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A SIMPLE PROOF OF THE CUCKER-SMALE FLOCKING

DYNAMICS AND MEAN-FIELD LIMIT∗

SEUNG-YEAL HA† AND JIAN-GUO LIU‡

Abstract. We present a simple proof on the formation of flocking to the Cucker-Smale system
based on the explicit construction of a Lyapunov functional. Our results also provide a unified
condition on the initial states in which the exponential convergence to flocking state will occur. For
large particle systems, we give a rigorous justification for the mean-field limit from the many particle
Cucker-Smale system to the Vlasov equation with flocking dissipation as the number of particles goes
to infinity.
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1. Introduction

Collective self-driven synchronized motion of autonomous agents appears in many
applications ranging from animal herding to the emergence of common languages in
primitive societies [1, 9, 10, 11, 12, 14, 16, 18, 19, 20, 2, 3]. The word flocking in this
paper refers to general phenomena where autonomous agents reach a consensus based
on limited environmental information and simple rules. In the seminal work of Cucker
and Smale [2, 3], they postulated a model for the flocking of birds, and verified the
convergence to a consensus (the same velocity) depending on the spatial decay of the
communication rate between autonomous agents.

In this paper, we present a simple and complete analysis of the flocking to the
Cucker-Smale system (in short C-S system) using the explicit Lyapunov functional
approach. In particular we improve the flocking estimates of the C-S system for regular
and algebraically decaying communication rates [2, 3] in two ways. First, we present
flocking estimates for general communication rates which can be singular when two
particles are very close enough. Secondly, we remove the conditional assumption in [2,
3] on the initial configuration in critical case, where the communication rate behaves
like |x|−1, as |x|→∞. We show that the standard deviations of particle phase-space
positions are dominated by the system of dissipative differential inequalities (SDDI):
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≤V,
dV

dt
≤−φ(X)V, (1.1)

where (X,V ) are nonnegative functions and φ is a nonnegative measurable function.
A simple phase plane analysis (see section 3) provides a unified condition on initial

states in which the convergence to a consensus will occur. For the mean-field limit
for large particle systems with flocking dissipation, we derive a bounding function for
the growth on the size of a velocity support. This enables us to establish a stability
estimate of measure valued solutions to the C-S system in Kantorovich-Rubinstein
distance. For the existence of a measure valued solution, we refine the argument given
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in [13, 17]. The novelty of this paper is to present a direct and simple but surprisingly
a complete flocking analysis employing a Lyapunov functional to the SDDI (1.1). This
is a contrasted difference from Cucker-Smale’s original proof [2, 3] and its modified
approach in [8] using a bootstrapping argument. We refer to Degond and Motsch’s
works [4, 5, 6] for recent kinetic description of Viscek type model for flocking.

The rest of the paper is divided into two main parts (flocking estimates and
mean-field limit) after this introduction. The first four sections are devoted to the
dissipation estimates for the SDDI system, which yield simplified and strong estimates
for the dynamics of the C-S system. More precisely, in section 2, we briefly review the
C-S system and provide the reduction of Cucker-Smale dynamics to the dynamics of
the SSDI. In section 3, we present a general frame work on the dissipation estimate of
the SDDI using explicit Lyapunov functionals, and we also present several conditions
regarding the initial configurations and communication rate functions for the flocking
formation. In section 4, we study the flocking estimates for dissipative systems with
the algebraically decaying communication rates with singularity or non-singularity at
the origin as a direct application of the results in section 3, and we also briefly discuss
the comparison between Cucker-Smale’s result with main results in section 4. Finally
the last two sections deal with kinetic mean-field limit of the C-S system. In section
5, we study the particle approximation [15] to the kinetic C-S model introduced in
[8]. Section 6 is devoted to the existence of measure valued solutions to the kinetic
C-S model.

Notation: Throughout the rest part of the paper, we denote C(T,N,...) to be
a generic positive constant depending only on T,N , etc., and for any vector b, bi

represents i-th component of it.

2. Preliminaries

In this section, we discuss the reduction of the C-S dynamics to the SDDI (1.1)
and present a definition for the time-asymptotic flocking.

Consider an interacting particle system consisting of N identical autonomous
agents with unit mass [2, 3, 8, 9, 16]. Let (xi(t),vi(t))∈R

d
x×R

d
v be the phase space

position of the ith particle, 1≤ i≤N , governed by the general Cucker-Smale dynamical
system:

dxi

dt
=vi,

dvi

dt
=

λ

N

N
∑

j=1

ψ(|xj −xi|)(vj −vi), t>0, (2.1)

with initial data

xi(0)=xi0, vi(0)=vi0. (2.2)

Here λ and ψ are a nonnegative coupling strength and the mutual communication
rate between autonomous agents, respectively.

Note that the vector field (v,λF), Fi = 1
N

∑N
j=1ψ(|xj −xi|)(vj −vi)) associated

with (2.1) satisfies dissipative condition:

∇(x,v) ·(v,λF)=λ

N
∑

i=1

∇vi
·Fi =− λ

N

N
∑

i,j=1

ψ(|xj −xi|)≤0.



SEUNG-YEAL HA AND JIAN-GUO LIU 299

This implies that the C-S model (2.1) is a dissipative dynamical system. We first set
the center of mass system (xc,vc):

xc :=
1

N

N
∑

k=1

xk, vc :=
1

N

N
∑

k=1

vk. (2.3)

Then the system (2.1) implies that

dxc

dt
=vc,

dvc

dt
=0,

which gives the explicit solution xc(t)=xc(0)+ tvc(0),vc(t)=vc(0). Without loss of
generality, we may assume that the center of mass coordinate of the system is fixed
at zero in phase space at time t:

xc(t)=0, vc(t)=0, (2.4)

which is equivalent to the relations:

N
∑

i=1

xi(t)=0,

N
∑

i=1

vi(t)=0, t≥0. (2.5)

If necessary, instead of (xi,vi) we may consider new variables (x̂i,v̂i) :=(xi−xc,vi−
vc) which correspond to the fluctuations around the center of mass system.

2.1. Reduction of the C-S dynamics to the SDDI’s dynamics. In
this part, we explain how the dynamics of the C-S system (2.1) with (2.4) can be
determined by the corresponding dynamics of the SDDI, which will be discussed in
next section. We now consider the system (2.1) with (2.4). It follows from (2.1) that
we have

d

dt

N
∑

i=1

‖vi‖2 =− λ

N

∑

1≤i,j≤N

ψ(|xj −xi|)||vj −vi||2. (2.6)

Here || · || is the standard l2-norm in R
d.

We set

x := (x1,... ,xN )∈R
Nd, v := (v1,... ,vN )∈R

Nd,

and

||x||=
(

N
∑

i=1

||xi||2
)

1
2

, ||v||=
(

N
∑

i=1

||vi||2
)

1
2

.

Note that ||x|| and ||v|| denote quantities proportional to the standard deviations of
xi and vi, respectively.

Lemma 2.1. Let (xi,vi) be the solution to (2.1) with a nonnegative and non-increasing
function ψ. Assume that (2.4) holds. Then ||x‖ and ‖v‖ satisfy the SDDI (1.1) with
φ(s)=ψ(2s):

∣

∣

∣

∣

d‖x‖
dt

∣

∣

∣

∣

≤‖v‖, d‖v‖
dt

≤− λ

N
ψ(2‖x‖)‖v‖. (2.7)
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Proof. We take an inner product the C-S system (2.1) with ±2xi and use the
Cauchy-Schwartz inequality to see

±d‖x‖2

dt
=±2

〈

dx

dt
,x

〉

=±2〈v,x〉≤2‖x‖‖v‖,

where 〈·,·〉 is the standard inner product in R
Nd. This gives the first inequality in

(2.7). Next, we use (2.6) and the nonnegativity and non-increasing properties of ψ,
and the fact

max
1≤i,j≤N

|xi−xj |≤2‖x‖,

to find

d‖v‖2

dt
≤− λ

N
ψ(2‖x‖)

∑

1≤i,j≤N

||vj −vi‖2 =−2λ

N
ψ(2‖x‖)‖v‖2.

This gives the second inequality in (2.7). Here we used (2.5) to see

∑

1≤i,j≤N

‖vi−vj‖2 =2

N
∑

i=1

||vi||2−2
〈

N
∑

i=1

vi,

N
∑

j=1

vj

〉

=2‖v‖2.

