsilon} * u_{0}(x) \tag{11b}\\
& V_{\varepsilon}(x)=\psi_{\varepsilon} * V\left[u_{\varepsilon}\right] \tag{11c}
\end{align*}
$$

Since V_{ε} given by (11c) is bounded in $H^{k}\left(\mathbb{T}^{d}\right)$ for any k and $\varepsilon>0$, the estimate for Eq. (11a) for any fixed $\varepsilon>0$ is basically same as that for the heat equation. Hence, the solvability of the regularized problem (11) can be obtained by using the technique in Majda and Bertozzi [12, Section 3.2.2], where it proved the global existence of the solution to a regularization of the Euler and Navier-Stokes equation by using the Picard theorem and continuation property of ODEs on a Banach space. We omit the detail here.

Step 2: Weak convergence of u_{ε} and ∇u_{ε}. Multiplying Eq. (11a) by $2 u_{\varepsilon}$ and integrating over \mathbb{T}^{d}, we obtain

$$
\begin{equation*}
\frac{d}{d t}\left\|u_{\varepsilon}\right\|_{2}^{2}+2\left\|\nabla u_{\varepsilon}\right\|_{2}^{2}=-\int_{\mathbb{T}^{d}} u_{\varepsilon}\left(\nabla V_{\varepsilon}-x\right) \cdot \nabla u_{\varepsilon} d x \leq\left\|\nabla u_{\varepsilon}\right\|_{2}^{2}+C\left\|u_{\varepsilon}\right\|_{2}^{2} \tag{12}
\end{equation*}
$$

where we have used $\left\|\nabla V_{\varepsilon}-x\right\|_{\infty} \leq \sqrt{d} / 2$.
Hence for any $T>0$, the following estimates hold

$$
\begin{equation*}
\left\|u_{\varepsilon}\right\|_{L^{\infty}\left(0, T ; L^{2}\left(\mathbb{T}^{d}\right)\right)} \leq C_{T}, \quad\left\|\nabla u_{\varepsilon}\right\|_{L^{2}\left(0, T ; L^{2}\left(\mathbb{T}^{d}\right)\right)} \leq C_{T} \tag{13}
\end{equation*}
$$

According to the above estimates, there is a subsequence (still denote u_{ε}), such that as $\varepsilon \rightarrow 0$, the following weak convergence results hold

$$
\begin{equation*}
u_{\varepsilon} \stackrel{*}{\rightharpoonup} u \quad \text { in } L^{\infty}\left(0, T ; L^{2}\left(\mathbb{T}^{d}\right)\right), \quad \nabla u_{\varepsilon} \rightharpoonup \nabla u \quad \text { in } L^{2}\left(0, T ; L^{2}\left(\mathbb{T}^{d}\right)\right) \tag{14}
\end{equation*}
$$

Step 3: Strong convergence of $\nabla V_{\varepsilon}(t, \cdot)$ a.e. t. We claim that for any $p \in[1, \infty)$,

$$
\begin{equation*}
\nabla V_{\varepsilon}(t, \cdot) \rightarrow \nabla V(t, \cdot) \quad \text { in } L^{p}\left(\mathbb{T}^{d}\right), \text { a.e. } t \in[0, T] \tag{15}
\end{equation*}
$$

Indeed, such strong convergence of ∇V_{ε} follows from Theorem 2 provided that we have for a.e. $t \in[0, T]$,

$$
\begin{equation*}
\int_{\mathbb{T}^{d}} \varphi(x) u_{\varepsilon}(t, x) d x \rightarrow \int_{\mathbb{T}^{d}} \varphi(x) u(t, x) d x \tag{16}
\end{equation*}
$$

for any $\varphi \in C^{0}\left(\mathbb{T}^{d}\right)$. To verify (16), we need to prove that there is a subsequence (still denote u_{ε})

$$
\begin{equation*}
u_{\varepsilon} \rightarrow u \quad \text { in } L^{2}\left(\mathbb{T}^{d}\right) \text { a.e. } t \in[0, T] \text {, as } \varepsilon \rightarrow 0 . \tag{17}
\end{equation*}
$$

