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Abstract. In this paper, we discuss error estimates associated with three

different aggregation-diffusion splitting schemes for the Keller-Segel equations.

We start with one algorithm based on the Trotter product formula, and we show
that the convergence rate is C∆t, where ∆t is the time-step size. Secondly,

we prove the convergence rate C∆t2 for the Strang’s splitting. Lastly, we

study a splitting scheme with the linear transport approximation, and prove
the convergence rate C∆t.

1. Introduction. In this paper we will consider the following Keller-Segel (KS)
equations [8, 15] in Rd (d ≥ 2):

∂tρ = 4ρ−∇ · (ρ∇c), x ∈ Rd, t > 0,

−4c = ρ(t, x),

ρ(0, x) = ρ0(x).

(1)

This model is developed to describe the biological phenomenon chemotaxis. Here,
ρ(t, x) represents the bacteria density, and c(t, x) represents the chemical substance
concentration.

The most important feature of the KS model (1) is the competition between the
aggregation term −∇ · (ρ∇c) and the diffusion term ∆ρ. In this paper, we develop
three classes of positivity preserving aggregation-diffusion splitting algorithms for
the Keller-Segel equations to handle the possible singularity. And we provide a

2010 Mathematics Subject Classification. Primary: 65M12, 65M15; Secondary: 92C17.
Key words and phrases. Newtonian aggregation, chemotaxis, random particle method, posi-

tivity preserving.
The first author is supported by NSFC grant 41390452.
∗ Corresponding author: Hui Huang.

3463

http://dx.doi.org/10.3934/dcdsb.2016107


3464 HUI HUANG AND JIAN-GUO LIU

rigorous proof of the fact that the solutions of these algorithms will converge to
solutions of the Keller-Segel equations at a certain rate. The precise convergence
rate will be given in Theorem 1.1 and Theorem 1.2 stated below after these algo-
rithms have been defined. The convergence analysis for our aggregation-diffusion
splitting algorithms are analog to that of the viscous splitting algorithms for the
Navier-Stokes equations.

In fluid dynamics, the smooth solutions to the Euler equations are good approxi-
mations to the smooth solutions of the Navier-Stokes equations with small viscosity.
This idea provides a method to approximate a solution to the Navier-Stokes equa-
tions by means of alternatively solving the inviscid Euler equations and a diffusion
process over small time steps. Such approximations are called viscous splitting al-
gorithms because they are forms of operator splitting in which the viscous term
ν∆v is split from the inviscid part of the equations [12, Chap.3.4], where ν is the
viscosity. In 1980, Beale and Majda [1] first proved the convergence rate Cν∆t2 of
the viscous splitting method for the two-dimensional Navier-Stokes equations.

Generally speaking, there are two basic splitting techniques. The first one is
based on the Trotter product formula [18, Chap.11, Appendix A] and the conver-
gence rate has been showed to be Cν∆t. The second algorithm is based on the
Strang’s splitting [17], which has the advantage of converging as Cν∆t2 with no
additionally computational expense. These two basic splitting methods were con-
sidered for linear hyperbolic problems by Strang [17] in 1968. He deduced the order
of convergence by comparing a Taylor expansion in time of the exact solution with
the approximation. Operator splitting is a powerful method for numerical investi-
gation of complex models. Fields of application where splitting is useful to apply
include air pollution meteorology [2], fluid dynamic models [9], cloud physics [14]
and biomathematics [4]. Lastly, we refer to [13] for theoretical and practical use of
splitting methods.

For the KS equations (1), the splitting methods can be done as follows. Discretize
time as tn = n∆t with time-step size ∆t, and on each time step first solve the
aggregation equation, then the heat equation to simulate effects of the diffusion
term ∆ρ. We will define this algorithm formally as below.

Denote the solution operator to an aggregation equation by A(t), such that
u(t, x) = A(t)u0(x) solves

∂tu = −∇ · (u∇c), x ∈ Rd, t > 0,

−4c = u(t, x),

u(0, x) = u0(x).

(2)

By using Lemma 7.6 in Gilbarg and Trudinger [5], if we define the negative part of
the function u as u− := min{u, 0}, then one can easily prove that

d

dt

∫
Rn

u2
− dx =

∫
Rn

u3
− dx ≤ 0, (3)

which leads to that u is nonnegative if u0 is nonnegative.
Also denote the solution operator to the heat equation by H(t), so that ω(t, x) =

H(t)ω0(x) solves {
∂tw = ∆ω, x ∈ Rd, t > 0,

ω(0, x) = ω0(x).
(4)
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Similarly, we can prove that

d

dt

∫
Rn

ω2
− dx = −

∫
Rn

|∇ω−|2 dx ≤ 0, (5)

which also leads to that ω is nonnegative if ω0 is nonnegative.
Then we can define the first order splitting algorithm by means of the Trotter

product formula [18]:

ρ(n)(x) = [H(∆t)A(∆t)]nρ0(x), (6)

where ρ(n)(x) is the approximate value of the exact solution at time tn = n∆t.
Furthermore, there is a second order splitting algorithm follows from Strang’s

method [17]:

ρ̂(n)(x) = [H(
∆t

2
)A(∆t)H(

∆t

2
)]nρ0(x). (7)

From the results of (3) and (5), we know that the splitting schemes (6) and (7)
are positivity preserving.