The above reduction to the SDDI can be recast in a more abstract form. Let E

be a vector space over R with an inner product 〈·,·〉 and its corresponding norm ‖·‖.
Let (xi)

n
i=1,(vi)

n
i=1∈R

2d be the phase space coordinate of i-th autonomous agents
among N agents. In this case, E is simply the N -particle phase space R

Nd. Consider
the following dynamical system in E×E:

dx

dt
=v,

dv

dt
=−L(x)v, t>0, (2.8)

with initial data

x(0)=x0, v(0)=v0. (2.9)

where L(x) :E→E is a linear operator. We assume that the linear operator L(x)
satisfies a coercivity condition: there is a positive and non-increasing function ψ(s)
such that

〈L(x)v,v〉≥ψ(‖x‖)‖v‖2. (2.10)

Here ψ is a nonnegative measurable function. We set Ψ to be the primitive function
of ψ:

Ψ′(s)=ψ(s), s≥0.

Then it is easy to see that Ψ is an increasing function. We next show that the norms
(||x||,||v||) of the solution (x,v) to the system (2.8) with (2.10) satisfies the SDDI. It
follows from (2.8) that

d‖x‖2

dt
=2〈x,v〉≤2‖x‖‖v‖,
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d‖v‖2

dt
=−2〈L(x)v,v〉≤−2ψ(‖x‖)‖v‖2.

These yield the SDDI:
∣

∣

∣

∣

d‖x‖
dt

∣

∣

∣

∣

≤‖v‖, d‖v‖
dt

≤−ψ(‖x‖)‖v‖. (2.11)

Before we close this section, we present the definition of the time-asymptotic
flocking as follows.

Definition 2.2. The Cucker-Smale system (2.1) has a time-asymptotic flocking if
and only if the solutions {xi,vi},i=1,... ,N to (2.1) satisfy the following two condi-
tions:

1. The velocity fluctuations go to zero time-asymptotically (velocity alignment):

lim
t→+∞

N
∑

i=1

||vi(t)−vc(t)||2 =0.

2. The position fluctuations are uniformly bounded in time t (forming a group):

sup
0≤t<∞

N
∑

i=1

||xi(t)−xc(t)||2 <∞.

3. A flocking theorem

Note that the SDDI (2.11) admits natural Lyapunov functionals E±(x,v) which
can be viewed as energy functionals for (2.11):

E±(||x||,||v||) := ||v||±Ψ(||x||). (3.1)

The first and second terms in the E±(||x||,||v||) can be regarded as the kinetic and
internal (potential) energies respectively. The next lemma shows that the functionals
E±(||x||,||v||) are non-increasing along the solutions (||x||,||v||) of (2.11).

Lemma 3.1. Suppose (||x||,||v||) satisfy the SDDI (2.11) with ψ≥0. Then we have

(i) E±(||x(t)||,||v(t)||)≤E±(||x0||,||v0||), t≥0.

(ii) ‖v(t)‖+
∣

∣

∣

∫ ||x(t)||

||x0||

ψ(s)ds
∣

∣

∣
≤‖v0‖.

Proof.
(i) We now use (2.11) to obtain

d

dt
E±(||x(t)||,||v(t)||)=

d

dt
(‖v(t)‖±Ψ(‖x(t)‖))

=
d‖v‖
dt

±ψ(‖x‖)d‖x‖
dt

≤ψ(‖x‖)
(

−‖v‖± d‖x‖
dt

)

≤0.

(ii) It follows from (i) that

‖v(t)‖−‖v0‖≤−(Ψ(‖x(t)‖)−Ψ(‖x0‖)), ‖v(t)‖−‖v0‖≤ (Ψ(‖x(t)‖)−Ψ(‖x0‖)).
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Hence we have

‖v(t)‖−‖v0‖≤−|Ψ(‖x(t)‖)−Ψ(‖x0‖)|=−
∣

∣

∣

∫ ||x(t)||

||x0||

ψ(s).ds
∣

∣

∣
.

As a direct application of Lemma 3.1, we obtain the following bounds on ||x|| and
||v|| satisfying the SDDI.

Theorem 3.2. Suppose (||x||,||v||) satisfy the SDDI (2.11) with ψ≥0. Then the
following estimates hold.

(i) If

‖v0‖<

∫ ‖x0‖

0

ψ(s)ds,

then there is a xm ≥0 such that

‖v0‖=

∫ ‖x0‖

xm

ψ(s)ds, ‖x(t)‖≥xm, t≥0.

(ii) If

‖v0‖<

∫ ∞

‖x0‖

ψ(s)ds,

then there is a xM ≥0 such that

‖v0‖=

∫ xM

‖x0‖

ψ(s)ds, ‖x(t)‖≤xM , ‖v(t)‖≤‖v0‖e−ψ(xM )t.

Proof.
(i) Since ψ is a nonnegative measurable function,

∫ ||x0||

δ

ψ(s)ds is a non-increasing continuous function in δ≥0.

Hence if ‖v0‖<

∫ ‖x0‖

0

ψ(s)ds, let xm >0 to be the smallest value such that

‖v0‖=

∫ ‖x0‖

xm

ψ(s)ds. (3.2)

For the second assertion, we use result (ii) in Lemma 3.1, i.e., for any solution (x,v)
to (2.8) we have

∣

∣

∣

∫ ||x(t)||

||x0||

ψ(s)ds
∣

∣

∣
≤‖v0‖, t≥0. (3.3)

Suppose there exists a t∈ (0,∞) such that

||x(t)||<xm.

Then we can choose a time t∗∈ (0,∞) such that

‖v0‖<

∫ ‖x0‖

||x(t∗)||

ψ(s)ds, ||x(t∗)||<xm, min
0≤s≤t∗

||x(s)||≥ xm

2
.
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We now consider Ψ defined as follows.

Ψ(s) :=

∫ s

‖x0‖

ψ(τ)dτ. (3.4)

Then for such t∗ and Ψ, we have

‖v0‖=

∫ ‖x0‖

xm

ψ(s)ds<

∫ ‖x0‖

||x(t∗)||

ψ(s)ds,

which is contradictory to (3.3).

(ii) We use the same argument as (i), i.e.,

If ‖v0‖<

∫ ∞

‖x0‖

ψ(s)ds,

then we choose the largest value xM ≥0 to satisfy

‖v0‖ :=

∫ xM

‖x0‖

ψ(s)ds.

Similar to (i), it is easy to see that

‖x(t)‖≤xM .

On the other hand, we use the above upper bound for ||x(t)|| to find

d‖v‖
dt

≤−ψ(xM )‖v‖.

This yields the decay estimate for ||v(t)||:

‖v(t)‖≤‖v0‖e−ψ(xM )t.

In next section, we consider the SDDI (2.11) equipped with explicit singular
and regular ψ’s decaying algebraically at infinity, and apply Theorem 3.1 to get the
detailed information on the size of spatial support and time-decay estimates of ||v||.

4. Application of the flocking theorem to the Cucker-Smale system

In this section, we consider two explicit communication rate functions ψ:

ψ1(s) :=
α

sβ
, ψ2(s) :=

α

(1+s2)
β
2

, α>0, β≥0.

The second communication rate function ψ2 has been employed in previous lit-
eratures [2, 3, 8, 16] on flocking. In the following two subsections, we present several
estimates for xm and xM together with explicit dissipation estimates.

4.1. Singular communication rate. In this part, we consider the singular
ψ decaying algebraically at infinity:

ψ1(s)=
α

sβ
, α>0, β≥0.

Since the flocking dynamics of ψ1 completely depends on β∈ [0,1] or β∈ (1,∞), we
separate its presentation. For the long-range communication rate ψ1 with β∈ [0,1],
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we have global flocking regardless of initial configurations. In contrast, for the case
of short range case with β∈ (1,∞), we have a conditional flocking saying that only
certain classes of initial configurations reduce to the flocking state.

Proposition 4.1. (Unconditional flocking) Suppose (||x||,||v||) satisfy the SDDI
(2.11) with ψ =ψ1:

β∈ [0,1], ||x0|| 6=0.