Indeed, it is easy to check that $\left\|\partial_{t} u_{\varepsilon}\right\|_{L^{2}\left(0, T ; H^{-1}\left(\mathbb{T}^{d}\right)\right)} \leq C_{T}$, which leads to

$$
\begin{equation*}
u_{\varepsilon} \rightarrow u \quad \text { in } L^{2}\left(0, T ; L^{2}\left(\mathbb{T}^{d}\right)\right), \text { as } \varepsilon \rightarrow 0, \tag{18}
\end{equation*}
$$

by using Aubin-Lions lemma as $H^{1}\left(\mathbb{T}^{d}\right) \hookrightarrow \hookrightarrow L^{2}\left(\mathbb{T}^{d}\right) \hookrightarrow H^{-1}\left(\mathbb{T}^{d}\right)$. Then (17) follows from (18), which completes the proof of (15).

Step 4: Existence of a global weak solution. Next, we will show that $(u, V[u])$ is a weak solution to (9). The weak formulation for u_{ε} is that for any test function $\varphi \in C_{c}^{\infty}\left([0, T) \times \mathbb{T}^{d}\right)$,

$$
\begin{equation*}
\int_{0}^{T} \int_{\mathbb{T}^{d}} u_{\varepsilon} \partial_{t} \varphi d x d t=\int_{0}^{T} \int_{\mathbb{T}^{d}}\left(\nabla u_{\varepsilon} \nabla \varphi+u_{\varepsilon}\left(\nabla V_{\varepsilon}-x\right) \cdot \nabla \varphi\right) d x d t-\int_{\mathbb{T}^{d}} u_{\varepsilon, 0} \varphi(0, x) d x . \tag{19}
\end{equation*}
$$

Recall that (14), (15), (18) and $\left\|\nabla V_{\varepsilon}-x\right\|_{\infty} \leq \sqrt{d} / 2$. Then by using the dominant convergence theorem, one concludes that by passing limit $\varepsilon \rightarrow 0$ in (19)

$$
\begin{equation*}
\int_{0}^{T} \int_{\mathbb{T}^{d}} u \partial_{t} \varphi d x d t=\int_{0}^{T} \int_{\mathbb{T}^{d}}(\nabla u \nabla \varphi+u(\nabla V-x) \cdot \nabla \varphi) d x d t-\int_{\mathbb{T}^{d}} u_{0} \varphi(0, x) d x \tag{20}
\end{equation*}
$$

We finished the proof of the existence of global weak solutions.
Step 5: Positivity preserving. By using Lemma 7.6 in [13], if we define the negative part of the function u as $u_{-}:=\min \{u, 0\}$, then one can easily prove that

$$
\begin{equation*}
\frac{d}{d t}\left\|u_{-}\right\|_{2}^{2}+2\left\|\nabla u_{-}\right\|_{2}^{2}=-\int_{\mathbb{T}^{d}} u_{-}(\nabla V-x) \cdot \nabla u_{-} d x \leq\left\|\nabla u_{-}\right\|_{2}^{2}+C\left\|u_{-}\right\|_{2}^{2} \tag{21}
\end{equation*}
$$

Applying Gronwall's inequality to

$$
\begin{equation*}
\frac{d}{d t}\left\|u_{-}\right\|_{2}^{2} \leq C\left\|u_{-}\right\|_{2}^{2} ; \quad\left\|u_{0_{-}}\right\|_{2}^{2}=0 \tag{22}
\end{equation*}
$$

one has $\left\|u_{-}\right\|_{2}^{2} \equiv 0$, which leads to $u(t, x) \geq 0$.
Step 6: Conservation of mass. Integrating (9a) over \mathbb{T}^{d} and using the fact that $\nabla u, \nabla V-x$ are periodic, one has

$$
\begin{equation*}
\frac{d}{d t} \int_{\mathbb{T}^{d}} u d x=\int_{\mathbb{T}^{d}} \Delta u d x+\int_{\mathbb{T}^{d}} \nabla \cdot(u(\nabla V-x)) d x=0 \tag{23}
\end{equation*}
$$