Since the error estimates are valid when the solution of the KS equations is
regular enough, we assume that

0 ≤ ρ0 ∈ L1 ∩Hk(Rd), with k >
d

2
,

then the KS system (1) has a unique local solution with the following regularity

‖ρ‖L∞(0,T ;Hk(Rd)) ≤ C(‖ρ0‖L1∩Hk(Rd)),

where T > 0 only depends on ‖ρ0‖L1∩Hk(Rd). The proof of this result is a standard
process and it is provided in [7, Appendix A]. As a direct result of the Sobolev
imbedding theorem, one has

‖ρ‖L∞(0,T ;L∞(Rd)) ≤ C(‖ρ0‖L1∩Hk(Rd)),

for k > d/2.
The convergence results of our splitting algorithms (6) and (7) can be described

as follows:

Theorem 1.1. Assume that 0 ≤ ρ0(x) ∈ L1 ∩ Hk(Rd) with k > d
2 + 5. Let

ρ(t, x) be the regular solution to the KS equations (1) with initial data ρ0(x). Then
there exist some C∗, T∗ > 0 depending on ‖ρ0‖L1∩Hk , such that for ∆t ≤ C∗ and
(n+ 1)∆t ≤ T∗, the solutions to splitting algorithms

ρ(n)(x) = [H(∆t)A(∆t)]nρ0(x); ρ̂(n)(x) = [H(
∆t

2
)A(∆t)H(

∆t

2
)]nρ0(x),

are convergent to ρ(tn, x) in L2 norm. Moreover, the following estimates hold

max
0≤tn≤T∗

‖ρ(n) − ρ(tn, ·)‖2 ≤ C(T∗, ‖ρ0‖L1∩Hk)∆t; (8)

max
0≤tn≤T∗

‖ρ̂(n) − ρ(tn, ·)‖2 ≤ C(T∗, ‖ρ0‖L1∩Hk)∆t2. (9)

Next, we will set up an aggregation-diffusion splitting scheme with the linear
transport approximation as in [6] and provide the error estimate of this method.
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First, we recast c(t, x) = Φ∗ρ(t, x) with the fundamental solution of the Laplacian
equation Φ(x), which can be represented as

Φ(x) =


Cd
|x|d−2

, if d ≥ 3,

− 1

2π
ln |x|, if d = 2,

(10)

where Cd =
1

d(d− 2)αd
, αd =

πd/2

Γ(d/2 + 1)
, i.e. αd is the volume of the d-dimensional

unit ball.
Furthermore, the Φ(x) in (10) is also called Newtonian potential, and we can

take the gradient of Φ(x) as the attractive force F (x). Thus we have

F (x) = ∇Φ(x) = −C∗x
|x|d

, ∀ x ∈ Rd\{0}, d ≥ 2, (11)

where C∗ = Γ(d/2)
2πd/2 and ∇c = F ∗ ρ.

Suppose that 0 ≤ s ≤ ∆ t and solve (2) in t ∈ [tn, tn+1]. If we denote v := ∇c =
F ∗ u, then u(tn + s,X(x, s)) satisfies

us +∇ · (uv) = 0,

with flow map
dX(x, s)

ds
= v(X(x, s), s); X(x, 0) = x, (12)

which leads to

u (tn + s,X(x, s)) det
dX(x, s)

dx
= u(tn, x).

By using Euler forward method, we have the linear approximation of (12)

X(x, s) ≈ x+ sv(x, 0) = x+ sF ∗ u(tn, x).

Then, one has
dX(x, s)

ds
= F ∗ u(tn, x) =: V (X(x, s), s).

Let L(tn + s,X(x, s)) satisfying

Ls +∇ · (LV ) = 0,

with flow map
dX(x, s)

ds
= V (X(x, s), s); X(x, 0) = x,

which leads to

L (tn + s,X(x, s)) det
dX(x, s)

dx
= L(tn, x).

Then we can propose the following aggregation-diffusion splitting method with
linear transport approximation:

G(n)(x) = F ∗ ρ̃(n)(x), (13)

L(n+1)
(
x+ ∆tG(n)(x)

)
= det−1

(
I + ∆tDG(n)(x)

)
ρ̃(n)(x), (14)

ρ̃(n+1)(x) = H(∆t)L(n+1)(x). (15)

And here we require that ∆t < 1
‖DG(n)‖2

to make sure det−1
(
I + ∆tDG(n)(x)

)
is

non-singular.
The motivation of this scheme comes from the random particle blob method for

the KS equations. As a future work, the results obtained in this article will be
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used to establish the error estimates of the random particle blob method for the KS
equations.

One can write (13) to (15) in the symbolic form

ρ̃(n)(x) = [H(∆t)Ã(∆t)]nρ0(x), (16)

and it is obvious that this scheme also has the positivity preserving property.
Moreover, we also prove the convergence theorem of the splitting algorithm (16)

as below:

Theorem 1.2. Assume that 0 ≤ ρ0(x) ∈ L1 ∩ Hk(Rd) with k > d
2 + 3. Let

ρ(t, x) be the regular solution to the KS equations (1) with initial data ρ0(x). Then
there exist some C ′∗, T

′
∗ > 0 depending on ‖ρ0‖L1∩Hk , such that for ∆t ≤ C ′∗ and

(n+ 1)∆t ≤ T ′∗, the solution to the splitting algorithm

ρ̃(n)(x) = [H(∆t)Ã(∆t)]nρ0(x),

is convergent to ρ(tn, x) in L2 norm. Moreover, the following estimate holds

max
0≤tn≤T ′∗

‖ρ̃(n) − ρ(tn, ·)‖2 ≤ C(T ′∗, ‖ρ0‖L1∩Hk)∆t. (17)

In this article, we only present and analyze these semi-discrete splitting schemes
and the spatial discretization is not considered. When the solution is regular,
the standard spatial discretization such as finite element method, finite difference
method and spectral method can be directly applied here and the numerical analy-
sis for these three spatial discretization in the splitting schemes are standard, which
is omitted here. However, for the KS equations, solutions can develop singular-
ity. Computing such singular solutions is very challenging, and we refer to [11] for
numerical results, where authors prove that the fully discrete scheme is conserva-
tive and positivity preserving. Another natural approach in spatial discretization
is using the particle method. Actually, the main motivation of current paper is
to develop a splitting scheme to analyze the random particle blob method for KS
equations.