Then there exist xm and xM independent of t satisfying

xm ≤‖x(t)‖≤xM , ‖v(t)‖≤‖v0‖e−ψ(xM )t,

where xm and xM are explicitly given by

xm :=







(

max
{

0,‖x0‖1−β − 1−β
α ‖v0‖

})
1

1−β

, β∈ [0,1),

‖x0‖e−
‖v0‖

α , β =1,
and

xM :=







(

‖x0‖1−β + 1−β
α ‖v0‖

)
1

1−β

, β∈ [0,1),

‖x0‖e
‖v0‖

α , β =1.

Proof. If ||v0||=0, then we have ||v(t)||≡0 and ||x(t)||≡ ||x0||. So the lemma
holds. Now we show the lemma also holds for the case of ||v0|| 6=0.

(i) (Estimates of xM ): For β∈ [0,1], since
∫ ∞

‖x0‖

ψ1(s)ds=

∫ ∞

‖x0‖

α

sβ
ds=∞,

it follows from Theorem 3.2 that there exists a xM >0 such that

‖v0‖=

∫ xM

‖x0‖

ψ1(s)ds, ‖x(t)‖≤xM , ‖v(t)‖≤‖v0‖e−ψ(xM )t.

Below, we give a upper bound for xM using the above defining relation.

Case 1 (0≤β <1): By direct calculation, we have

‖v0‖=

∫ xM

‖x0‖

ψ(s)ds=
α

1−β
(x1−β

M −||x0||1−β), i.e.,

xM =

(

‖x0‖1−β +
1−β

α
‖v0‖

)
1

1−β

.

Case 2 (β =1): In this case, we have

‖v0‖=

∫ xM

‖x0‖

ψ1(s)ds=α ln
xM

||x0||
, i.e., xM = ||x0||e

||v0||
α .

(ii) (Estimates of xm): As in (i), we separate the estimate into two cases.

Case 1 (0≤β <1): We again use Theorem 3.2 to obtain the estimate of xm. Note
that

∫ ‖x0‖

0

ψ1(s)ds=
α

1−β
‖x0‖1−β ,

∫ ‖x0‖

xm

ψ1(s)ds=
α

1−β
(‖x0‖1−β −x1−β

m ).
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If ‖v0‖< α
1−β ‖x0‖1−β , then the defining condition for xm yields the explicit represen-

tation for xm:

‖v0‖=

∫ ‖x0‖

xm

ψ1(s)ds, i.e. ‖v0‖=
α

1−β
(‖x0‖1−β −x1−β

m ).

Hence we have

xm =
(

‖x0‖1−β − 1−β

α
‖v0‖

)
1

1−β

.

Otherwise, we simply take xm =0.

Case 2 (β =1): Since

∫ ‖x0‖

0

ψ1(s)ds=∞,

we use Theorem 3.2 directly to get

‖v0‖=

∫ ‖x0‖

xm

α

s
ds, xm =‖x0‖e−

‖v0‖
α .

Below, we consider the case β >1, which is the integrable case at s=∞.

Proposition 4.2. (Conditional flocking) Suppose (||x||,||v||) satisfy the SDDI (2.11)
with ψ =ψ1:

β∈ (1,∞), ||x0|| 6=0, ‖x0‖1−β >
β−1

α
‖v0‖.

Then there exist xm and xM independent of t satisfying

xm ≤‖x(t)‖≤xM , ‖v(t)‖≤‖v0‖e−ψ(xM )t,

where xm and xM are given by

xm :=

(

‖x0‖1−β +
β−1

α
‖v0‖)

)
1

1−β

, xM :=

(

‖x0‖1−β − β−1

α
‖v0‖

)
1

1−β

.

Proof. As in the proof of Proposition 4.1, the lemma holds for ||v0||=0. So we
only need to prove the lemma for the case of ||v0|| 6=0.

(i) Note that

∫ ∞

‖x0‖

α

sβ
ds=

α

β−1
‖x0‖1−β <∞.

We again use Theorem 3.2 to find xM : If

‖v0‖<
α

β−1
‖x0‖1−β ,

then there exists xM >0 such that

‖v0‖=

∫ xM

‖x0‖

α

sβ
ds=

α

β−1
(‖x0‖1−β −x

1−β
M ),
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which gives the desired result.
(ii) Since

∫ ‖x0‖

0

α

sβ
ds=∞,

we can find xm from the defining relation:

||v0||=
∫ ‖x0‖

xm

α

sβ
ds=

α

β−1
(x1−β

m −‖x0‖1−β).

4.2. Regular communication rate. In this part, we will consider regular
force case at s=0. For definiteness, we set

ψ2(s) :=
α

(1+s2)
β
2

, α>0, β≥0.

In the following, we will use the fact that

∫ b

a

(1+s2)−
β
2 ds≥

∫ b

a

s(1+s2)−
β+1

2 ds=
1

1−β
(1+s2)

1−β
2 |ba, β 6=1,

∫ b

a

(1+s2)−
β
2 ds=ln

(

s+
√

1+s2
)

|ba, β =1.

Below, we present two parallel propositions with Propositions 4.1 and 4.2 without
proofs.

Proposition 4.3. (Unconditional flocking) Suppose (||x||,||v||) satisfy the SDDI
(2.11) with ψ =ψ2:

β∈ [0,1].

Then there exist xm and xM independent of t satisfying

xm ≤‖x(t)‖≤xM , ‖v(t)‖≤‖v0‖e−ψ(xM )t,

where xm and xM are given by the solution of the following relations:

{

(1+x2
m)

1−β
2 ≥max

{

1,(1+ ||x0||2)
1−β

2 − 1−β
α ||v0||

}

, β∈ [0,1),

xm +
√

1+x2
m =max{1,(‖x0‖+

√

1+‖x0‖2)e−‖v0‖/α}, β =1.

and
{

(1+x2
M )

1−β
2 ≤ (1+‖x0‖2)

1−β
2 + 1−β

α ‖v0‖, β∈ [0,1),

xM +
√

1+x2
M =

(

‖x0‖+
√

1+‖x0‖2
)

e
‖v0‖

α , β =1,

Proof. The proof is similar to that of Proposition 4.1. Hence we omit its
detailed proof.

Proposition 4.4. (Conditional flocking) Suppose (||x||,||v||) satisfy the SDDI (2.11)
with ψ =ψ2:

β∈ (1,∞), (1+‖x0‖2)
1−β

2 >
(β−1)

α
‖v0‖.
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Then there exist xm and xM independent of t satisfying

xm ≤‖x(t)‖≤xM , ‖v(t)‖≤‖v0‖e−ψ(xM )t,

where xm and xM are given by the solution of the following relations:

(1+x2
m)

β−1

2 ≥
[

min
{

1,(1+‖x0‖2)
1−β

2 +
(β−1)

α
‖v0‖

}]−1

,

(1+x2
M )

β−1

2 ≤
[

(1+‖x0‖2)
1−β

2 − (β−1)

α
‖v0‖

]−1

.

4.3. Comparison with Cucker-Smale’s results. In this part, we briefly
summarize improved flocking estimates on the C-S model (2.1) with ψi,i=1,2, and
compare our results with these given in [2, 3] for the communication rate ψ2. Since the
C-S model can be reduced to the SDDI (see section 2.1), we can use the estimates in
Propositions 4.3 and 4.4. The main results on flocking phenomena can be summarized
as follows:

Theorem 4.5. (Unconditional flocking) Assume that the communication rate is ψ =
ψi, i=1,2 with β∈ [0,1]. Let (x,v) be a solution to (2.1) with x0 6=0. Then there
exist positive constants xm and xM independent of t satisfying

xm ≤‖x̂(t)‖≤xM , ‖v̂(t)‖≤‖v̂0‖e−ψ(xM )t, t≥0.

Remark 4.1. The results given in the above theorem improves the flocking results
in Cucker-Smale [2, 3, 8, 16] which only deal with regular communication rate ψ2

in two aspects: Improved flocking estimates for critical case (β =1) and singular
communication rate ψ1. More precisely,

(i) For 0≤β <1, unconditional flocking with exponential decay in the variance of
velocity was obtained both in [2] and [3].

(ii) For the system (2.1) with regular communication rate ψ2 with β =1, condi-
tional flocking for initial configuration satisfying

‖v0‖2≤C(N,λ),

was obtained in [2, 3], whereas Ha-Tadmor [8] improved Cucker-Smale’s conditional
flocking for the unconditional flocking with algebraic decay rates. Hence the result
given in this theorem also improves the results [2, 3, 8].