Thus, we conclude that

$$
\begin{equation*}
\int_{\mathbb{T}^{d}} u(t, x) d x=\int_{\mathbb{T}^{d}} u_{0}(x) d x \tag{24}
\end{equation*}
$$

4. Regularity in $L^{\infty}\left(0, T ; L^{\infty} \cap W^{1,1+\gamma}\left(\mathbb{T}^{d}\right)\right)$

Theorem 4. Let initial data $0 \leq u_{0} \in L^{\infty}\left(\mathbb{T}^{d}\right)$ and $\nabla u_{0} \in L^{1+\gamma}\left(\mathbb{T}^{d}\right)$ for some $\gamma>0$. Suppose (u, V) be a weak solution to MAKS equation (9), then for any $T>0$ and $t \in[0, T]$,

$$
\begin{equation*}
u(t, x) \in L^{\infty}\left(0, T ; L^{\infty} \cap W^{1,1+\gamma}\left(\mathbb{T}^{d}\right)\right) \tag{25}
\end{equation*}
$$

Proof. First we will prove that

$$
\begin{equation*}
\|u(\cdot, t)\|_{\infty} \leq C\left(T, d, A_{0}\right) \tag{26}
\end{equation*}
$$

with $A_{0}=\max \left\{1,\left\|u_{0}\right\|_{L^{1}\left(\mathbb{T}^{d}\right)},\left\|u_{0}\right\|_{L^{\infty}\left(\mathbb{T}^{d}\right)}\right\}$. Multiplying (9a) with $p u^{p-1}, p \geq 2$ and integrating over \mathbb{T}^{d}, we have

$$
\begin{align*}
\frac{d}{d t}\|u\|_{p}^{p}+\frac{4(p-1)}{p}\left\|\nabla u^{\frac{p}{2}}\right\|_{2}^{2} & =-(p-1) \int_{\mathbb{T}^{d}}(\nabla V-x) \nabla u^{p} d x=-2(p-1) \int_{\mathbb{T}^{d}}(\nabla V-x) u^{\frac{p}{2}} \nabla u^{\frac{p}{2}} d x \\
& \leq C\left\|u^{\frac{p}{2}}\right\|_{2}\left\|\nabla u^{\frac{p}{2}}\right\|_{2} \leq \frac{2(p-1)}{p}\left\|\nabla u^{\frac{p}{2}}\right\|_{2}^{2}+C\|u\|_{p}^{p} \tag{27}
\end{align*}
$$

Then the L^{∞} bound can be obtained directly by the standard Moser iteration after getting (27). For example, one can check the paper by Alikakos [14], formula (3.20) and the computation afterwards. For completeness, we put these detail computation in Appendix.

From Theorem 3, we know that u is positivity preserving and the conservation of mass hold:

$$
\begin{equation*}
u \geq 0 ; \quad\|u(t, x)\|_{1}=\left\|u_{0}\right\|_{1}, \text { for } t \in[0, T] . \tag{28}
\end{equation*}
$$

By the construction of V in Theorem 1, one concludes that

$$
\left\{\begin{array}{l}
1 \leq \operatorname{det}\left(\nabla^{2} V\right) \leq\|u\|_{\infty}+1, \tag{29}\\
V \text { convex, } \\
V-x^{2} / 2 \text { periodic. }
\end{array}\right.
$$

Recall the result in [15, P.16], for some $\gamma>0$ we have

$$
\begin{equation*}
\left\|\nabla^{2} V\right\|_{1+\gamma} \leq C\left(T, d,\|u\|_{\infty}\right) \tag{30}
\end{equation*}
$$

