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Abstract. The computation of compressible flows becomes more challenging when the
Mach number has different orders of magnitude. When the Mach number is of order
one, modern shock capturing methods are able to capture shocks and other complex
structures with high numerical resolutions. However, if the Mach number is small, the
acoustic waves lead to stiffness in time and excessively large numerical viscosity, thus
demanding much smaller time step and mesh size than normally needed for incom-
pressible flow simulation. In this paper, we develop an all-speed asymptotic preserv-
ing (AP) numerical scheme for the compressible isentropic Euler and Navier-Stokes
equations that is uniformly stable and accurate for all Mach numbers. Our idea is to
split the system into two parts: one involves a slow, nonlinear and conservative hyper-
bolic system adequate for the use of modern shock capturing methods and the other a
linear hyperbolic system which contains the stiff acoustic dynamics, to be solved im-
plicitly. This implicit part is reformulated into a standard pressure Poisson projection
system and thus possesses sufficient structure for efficient fast Fourier transform solu-
tion techniques. In the zero Mach number limit, the scheme automatically becomes a
projection method-like incompressible solver. We present numerical results in one and
two dimensions in both compressible and incompressible regimes.
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1 Introduction

We are interested in the efficient numerical simulation of unsteady compressible flows
with all range of Mach numbers. These flows arise in many physical applications, includ-
ing atmospheric modeling, magnetohydrodynamics and combustion. When the Mach
number is of order one, modern shock capturing methods provide high resolution nu-
merical approximations to shocks and other complex flow structures. However, when
the Mach number is small, near the so-called incompressible regime, there is a wide
gap between the speeds of the flow and the acoustic waves, the latter of which is of-
ten unimportant in the incompressible regime. In the incompressible regime, standard
explicit shock-capturing methods require the time step to scale inversely with the max-
imum wave speed in the system for stability, which greatly overresolves the solution in
time. Furthermore, these shock capturing methods will introduce numerical diffusions
that scale with the inverse of the wave speeds around discontinuities, which requires
overresolution in space in order to ensure that the numerical diffusion does not dominate
the solution or physical viscosity for high Reynolds number flows.

Our goal is to develop all-speed flow simulators that work in all regimes of Mach
number, including both compressible and incompressible regimes and their mixture. As
a first step, in this paper, we focus on the compressible isentropic Euler and Navier-Stokes
equations of gas dynamics. It was shown by Klainerman and Majda [23] that solutions to
these equations converge to solutions of the incompressible equations in the limit when
the Mach number goes to zero. The major difference between compressible and incom-
pressible systems lies in the pressure term. In the compressible case, the pressure is deter-
mined by the equation of state of the system and plays an important role in the flux terms
of the conservation law and is the source of the acoustic waves in the system. However,
in the limiting incompressible equations the pressure term acts as a Lagrange multiplier
to enforce the incompressibility condition and is in fact an asymptotic perturbation of the
physical pressure from the compressible equations.

The development of computational methods for nearly incompressible (small Mach
number flows) has attracted great attention for many years. Much of the early litera-
ture in this area focused on preconditioning techniques for steady state problems. In
fact, Chorin’s artificial compressibility approach [4] sought to avoid the difficulties of
the pressure term in the incompressible equations by solving a form of the compressible
low Mach number system, which has much clearer boundary conditions. It was later
recognized [31] that these ideas could be used to calculate steady states of incompress-
ible flows. Later studies applied these ideas to compute solutions to low Mach number
flow by introducing preconditioning matrices to symmetrize the system in terms of a
set of non-conservative variables [1, 14]. However, these methods assume that the flow
is already in the low Mach number regime and thus cannot accurately compute prob-
lems where the Mach number is of order unity. Guillard and Viozat [13] followed the
asymptotic analysis of Klainerman and Majda [23] to show that the artificial numerical
dissipation in upwind methods for the Euler equation are what causes the method to
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perform poorly in the low Mach number limit and use the preconditioner of Turkel [31]
to alter the dissipation terms in their method to capture the correct limit. Colella and
Pao [5] used the Hodge decomposition to split the method into incompressible and ir-
rotational components and obtained a method that is applicable to the broader regime
of flows with Mach number less than one. However, the accuracy breaks down at the
higher Mach numbers and it does not capture the correct speeds of the acoustic waves in
regimes where they become important. This work was later extended by Gatti-Bono and
Colella in the context of atmospheric flows [11].

Other approaches have sought to develop all-speed methods, which are suited to both
fully compressible and low Mach number regimes. Harlow and Amsden [15] sought to
extend the staggered-mesh MAC scheme for incompressible flows [16] to compressible
flows. Their method, the Implicit Continuous-fluid Eulerian (ICE) method, iteratively
solves an implicit second-order wave equation to update the density and pressure terms.
However, this scheme is not conservative and has difficulties in capturing strong shocks.
Inspired by this work, Degond and Tang [8] split the stiff pressure term with a numer-
ical parameter to derive a nonlinear elliptic equation for the density updates that acts
similarly to a classical incompressible projection on the system. Klein [24] presents a
predictor-corrector type method based on pressure variables at each order in the asymp-
totic expansion of the pressure. Kadioglu et al. [21] developed a method using a second
order preconditioner algorithm that captured the correct shock speed and suppressed os-
cillations in multi-fluid systems. However, in low Mach regimes this method still requires
temporal resolution of the Mach number for stability.

In this paper, we present a new numerical method for the solution of the isentropic
Euler and Navier-Stokes equations that is valid for all Mach numbers (namely the all-
speed property). It allows the use of standard conservative shock capturing methods that
are necessary for the compressible regime, yet the method is shown to be Asymptotic Pre-
serving (AP) [17] in the zero Mach number limit. An Asymptotic Preserving method is a
method that preserves, at the discrete level, the asymptotic passage from one model to
another. Specifically, if the time and spatial steps ∆t and ∆x are kept fixed, as the small
scale parameter goes to zero, the method automatically transforms to a stable discretiza-
tion of the limiting model. In our case here, the limiting scheme, when the Mach number
goes to zero, becomes a good incompressible solver similar to a second order projection
method. By adequately splitting the compressible Euler/Navier-Stokes equations into a
compressible, non-stiff nonlinear hyperbolic system and a stiff linear acoustic wave sys-
tem which can be easily handled by a fast Fourier transform based Poisson solver, our
method allows the use of sound speed (essentially the reciprocal of the Mach number)
independent time and spatial steps.

The asymptotic-preserving approach was first introduced in the context of linear
transport in diffusive regimes [12,19,26] and have since been extended to many other ar-
eas such as fluid and diffusion limits of kinetic models and relaxation methods for hyper-
bolic systems. In [7], Degond, Jin and Liu studied the time discretization of Asymptotic
Preserving methods for several compressible flow problems by means of a Hodge-like



958 J. Haack, S. Jin and J.-G. Liu / Commun. Comput. Phys., 12 (2012), pp. 955-980

decomposition. While our work was inspired by this research, we capture the low Mach
number limit in a different fashion.