Theorem 4.6. (Conditional flocking) Let (x,v) be a solution to (2.1) with x0 6=0,
and assume that ψ takes one of the form ψi with β∈ (1,∞). Suppose the initial
configuration (x0,v0) satisfies

{

‖x0‖1−β > β−1
α ‖v0‖, ψ =ψ1,

(1+‖x0‖2)
1−β

2 > β−1
α ‖v0‖, ψ =ψ2.

Then there exist positive constants xm and xM independent of t satisfying

xm ≤‖x̂(t)‖≤xM , ‖v̂(t)‖≤‖v̂0‖e−ψ(xM )t, t≥0.

Remark 4.2. For the short-range communication rate ψ2 with β >1, i.e., in the
Cucker-Smale’s context

K =
λ

N
, σ =1,



308 A SIMPLE PROOF OF CUCKER-SMALE FLOCKING DYNAMICS

the sufficient condition for flocking formation given in [2, 3] can be rephrased as
follows.

A
1

β−1

[

(

1

β

)
1

β−1

−
(

1

β

)

β
β−1

]

>B,

where

A=
ν2λ2

8N3||v0||2
, B =1+2N‖x0‖2,

which can be recast as

(1+2N‖x0‖2)
1−β

2 >
(2N)

3
2 ||v0||

νλ

[

(

1

β

)
1

β−1

−
(

1

β

)

β
β−1

]

1−β
2

. (4.1)

Here ν =ν(N) is a positive constant bounded by

1

3N
≤ν(N)≤2N(N −1), for N ≥2.

The discrepancy between the condition in Theorem 4.6 and (4.1) might be due
to different a priori estimates.

5. Measure valued solution and stability estimate

In this section, we present a global existence of measure valued solutions for the
kinetic C-S model [8] and their stability estimate in Kantorovich-Rubinstein distance.
Recall C-S particle model: For i=1,... ,N,











dxi

dt
=vi,

dvi

dt
=λ

N
∑

j=1

mjψ(|xj −xi|)(vj −vi), mj : constant,

xi(0)=xi0, vi(0)=vi0,

(5.1)

and the corresponding kinetic C-S model:

{

∂tf +divx(vf)+λdivv(F[f ]f)=0,
f(x,v,0)=f0(x,v),

(5.2)

where f is the one-particle distribution function, and F[f ] is given by the following
representation:

F[f ](x,v,t) :=−
∫

R2d

ψ(|x−y|)(v−v∗)f(y,v∗,t)dv∗dx.

The kinetic model (5.2) was introduced by Ha and Tadmor [8] using the method
of BBGKY hierarchy from the C-S particle model as a mesoscopic description for
flocking.

5.1. Measure valued solution and moment estimates. In this part,
we review the notion of a measure valued solution to (5.2) and present several a
priori estimates for the particle trajectory. In the time-asymptotic limit (t→∞), the
distribution function f =f(x,v,t) will concentrate on the velocity mean value (see
[2, 3, 8]), hence the natural solution space for the kinetic Equ. (5.2) will be the space



SEUNG-YEAL HA AND JIAN-GUO LIU 309

of nonnegative measures, including Dirac measures. We will prove that the kinetic
C-S model (5.2) is well-posed in the space of Radon measures.

Let M(R2d) be the set of nonnegative Radon measures on the phase space R
2d,

which can be understood as nonnegative bounded linear functionals on C0(R
2d). For

a Radon measure ν ∈M(R2d), we use a standard duality relation:

〈ν,g〉 :=
∫

R2d

g(x,v)ν(dx,dv), g∈C0(R
2d).

The definition of a measure-valued solution to (5.2) is given as follows.

Definition 5.1. For T ∈ [0,∞), let µ∈L∞([0,T );M(R2d) be a measure valued so-
lution to (5.2) with initial Radon measure µ0∈M(R2d) if and only if µ satisfies the
following conditions:

1. µ is weakly continuous:

〈µt,g〉 is continuous as a function of t, ∀ g∈C0(R
2d).

2. µ satisfies the integral equation: ∀ g∈C1
0 (R2d× [0,T )),

〈µt,g(·,·,t)〉−〈µ0,g(·,·,0)〉=
∫ t

0

〈µs,∂sg+v ·∇xg+λF ·∇vg〉ds, (5.3)

where F(x,v,µs) is a forcing term defined as follows:

F(x,v,µs) :=−
∫

R2d

ψ(|x−y|)(v−v∗)µs(dy,dv∗). (5.4)

Remark 5.1.

1. If f ∈L1(R2d× [0,T )) is a weak solution (in the sense of distributions) to (5.2),
then µt(dx,dv)=f(x,v,t)dxdv is a measure valued solution to (5.2).

2. If µ is a measure valued solution to (5.2) and µt be the absolutely continuous
measure with respect to Lebesgue measure whose distribution function is given by
f ∈L1(R2d× [0,T )), i.e., µt(dx,dv)=f(x,v,t)dxdv, then f is a distributional weak
solution to the (5.2).

3. For any solutions {(xi,vi)}N
i=1 to particle system (5.1), the discrete measure

µt :=
N

∑

i=1

miδ(x−xi(t))⊗δ(v−vi(t)), mi : constant,

is a measure valued solution.

4. Recall that spt(µ) (the support of a measure µ) is the closure of the set
consisting of all points (x,v) in R

2d such that µ(Br((x,v)))>0, ∀ r>0. For a finite
measure with a compact support, we can use g∈C1(R2d) as a test function in (5.3).

5. Let µ be a measure valued solution to (5.2) with initial Radon measure µ0 (see
section 6 for existence issue), then for any g∈C1

0 (R2d), we have

d

dt
〈µt,g〉= 〈µt,v ·∇xg〉+λ〈µt,F ·∇vg〉,

as long as the left hand side of the above relation is well-defined. In fact, for the
measure valued solution µ in Theorem 6.2, d

dt 〈µt,g〉 exists a.e.
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6. We will revisit the formulation (5.3) from the viewpoint of particle trajectories
in Lemma 5.5.

Lemma 5.2. Let µ∈L∞([0,T );M(R2d)) be a nonnegative measure valued solution to
(5.2) such that µt has a compact support for t a.e. Then we have

(i)
d

dt

∫

R2d

µt(dx,dv)=0,
d

dt

∫

R2d

vµt(dx,dv)=0.

(ii)
d

dt

∫

R2d

|v|2µt(dx,dv)=−
∫

R2d

[

∫

R2d

ψ(|x−y|)|v−v∗|2µt(dy,dv∗)
]

µt(dx,dv).

Proof. The time derivative of velocity moments can be checked directly by taking
g(x,v,t)=1,vi,|v|2 in (5.3) respectively (see Remark 5.1 (4)), i.e.,

d

dt

∫

R2d

v
iµt(dx,dv)=λ〈µt,F ·∇vv

i〉=λ〈µt,F
i〉

=−λ

∫

R4d

ψ(|x−y|)(vi−v
i
∗)µt(dy,dv∗)µt(dx,dv)=0,

and

d

dt

∫

R2d

|v|2µt(dx,dv)=2λ〈µt,F ·v〉

=−2λ

∫

R4d

ψ(|x−y|)v ·(v−v∗)µt(dy,dv∗)µt(dx,dv)

=−λ

∫

R4d

ψ(|x−y|)|v−v∗|2µt(dy,dv∗)µt(dx,dv).

Here we used the change of variables (x,v)↔ (y,v∗) and Fubini’s theorem.

5.2. A priori estimates on the particle trajectory. In this part, we
present several a priori estimates for the particle trajectory which are crucial in the
next section on the existence of a measure valued solution and the mean-field limit.

We first note that the forcing term F (x,v,µt) in (5.4) can be rewritten as

F (x,v,µt) = −
∫

R2d

ψ(|x−y|)(v−v∗)µt(dy,dv∗)

=
[

∫

R2d

ψ(|x−y|)v∗µt(dy,dv∗)
]

−
[

∫

R2d

ψ(|x−y|)µt(dy,dv∗)
]

v

:=a(x,µt)−b(x,µt)v. (5.5)

Lemma 5.3. Assume the communication rate ψ takes the form of

ψ(s)=
1

(1+s2)
β
2

, β≥0,

and let µ∈L∞([0,T );M(R2d)) be a measure valued function with the following prop-
erties.