Notation. For convenience, in this article, we use ‖ · ‖p for Lp norm of a function.
The generic constant will be denoted generically by C, even if it is different from
line to line.

To conclude this introduction, we give the outline of this article. In Section 2,
we establish the error estimates of the first and second order aggregation-diffusion
splitting schemes through three steps: stability, consistency and convergence. Sim-
ilarly, we provide the error estimate of a splitting scheme with the linear transport
approximation in Section 3.

2. The convergence analysis of the aggregation-diffusion splitting algo-
rithms and the proof of Theorem 1.1. Like always, we follow the Lax’s equiv-
alence theorem [16] to prove the convergence of a numerical algorithm, which is
that stability and consistency of an algorithm imply its convergence. Therefore, we
break the proof of Theorem 1.1 up into three steps.

Step 1. The first step is to prove the stability, which ensures that the solution of
the splitting algorithm (6) is priori controlled in an appropriate norm. The following
proposition shows that our splitting method is Hk(Rd) stable.
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Proposition 1. (Stability) Suppose that initial density 0 ≤ ρ0(x) ∈ L1 ∩ Hk(Rd)
with k > d

2 . There exists some T1 > 0 depending on ‖ρ0‖L1∩Hk , such that for the
algorithms (6) and (7), we have

‖ρ(n)‖Hk ≤ C(T1, ‖ρ0‖L1∩Hk), ∀ 0 ≤ n∆t ≤ T1; (18)

‖ρ̂(n)‖Hk ≤ C(T1, ‖ρ0‖L1∩Hk), ∀ 0 ≤ n∆t ≤ T1. (19)

Proof. We will only prove (18) in detail and the proof of (19) is almost the same.
Suppose that 0 ≤ s ≤ ∆t, and we define

u(s+ tn−1) := A(s)ρ(n−1),

and
ρ̌(s+ tn−1) := H(s)u(s+ tn−1) = H(s)A(s)ρ(n−1).

Notice that when s = 0, ρ̌(tn−1) = ρ(n−1) and that when s = ∆t, ρ̌(tn) = ρ(n). The
standard regularity of heat equation gives that

‖ρ̌(s+ tn−1)‖Hk = ‖H(s)A(s)ρ(n−1)‖Hk ≤ ‖A(s)ρ(n−1)‖Hk . (20)

In order to give the estimate of ‖A(s)ρ(n−1)‖Hk , we need to solve the hyperbolic
equation (2).

Multiply (2) by 2u and integrate over Rd, then for k > d
2 , we have

d

dt
‖u‖22 =

∫
Rd

∇(u2)∇c dx =

∫
Rd

u3dx ≤ ‖u‖∞‖u‖22 ≤ ‖u‖Hk‖u‖22,

where −∆c = u and the Soblev imbedding theorem have been used.
Now we multiply (2) by 2D2mu with 1 ≤ |m| ≤ k and integrate over Rd, then

one has
d

dt
‖Dmu‖22 = −2

∫
Rd

∇ · (Dm(u∇c))Dmu dx

= −2

∫
Rd

∇ · [Dm(u∇c)−Dmu∇c]Dmu dx

− 2

∫
Rd

∇ · (Dmu∇c)Dmu dx

=: I1 + I2.

Estimate I1 first, then we have

|I1| ≤ 2

∫
Rd

|∇ · [Dm(u∇c)−Dmu∇c]Dmu| dx

= 2

∫
Rd

∣∣∣∣∣∣∇ · [
∑

a+b=m,b>0

(
m

b

)
Db(∇c)Dau]Dmu

∣∣∣∣∣∣ dx
≤ C

∑
|a|+|b|=|m|−1

‖Dmu‖2
∥∥∇ · [DbDj(∇c)Dau]

∥∥
2
, (21)

where we have used the same notation in formula (3.23) [19, Chap.13, P.11].
Now, we compute each component of

∥∥∇ · [DbDj(∇c)Dau]
∥∥

2
with |a| + |b| =

|m| − 1: ∥∥Di[D
bDj(∇c)Dau]

∥∥
2

=
∥∥DbDiDj(∇c)Dau+DbDj(∇c)DaDi(u)

∥∥
2

≤C‖Dj(∇c)‖∞‖u‖H|m| + C‖Dj(∇c)‖H|m|‖u‖∞
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≤C‖Dj(∇c)‖Hk‖u‖Hk + C‖Dj(∇c)‖Hk‖u‖Hk ≤ C‖u‖2Hk ,

by using Taylor [19, Proposition 3.6], Soblev imbedding theorem and −∆c = u.
Hence we have

|I1| ≤ C‖u‖3Hk . (22)

For I2, one has

I2 = 2

∫
Rd

Dmu∇(Dmu)∇c dx =

∫
Rd

|Dmu|2u dx ≤ ‖u‖2Hk‖u‖∞ ≤ ‖u‖3Hk . (23)

Combining (22) and (23), it follows that

d

dt
‖Dmu‖22 ≤ C‖u‖3Hk , 1 ≤ |m| ≤ k,

which leads to
d

dt
‖u‖2Hk ≤ C‖u‖3Hk .