Our paper is organized as follows. In Section 2, we review the details of the low Mach
number limit of the isentropic Euler equations and make a close study of the difficulties
encountered by standard hyperbolic shock capturing methods in this regime. In Section 3
we propose a hyperbolic splitting of the system to separate the fast acoustic waves from
the low-speed hyperbolic flow. The fast acoustic system is a linear hyperbolic system
with constant coefficients, which can be solved implicitly, while the relatively slow sys-
tem contains the flow dynamics and is solved using an explicit shock capturing central
scheme. We then perform an asymptotic analysis to show that the scheme becomes an
incompressible scheme in the low Mach number limit. In Section 4 we provide numerical
results on a number of problems in both compressible and incompressible regimes and
the paper is concluded in Section 5.

2 Low Mach number limit of the isentropic Navier-Stokes

equations

The isentropic Navier-Stokes equations in general spatial dimension are given by

ρt+∇·(ρu)=0,

(ρu)t+∇·(ρu⊗u)+∇p(ρ)=µ∆u,

p(ρ)=Aργ.

Here, ρ is the density of the fluid, m=ρu is the momentum of the fluid, µ is the dynamic
viscosity of the fluid and p(ρ) is the pressure. Typically air is composed of N2 and O2,
which gives γ= 1.4 and we take A= 1 for simplicity. One can also obtain the shallow
water equations by setting γ=2 and A= g/2. To obtain the Euler equations, set µ=0.

To describe the low Mach number (incompressible) limit, one scales the equations
in the following manner. Let x0, t0, ρ0, p0, u0 be a set of characteristic scales for the
variables in the equations. The dimensionless variables are then given by x̂= x/x0, t̂=
t/t0, etc. Inserting these into the equations (and dropping the hats), one obtains the
nondimensionalized equations

ρ0

t0
ρt+

ρ0u0

x0
∇·(ρu)=0,

ρ0u0

t0
(ρu)t+

u2
0ρ0

x0
∇·(ρu⊗u)+

p0

x0
∇p=

u0µ

x2
0

∆u,

p0 p=ρ
γ
0 ργ.

Using the fact that u0= x0/t0, one has

ρt+∇·(ρu)=0,
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(ρu)t+∇·(ρu⊗u)+
p0

ρ0u2
0

∇p=
1

Re
∆u,

p0

ρ
γ
0

p(ρ)=ργ .

Here Re=ρ0u0x0/µ is the dimensionless Reynolds number, which measures the ratio be-
tween the inertial and diffusive forces in the system. p0 scales as ρ

γ
0 , as expected from

the equation of state. What remains to be determined is the term in front of the pres-
sure. Since the speed of sound is given by c2 =γp/ρ, one has c2

0c2 =γp0p/ρ0ρ and thus
one defines the dimensionless reference Mach number to be ε2 =γu2

0/c2
0 = ρ0u2

0/p0. The
nondimensionalized equations then take the form

ρt+∇·(ρu)=0, (2.1a)

(ρu)t+∇·(ρu⊗u)+
1

ε2
∇p=

1

Re
∆u, (2.1b)

p=ργ. (2.1c)

2.1 The low Mach number limit

To determine the asymptotic behavior as ε→0, one takes an asymptotic expansion of the
variables as

ρ=ρ(0)+ε2ρ(2)+··· ,

for small ε and look at the balances within the equations. At O(ε−2), one has the balance

∇p(0)=0 ⇒ p(0)(x,t)= p(0)(t) ⇒ ρ(0)=ρ(0)(t),

i.e., the leading order pressure (and hence density) are constant in space.
Next, use this fact to enforce incompressibility. The O(1) equations are

∂tρ
(0)+∇·(ρ(0)u(0))=0, (2.2)

∂t(ρ
(0)u(0))+∇·(ρ(0)u(0)⊗u(0))+∇p(2)=0. (2.3)

Incompressibility is enforced using the boundary conditions. Three types of boundary con-
ditions that give incompressibility are listed below.

1. Wall boundary condition. The problem takes place in a bounded domain Ω with
fixed walls. In this case u·n=0 on ∂Ω. Thus, if one integrates the density equation
over the domain one obtains

|Ω|∂tρ
(0)+ρ(0)

∫

Ω
∇·u(0)=0, ∂tρ

(0)=−
ρ(0)

|Ω|

∫

Ω
∇·u(0),

∂tρ
(0)=−

ρ(0)

|Ω|

∫

∂Ω
u(0) ·n, ∂tρ

(0)=0.
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The last step comes from applying the boundary condition. Thus the density does
not change and one sets ∇·u(0)=0.

2. Periodic boundary condition. This result is similar to the above. Integrating over
the domain gives

|Ω|∂tρ
(0)+ρ(0)

∫

Ω
∇·u(0)=0, ∂tρ

(0)=−
ρ(0)

|Ω|

∫

Ω
∇·u(0),

∂tρ
(0)=−

ρ(0)

|Ω|

∫

∂Ω
u(0) ·n, ∂tρ

(0)=0.

The last step cancels out because the velocities are the same at opposite ends of the
box, while the normal vectors point in opposite directions, thus giving the cancela-
tion. Again one gets that ∇·u(0)=0.

3. Open boundary. In this case, one needs to have some sort of far-field boundary
condition–usually this is enforced on the pressure. By assuming that this does not
change with time (which makes sense, as it is just a general background pressure),
one gets that P(0)(t)=P0=ρ(0) and thus ∂tρ

(0)=0, giving ∇·u(0)=0.

One consequence of these results is that incompressibility comes from a global procedure–
a numerical scheme that hopes to capture it will have to take this into account.

Thus, assuming one of these boundary conditions one has that ρ(0) is constant in space
and time and the incompressibility condition is satisfied for the leading order velocity.
Next, looking at the O(1) momentum equation

ρ(0)∂tu
(0)+ρ(0)∇·(u(0)⊗u(0))+∇p(2)=

1

Re
∆u(0),

using the incompressibility found above gives

∇·u(0)=0,

∂tu
(0)+(u(0) ·∇)u(0)+

1

ρ(0)
∇p(2)=

1

Re
∆u(0),

which is the incompressible Navier-Stokes equation.