1. A compact support for each time slice: for some nonnegative locally bounded
functions R(t),P (t),

spt(µt)⊂BR(t)(0)×BP (t)(0).
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2. Uniform boundedness of the first two moments:

∫

R2d

µt(dx,dv)≤m0 <∞,

∫

R2d

|v|2µt(dx,dv)≤m2 <∞.

Then a(x,µt) and b(x,µt) satisfy

(i) |a(x,µt)|≤ (m0m2)
1
2 , |a(x,µt)−a(y,µt)|≤β|x−y|(m0m2)

1
2 .

(ii) |b(x,µt)|≤m0, |b(x,µt)−b(y,µt)|≤β|x−y|.

(iii) |F(x,v,µt)−F(y,v∗,µt)|≤
[

β
(

(m0m2)
1
2 +P (t)

)

+m0

]

|(x,v)−(y,v∗)|.

Here Br(0) denotes the ball with a radius r and a center 0.

Proof. Let (x,v)∈ spt(µt).

(i) We use |ψ|≤1 and Lemma 5.2 to obtain

|a(x,µt)|≤
∫

R2d

ψ(|x−y|)|v∗|µt(dy,dv∗)

≤
(

∫

R2d

µt(dy,dv∗)
)

1
2
(

∫

R2d

|v∗|2µt(dy,dv∗)
)

1
2

≤ (m0m2)
1
2 .

For the Lipschitz continuity of a, we use |ψ′|≤β and the mean value theorem

|ψ(|x−z|)−ψ(|y−z|)|≤β|x−y|

to find

|a(x,µt)−a(y,µt)|≤
∫

R2d

|ψ(|x−z|)−ψ(|y−z|)||v∗|µt(dz,dv∗)

≤β|x−y|(m0m2)
1
2 .

(ii) By direct estimates, we have

|b(x,µt)|≤
∫

R2d

ψ(|x−y|)µt(dy,dv∗)≤m0,

|b(x,µt)−b(y,µt)|≤
∫

R2d

|ψ(|x− ȳ|)−ψ(|y− ȳ|)|µt(dȳ,dv∗)≤β|x−y|.

(iii) We use the estimates (i) and (ii) to obtain

|F(x,v,µt)−F(y,v∗,µt)|≤ |a(x,µt)−a(y,µt)|+ |b(x,µt)v−b(y,µt)v∗|
≤ |a(x,µt)−a(y,µt)|+ |b(x,µt)−b(y,µt)||v|

+|b(y,µt)||v−v∗|
≤β|x−y|(m0m2)

1
2 +β|x−y|P (t)+m0|v−v∗|

=β
[

(m0m2)
1
2 +P (t)

]

|x−y|+m0|v−v∗|

≤
[

β
(

(m0m2)
1
2 +P (t)

)

+m0

]

|(x,v)−(y,v∗)|.

Here we used max{|x−y|,|v−v∗|}≤ |(x,v)−(y,v∗)|.
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For (x,v,t)∈R
d×R

d× [0,T ) and µ∈L∞([0,T );M(R2d)), we denote
(Xµ(s;t,x,v),Vµ(s;t,x,v)) to be the particle trajectory passing through (x,v)
at time t, i.e.,

d

ds
Xµ(s;t,x,v)=Vµ(s;t,x,v), s∈ [0,T ), (5.6)

d

ds
Vµ(s;t,x,v)=−λ

∫

R2d

ψ(|Xµ(s;t,x,v)−y|)(Vµ(s;t,x,v)−v∗)µs(dy,dv∗), (5.7)

subject to initial data

Xµ(t;t,x,v)=x, Vµ(t;t,x,v)=v.

For notational simplicity, we use the simplified notation

[xµ(s),vµ(s)] := [xµ(s;t,x,v),vµ(s;t,x,v)].

Lemma 5.4. Let µ∈L∞([0,T );M(R2d)) be a measure valued function with the fol-
lowing properties.

1. A compact support for each time slice: For some nonnegative locally bounded
functions R(t),P (t),

spt(µt)⊂BR(t)(0)×BP (t)(0).

2. Uniform boundedness of the first two moments:

∫

R2d

µt(dx,dv)≤m0 <∞,

∫

R2d

|v|2µt(dx,dv)≤m2 <∞.

Then we have

(i) For any fixed (x,v,t)∈R
d×R

d× [0,T ), there is a unique global particle tra-
jectory [xµ(s;t,x,v),vµ(s;t,x,v)] which is a C1-function of s∈ [0,T ] and admits an
unique inverse map in the form of

x :=Xµ(t;s,x̄,v̄), v :=Vµ(t;s,x̄,v̄),

where

x̄ :=Xµ(s;t,x,v), v̄ :=Vµ(s;t,x,v).

(ii) Let P̂ (t) and R̂(t) be the bounds for supports of the velocity and position
variables respectively. Then we have

P̂ (t)≤ P̂ (0)+λ(m0m2)
1
2 t, R̂(t)≤ R̂(0)+ P̂ (0)t+

λ

2
(m0m2)

1
2 t2.

Proof.
(i) Consider the vector field on the phase-space generated by (v,λF(x,v,µt)).

Then this vector field satisfies the following two properties

1. Continuity in time t due to the weak continuity of µt.

2. Global Lipschitz continuity in the x and v variables due to (iii) of Lemma
5.3.
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Hence the standard ordinary differential equation theory implies that there exists the
unique global C1 particle trajectory passing through (x,v) at time t generated by the
above vector field, and its inverse map is just a backward trajectory. Hence (i) holds.

(ii) Since the estimate for R̂(t) follows from the estimate for P̂ (t), we only consider
the growth estimate of P̂ (t). For simplicity in presentation, we denote

[x(s),v(s)] := [xµ(s;0,x,v),vµ(s;0,x,v)],

with (x,v)∈BR̂(0)(0)×BP̂ (0)(0).
We now consider the following equation for v:

dv(s)

ds
=λa(x(s),µs)−λb(x(s),µs)v(s).

We integrate the equation to get the integral equation:

v(t)=v0e
−λ

R

t

0
b(x(s),µs)ds +λ

∫ t

0

e−λ
R

t

s
b(x(τ),µτ )dτa(x(s),µs)ds.

Then we use b≥0 and the estimates in Lemma 5.3 to obtain

|v(t)|≤ |v0|+λ

∫ t

0

|a(x(s),µs)|ds≤ P̂ (0)+λ(m0m2)
1
2 t.

Hence we obtain the upper bound on the size of the velocity support of µ:

P̂ (t)≤ P̂ (0)+λ(m0m2)
1
2 t.

Now we can directly obtain a bound on x(t):

|x(t)|≤ |x(0)|+
∫ t

0

|v(s)|ds≤ R̂(0)+ P̂ (0)t+
λ

2
(m0m2)

1
2 t2.

This completes the proof of Lemma.

Lemma 5.5. For any T ∈ (0,∞], let µ∈L∞([0,T );M(R2d)) be a measure-valued so-
lution of (5.2) satisfying (5.3)–(5.4). Then for any test function h∈C1

0 (R2d), we
have

∫

R2d

h(x,v)µt(dx,dv)=

∫

R2d

h(Xµ(t;s,x,v),Vµ(t;s,x,v))µs(dx,dv).

Here [Xµ(t;s,x,v),Vµ(t;s,x,v)] is the particle trajectory passing through (x,v) at
time s.

Proof. Recall that the defining relation (5.3) can be rewritten as
∫

R2d

g(x,v,t)µt(dx,dv)−
∫

R2d

g(y,v∗,s)µs(dy,dv∗)

=

∫ t

s

∫

R2d

(

∂τg+ v̄ ·∇ȳg+λF(ȳ,v̄) ·∇v̄g
)

µs(dȳ,dv̄)dτ. (5.8)

We now choose a test function g so that the right hand side of (5.8) vanishes. For
any h∈C1

0 (R2d) and fixed t, we set

g(x̄,v̄,τ) :=h(Xµ(t;τ,x̄,v̄),Vµ(t;τ,x̄,v̄)).
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Then, by (i) in Lemma 5.4, we have

g(Xµ(τ ;t,x,v),Vµ(τ ;t,x,v),τ)=h(x,v). (5.9)

Direct differentiation of the above relation (5.9) with respect to τ and Lemma 5.4
imply

g∈C1
0 (R2d× [0,T )), ∂τg+ v̄ ·∇ȳg+λF(ȳ,v̄) ·∇v̄g =0.