Thus we have

‖u‖Hk ≤ 1

‖u0‖−1
Hk − Ct

, (24)

and there exists some T1 > 0 depending on ‖u0‖L1∩Hk , such that for 0 ≤ t ≤ T1

‖u‖Hk ≤ C(T1, ‖u0‖L1∩Hk).

Moreover, one has

‖A(s)ρ(n−1)‖Hk ≤ 1

‖ρ(n−1)‖−1
Hk − Cs

, 0 ≤ s ≤ ∆t. (25)

Hence it follows from (20) and (25) by taking s = ∆t

‖ρ(n)‖Hk ≤ 1

‖ρ(n−1)‖−1
Hk − C∆t

. (26)

Recasting (26), one has

‖ρ(n)‖−1
Hk ≥ ‖ρ(n−1)‖−1

Hk − C∆t.

By induction on n, we concludes that

‖ρ(n)‖Hk ≤ 1

‖ρ0‖−1
Hk − Cn∆t

.

with n∆t ≤ T1.
Until now, we have finished the proof of (18) and we can prove (19) almost the

same way.

Step 2. In this step, we will prove our splitting algorithms (6) and (7) are consistent
with the KS equations (1) by using the Hk stability in Proposition 1.

Proposition 2. (Consistency) Assume that the initial data 0 ≤ ρ0(x) ∈ L1 ∩
Hk(Rd) with k > d

2 + 5. Let ρ(t, x) be the regular solution to the KS equations
(1) with local existence time T and T1 is used in Proposition 1. If we define T∗ :=
min{T, T1}, then the local errors

rn(s) = H(s)A(s)ρ(n−1) − ρ(s+ (n− 1)∆t), 0 ≤ s ≤ ∆t, n∆t ≤ T∗; (27)

r̂n(s) = H(
s

2
)A(s)H(

s

2
)ρ̂(n−1) − ρ(s+ (n− 1)∆t), 0 ≤ s ≤ ∆t, n∆t ≤ T∗,
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satisfy
‖rn(s)‖2 ≤ eC1s(‖rn(0)‖2 + C2s

2); (28)

‖r̂n(s)‖2 ≤ eC
′
1s(‖r̂n(0)‖2 + C ′2s

3), (29)

where C1, C2, C
′
1, C

′
2 depend on T∗, ‖ρ0‖L1∩Hk .

Proof. We start with proving (28). Recalling the definition of F in (11), we define
the bilinear operator B as

B[u, v] := −∇ · (uF ∗ v), with −∇ · (F ∗ v) = v,

and ρ̌(s + tn−1) = H(s)A(s)ρ(n−1). Considering the time interval 0 ≤ s ≤ ∆t, it
follows that

∂

∂s
ρ̌ = ∆H(s)A(s)ρ(n−1) +H(s)B[A(s)ρ(n−1), A(s)ρ(n−1)]

= ∆ρ̌+B[ρ̌, ρ̌] +H(s)B[A(s)ρ(n−1), A(s)ρ(n−1)]

−B[H(s)A(s)ρ(n−1), H(s)A(s)ρ(n−1)]

= ∆ρ̌+B[ρ̌, ρ̌] + fn(s),

where we denote

fn(s) = H(s)B[A(s)ρ(n−1), A(s)ρ(n−1)]−B[H(s)A(s)ρ(n−1), H(s)A(s)ρ(n−1)].
(30)

For the exact solution ρ(s+ tn−1) to (1), one has

∂

∂s
ρ = ∆ρ+B[ρ, ρ].

Thus the difference between ρ̌(s+ tn−1) and ρ(s+ tn−1) satisfies

∂

∂s
rn(s) = ∆rn(s) +B[rn(s), ρ̌] +B[ρ, rn(s)] + fn(s), 0 ≤ s ≤ ∆t. (31)

Take the L2 inner product of (31) with 2rn(s), then we have

d

ds
‖rn(s)‖22 + 2‖∇rn(s)‖22

=2(B[rn(s), ρ̌], rn(s)) + 2(B[ρ, rn(s)], rn(s)) + 2(fn(s), rn(s)).

We compute that

2(B[rn(s), ρ̌], rn(s)) = −2

∫
Rd

∇ · (rnF ∗ ρ̌)rn dx =

∫
Rd

∇(r2
n)F ∗ ρ̌ dx

≤ ‖rn(s)‖22‖ρ̌‖∞ ≤ C(T∗, ‖ρ0‖L1∩Hk)‖rn(s)‖22,
and

2(B[ρ, rn(s)], rn(s)) = −2

∫
Rd

∇ · (ρF ∗ rn)rn dx = 2

∫
Rd

ρ∇rnF ∗ rndx

≤ 2‖ρ‖d‖∇rn‖2‖F ∗ rn‖ 2d
d−2

≤ C(T∗, ‖ρ0‖L1∩Hk)‖∇rn(s)‖2‖rn(s)‖2
≤ ε‖∇rn(s)‖22 + C(ε, T∗, ‖ρ0‖L1∩Hk)‖rn(s)‖22,

where we have used the weak Young’s inequality [10, P.107] ‖F ∗ rn‖ 2d
d−2
≤ C‖rn‖2

and Young’s inequality ab ≤ εa2 + C(ε)b2 with ε small enough.
Moreover, we have

2(fn(s), rn(s)) ≤ 2‖fn(s)‖2‖rn(s)‖2,
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which leads to

d

ds
‖rn(s)‖2 ≤ C(T∗, ‖ρ0‖L1∩Hk)‖rn(s)‖2 + ‖fn(s)‖2.