The heat semigroup operator $e^{t \Delta}$ defined by $e^{t \Delta} u:=H(t, x) * u$, where $H(t, x)=\frac{1}{(4 \pi t)^{d / 2}} \sum_{k \in \mathbb{Z}^{d}} e^{-\frac{|x+k|^{2}}{4 t}}$ is the periodic heat kernel. It follows immediately from Young's inequality for the convolution that

$$
\begin{equation*}
\left\|e^{t \Delta} u\right\|_{p} \leq C t^{-\frac{d}{2}\left(\frac{1}{q}-\frac{1}{p}\right)}\|u\|_{q}, \quad\left\|\nabla e^{t \Delta} u\right\|_{p} \leq C t^{-\frac{1}{2}-\frac{d}{2}\left(\frac{1}{q}-\frac{1}{p}\right)}\|u\|_{q}, \tag{31}
\end{equation*}
$$

for any $1 \leq q \leq p \leq+\infty, u \in L^{p}\left(\mathbb{T}^{d}\right)$ and all $t>0$. Here C is constant dependent of p, q.
By the fundamental solution representation of the heat equation, the solution to the MAKS equation can be represented as

$$
\begin{equation*}
u=e^{t \Delta} u_{0}+\int_{0}^{t} e^{(t-s) \Delta}(\nabla \cdot(u(\nabla V-x))) d s \tag{32}
\end{equation*}
$$

for any $T>0,0<t<T$.
By choosing $q=p=1+\gamma$ in (31), a simple computation leads to

$$
\begin{equation*}
\|\nabla u\|_{1+\gamma} \leq C\left\|\nabla u_{0}\right\|_{1+\gamma}+\int_{0}^{t}(t-s)^{-1 / 2}\|\nabla \cdot(u(\nabla V-x))\|_{1+\gamma} d s . \tag{33}
\end{equation*}
$$

From Theorem 1, we have that $\|\nabla V-x\|_{\infty} \leq \sqrt{d} / 2$ and moreover $\left\|\nabla^{2} V\right\|_{1+\gamma} \leq C\left(T, d,\|u\|_{\infty}\right)$, then we conclude

$$
\begin{equation*}
\|\nabla \cdot(u(\nabla V-x))\|_{1+\gamma} \leq \sqrt{d} / 2\|\nabla u\|_{1+\gamma}+C\left(T, d,\|u\|_{\infty},\left|\mathbb{T}^{d}\right|\right) . \tag{34}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
\|\nabla u\|_{1+\gamma} \leq C_{1}+C_{2} \int_{0}^{t}(t-s)^{-1 / 2}\|\nabla u\|_{1+\gamma} d s \tag{35}
\end{equation*}
$$

Applying a generalized Gronwall's inequality with weak singularities [16, Lemma 7.1.1], we have

$$
\begin{equation*}
\|\nabla u\|_{1+\gamma} \leq C\left(T, d,\left\|\nabla u_{0}\right\|_{1+\gamma},\left\|u_{0}\right\|_{\infty}\right) \tag{36}
\end{equation*}
$$

which concludes the proof.

Acknowledgments

The authors would like to thank Yann Brenier for suggesting this problem to us. The work of Jian-Guo Liu is partially supported by KI-Net NSF RNMS grant No. 1107291 and NSF grant DMS 1514826. Hui Huang is partially supported by National Natural Science Foundation of China (Grant number: 41390452, 11271118).

Appendix. The proof of L^{∞} estimate in Theorem 4

Proof. Using Gronwall's inequality in (27), one concludes that

$$
\begin{equation*}
\|u(\cdot, t)\|_{p}^{p} \leq e^{C t}\left\|u_{0}\right\|_{p}^{p} \leq C\left(T, d, A_{0}\right) \tag{A.1}
\end{equation*}
$$

Define $p_{k}:=2^{k}+2$ with $k \geq 0$. For $k=0, p_{0}=3$, from (A.1) we have

$$
\begin{equation*}
\|u(\cdot, t)\|_{p_{0}}^{p_{0}} \leq C\left(T, d, A_{0}\right) \tag{A.2}
\end{equation*}
$$