Hence relation (5.8) implies that

∫

R2d

g(x,v,t)µt(dx,dv)=

∫

R2d

g(x,v,s)µs(dx,dv)

or
∫

R2d

h(x,v)µt(dx,dv)=

∫

R2d

h(Xµ(t;s,x,v),Vµ(t;s,x,v))µs(dx,dv).

5.3. Stability estimate in bounded Lipschitz distance. In this part, we
derive a stability estimate for measure valued solutions to (5.2) in a bounded Lipschitz
distance. This stability estimate is crucial in the mean-field limit of the C-S particle
model in next section.

We review the definition of the bounded Lipschitz distance in [13, 17]. We first
define the admissible set Ω of test functions:

Ω :=
{

g :R2d →R : ||g||L∞ ≤1, Lip(g) := sup
z1 6=z2∈R2d

|g(z1)−g(z2)|
|z1−z2|

≤1
}

.

Definition 5.6. [13, 17] Let µ,ν ∈M(R2d) be two Radon measures. Then the
bounded Lipschitz distance d(µ,ν) between µ and ν is given by

d(µ,ν) := sup
g∈Ω

∣

∣

∣

∫

R2d

g(x,v)µ(dx,dv)−
∫

R2d

g(x,v)ν(dx,dv)
∣

∣

∣
.

Remark 5.2.

1. The space of Radon measures M(R2d) equipped with the metric d(·,·) is a
complete metric space.

2. The bounded Lipschitz distance d is equivalent to the Wasserstein-1 distance
(Kantorovich-Rubinstein distance) W1 (see [7, 17]):

W1(µ,ν) := inf
γ∈Π(µ,ν)

∫

R2d

|z1−z2|γ(dz1,dz2),

where Π(µ,ν) is the set of all product measures on R
2d×R

2d such that their marginals
are µ and ν.

3. For any g∈C0(R
2d) with |g(z)|≤a and Lip(g)≤ b, we have

∣

∣

∣

∫

R2d

g(x,v)µ(dx,dv)−
∫

R2d

g(x,v)ν(dx,dv)
∣

∣

∣
≤max{a,b}d(µ,ν). (5.10)

We present a series of estimates regarding the dynamics of particle trajectories.
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Lemma 5.7. Let µ,ν ∈L∞([0,T );M(R2d)) be two measure valued functions with com-
pact supports for each time slice:

spt(µt), spt(νt)⊂BR(t)(0)×BP (t)(0),

where R(t) and P (t) are nonnegative locally bounded functions. Then a(x,µt) and
b(x,µt) in (5.5) satisfy

(i) |a(x,µt)−a(x,νt)|≤dmax{P (t),βP (t)+1}d(µt,νt).

(ii) |b(x,µt)−b(x,νt)|≤max{1,β}d(µt,νt).

Proof.
(i) Let (y,v∗)∈ spt(µt)∪ spt(νt). Then we have

|ψ(|x−y|)vi
∗|≤P (t) and

|ψ(|x−y1|)vi
1−ψ(|x−y2|)vi

2|≤ (βP (t)+1)|(y1,v1)−(y2,v2)|.

It follows from (5.10) that we have

|ai(x,µt)−ai(x,νt)|=
∣

∣

∣

∫

R2d

ψ(|x−y|)vi
∗(µt(dy,dv∗)−νt(dy,dv∗))

∣

∣

∣

≤max{P (t),βP (t)+1}d(µt,νt).

This yields the desired result.

(ii) Note that

ψ(|x−y|)≤1 and |ψ(|x−y1|)−ψ(|x−y2|)|≤β|y1−y2|,

hence we again use (5.10) to obtain

|b(x,µt)−b(x,νt)|≤
∣

∣

∣

∫

R2d

ψ(|x−y|)(µt(dy,dv∗)−νt(dy,dv∗))
∣

∣

∣

≤max{1,β}d(µt,νt).

Lemma 5.8. Let µ,ν ∈L∞([0,T );M(R2d)) be two measure valued functions with com-
pact supports

spt(µt), spt(νt)⊂BR(t)(0)×BP (t)(0),

and finite moments

∫

R2d

µt(dx,dv)≤m0,

∫

R2d

|v|2µt(dx,dv)≤m2,

∫

R2d

νt(dx,dv)≤m0,

∫

R2d

|v|2νt(dx,dv)≤m2.

Then for any 0≤s≤T , we have

(i) |a(Xµ(s),µs)−a(Xν(s),νs)|
≤β(m0m2)

1
2 |(Xµ(s)−Xν(s)|+dmax{P (max{s,t}),βP (max{s,t})+1}d(µs,νs).
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(ii) |b(Xµ(s),µs)−b(Xν(s),νs)|
≤βm0|(Xµ(s)−Xν(s)|+max{1,β}d(µs,νs).

Here we used the simplified notations:

Xµ(s) :=Xµ(s;t,x,v), Xν(s) :=Xν(s;t,x,v).

Proof.

(i) By definition of a, we have

|a(Xµ,µs)−a(Xν ,νs)|
=

∣

∣

∣

∫

R2d

ψ(|Xµ−y|)v∗µs(dy,dv∗)−
∫

R2d

ψ(|Xν −y|)v∗νs(dy,dv∗)
∣

∣

∣

≤
∣

∣

∣

∫

R2d

(

ψ(|Xµ−y|)−ψ(|Xν −y|)
)

v∗µs(dy,dv∗)
∣

∣

∣

+
∣

∣

∣

∫

R2d

ψ(|Xν −y|)v∗µs(dy,dv∗)−
∫

R2d

ψ(|Xν −y|)v∗νs(dy,dv∗)
∣

∣

∣

:= I1 +I2.

The term I1 can be treated as follows.

I1≤β|Xµ−Xν |
∫

R2d

|v∗|µs(dy,dv∗)≤β|Xµ−Xν |(m0m2)
1
2 .

On the other hand, for the estimate of I2, we use the same argument as in Lemma
5.7 (i) to obtain

I2≤dmax{P (max{s,t}), βP (max{s,t})+1}d(µs,νs).

(ii) Similar to (i), we have

|b(Xµ,µs)−b(Xν ,νs)|
≤

∫

R2d

|ψ(|Xµ−y|)−ψ(|Xν −y|)|µs(dy,dv∗)

+
∣

∣

∣

∫

R2d

ψ(|Xν −y|)µs(dy,dv∗)−
∫

R2d

ψ(|Xν −y|)νs(dy,dv∗)
∣

∣

∣

≤ β|Xµ−Xν |m0 +max{1,β}d(µs,νs).

Lemma 5.9. Let µ,ν ∈L∞([0,T );M(R2d)) be two measure valued solutions with com-
pact supports

spt(µt), spt(νt)⊂BR(t)(0)×BP (t)(0), for some positive functions R(t), P (t),

and uniform bounded moments
∫

R2d

µt(dx,dv)≤m0,

∫

R2d

|v|2µt(dx,dv)≤m2,

∫

R2d

νt(dx,dv)≤m0,

∫

R2d

|v|2νt(dx,dv)≤m2.

Then for any 0≤s≤T , we have

|Xµ(s;t,x,v)−Xν(s;t,x,v)|+ |Vµ(s;t,x,v)−Vν(s;t,x,v))|
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≤
∫ max{s,t}

min{s,t}

α(τ ;s)d(µτ ,ντ )dτ,

where α=α(τ ;s) is a smooth function depending only on T,λ,β,d,m0,m2,P (·), and
R(·).

Proof. We set

y(s) :=Xµ(s;t,x,v)−Xν(s;t,x,v), v(s) :=Vµ(s;t,x,v)−Vν(s;t,x,v).

We consider the case 0<t<s. The other case is exactly the same except the change
of sign. It follows from (5.6) that we have

dy(τ)

dτ
=v(τ), y(t)=0.

We integrate the above equation from τ = t to τ =s to find

|y(s)|≤
∫ s

t

|v(τ)|dτ.