Next step is to estimate the function fn(s). By the definition of H(s) in (4), it
satisfies

H(s)ω0 = H(0)ω0 +

∫ s

0

∆H(τ)ω0 dτ,

so that

H(s) = I +

∫ s

0

∆H(τ) dτ =: I + H̄(s).

Rewrite fn(s) in (30), one has

fn(s)

=(I + H̄(s))B[A(s)ρ(n−1), A(s)ρ(n−1)]

−B[(I + H̄(s))A(s)ρ(n−1), (I + H̄(s))A(s)ρ(n−1)]

=H̄(s)B[A(s)ρ(n−1), A(s)ρ(n−1)]−B[H̄(s)A(s)ρ(n−1), H̄(s)A(s)ρ(n−1)]

−B[H̄(s)A(s)ρ(n−1), A(s)ρ(n−1)]−B[A(s)ρ(n−1), H̄(s)A(s)ρ(n−1)]. (32)

To estimate fn(s), we compute

‖H̄(s)B[A(s)ρ(n−1), A(s)ρ(n−1)]‖2
=s‖∆H(−∇ · (Aρ(n−1)F ∗Aρ(n−1))‖2 ≤ s‖H(−∇ · (Aρ(n−1)F ∗Aρ(n−1))‖

H
d
2
+2

≤sC‖Aρ(n−1)F ∗Aρ(n−1)‖
H

d
2
+3 ≤ C(T∗, ‖ρ0‖

L1∩H
d
2
+3)s.

And similarly, we can compute other terms in (32). Thus for k > d
2 + 3, we have

‖fn(s)‖2 ≤ C(T∗, ‖ρ0‖L1∩Hk)s, 0 ≤ s ≤ ∆t.

Until now, we have got

d

ds
‖rn(s)‖2 ≤ C1‖rn(s)‖2 + C2s.

By using Gronwall’s inequality [3, Appendix B, P.624], one concludes that

‖rn(s)‖2 ≤ eC1s(‖rn(0)‖2 + C2s
2), 0 ≤ s ≤ ∆t,

where C1, C2 depends on T∗, ‖ρ0‖L1∩Hk . Thus, (28) has been proved.
Next we are going to prove (29) by using the same procedure in the above argu-

ments, and we can write

∂

∂s
ρ̂ = ∆ρ̂+B[ρ̂, ρ̂] + f̂n(s),

where ρ̂(s+ tn−1) = H( s2 )A(s)H( s2 )ρ(n−1) and

f̂n(s) = HB[AHρ(n−1), AHρ(n−1)]−B[HAHρ(n−1), HAHρ(n−1)]

+
1

2
HAH∆Hρ(n−1) − 1

2
∆HAHρ(n−1), (33)

with H = H( s2 ), A = A(s) and AH = ∂
∂HA(s;H( s2 )ρ(n−1)).

Thus, using the argument identical to that we have used to estimate fn(s), for
k > d

2 + 5, we have

‖f̂n(s)‖2 ≤ C(T∗, ‖ρ0‖L1∩Hk)s2, 0 ≤ s ≤ ∆t,
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and
d

ds
‖r̂n(s)‖2 ≤ C ′1‖r̂n(s)‖2 + C ′2s

2,

which leads to (29) by using Gronwall’s inequality.

Step 3. Finally, we can prove the convergence Theorem 1.1 by using Proposition
2. We estimate rn(∆t) = ρ(n)(x)− ρ(tn, x) as

‖ρ(n) − ρ(tn, ·)‖2 ≤ eC1∆t(‖ρ(n−1)(x)− ρ(tn−1, x)‖2 + C2(∆t)2).

Standard induction implies that

‖ρ(n) − ρ(tn, ·)‖2 ≤ C2(∆t)2
n∑
j=1

ejC1∆t = C2(∆t)2 e
C1∆t(enC1∆t − 1)

eC1∆t − 1

≤ C2

C1
∆t(eC1(n+1)∆t − 1) ≤ C2

C1
∆t(eC1T∗ − 1), (34)

for (n + 1)∆t ≤ T∗, which concludes the proof of (8) in Theorem 1.1. A similar
argument holds for (9). Until now, we have completed the proof of Theorem 1.1.

3. The convergence analysis of the splitting method with linear trans-
port approximation and the proof of Theorem 1.2. In this section, we will
prove the convergence estimate of the spitting method with linear transport ap-
proximation. Recall this splitting method proposed in Introduction with the initial
data ρ̃(0)(x) = ρ0(x):

G(n)(x) = F ∗ ρ̃(n)(x), (35)

L(n+1)
(
x+ ∆tG(n)(x)

)
= det−1

(
I + ∆tDG(n)(x)

)
ρ̃(n)(x), (36)

ρ̃(n+1)(x) = H(∆t)L(n+1)(x). (37)

The proof of Theorem 1.2 can also be divided into three steps like Section 2.