2.2 Numerical difficulties in the low Mach number limit

Standard finite volume shock-capturing hyperbolic solvers have difficulties in the low
Mach number regimes. The compressible equations have acoustic waves that scale as
O(ε−1) which require temporal resolution for stability. Furthermore, artificial viscosity
on the order of the wave speeds is also introduced to suppress numerical oscillations
across shocks and contact discontinuities. Thus, for a desired spatial accuracy, one must
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also resolve the waves in space. This is prohibitively expensive to undertake as the un-
derlying incompressible system does not admit these acoustic waves and the relevant
time scale of interest is that of the fluid velocity u. We illustrate these problems by look-
ing at the one-dimensional Euler system with a simple local Lax-Friedrichs finite volume
method, for simplicity, though the same issues will arise with other standard choices for
the numerical flux

ρn+1
j −ρn

j

∆t
+

mn
j+1−mn

j−1

2∆x
−

λj+ 1
2

2∆x
(ρn

j+1−ρn
j )+

λj− 1
2

2∆x
(ρn

j −ρn
j−1)=0,

mn+1
j −mn

j

∆t
+
(m2/ρ)n

j+1−(m2/ρ)n
j−1

2∆x
+

1

ε2

pn
j+1−pn

j−1

2∆x

−
λj+ 1

2

2∆x
(mn

j+1−mn
j )+

λj− 1
2

2∆x
(mn

j −mn
j−1)=0.

Here λj+1/2 =max{λj,λj+1}, where λj is the maximum wave speed based on the values
in cell j.

The maximum wave speed of the system is λmax= |umax|±ε−1
√

p′(ρmax) (where umax

and ρmax are the values at the point where the maximum wave speed is reached); thus
one needs

∆t=ν
∆x

λmax
=ν

∆xε

ε|umax|+
√

p′(ρmax)
=O(ε∆x)

for some 0≤ ν≤ 1 to satisfy the CFL condition for stability. Furthermore, the numerical
diffusion, while local, will at least at one point be given by

∆xλmax

2
=

∆x

ε

(ε|umax|+
√

p′(ρmax))

2ν
.

Thus one needs ∆x = o(ε) for accuracy purposes, ensuring that the numerical diffusion
does not dominate the solution. A further consequence of this is that one now needs
∆t= o(ε∆x)= o(ε2). This is unacceptable, as the limiting incompressible equations only
have a timestep restriction of ∆t=O(∆x), independent of ε.

3 The all-speed asymptotic-preserving method for the isentropic

Navier-Stokes equations

3.1 All-speed asymptotic-preserving schemes

Our goal is to develop a method that preserves, at the discrete level, the asymptotic pas-
sage from the compressible equations to the incompressible equations without resolving
the spatial and temporal scales associated with the acoustic waves, which are unimpor-
tant in the limit. In particular, the numerical method should demonstrate this discrete
asymptotic limit by being consistent with a method for the incompressible equations in
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the low Mach number limit. This discrete limit is taken with spatial and temporal steps
fixed, with only the reference Mach number parameter driven to zero. A method that
satisfies these properties is said to be asymptotic-preserving (AP) [17].

We stress that we want to obtain an all-speed scheme, in other words, a scheme that
gives correct solutions for any reference Mach number ε, not just in the low Mach number
regime. Therefore, we need to construct a scheme robust for all regimes. To this end, we
work in conservative variables, to ensure that the scheme can capture shocks in the com-
pressible regimes, (i.e., Mach number of order unity). On the other hand, incompressible
solvers typically have an implicit global projection step that calculates an intermediate
velocity field and pressure to update the velocity equations. This suggests that our over-
all scheme should be semi-implicit, weaving together these features of the two systems.

3.2 A hyperbolic splitting

Looking at the compressible system (2.1), there are two scales that we need to resolve: the
(fast) acoustic wave scale and the (slow) convection scale, which contains the underlying
incompressible dynamics. Therefore, we split the system into two systems. First, write
the N-S equations as

∂tρ+α∇·(ρu)+(1−α)∇·(ρu)=0, (3.1a)

∂t(ρu)+∇·(ρu⊗u)+∇
( p(ρ)−a(t)ρ

ε2

)
+

a(t)

ε2
∇ρ=

1

Re
∆u. (3.1b)

The slow dynamics evolves according to the system

∂tρ+α∇·(ρu)=0, (3.2a)

∂t(ρu)+∇·(ρu⊗u)+∇
( p(ρ)−a(t)ρ

ε2

)
=

1

Re
∆u (3.2b)

and the fast dynamics is governed by the system

∂tρ+(1−α)∇·(ρu)=0, (3.3a)

∂t(ρu)+
a(t)

ε2
∇ρ=0. (3.3b)

The key idea is to split the stiff pressure term. We subtract off a linear piece a(t)ρ, to
be determined below and add it back in fast system. The splitting parameter 0< α< 1
determines how much of the momentum is seen by each system. As we will see, some
momentum is necessary in the fast system to ensure incompressibility.

The choice of the splitting parameter a(t) is motivated by hyperbolicity. In the two-
dimensional case, for example, the wave speeds of (3.2) in the x direction are

λ=u,u±

√
(1−α)u2+

α(p′(ρ)−a(t))

ε2
,
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where u is the first component of u, so if we choose

a(t)=min
x

p′(ρ)

for our pressure splitting term, we ensure that the wave speeds will always be real and
thus the slow system is hyperbolic. As we will see in the asymptotic analysis later, in
the low Mach number limit the fast system (3.3) will force variations in ρ to be small and
thus the wave speeds of the slow system will be O(1). We can discretize this system
using any shock-capturing hyperbolic solver, noting that the wave speeds are no longer
stiff which avoids the dissipation and time step problems seen in the original system
(2.1). The fast dynamics, contained in (3.3), are simply a linear hyperbolic system with
constant coefficients, which leads to a straightforward implicit implementation.

3.3 Time discretization of the split systems

For a first order in time scheme, we can write the system in a simple semi-implicit form

ρn+1−ρn

∆t
+α∇·(ρu)n+(1−α)∇·(ρu)n+1=0, (3.4a)

(ρu)n+1−(ρu)n

∆t
+∇·(ρu⊗u)n+∇

( p(ρ)−a(t)ρ

ε2

)n
+

a(t)

ε2
∇ρn+1=

1

Re
∆un. (3.4b)

To obtain second order in time, we use a two-level Adams-Bashforth discretization for
the explicit, slow terms and Crank-Nicholson for the fast, implicit terms

ρn+1−ρn

∆t
+α∇·

(3

2
(ρu)n−

1

2
(ρu)n−1

)
+(1−α)∇·

( (ρu)n+1+(ρu)n

2

)
=0, (3.5a)

(ρu)n+1−(ρu)n

∆t
+∇·

(3

2
(ρu⊗u)n−

1

2
(ρu⊗u)n−1

)
+∇

3

2

( p(ρ)−a(t)ρ

ε2

)n

−
1

2
∇
( p(ρ)−a(t)ρ

ε2

)n−1
+

a(t)