For $k \geq 1$, take $p_{k} u^{p_{k}-1}$ as a test function in (9a), one has

$$
\begin{align*}
\frac{d}{d t}\|u\|_{p_{k}}^{p_{k}} & =-\frac{4\left(p_{k}-1\right)}{p_{k}}\left\|\nabla u^{\frac{p_{k}}{2}}\right\|_{2}^{2}-\left(p_{k}-1\right) \int_{\mathbb{T}^{d}}(\nabla V-x) \nabla u_{k}^{p} d x \\
& \leq-2 C_{p_{k}}\left\|\nabla u^{\frac{p_{k}}{2}}\right\|_{2}^{2}+p_{k}\left\|u^{\frac{p_{k}}{2}}\right\|_{2}\left\|\nabla u^{\frac{p_{k}}{2}}\right\|_{2} . \tag{A.3}
\end{align*}
$$

Now, we focus on estimating the term $\left\|u^{\frac{p_{k}}{2}}\right\|_{2}\left\|\nabla u^{\frac{p_{k}}{2}}\right\|_{2}$

$$
\begin{equation*}
\left\|u^{\frac{p_{k}}{2}}\right\|_{2}\left\|\nabla u^{\frac{p_{k}}{2}}\right\|_{2} \leq\left\|u^{\frac{p_{k}}{2}}\right\|_{\frac{2 d}{\theta-2}}^{\theta}\left\|u^{\frac{p_{k}}{2}}\right\|_{r}^{1-\theta}\left\|\nabla u^{\frac{p_{k}}{2}}\right\|_{2} \leq S_{d}^{\theta}\left\|\nabla u^{\frac{p_{k}}{2}}\right\|_{2}^{1+\theta}\left\|u^{\frac{p_{k}}{2}}\right\|_{r}^{1-\theta}, \tag{A.4}
\end{equation*}
$$

with $\frac{p_{k}}{2} r=p_{k-1}, \theta=\frac{\frac{1}{r}-\frac{1}{2}}{\frac{1}{r}-\frac{d-2}{2 d}}$, where we have used the Sobolev inequality $\|u\|_{\frac{2 d}{d-2}} \leq S_{d}\|\nabla u\|_{2}$. The Young's inequality tells that

$$
\begin{equation*}
\frac{d}{d t}\|u\|_{p_{k}}^{p_{k}} \leq-C_{p_{k}}\left\|\nabla u^{\frac{p_{k}}{2}}\right\|_{2}^{2}+C(\sigma) p_{k}^{q_{2}} S_{d}^{\theta q_{2}}\|u\|_{p_{k-1}}^{p_{k}} \tag{A.5}
\end{equation*}
$$

where $\sigma=C_{p_{k}}, q_{2}=\frac{2}{1-\theta} \leq d+2$.
On the other hand,

$$
\begin{equation*}
\|u\|_{p_{k}}^{p_{k}}=\left\|u^{\frac{p_{k}}{2}}\right\|_{2}^{2} \leq S_{d}^{2 \theta_{1}}\left\|\nabla u^{\frac{p_{k}}{2}}\right\|_{2}^{2 \theta_{1}}\left\|u^{\frac{p_{k}}{2}}\right\|_{r}^{2\left(1-\theta_{1}\right)} \tag{A.6}
\end{equation*}
$$

where r is the same as before and $\theta_{1}=\frac{\frac{1}{r}-\frac{1}{2}}{\frac{1}{r}-\frac{d-2}{2 d}}$. Similar to (A.5), we have

$$
\begin{equation*}
\|u\|_{p_{k}}^{p_{k}} \leq \sigma\left\|\nabla u^{\frac{p_{k}}{2}}\right\|_{2}^{2}+\bar{C}(\sigma) S_{d}^{2 \theta_{1} \ell_{2}}\|u\|_{p_{k-1}}^{p_{k} \ell_{2}\left(1-\theta_{1}\right)} \tag{A.7}
\end{equation*}
$$

where $\ell_{2}=\frac{1}{1-\theta_{1}}$.