Step 1. As we have done in the last section, firstly, we need to prove that the
semi-discrete equations (35) to (37) are stable, i.e.

‖ρ̃(n)‖Hk ≤ C(‖ρ0‖L1∩Hk). (38)

In order to do this, we will need the following lemma:

Lemma 3.1. Assume that xn+1 ≤ xn+∆tg(xn) for some nonnegative and increas-
ing function g(x), then we have

xn ≤ y(n∆t), ∀ 0 ≤ n∆t ≤ T2,

where y(t) is a solution to the following ODE{
y′(t) = g(y(t)),

y(0) = x0.
(39)

in [0, T2].

Proof. We will prove this lemma by the induction on n. The case n = 0 can be
obtained obviously by the initial condition. Since g(x) ≥ 0, we have that y(t) is a
nondecreasing function, which leads to

y((n+ 1)∆t) = y(n∆t) +

∫ tn+1

tn

g(y(t))dt ≥ y(n∆t) + ∆t g(y(n∆t)).
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By the assumption xn+1 ≤ xn+∆tg(xn) and the induction hypothesis xn ≤ y(n∆t),
one has

xn+1 ≤ y(n∆t) + ∆tg(y(n∆t)) ≤ y((n+ 1)∆t).

Hence, we concludes our proof.

To prove (38), if we set xn = ‖ρ̃(n)‖Hk in Lemma 3.1, then we only need to find
the nonnegative and increasing function g(x) satisfying

‖ρ̃(n+1)‖Hk ≤ ‖ρ̃(n)‖Hk + ∆t g(‖ρ̃(n)‖Hk).

Proposition 3. (Stability) Suppose that the initial density 0 ≤ ρ0(x) ∈ L1∩Hk(Rd)
with k > d

2 + 1. Then there exists some C1, T3 > 0 depending on ‖ρ0‖L1∩Hk , such
that for the algorithm (16) with ∆t ≤ C1, we have

‖ρ̃(n)‖Hk ≤ C(T3, ‖ρ0‖L1∩Hk), ∀ 0 ≤ n∆t ≤ T3. (40)

Proof. Step 1. (Estimate of the right handside of (36)) We begin with defining

W1(u) :=
det−1(I + ∆t u)− 1

∆t
,

with ∆t < 1
‖u‖2 and

η(x) := det−1
(
I+∆tDG(n)(x)

)
ρ̃(n)(x) = ∆tW1

(
DG(n)(x)

)
ρ̃(n)(x)+ ρ̃(n)(x). (41)

Then W1(0) = 0 and W1(u) is a smooth function with a bound independent of ∆t.
According to [19, Proposition 3.9], we have∥∥W1(DG(n)(·))

∥∥
Hk ≤ ω1(‖DG(n)‖∞)(1 + ‖DG(n)‖Hk),

and ∥∥W1(DG(n)(·))
∥∥
∞ ≤ ω2(‖DG(n)‖∞),

where ω1(·) and ω2(·) are increasing functions. We have to mention here that the
functions ωi(·) in the following text are always increasing functions and we denote
ω(·) to be a generic function which maybe different from line to line. Moreover, we
have

‖DG(n)‖∞ ≤ C‖DG(n)‖Hk ≤ C‖ρ̃(n)‖Hk , (42)

where we have used the elliptic regularity of (35) in the second inequality. And (42)
implies that

ω1(‖DG(n)‖∞) ≤ ω1(C‖ρ̃(n)‖Hk) =: ω′1(‖ρ̃(n)‖Hk);

ω2(‖DG(n)‖∞) ≤ ω′2(‖ρ̃(n)‖Hk).

Hence, by Moser’s inequality [19, Proposition 3.7], from (41) one concludes that

‖η‖Hk = ‖ρ̃(n) + ∆tW1ρ̃
(n)‖Hk

≤‖ρ̃(n)‖Hk + C∆t (‖W1‖∞‖ρ̃(n)‖Hk + ‖W1‖Hk‖ρ̃(n)‖∞)

≤
(

1 + C∆t
(
ω′1(‖ρ̃(n)‖Hk ) + ω′2(‖ρ̃(n)‖Hk )

)
+ C∆t ω′1(‖ρ̃(n)‖Hk )‖ρ̃(n)‖Hk

)
‖ρ̃(n)‖Hk

≤
(

1 + ω(‖ρ̃(n)‖Hk )∆t+ ω(‖ρ̃(n)‖Hk )∆t ‖ρ̃(n)‖Hk

)
‖ρ̃(n)‖Hk

≤‖ρ̃(n)‖Hk + ∆tω(‖ρ̃(n)‖Hk ),

where in the second inequality we have used

‖DG(n)‖Hk ≤ C‖ρ̃(n)‖Hk ; ‖ρ̃(n)‖∞ ≤ C‖ρ̃(n)‖Hk .
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Step 2. (Estimate of the left handside of (14)) In this step, we consider the
operation η → η̄ to study the left handside of (14), where η̄

(
x+∆tDG(n)(x)

)
= η(x)

for any function η(x).
Like we have done before, we rewrite

det
(
I + ∆tDG(n)(x)

)
= 1 + ∆tW2

(
DG(n)(x)

)
,

with ∥∥W2(DG(n)(·))
∥∥
∞ ≤ ω3(‖ρ̃(n)‖Hk).