On the other hand, v(τ) satisfies

dv(τ)

dτ
+λb(Xµ(τ ;t,x,v),µτ )v(τ)

=λ[a(Xµ(τ ;t,x,v),µτ )−a(Xν(τ ;t,x,v),ντ )]
−λ [b(Xµ(τ ;t,x,v),µτ )−b(Xν(τ ;t,x,v),ντ )]Vν(τ ;t,x,v),

v(t)=0.

We use the method of integrating factor and e−λb(Xµ)≤1 to obtain

|v(s)|≤
∫ s

t

λ|a(Xµ(τ ;t,x,v),µτ )−a(Xν(τ ;t,x,v),ντ )|dτ

+

∫ s

t

λ|b(Xµ(τ ;t,x,v),µτ )−b(Xν(τ ;t,x,v),ντ )||Vν(τ ;t,x,v)|dτ

≤
∫ s

t

λ
[

dmax
{

P (τ),βP (τ)+1
}

+max{1,β}P (τ)
]

d(µτ ,ντ )dτ

+

∫ s

t

λβ
[

m0P (τ)+(m0m2)
1/2

]

|y(τ)|dτ

≤
∫ s

t

λ
[

d+(1+d)P (τ)max{1,β}
]

d(µτ ,ντ )dτ

+

∫ s

t

λβ
[

m0P (τ)+(m0m2)
1/2

]

|y(τ)|dτ. (5.11)

Here we used the fact that

dmax{P (τ),βP (τ)+1}+max{1,β}P (τ)≤d+(1+d)P (τ)max{1,β}.

We set

z(s) := |v(s)|+ |y(s)|, A(τ) :=λ [d+(1+d)P (τ)max{1,β}] ,
B(τ) :=max

{

1,λ
[

m0P (τ)+(m0m2)
1/2

]}

.
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Then z satisfies the Gronwall type inequality:

z(s)≤
∫ s

t

A(τ)d(µτντ )dτ +

∫ s

t

B(τ)z(τ)dτ,

hence the Gronwall Lemma implies that

z(s)≤
∫ s

t

A(τ)e
R

s

τ
B(r)drd(µτ ,ντ )dτ ≡

∫ s

t

α(τ ;s)d(µτ ,ντ )dτ.

Here we used a simplified notation:

α(τ ;s) :=A(τ)e
R

s

τ
B(r)dr.

Therefore, we have

|Xµ(s;t,x,v)−Xν(s;t,x,v)|+ |Vµ(s;t,x,v))−Vν(s;t,x,v))|
= |v(s)|+ |y(s)|≤z(s)≤

∫ s

t

α(τ ;s)d(µτ ,ντ )dτ.

Proposition 5.10. Let µ,ν ∈L∞([0,T );M(R2d)) be two measure valued solutions
corresponding initial data µ0,ν0 with compact supports:

spt(µt), spt(νt)⊂BR(t)(0)×BP (t)(0), for some positive functions R(t), P (t),

and uniform bounded moments:

∫

R2d

µ0(dx,dv)≤m0,

∫

R2d

|v|2µ0(dx,dv)≤m2,

∫

R2d

ν0(dx,dv)≤m0,

∫

R2d

|v|2ν0(dx,dv)≤m2.

Then there exists a nonnegative function C2 =C(T,d,λ,β,P (·),R(·),m0,m2) satisfying

d(µt,νt)≤C2d(µ0,ν0), t∈ [0,T ).

Proof. Let g∈C0(R
2d) a test function in Ω, i.e.,

||g||L∞ ≤1 and Lip(g)≤1.

Then we have
∣

∣

∣

∣

∫

R2d

g(x,v)µt(dx,dv)−
∫

R2d

g(x,v)νt(dx,dv)

∣

∣

∣

∣

≤
∫

R2d

|g(Xµ(t;0,x,v),Vµ(t;0,x,v))−g(Xν(t;0,x,v),Vν(t;0,x,v))|µ0(dx,dv)

+

∣

∣

∣

∣

∣

∫

R2d

g(Xν(t;0,x,v),Vν(t;0,x,v))µ0(dx,dv)

−
∫

R2d

g(Xν(t;0,x,v),Vν(t;0,x,v))ν0(dx,dv)

∣

∣

∣

∣

∣
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≤
∫

R2d

(|Xµ(t;0,x,v)−Xν(t;0,x,v)|+ |Vµ(t;0,x,v)−Vν(t;0,x,v)|)µ0(dx,dv)

+ d(µ0,ν0)

≤ m0

∫ t

0

α(τ ;t)d(µτ ,ντ )dτ +d(µ0,ν0).

Therefore we have

d(µt,νt)≤m0

∫ t

0

α(τ ;T )d(µτ ,ντ )dτ +d(µ0,ν0).

The Gronwall lemma gives

d(µt,νt)≤d(µ0,ν0)e
m0

R

t

0
α(τ ;T )dτ .

6. Mean-field limit and the existence of measure valued solutions

In this section, we show the existence of measure valued solutions to (5.2) with
initial Radon measure µ0. For this, we use a standard method for the Vlasov equation
with a bounded and Lipshitz kernel in [13, 17]. However unlike to the case in Neuzert
and Sphohn’s case in [13, 17], the kinetic model (5.2) does not have a bounded kernel
due to the relative velocity factor (v−v∗). Hence we need to control the growth of
velocity support (Lemma 5.4) to construct measure valued solutions.

6.1. A particle method. For the particle method or particle in cell (PIC),
the initial Radon measure µ0 is approximated by a finite sum of Delta measures. For
example, for given h>0 and lattice points i,j∈Z

d, we set a phase space box Rh(i,j)
and its center (xi,vj):

xi := ih, vj := jh, and

Rh(i,j) :=Πd
k=1

[

(ik−
1

2
)h,(ik +

1

2
)h

]

×Πd
k=1

[

(jk−
1

2
)h,(jk +

1

2
)h

]

.

Hence the whole phase space R
2d is the countable union of Rh(i,j):

R
2d :=∪i,j∈ZdRh(i,j).

Suppose initial Radon measure µ0 has a compact support, i.e.,

∃ R0,P0 <∞ such that spt(µ0)⊂BR0
(0)×BP0

(0).

We construct the initial approximation µh
0 as

µh
0 :=

∑

i,j

mijδ(x−xi)⊗δ(v−vj), mij :=

∫

Rh(i,j)

µ0(dx,dv). (6.1)

Note that since µ0 has a compact support, the sum in the above definition (6.1) is in
fact a finite sum.

Lemma 6.1. Let µ0 be a given initial Radon measure on R
2d with a compact support:

spt(µ0)⊂BR0
(0)×BP0

(0),

and let µh
0 be the initial approximation given by (6.1) with a uniform grid size h. Then

we have

d(µh
0 ,µ0)≤

√
d

2
||µ0||h.
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Here d(·,·) is the bounded Lipschitz distance introduced in section 5.3, and ||µ0|| :=
∫

R2d µ0(dx,dv).

Proof. Let g∈Ω be a test function with the properties (|g|≤1, Lip(g)≤1). Then
we have

∣

∣

∣

∫

R2d

g(x,v)µ0(dx,dv)−
∫

R2d

g(x,v)µh
0 (dx,dv)

∣

∣

∣

≤
∑

i,j

∣

∣

∣

∫

Rh(i,j)

g(x,v)µ0(dx,dv)−
∫

Rh(i,j)

g(x,v)µh
0 (dx,dv)

∣

∣

∣

=
∑

i,j

∣

∣

∣

∫

Rh(i,j)

g(x,v)µ0(dx,dv)−
∫

Rh(i,j)

g(xi,vj)µ0(dx,dv)
∣

∣

∣

≤
∑

i,j

∫

Rh(i,j)

|g(x,v)−g(xi,vj)|µ0(dx,dv)

≤
∑

i,j

∫

Rh(i,j)

|(x,v)−(xi,vj)|µ0(dx,dv)

≤
√

d

2
||µ0||h.

Remark 6.1.

1. We will use single index i, i=1,... ,N instead of double index, and rewrite µh
0

in (6.1) as

µh
0 :=

N
∑

i=1

miδ(x−xi)⊗δ(v−vi).

2. Note that the sequence {µh} satisfies

d(µh1

0 ,µh2

0 )≤d(µh1

0 ,µ0)+d(µ0,µ
h2

0 )≤
√

d||µ0||max{h1,h2},

which implies that {µh
0} is a Cauchy sequence in the complete metric space

(M(R2d),d(·,·)).