ε2
∇

ρn+1+ρn

2
=

1

Re
∆
(3

2
un−

1

2
un−1

)
. (3.5b)

Degond and Tang [8] noted that one can rewrite the momentum equation in (3.5b) in
terms of (ρu)n+1 and insert it into the density equation, obtaining an elliptic equation for
ρn+1:

ρn+1−ρn

∆t
+α∇·

(3

2
(ρu)n−

1

2
(ρu)n−1

)
+(1−α)∆t∇·(ρu)n

−
(1−α)∆t

2
∇·∇·

( 3

2
(ρu⊗u)n−

1

2
(ρu⊗u)n−1

)

−
(1−α)∆t

2
∇·∇

(3

2

( p(ρ)−a(t)ρ

ε2

)n
−

1

2

( p(ρ)−a(t)ρ

ε2

)n−1)

−
(1−α)∆t

2
∇·

a(t)

ε2
∇

ρn+1+ρn

2
=

(1−α)∆t

2
∆
(3

2
∇·un−

1

2
∇·un−1

)
. (3.6)
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This system is now a Helmholtz equation for the unknown variable ρn+1 and the terms
from the previous steps can be pushed to the right hand side as source terms. If the right
spatial discretization is chosen, this system can be solved efficiently for ρn+1 using Fast
Fourier Transform techniques. An important feature of this Helmholtz equation is that it
is uniformly elliptic for any ε [6,9]. The updated momentum (ρn+1un+1) is then obtained
from the momentum equation (3.5b).

Note that, while popular in many incompressible solvers, we do not discretize the
diffusion terms using Crank-Nicholson. This is done for two reasons: first of all, because
it involves the velocity rather than the momentum and thus it is a nonlinear function of
the conservative variables if this term is calculated fully implicitly, which would require
iterations. More importantly, if treated implicitly this term will appear in the elliptic
equation (3.6) for the updated density and thus disallows the application of the fast spec-
tral solver for the updated density and pressure. Furthermore, for high Reynolds number
flow, where Re≫1, an explicit diffusion term is clearly adequate [10].

3.4 The L2 stability

To check the stability, we write the method as a semi-implicit method

Un+1−Un

∆t
+AUn+BUn+1=0.

We have the following Lemma

Lemma 3.1. If both methods

Un+1−Un

∆t
+AUn=0,

Un+1−Un

∆t
+BUn+1=0

are stable, then the original method is also stable.

Proof. Method Un+1=(I−∆tA)Un is stable iff

‖I−∆tA‖≤1+c1∆t.

Method Un+1=(I+∆tB)−1Un is stable iff

‖(I+∆tB)−1‖≤1+c2∆t.

Thus the combined method Un+1=(I+∆tB)−1(I−∆tA)Un is stable iff

‖(I+∆tB)−1(I−∆tA)‖≤‖(I+∆tB)−1‖‖(I−∆tA)‖≤1+C∆t.

Therefore, so long as the fast and slow systems are individually stable, the combined
scheme will also be stable.
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3.5 Spatial discretization of the split systems

For simplicity, assume a uniform grid with spacing ∆x and define φij = φ(xi,yj) for any
variable φ, where (xi,yj)=(∆x/2+i∆x,∆x/2+ j∆x). We also assume for ease of explana-
tion a rectangular domain.

The fast system (3.3) is discretized in space using central differences:

∇·(ρu)n+1
i,j =Dx

0(ρu)n+1
i,j +D

y
0(ρv)n+1

i,j , (3.7a)

an

ε2
∇ρn+1

i,j =
an

ε2
∇0ρn+1

i,j . (3.7b)

Here

Dx
0φi,j=

φi+1,j−φi−1,j

2∆x
, D

y
0φ=

φi,j+1−φi,j−1

2∆x

are the central difference operators,

∇0φi,j=

(
Dx

0φi,j

D
y
0φi,j

)

is the natural extension to the central difference gradient and an is the value of a(t) =
min p′(ρ) at time t= tn.

We discretize the convective flux terms in (3.2) using a second order central scheme [25],
which is a higher-order extension of the Lax-Friedrichs scheme. This choice is by no
means unique–any standard shock-capturing scheme will be sufficient. We take the con-
servative discretization,

F(Un
i,j)=

Hn
i+ 1

2 ,j
−Hn

i− 1
2 ,j

∆x
+

Hn
i,j+ 1

2

−Hn
i,j− 1

2

∆x
, (3.8)

where

Hn
i+ 1

2 ,j
=

1

2

(
f (Un

i+ 1
2 ,j,+

)+ f (Un
i+ 1

2 ,j,−
)−λn

i+ 1
2 ,j
(Un

i+ 1
2 ,j,+

−Un
i+ 1

2 ,j,−
)
)

, (3.9a)

λn
i+ 1

2 ,j
=max

{
σ
( ∂F

∂U
(Ui+ 1

2 ,j,+)
)

,σ
( ∂F

∂U
(Ui+ 1

2 ,j,−)
)}

. (3.9b)

σ is the spectral radius of the Jacobians in (3.9b), i.e., the maximum wave speed. Here f is
the relevant flux function from the slow system (3.2) chosen for x and y fluxes as needed.
The edge values Ui±1/2,j at each interface are reconstructed component-wise using the
generalized minmod limiter, with θ∈ [1,2],

σn
j =minmod

(
θ

un
i+1,j−un

i,j

∆x
,θ

un
i,j−un

i−1,j

∆x
,
un

i+1,j−un
i−1,j

2∆x

)
, (3.10a)

un
i+ 1

2 ,j,+
=un

i+1,j−
∆x

2
σn

i+1,j, un
i+ 1

2 ,j,−
=un

i,j+
∆x

2
σn

i,j. (3.10b)
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Note here that in central schemes, the slope limiter is based on conserved variables rather
than a local characteristic decomposition.

The CFL condition for this scheme is, at first order, following [25]

λ∆t

∆x
≤

1

4d
, (3.11)

where d is the dimension of the computation and for the second order Adams-Bashforth-
Crank-Nicolson scheme it is

λ∆t

∆x
≤

1

2

1

8d
. (3.12)

The 4 and 8 in the formula are from the number of terms evaluated in the numerical flux
in each direction. λ is the sum of the maximum wave speeds in each direction. While
this CFL constant is restrictive, it is important to notice that it is independent of ε. In fact,
as we will see below from the numerical results, the method performs best in the low
Mach number limit when we take α=O(ε2). In this case the wave speeds λ are given by
λ=O(|u|) and we have the hyperbolic CFL condition

∆t≤
1

32
max|u|∆x. (3.13)

3.6 Boundary and initial conditions

Our example boundary conditions listed in Section 2 only gave the boundary conditions
for u, not ρ. To remedy this, we artificially enforce a boundary condition of ∂ρ/∂n=0 on
∂Ω. In the following analysis we will also assume a solid wall boundary with u·n=0 on
∂Ω. For the Navier-Stokes case, we extend this to the no-slip boundary condition u= 0
on ∂Ω.