Hence from (A.5) and (A.7), we deduce

$$
\begin{equation*}
\frac{d}{d t}\|u\|_{p_{k}}^{p_{k}} \leq-\|u\|_{p_{k}}^{p_{k}}+C(\sigma) p_{k}^{q_{2}} S_{d}^{\theta q_{2}}\|u\|_{p_{k-1}}^{p_{k}}+\bar{C}(\sigma) S_{d}^{2 \theta_{1} \ell_{2}}\|u\|_{p_{k-1}}^{p_{k}} . \tag{A.8}
\end{equation*}
$$

Define

$$
C_{1}\left(p_{k}\right):=C(\sigma) S_{d}^{\theta q_{2}} ; \quad C_{2}\left(p_{k}\right):=\bar{C}(\sigma) S_{d}^{2 \theta_{1} \ell_{2}}
$$

It is easy to know that $C_{1}\left(p_{k}\right)$ and $C_{2}\left(p_{k}\right)$ is uniformly bounded for any $k \geq 1$. So, we let $C(d)>1$ be a common upper bound of $C_{1}\left(p_{k}\right)$ and $C_{2}\left(p_{k}\right)$, we obtain the following inequality

$$
\begin{equation*}
\frac{d}{d t}\|u\|_{p_{k}}^{p_{k}} \leq-\|u\|_{p_{k}}^{p_{k}}+C(d) p_{k}^{q_{2}}\|u\|_{p_{k-1}}^{p_{k}} . \tag{A.9}
\end{equation*}
$$

Solving the inequality (A.9), we get

$$
\begin{equation*}
\left(e^{t}\|u\|_{p_{k}}^{p_{k}}\right)^{\prime} \leq C(d) p_{k}^{q_{2}}\|u\|_{p_{k-1}}^{p_{k}} e^{t} \leq 2 C(d) 4^{d+2} 2^{k(d+2)} \sup _{t \geq 0}\|u\|_{p_{k-1}}^{p_{k}} e^{t}, \tag{A.10}
\end{equation*}
$$

where the last inequality used $1<q_{2} \leq d+2$.
Notice that $\left\|u_{0}\right\|_{p_{k}}^{p_{k}} \leq\left\|u_{0}\right\|_{1}\left\|u_{0}\right\|_{\infty}^{p_{k}-1}$, so we have

$$
\begin{equation*}
\max \left\{\left\|u_{0}\right\|_{p_{k}}^{p_{k}}, 1\right\} \leq A^{p_{k}} \tag{A.11}
\end{equation*}
$$

where constant $A>1$ is independent of k but depends on $\left\|u_{0}\right\|_{1}$ and $\left\|u_{0}\right\|_{\infty}$. Let $a_{k}:=2 C(d) 4^{d+2} 2^{k(d+2)}>1$ and integrate (A.10), then one has

$$
\begin{equation*}
\|u\|_{p_{k}}^{p_{k}} \leq a_{k} \sup _{t \geq 0}\|u\|_{p_{k-1}}^{p_{k}}\left(1-e^{-t}\right)+\left\|u_{0}\right\|_{p_{k}}^{p_{k}} e^{-t} \leq a_{k} \max \left\{\sup _{t \geq 0}\|u\|_{p_{k-1}}^{p_{k}}, A^{p_{k}}\right\} \tag{A.12}
\end{equation*}
$$

Taking the power $\frac{1}{p_{k}}$ to above inequality, then

$$
\begin{equation*}
\|u\|_{p_{k}} \leq a_{k}^{1 / p_{k}} \max \left\{\sup _{t \geq 0}\|u\|_{p_{k-1}}, A\right\} \tag{A.13}
\end{equation*}
$$