Then, one can compute

‖η̄‖22 =

∫
Rd

η̄(y)2dy =

∫
Rd

η̄2
(
x+ ∆tG(n)(x)

)
det
(
I + ∆tDG(n)(x)

)
dx

≤
(
1 + ω3(‖ρ̃(n)‖Hk)∆t

)
‖η‖22. (43)

Continue this process, we know ∂y η̄ = ∂xη ·(I + ∆tDG(n))−1. Again let us recast(
I + ∆tDG(n)(x)

)−1
= I + ∆tW3

(
DG(n)(x)

)
with∥∥W3(DG(n)(·))

∥∥
∞ ≤ ω4(‖ρ̃(n)‖Hk);∥∥W3(DG(n)(·))

∥∥
Hk ≤ ω5(‖ρ̃(n)‖Hk)(1 + ‖ρ̃(n)‖Hk).

Thus one has

‖∂y η̄‖2 ≤ ‖∂xη‖2 + ∆t‖∂xη ·W3‖2
≤
(
1 + ω3(‖ρ̃(n)‖Hk)∆t

)(
‖∂xη‖2 + ∆t‖∂xη ·W3‖2

)
≤
(
1 + ω3(‖ρ̃(n)‖Hk)∆t

)(
1 + ω4(‖ρ̃(n)‖Hk)∆t

)
‖∂xη‖2,

which leads to

‖η̄‖H1 ≤
(
1 + ω(‖ρ̃(n)‖Hk)∆t

)
‖η‖H1 . (44)

Next, we verify by induction on 1 ≤ s ≤ k such that

‖η̄‖Hs ≤
(
1 + ω(‖ρ̃(n)‖Hk)∆t

)
‖η‖Hs + ω(‖ρ̃(n)‖Hk)∆t. (45)

Recall that we have proved the case s = 1 in (44). For s ≥ 1, one has

‖∂y η̄‖Hs ≤ ‖∂xη‖Hs + ∆t‖∂xη ·W3‖Hs .

By the induction hypothesis

‖∂xη‖Hs ≤
(
1 + ω(‖ρ̃(n)‖Hk)∆t

)
‖η‖Hs+1 + ω(‖ρ̃(n)‖Hk)∆t.

Moreover,

∆t‖∂xη ·W3‖Hs

≤
(
∆t+ ω(‖ρ̃(n)‖Hk)∆t

)
‖∂xη ·W3‖Hs + ω(‖ρ̃(n)‖Hk)∆t

≤
(
∆t+ ω(‖ρ̃(n)‖Hk)∆t

)
C
(
‖W3‖∞‖η‖Hs+1 + ‖η‖Hk‖W3‖Hs

)
+ ω(‖ρ̃(n)‖Hk)∆t

≤ω(‖ρ̃(n)‖Hk)∆t‖η‖Hs+1 + ω(‖ρ̃(n)‖Hk)∆t(‖ρ̃(n)‖Hk + ∆tω(‖ρ̃(n)‖Hk))

+ ω(‖ρ̃(n)‖Hk)∆t

≤ω(‖ρ̃(n)‖Hk)∆t‖η‖Hs+1 + ω(‖ρ̃(n)‖Hk)∆t.

Hence we have

‖∂y η̄‖Hs ≤
(
1 + ω(‖ρ̃(n)‖Hk)∆t

)
‖η‖Hs+1 + ω(‖ρ̃(n)‖Hk)∆t,
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which verifies that

‖η̄‖Hs+1 ≤
(
1 + ω(‖ρ̃(n)‖Hk)∆t

)
‖η‖Hs+1 + ω(‖ρ̃(n)‖Hk)∆t.

This completes the proof of (45). Finally since L(n+1) = η̄, the (45) specializes to
the following

‖L(n+1)‖Hk

≤
(
1 + ω(‖ρ̃(n)‖Hk)∆t

)
‖η‖Hk + ω(‖ρ̃(n)‖Hk)∆t

≤(1 + ω(‖ρ̃(n)‖Hk)∆t
)(
‖ρ̃(n)‖Hk + ∆tω(‖ρ̃(n)‖Hk)

)
+ ω(‖ρ̃(n)‖Hk)∆t

≤‖ρ̃(n)‖Hk + ∆tω(‖ρ̃(n)‖Hk). (46)

Step 3. (Estimate of (15)) Finally, this step requires Hk norm bound for the linear
heat equation, and we have

‖ρ̃(n+1)‖Hk ≤ ‖L(n+1)‖Hk .

Collecting (42), (46) and (47), one has

‖ρ̃(n+1)‖Hk ≤ ‖ρ̃(n)‖Hk + ∆tω(‖ρ̃(n)‖Hk), (47)

where ω is nonnegative and increasing. Now we can apply Lemma 3.1, and the
following ODE {

y′(t) = ω(y(t)),

y(0) = ‖ρ0‖Hk ,
(48)

has the solution y(t) in [0, T3]. By Lemma 3.1 and (47), one concludes that

‖ρ̃(n)‖Hk ≤ y(n∆t) ≤ y(T3).

Until now, we have proved the stability result as follows

‖ρ̃(n)‖Hk ≤ C(T3, ‖ρ0‖L1∩Hk), ∀ 0 ≤ n∆t ≤ T3.