We enforce these boundary conditions by using ghost cells, setting

ρ−1=ρ0, u−1=−u0, (ρu)−1=−(ρu)0. (3.14)

This results in a second order approximation of the boundary condition.
We only consider initial data of the form

ρ(0,x)=ρ0+ε2ρ(2)(x)+··· , (3.15a)

∇·u(0,x)=O(ε). (3.15b)

This initial data converges to admissible initial data of the limiting incompressible equa-
tion.

One thing to note is that this is not a projection scheme for general initial data. In fact,
general initial data will implicitly contain O(1/ε) acoustic waves that require resolution
in space and time for accuracy and stability. This situation could reflect a poor choice
of terms in nondimensionalization, as the behavior of the solution is compressible, not
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incompressible. However, in certain cases, such as when the Mach number is not exces-
sively small, the scheme could offer some speedup over a standard solver in that it can
take much larger timesteps due to the fact that the acoustic wave term is treated implicitly
and the explicit solver only needs to advance the remaining part of the waves.

3.7 The discrete low Mach number limit

Next, we show that in the limit ε≪1 this solver automatically transforms into an incom-
pressible solver. In the following, we will write ∇0 as the standard centered difference

gradient operator and ∇̃ as the shock-capturing difference operator from (3.9a).
We write

ρn
i,j =ρ

n,(0)
i,j +ε2ρ

n,(2)
i,j +··· , (3.16a)

(ρu)n
i,j=(ρu)

n,(0)
i,j +ε2(ρu)

n,(2)
i,j +··· , (3.16b)

pn
i,j = p

n,(0)
i,j +ε2 p

n,(2)
i,j +···=(ρ

n,(0)
i,j )γ+ε2γ((ρ

n,(0)
i,j )γ−1ρ

n,(2)
i,j )+··· . (3.16c)

We skip ε1 in the expansion because there are no O(ε−1) terms in the discrete equations.
We now look at how the terms balance at each order in ε. For small ε, the O(ε−2)

terms are given by

an

4∆x
(ρ

n+1,(0)
i+1,j −ρ

n+1,(0)
i−1,j +ρ

n,(0)
i+1,j−ρ

n,(0)
i−1,j)=0,

an

4∆x
(ρ

n+1,(0)
i,j+1 −ρ

n+1,(0)
i,j−1 +ρ

n,(0)
i,j+1−ρ

n,(0)
i,j−1)=0,

⇒ ρ
n+1,(0)
i+1,j −ρ

n+1,(0)
i−1,j =−(ρ

n,(0)
i+1,j−ρ

n,(0)
i−1,j)=0, ρ

n+1,(0)
i+1,j =ρ

n+1,(0)
i−1,j ,

⇒ ρ
n+1,(0)
i,j+1 −ρ

n+1,(0)
i,j−1 =−(ρ

n,(0)
i,j+1−ρ

n,(0)
i,j−1)=0, ρ

n+1,(0)
i,j+1 =ρ

n+1,(0)
i,j−1 .

This result comes from the fact that the leading order density was constant at the previous
timestep, consistent with the initial condition (3.15).

A straightforward application of the boundary conditions (3.14) gives ρ
n+1,(0)
i,j =ρn+1

0 ,

∀i, j, a constant in space but not necessarily in time. Next one needs to show incompress-
ibility and this is where the α terms in the splitting become important. The O(1) equation
for the density is given by

ρ
n+1,(0)
i,j −ρ

n,(0)
i,j

∆t
+α∇̃0

(3

2
(ρun)−

1

2
(ρu)n−1

)

+
1−α

2

(
∇0 ·(ρ

n+1,(0)
i,j u

n+1,(0)
i,j )+∇0(ρ

n+1,(0)
i,j u

n,(0)
i,j )

)
=0.

Note that ∇̃ reduces to ∇0 in this case, as the density jump at the interface is zero due to

the constant profile of ρ(0), resulting in a numerical dissipation term of λn
i+1/2,j(ρ

(0),n
i+1/2,j,+−
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ρ
(0),n
i+1/2,j,−)) (note that the dissipation would not be of this form if a slope limiter based on

a local characteristic decomposition is used).

We now do the discrete analog of the integrals done in Section 2.1 by summing this
equation over all i, j. Recalling that the leading order density is a constant and noting
that the flux terms telescope and the resulting boundary terms cancel out, these result in

N2ρn+1
0 −∑

i,j

ρ
n,(0)
i,j =0 ⇒ ρn+1

0 =
1

N ∑
i,j

ρ
n,(0)
i,j , (3.17)

where N is the total number of grid points in each direction. This merely says that the
new density is a constant and is simply equal to the average value of the density at the
previous time step. Furthermore, as the density in the previous time step was also con-
stant to leading order in space this says that the two coincide, so the density is also con-
stant in time as was seen in the continuous case.

Using this result, the density terms cancel out and we are left with

3

2
α∇0 ·(ρ

(0)u(0))n−
1

2
α∇0 ·(ρ

(0)u(0))n+(1−α)ρn+1,(0) 1

2
(∇0 ·(u

n+1,(0)+un,(0)))=0.

As we assumed the initial velocity field was incompressible to O(ε), the terms from the tn

step drop out and we are left with ∇0·un+1,(0)=0, the discrete incompressibility condition
for un+1,(0).

Finally, we can derive an equation for the density correction term ρn+1,(2) (and hence
the incompressible pressure p(2)) by looking at the O(1) terms in the elliptic equation
reformulation (3.6)

ρn+1,(0)−ρn,(0)

∆t
+α∇0 ·

(3

2
(ρu)n,(0)−

1

2
(ρu)n−1,(0)

)
+(1−α)∆t∇0 ·(ρu)n,(0)

−
(1−α)∆t

2
∇0 ·∇̃·

(3

2
(ρu⊗u)n,(0)−

1

2
(ρu⊗u)n−1,(0)

)

−
(1−α)∆t

2
∇0 ·∇̃

(3

2

( p(ρ)−anρ

ε2

)n,(0)
−

1

2

( p(ρ)−anρ

ε

)n−1,(0))

−
(1−α)an∆t

2
∇0 ·∇0

ρn+1,(2)+ρn,(2)

2
=

1

Re

(1−α)∆t

2
∇0 ·∆

(3

2
un,(0)−

1

2
un−1,(0)

)
. (3.18)

Again, we have used the fact that ∇̃=∇0 for the explicit flux terms in the leading order
density equation. We can rewrite this as