After some iterative steps, we have

$$
\begin{align*}
\|u\|_{p_{k}} & \leq a_{k}^{1 / p_{k}} a_{k-1}^{1 / p_{k-1}} \cdots a_{1}^{1 / p_{1}} \max \left\{\sup _{t \geq 0}\|u\|_{p_{0}}, A\right\} \\
& \leq\left(2 C(d) 4^{d+2}\right)^{1-\frac{1}{2^{k}}}\left(2^{d+2}\right)^{2-\frac{1}{2^{k-1}}-\frac{k}{2^{k}}} \max \left\{\sup _{t \geq 0}\|u\|_{p_{0}}, A\right\} . \tag{A.14}
\end{align*}
$$

Recall $\|u\|_{p_{0}}^{p_{0}} \leq C\left(T, d, A_{0}\right)$, then the L^{∞} estimate is obtained by passing to the limit $k \rightarrow \infty$ in (A.14).

References

[1] E.F. Keller, L.A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol. 26 (3) (1970) 399-415. http://dx.doi.org/10.1016/0022-5193(70)90092-5.
[2] Y. Brenier, Hilbertian approaches to some non-linear conservation laws, Contemp. Math. 526 (2010) 19-34.
[3] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math. 44 (4) (1991) 375-417. http://dx.doi.org/10.1002/cpa.3160440402.
[4] J. Benamou, Y. Brenier, Weak existence for the semigeostrophic equations formulated as a coupled Monge-Ampère transport problem, SIAM J. Appl. Math. 58 (5) (1998) 1450-1461. http://dx.doi.org/10.1137/S0036139995294111.
[5] M. Cullen, M. Feldman, Lagrangian solutions of semigeostrophic equations in physical space, SIAM J. Math. Anal. 37 (5) (2006) 1371-1395. http://dx.doi.org/10.1137/040615444.
[6] G. Loeper, A fully nonlinear version of the incompressible Euler equations: the semigeostrophic system, SIAM J. Math. Anal. 38 (3) (2006) 795-823. http://dx.doi.org/10.1137/050629070.
[7] M. Lopes Filho, H.N. Lopes, Existence of a weak solution for the semigeostrophic equation with integrable initial data, in: Proceedings of the Royal Society of Edinburgh-A-Mathematics, Vol. 132, Cambridge Univ Press, 2002, pp. 329-340.
[8] Y. Brenier, G. Loeper, A geometric approximation to the Euler equations: the Vlasov-Monge-Ampère system, Geom. Funct. Anal. GAFA 14 (6) (2004) 1182-1218. http://dx.doi.org/10.1007/s00039-004-0488-1.
[9] Y. Brenier, A modified least action principle allowing mass concentrations for the early universe reconstruction problem, Confluentes Math. 3 (03) (2011) 361-385. http://dx.doi.org/10.1142/S1793744211000400.
[10] R.J. McCann, Polar factorization of maps on riemannian manifolds, Geom. Funct. Anal. GAFA 11 (3) (2001) 589-608. http://dx.doi.org/10.1007/PL00001679.
[11] H.-Y. Jian, X.-J. Wang, Continuity estimates for the Monge-Ampere equation, SIAM J. Math. Anal. 39 (2) (2007) 608-626. http://dx.doi.org/10.1137/060669036.
[12] A.J. Majda, A.L. Bertozzi, Vorticity and Incompressible Flow, Vol. 27, Cambridge University Press, 2002, http://dx.doi.org/10.1017/CBO9780511613203.
[13] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, springer, 2015, http://dx.doi.org/10.1007/978-3-642-96379-7.
[14] N.D. Alikakos, l^{p} bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations 4 (8) (1979) 827-868. http://dx.doi.org/10.1080/03605307908820113.
[15] A. Figalli, Global Existence for the Semigeostrophic Equations via Sobolev Estimates for Monge-Ampere, in: CIME Lecture Notes, Springer, to appear.
[16] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Vol. 840, Springer-Verlag, New York, 1981, http://dx.doi.org/10.1007/BFb0089647.

[^0]: ${ }^{*}$ Corresponding author at: Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, People's Republic of China.

 E-mail addresses: huanghui12@mails.tsinghua.edu.cn (H. Huang), jliu@phy.duke.edu (J.-G. Liu).