Step 2. In this step, we will prove the consistency of the algorithm (16) by using
Proposition 3, which is described by the following proposition:

Proposition 4. (Consistency) Assume that the initial data 0 ≤ ρ0(x) ∈ L1 ∩
Hk(Rd) with k > d

2 + 3. Let ρ(t, x) be the regular solution to the KS equations
(1) with local existence time T and T3 is used in Proposition 3. Denote T ′∗ :=
min{T, T3}, then the local error

r̃n(s) = H(s)Ã(s)ρ̃(n) − ρ(s+ n∆t), 0 ≤ s ≤ ∆t, (n+ 1)∆t ≤ T ′∗, (49)

satisfies
‖r̃n(s)‖2 ≤ eC1s

(
(1 + C3s)‖r̃n(0)‖2 + C2s

2
)
.

where C1, C2, C3 depend on T ′∗, ‖ρ0‖L1∩Hk .

Proof. Let us define X := x+ sG(n)(x). Then for L(tn + s,X), it satisfies

L(tn + s,X) = det−1
(
I + sDG(n)(x(X, s))

)
ρ̃(n)(x(X, s)),

ρ̃(tn + s,X) = H(s)L(tn + s,X). (50)

Denote V (X(x, s), s) := G(n)(x), then L(tn+s,X) is the solution to the following
PDE

∂sL+∇ · (LV ) = 0, (51)
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with initial data L(tn, X) = ρ̃(n)(X).
Thus, it follows from (50) that

∂sρ̃ = ∆ρ̃+H(s)[−∇ · (LV )].

For the exact solution ρ(tn + s,X) to (1), we have

∂sρ = ∆ρ−∇ · (ρG).

Then the local error r̃n(s) = ρ̃(tn + s,X)− ρ(tn + s,X) satisfies

∂sr̃n = ∆r̃n −∇ · (r̃nV )−∇ · (ρ(V −G)) + f̌n(s),

with
f̌n(s) = ∇ · (H(s)LV )−H(s)∇ · (LV ).

As we have done in the Section 2, one has

d

ds
‖r̃n‖22 + 2‖∇r̃n‖22 = −2(∇ · (r̃nV ), r̃n)− 2(∇ · (ρ(V −G)), r̃n) + 2(f̌n, r̃n).

We can compute that

− 2(∇ · (r̃nV ), r̃n) = −2

∫
Rd

∇ · (r̃nV )r̃ndX ≤ ‖r̃n‖22‖∇ · V ‖∞ ≤ C‖r̃n‖22,

and

− 2(∇ · (ρ(V −G)), r̃n)

=− 2

∫
Rd

∇ · (ρ(V −G))r̃ndX

=− 2

∫
Rd

∇ρ · (V −G)r̃ndX − 2

∫
Rd

ρ∇ · (V −G)r̃ndX.

(52)

Applying the Hölder inequality, one has

−2

∫
Rd

∇ρ · (V −G)r̃ndX ≤ 2‖∇ρ‖d‖V −G‖ 2d
d−2
‖r̃n‖2

≤ C
(
T ′∗, ‖ρ0‖L1∩Hk(Rd)

)
‖V −G‖ 2d

d−2
‖r̃n‖2, (53)

where in the second inequality we have used the regularity of ρ.
Moreover, by using the weak Young’s inequality, one concludes that

‖V −G‖ 2d
d−2

=
∥∥F ∗ (ρ̃(n)(x(·, s))− ρ(tn + s, ·))

∥∥
2d

d−2

≤ C
∥∥ρ̃(n)(x(·, s))− ρ(tn + s, ·)

∥∥
2

≤ C
∥∥ρ̃(n)(x(·, s))− ρ(tn, x(·, s))

∥∥
2

+ C
∥∥ρ(tn, x(·, s))− ρ(tn + s, ·)

∥∥
2

≤ C‖r̃n(0)‖2 + Cs. (54)

Next, we compute that

−2

∫
Rd

ρ∇ · (V −G)r̃ndX ≤ 2‖ − ρ∇ · (V −G)‖2‖r̃n‖2

= 2‖ρ(ρ̃(n)(x(·, s))− ρ(tn + s, ·))‖2‖r̃n‖2
≤ (C‖r̃n(0)‖2 + Cs)‖r̃n‖2, (55)

where in the second inequality, (54) has been used.
Collecting (52) to (55), we have

− 2(∇ · (ρ(V −G)), r̃n) ≤ C‖r̃n(0)‖2‖r̃n‖2 + Cs‖r̃n‖2.
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Additionally, like we have done in (32) and (33), for k > d
2 + 3,

2(f̌n, r̃n) ≤ 2‖f̌n‖2‖r̃n‖2 ≤ Cs‖r̃n‖2.

Above all, we have got

d

ds
‖r̃n‖2 ≤ C1‖r̃n‖2 + C2s+ C3‖r̃n(0)‖2,

which leads to

‖r̃n‖2 ≤ eC1s
(
(1 + C3s)‖r̃n(0)‖2 + C2s

2
)
,

by using Gronwall’s inequality.

Step 3. Now we can prove the convergence Theorem 1.2 by using Proposition 4.
We estimate r̃n(∆t) = ρ̃(n+1)(X)− ρ(tn+1, X) as

‖ρ̃(n+1) − ρ(tn+1, ·)‖2 ≤ eC1∆t
(

(1 + C3∆t)‖ρ̃(n) − ρ(tn, ·)‖2 + C2(∆t)2
)
.

Standard induction as we have done in (34) implies that

‖ρ̃(n) − ρ(tn, ·)‖2 ≤
C2∆t

C1

(
(1 + C3∆t)neC1T

′
∗ − 1

)
,

for (n+ 1)∆t ≤ T ′∗, which concludes the proof of Theorem 1.2.
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