−
an

4∆x2

(
ρ

n+1,(2)
i+2,j +ρ

n+1,(2)
i−2,j +ρ

n+1,(2)
i,j+2 +ρ

n+1,(2)
i,j−2 −4ρ

n+1,(2)
i,j

)
=φ(Un,(0),Un+1,(0)),

where φ collects all the explicit or known terms. This is simply a Poisson equation for
ρn+1,(2). Using the expansion of the pressure (3.16c) and the definition of an, one has that
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anρ(2)= p(2). Using this fact and the knowledge of the previous steps’ leading order den-
sity and incompressibility one obtains a discretization of the pressure Poisson equation

−∆2 p(2)=−∇0 ·∇̃·
(3

2
(ρu⊗u)n,(0)−

1

2
(ρu⊗u)n−1,(0)

)

+
1

Re
∇0 ·∆0

(3

2
un,(0)+

1

2
un−1,(0)

)
. (3.19)

Here, ∆0 is the standard centered second order Laplacian and ∆2 is the second order
centered Laplacian with stencil of size 4∆x generated by ∇0 ·∇0. In the continuous case,
the divergence and Laplacian would commute and the diffusion-type term would drop
out due to incompressibility, but this is not necessarily true at the discrete level. We also
note that the explicit pressure term drops out, as the modified explicit pressure ε−2(p(ρ)−
a(t)ρ) has a simple Taylor expansion for small ε of

p̃ε =
1

ε2

(
(ρ0)

γ+γε2(ρ0)
γ−1ρ

n+1,(2)
i,j −an(ρ0+ε2ρ

n+1,(2)
i,j )

)
.

For convex equations of state (such as the one we are using), an is found at ρmin := ρ†,
which will not deviate much from ρ0. Thus we have

an := p′(ρ†)=γρ
γ−1
0 +γ(γ−1)ε2ρ

γ−2
0 (ρ†−ρ0)=γρ

γ−1
0 +O(ε4),

as ρ†−ρ=O(ε2). Therefore,

1

ε2

(
(ρ0)

γ+γε2(ρ0)
γ−1ρ

n+1,(2)
i,j −an(ρ0+ε2ρ

n+1,(2)
i,j )

)
=

1

ε2
(1−γ)ργ−1

0 .

Thus the explicit pressure becomes a constant in the low Mach number limit. In prin-
ciple, one can also subtract a constant derived from the density (such as the average or
minimum density) to ensure that this constant background pressure does not become too
large, but in practice it does not really matter because this pressure term is only seen as a
derivative, so the background constant value does not matter. Thus we have found that,
to O(1), the modified pressure in the slow system (3.2) becomes constant in space in the
low Mach number limit.

For the momentum equations, at O(1)

u
n+1,(0)
i,j −u

n,(0)
i,j

∆t
+∇̃

(3

2
u

n,(0)
i,j ⊗u

n,(0)
i,j −

1

2
u

n−1,(0)
i,j ⊗u

n−1,(0)
i,j

)

+∇0
1

2
(p

n+1,(2)
i,j +p

n,(2)
i,j )=

1

Re
∆0

(3

2
u

n,(0)
i,j −

1

2
u

n,(0)
i,j

)
.

This is an equivalent (conservative) formulation of the incompressible momentum equa-
tion.
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Remark 3.1. When the second-order formulation (3.4a)-(3.4b) is used, the implicit terms
contribute no numerical dissipation to the system, i.e., the only numerical dissipation is
the O(1) contribution from the explicit, slow flux terms. We sketch the proof of this in
one dimension; the proof for higher dimensions is similar.

The terms of the semi-implicit formulation from the fast system are

ρn+1
j −ρn

j

∆t
+(1−α)

1

2

( (ρu)n+1
j+1 −(ρu)n+1

j−1

∆x
+
(ρu)n

j+1−(ρu)n
j−1

∆x

)
=0, (3.20a)

(ρu)n+1
j −(ρu)n

j

∆t
+

a

ε2

1

2

(ρn+1
j+1 −ρn+1

j−1

∆x
+

ρn
j+1−ρn

j−1

∆x

)
=0. (3.20b)

Note that for ε≪1 one can assume that a is constant to leading order. One needs to make
sure that numerical dissipation does not dominate when ε is small.

Define the discrete energy functional

Ln+1=
N

∑
j=1

(ρn+1−ρn

∆t

)2
+
(1−α)a

ε2

(1

2

(ρn+1
j+1 −ρn+1

j−1

2∆x

)
+
(ρn

j+1−ρn
j−1

2∆x

))2
.

By taking the time difference of (3.20a) and the divergence of (3.20b), summing over the
domain and using summation by parts, one can derive that

Ln+1−Ln =0,

which implies that the implicit terms introduce no numerical dissipation into the solu-
tion.

In summary, the limiting incompressible scheme is

ρ
(0)
i,j =ρ0, (3.21a)

∇0 ·u
n+1,(0)
i,j =0, (3.21b)

−∆2 pn+1,(2)=−∇0 ·∇̃·
(3

2
(ρu⊗u)n,(0)−

1

2
(ρu⊗u)n−1,(0)

)

+
1

Re
∇0 ·∆0

(3

2
un,(0)+

1

2
un−1,(0)

)
, (3.21c)

u
n+1,(0)
i,j −u

n,(0)
i,j

∆t
+∇̃

(3

2
u

n,(0)
i,j ⊗u

n,(0)
i,j −

1

2
u

n−1,(0)
i,j ⊗u

n−1,(0)
i,j

)

+∇0
1

2
(p

n+1,(2)
i,j +p

n,(2)
i,j )=

1

Re
∆0

(3

2
u

n,(0)
i,j −

1

2
u

n,(0)
i,j

)
. (3.21d)

This is a second order version of a projection type method [3, 30].
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3.8 The fast solver for ρn+1

One can efficiently solve the elliptic equation (3.6) using fast Fourier transform (FFT)
based solvers. Here we will sketch the basic idea for the homogeneous Neumann bound-
ary conditions; for further details on the development of these methods see Swarz-
trauber [29] and for further information on using FFT techniques on different gridding
systems and boundary conditions, see Bradford [2].

The basic idea is to expand the solution in trigometric functions that are consistent
with the boundary conditions. The expansion derived below is for a cell-centered grid
with the homogeneous Neumann boundary conditions, but it is relatively straightfor-
ward to find an expansion for other typical boundary conditions. For a system with
N grid points placed at xi+1/2,j+1/2 =(∆x/2+i/N,∆x/2+ j/N) on (0,1)×(0,1) and ho-
mogeneous Neumann boundary conditions for ρ, we expand using cos(πk(j+1/2)/N),
k=0,··· ,N−1. Therefore, we assume

ρn+1
i,j =

N−1

∑
k=0

ρ̂k,j cos(πk(i+1/2)/N).

Sticking this into the elliptic equation (3.6) for ρn+1 and using the orthogonality of the
basis functions give

ρ̂k,j

(
1+4

(1−α)a∆t2

16ε2∆x2
sin2

(πk

N

))
−
(1−α)a∆t2

16ε2∆x2
(ρ̂k,j+2+ ρ̂k,j−1)= φ̂k,j.

Here, φ̂k,j is the transformed right-hand side in the expansion functions chosen. This
gives a tridiagonal system for solving ρ̂k,j, which is then transformed back onto the grid.
Determination of the coefficients φ̂k,j is done through the use of the staggered Fourier
transforms [2], as is the inverse transform back to the physical grid. The boundary con-
ditions are automatically built into this framework by the choice of the basis function.

In two dimensions, this transform only needs to be done along one space dimension.
The resulting system will be tridiagonal and can thus be solved in O(N) steps. Therefore,
the overall computational cost is O(N logN).

4 Numerical results

4.1 Compressible flow examples (ε=O(1))

Experimentation with the artificial splitting parameter α in compressible regimes (i.e.,
ε=O(1)) showed that there is little effect on the solution unless α is chosen close to 0.
In the compressible examples below, we show results for α=0.5. The timestep is chosen
according to the CFL condition (3.12).

1D Riemann problem. First, we will demonstrate the method in a compressible regime,
i.e., where the Mach number is O(1). We start with a 1-d Riemann problem with the
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Figure 1: 1D Riemann problem with initial data (4.1). ε=1, γ=1.4, α=0.5. The solid line is the true solution.

initial condition

ρ(x,0)=

{
3.0, x<1/2,
1.0, x≥1/2,

u(x,0)=0. (4.1)

We discretize this problem with 100 points and choose ε=1, γ=1.4 and θ=1 (the minmod
slope limiter) for a spatially second order scheme. The results are found in Fig. 1. The
scheme captures the correct shock speed. The overshoots in the result are an artifact of
the central scheme used for the numerical fluxes and diminish as the grid is refined.

Higher Mach number. Next we test the performance of the scheme at a higher Mach
number. We take the same setup and parameters as in the previous Sod problem (1), but
now set ε=20. The results are found in Fig. 2.

0 0.5 1
1

1.5

2

2.5

3

3.5
ρ, α = 0.5, ε = 20

(a) ρ, α=0.5

0 0.5 1
0

0.05

0.1
ρ u, α = 0.5, ε = 20

(b) ρu, α=0.5

Figure 2: 1D Riemann problem with initial data (4.1). ε=20, γ=1.4, α=0.5. The solid line is the true solution.

Strong shock wave. Next, we test a strong shock to check that the scheme captures the
correct wave speed. Inspired by the example from [21], we take the initial data

ρ(x,0)=

{
10.0, x<1/2,

20.0, x≥1/2,
u(x,0)=

{
2000.0, x<1/2,
0.0, x≥1/2.

(4.2)

We use 500 points and set ε = 1, γ = 1.4, θ = 1. The results are given in Fig. 3. Again,
the scheme appears to be able to capture the correct shock speed, though the strength of
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Figure 3: Solution to initial data (4.2) at T=0.001 with ε=1 and α=0.5. The solid line is the true solution.

the shock demands a large amount of numerical diffusion which smears the peak of the
strong shock.

2D Riemann problem. We also run a test on a 2D Riemann problem inspired by the
initial data in [27] for the full Euler equations. Here we set ε= 1, γ= 1.4 and choose the
initial data as

ρ(x,y,0)=

{
0.5323, x<1/2, y≥1/2, 1.5, x≥1/2, y≥1/2,
0.138, x<1/2, y<1/2, 0.5323, x≥1/2, y<1/2,

(4.3a)

u(x,y,0)=

{
1.206, x<1/2, y≥0, 0, x≥1/2, y≥1/2,
1.206, x<1/2, y<1/2, 0, x≥1/2, y<1/2,

(4.3b)

v(x,y,0)=

{
0, x<1/2, y≥0, 0, x≥1/2, y≥1/2,
1.206, x<1/2, y<1/2, 1.206, x≥1/2, y<1/2.

(4.3c)

This initial data results in four shock waves. As in the 1D case and we take 50 points in
each direction. The results are given in Fig. 4.

4.2 Low Mach number limit examples (ε≪1)

In all of the examples below, the numerical experimentation has revealed that choosing
α=ε2 provides good results in small ε regimes. The timesteps are chosen according to the
CFL condition (3.13).

Periodic flow. First, we test a simple problem with periodic boundary conditions, to
divorce the AP property from any boundary peculiarities. This example was used in [8].
The initial conditions and constant γ are





ρ(0,x,y)=1+ε2 sin2(2π(x+y)),

u(0,x,y)=sin(2π(x−y)),

v(0,x,y)=sin(2π(x−y)),

γ=2.

(4.4)
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Figure 4: Density plot of 2D Riemann problem with initial data (4.3). ε=1, γ=1.4, α=0.5.

The initial velocity field is divergence free and the density field is constant at leading
order. We fix the Reynolds number at Re= 100, the spatial step at ∆x = 1/32 and the
temporal step at 2.5×10−4 and look at ε values of 0.1 and 10−4. Figs. 5-6 compare the
solution given by the AP scheme at T = 1 to a highly resolved solution. In both cases
we see that there is little error between the two, especially in the ε=10−4 case, where ∆x
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Figure 5: Results for periodic flow test case (4.4), ε=0.1. (a): stream function of solution with ∆x=1/16. (b):
error in u. (c): error in v.

Periodic flow test, Re = 100, ε = 0.0001
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Figure 6: Results for periodic flow test case (4.4), ε= 10−4. (a): stream function of solution with ∆x= 1/16.
(b): error in u. (c): error in v.
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grossly underresolves ε. As ∆x and ∆t become small, the O(ε) model error dominates
the error, as expected.

Vortex-in-a-box. Next, we test a similar case that was used in [5]. This is the so-called
”vortex in a box”, given by





ρ(0,x,y)=1− ε2

2 tanh(y−1/2),

u(0,x,y)=2sin2(πx)sin(πy)cos(πy),

v(0,x,y)=−2sin(πx)cos(πx)sin2(y),

γ=1.4.

(4.5)

The boundary condition is now a no-slip boundary condition (u=0 on ∂Ω). We again fix
the Reynolds number at Re=100, the spatial step at ∆x=1/64 and the temporal step at
2.5×10−4 and drive ε to zero. The solution at T=0.125 using the AP scheme is compared
to a highly resolved solution in Figs. 7-8. As in the previous case, when ∆x and ∆t become
small the O(ε) model error dominates the error, as expected.

Backward facing step flow. Next, we test a problem with non-zero velocity boundary
conditions. We examine the case of flow over a backward facing step, as found in [28].
The computational domain for this problem is Ω=[0,L]×[−0.5,0.5]. A no-flow boundary
condition (u,v)·n̂= 0 is given for the step (x = 0, −0.5≤ y≤ 0) and the top and bottom
walls. The velocity in the left, inflow boundary is given by (u,v) = (12y(1−2y),0) on
(x = 0, 0 ≤ y ≤ 0.5) and the outflow velocity is given as (u,v) = (−3y2+3/4,0), (x = L,
−0.5≤y≤0.5) These boundary conditions are slowly ramped up from time 0 to time 1 by
the function 0.5(1−cos(πt)). A Neumann boundary condition for the density (and thus
the pressure) is enforced on all of the boundaries.

In Fig. 9, we compare the AP scheme solution for ε=0.01 and a Reynolds number of
100 with the incompressible solution computed by Liu et al. in [28]. We take ∆x=1/16,
∆t=9.765×10−4 and a channel of length L=8.

In comparing the solution in Fig. 9, we see that the reattachment point of the circula-
tion region behind the step matches with the results found in [28].

4.3 Rate of convergence test

Here we verify the temporal and spatial order of accuracy of the scheme in compressible
regimes as well as the low Mach number limit.

ε=O(1) test. First we verify the order of convergence away from the low Mach number
regime by setting ε = 1. We take a domain of Ω = [0,1]×[0,1] with u = 0 on ∂Ω and a
symmetric initial condition of





ρ=1+0.5e−100((x−1/2)2+(y−1/2)2),

u=0,

v=0.

(4.6)
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Vortex in a box, Re = 100, ε = 0.1
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Figure 7: Results for vortex in a box flow (4.5) at T = 0.125, ε= 0.1. (a): stream function of solution with
∆x=1/16. (b): error in u. (c): error in v.

Vortex in a box, Re = 100, ε = 0.0001
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Figure 8: Results for vortex in a box flow (4.5) at T = 0.125,ε= 10−4. (a): stream function of solution with
∆x=1/16. (b): error in u. (c): error in v.

Figure 9: Left: Contour plot of streamfunction for backwards step flow with ε=0.01, ∆x=1/N=1/16=0.0625,
∆t=9.765×10−4, Re=100, γ=1.4, α=ε2 and θ=1 at T=20. Right: Contour plot of streamfunction from [28].
The AP scheme captures the reattachment point of the circulation region.

To verify the order, we begin with ∆x = 1/16 and ∆t = 0.0018 (based on the CFL
condition (3.13)) and refine the simulation dyadically, fixing the ratio ∆t/∆x= 0.288 for
all simulations. We use α=0.5, Re=100 and run the simulation to the final time t=0.01. A
finely resolved 1024×1024 computation is used for the reference solution. The results are
listed in Fig. 10. Only the horizontal component ρu is listed, as due to the symmetry of the
problem the vertical velocity terms have the same values. The results show second-order
convergence, as expected.
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Figure 10: Convergence for Vortex in a box example with ε=1. Left: ρ. Right: ρu. The system is computed to

time t=0.01 with α=0.5, Re=100. Solid line: L1 error of computed solution against a highly resolved reference
solution. Dashed line: line with slope 2 for convergence rate comparison.

ε≪1 test. For the low Mach number regime, we use the vortex-in-a-box initial condition
(4.5) with solid walls and ε=10−4, α=ε2 and Re=100. As in the test case above, we begin
with ∆x=1/16 and ∆t=4.30×10−4 (computed from the CFL condition (3.13)), fixing the
ratio ∆t/∆x for all simulations. We run the simulation to the final time t=0.01. The results
are listed in Fig. 11. Only the horizontal component ρu is listed, as due to the symmetry of
the problem the vertical velocity terms have the same values and we exclude the density ρ
results as the O(ε2) deviations from unity are so small. The minmod slope limiter (3.10b)
is replaced with a central difference to generate the slopes, as the solution is expected to
be smooth. Due to the stiffness of the compressible problem, a high-resolution reference
solution is too expensive to compute, thus the errors are computed by comparing the
solution with the numerical solution generated by ∆x/2, ∆t/2.

The results appear to be converging superlinearly rather than quadratically. We know
that for ε=O(1) our scheme is second order through simple truncation analysis for hy-
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Figure 11: Convergence for Vortex in a box example with ε=10−4. The system is computed to time t=0.01,
α= ε2 and Re= 100. The computed solutions are compared to the solution with the next mesh (∆x/2,∆t/2)
as the reference compressible solution is too expensive to compute. Solid line: L1 error of computed solution.
Dashed line: line with slope 2 for convergence rate comparison.
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perbolic systems and in the limit our scheme asymptotically becomes a second order
projection method, which also has its own error estimate showing that it is second order.
However, we do not have an error estimate for the transition regime of small but finite ε,
which may be causing this drop in the convergence rate. As shown in [12, 18], the error
between the scheme and the compressible equations for any ε is at worst first order.

5 Concluding remarks and future work

We proposed a new numerical method for solution of the compressible isentropic Eu-
ler (and Navier-Stokes) equations that is stable and accurate for any Mach number. The
method is based on a hyperbolic splitting that splits the compressible Euler equations
into a slowly moving nonlinear conservative hyperbolic system and a fast moving stiff
linear acoustic system. The slow part is suitable for modern shock capturing methods,
while the stiff acoustic system is solved implicitly with a fast Poisson solver as in a typi-
cal projection type method for incompressible flows. This scheme allows the use of time
step and space mesh size independent of the Mach number. When the Mach number
goes to zero it effectively becomes a second order projection type method for incom-
pressible flows, a property called asymptotic-preserving. Numerical results in one and
two space dimensions demonstrate that the scheme is adequate in both compressible
and incompressible regimes, capturing shocks with a high resolution in the compressible
regime and the incompressible features for small Mach numbers. We also showed that
the scheme can offer some speedup in some cases where the initial data that does not
follow the low Mach number limit.

In future work we will extend this approach to the full Euler (and Navier-Stokes)
equations. The splitting used here relies heavily on the structure of the equation of state
for the isentropic Euler equations. Developing a similar splitting for the full equations is
more difficult as the incompressibility condition is enforced through the equation of state
rather than the mass conservation equation and maintaining hyperbolicity of the slow
portion of the equations is more complicated. The limiting incompressible equations
for the full system allow for variable density flows, as opposed to constant density in
the isentropic case. This could prove to be an important development in the simulation
of two-phase flows such as bubbles in water, mostly incompressible flows with regions
of high compressibility such as underwater explosions [20], or atmospheric flows. We
will also look to extend this work to adaptive time and spatial stepping to allow it to
transition between compressible and incompressible regimes as the situation warrants,
such as cases where the fast compressible waves leave the computational domain leaving
incompressible conditions in their wake.
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