The particle method is exactly identical with the Cucker-Smale dynamics:

dxi

dt
=vi,

dvi

dt
=λ

N
∑

j=1

mjψ(|xi−xj |)(vj −vi), i=1,... ,N. (6.2)

With solutions (xi(t),vi(t)) of (6.2), we can define an approximate solution:

µh
t :=

N
∑

i=1

miδ(x−xi(t))⊗δ(v−vi(t)). (6.3)

It is clear that bounds for supports of the velocity and position variables as P̂h(t) and
R̂h(t) is also bounds of support of measure (6.3) µh

t , i.e.,

spt(µh
t )⊂BR̂h(t)(0)×BP̂ h(t)(0). (6.4)
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6.2. Convergence of a particle method. In this part, we present a con-
vergence of approximate solutions to the measure valued solution of (5.2) and error
estimate for the particle method which is first order accurate.

Theorem 6.2. Let µ0∈M(R2d) be a Radon measure with a compact support. Let
µh

t be the approximate solution constructed by the particle method with a grid size h.
Let (R0,P0) be the radius of the initial compact support, i.e.,

spt(µ0)⊂BR0
(0)×BP0

(0),

and let m0,m2 be the moments of the initial measure

m0 =

∫

R2d

µ0(dx,dv), m2 =

∫

R2d

|v|2µ0(dx,dv).

Then there is a measure valued solution µ∈L∞([0,T );M(R2d) to (5.2) with initial
data µ0 such that

1. µt is the weak-∗ limit of the approximate solutions µh
t as h→0+, and we have

the error estimate

d(µt,µ
h
t )≤C3h,

where C3 =C3(T,d,λ,β,P0,m0,m2) is a positive constant depending on the
arguments specified.

2. µ is weakly Lip continuous and has bounded first two moments for each time
slice

∫

R2d

µt(dx,dv)≤m0,

∫

R2d

|v|2µt(dx,dv)≤m2.

Moreover µ has compact support for each time slice:

spt(µt)⊂BR(t)(0)×BP (t)(0),

where R(t) and P (t) are positive bounded functions satisfying the growth es-
timates

P (t)≤P0 +λ(m0m2)
1
2 t, R(t)≤R0 +P0t+

λ

2
(m0m2)

1
2 t2

3. µ is unique in the class of measure valued solution to (5.2) with initial data
µ0 and compact supports for each time slice.

Proof. We present the proof in several steps.
Step A (bounds for moments and compact support): Denote

mh
0 (t)=

∫

R2d

µh
t (dx,dv), mh

2 (t)=

∫

R2d

|v|2µh
t (dx,dv),

and let (Rh(t),Ph(t)) be the radius of the initial compact support, i.e.,

spt(µh
t )⊂BRh(t)(0)×BP h(h)(0).

As explained in (6.4), Ph(t) and Rh(t) can also be bounds for supports of the velocity
and position variables P̂h(t) and R̂h(t) respectively. From Remark 5.1 (3), we know
that µh

t is a measure valued solution. We now apply Lemmas 5.2 and 5.4 to µh
t ,

mh
0 (t)=mh

0 (0), mh
2 (t)≤mh

2 (0),
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Ph(t)≤Ph(0)+λ(mh
0 (0)mh

2 (0))
1
2 t, Rh(t)≤Rh(0)+Ph(0)t+

λ

2
(mh

0mh
2 )

1
2 t2

Due to the construction of initial approximation µh
0 , it is easy to prove that

mh
0 (0)≤m0 +Ch, mh

2 (0)≤m2 +Ch, Rh(0)≤R0 +Ch, Ph(0)≤P0 +Ch. (6.5)

Hence

Ph(t)≤P0 +λ(m0m2)
1
2 t+Ch(1+ t), (6.6)

Rh(t)≤R0 +P0t+
λ

2
(m0m2)

1
2 t2 +Ch(1+ t+ t2). (6.7)

Step B (Existence of weak-∗ limit and error estimate): For fixed t∈ [0,T ), it follows
from Proposition 5.10 and Remark 6.1 that

d(µh1

t ,µh2

t )≤C2d(µh1

0 ,µh2

0 )≤C2

√
d||µ0||max{h1,h2}.

Due to (6.6) and (6.7) and the fact that m0 = ||µ0|| , we know that C2 depends only
on T,d,λ,β,P (0),m0 and m2. Hence, we set

C3(T,d,λ,β,P0,m0,m2) :=C2

√
d||µ0||

to obtain

d(µh1

t ,µh2

t )≤C3max{h1,h2}.

Therefore the sequence of approximate solutions {µh
t } is a Cauchy sequence in the

complete metric space (M(R2d),d(·,·)). This guarantees the existence of a limit mea-
sure µt ∈M(R2d). By taking h1 =h fixed and and h2→0, we have a first order
accurate error estimate

d(µh
t ,µt)≤C3h.

Since d(·,·)-convergence is also equivalent to weak-∗ convergence[17], we know that
µt is the weak∗-limit of µh

t . From (6.5)–(6.7), we have

m0(t)=m0, m2(t)≤m2,

P (t)≤P0 +λ(m0m2)
1
2 t, R(t)≤R0 +P0t+

λ

2
(m0m2)

1
2 t2.

Step C (Weak Lipschitz continuity): We need to check the weak continuity of the map
t→µt. We first note that the vector field (v,λF(µh

t )) is bounded in the time-strip
R

2d× [0,T ):

|(v,λF(µh
t ))|≤ |v|+λ|F(µh

t )|≤ |v|+λ|a(x,µh
t )|+λ|b(x,µh

t )||v|
≤Ph(t)+λ(mh

0mh
2 )

1
2 +λmh

0Ph(t)≤C(T,d,λ,β,P0,m0,m2)<∞.

Here we used Lemmas 5.3 and 5.4. This leads to

|Xh(t+∆t)−Xh(t)|+ |Vh(t+∆t)−Vh(t)|≤C(T,d,λ,β,P0,m0,m2)∆t.
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On the other hand, note that for any g∈C1
0 (R2d), we have from Lemma 5.5 that

|〈µh
t+∆t,g〉−〈µh

t ,g〉|=
∣

∣

∣

∣

∣

∫

R2d

(g(Xh(t+∆t;t,x,v),Vh(t+∆t;t,x,v))

−g(x,v))µh
t (dx,dv)

∣

∣

∣

∣

∣

≤||g||C1mh
0

(

|Xh(t+∆t)−Xh(t)|+ |Vh(t+∆t)−Vh(t)|
)

≤C(T,d,λ,β,P0,m0,m2,g)∆t.

As ∆t→0, we see that µ is weakly Lipschitz continuous in t. Since µh satisfy required
bounds, the limit µ also satisfy required bounds.

Step D (µ satisfies (5.3)): In the following, we show that this limit measure µ is a
measure valued solution to (5.2).

Note that µh is a measure valued solution, hence it satisfies the equation (5.3):

〈µh
t ,g(·,·,t)〉−〈µh

0 ,g(·,·,0)〉=
∫ t

0

〈µh
s ,∂sg+v ·∇xg+λF(µh

s ) ·∇vg〉ds. (6.8)

Since d(·,·)-convergence is equivalent to weak-∗ convergence, it is easy to see that the
first two terms in (6.8) converge to the corresponding terms for weak∗-limit µt, i.e.,

〈µh
t ,g(·,·,t)〉−〈µh

0 ,g(·,·,0)〉→〈µt,g(·,·,t)〉−〈µ0,g(·,·,0)〉 as h→0+ .

It remains to show that the terms in the right hand side of the equation (6.8) converge
to the corresponding terms for µ.

Claim: For any test function g∈C1
0 (R2d× [0,T )),

∫ t

0

〈µh
s ,∂sg+v ·∇xg+λF(µh

s ) ·∇vg〉ds→
∫ t

0

〈µs,∂sg+v ·∇xg+λF(µs) ·∇vg〉ds,

as h→0+.

The proof of claim. The above relation directly follows from the following
strong result. For t∈ [0,T ), we prove that

∣

∣

∣
〈µh

t ,∂sg+v ·∇xg+λF(µh
t )∇vg〉−〈µt,∂sg+v ·∇xg+λF(µt)∇vg〉

∣

∣

∣

≤C4h.

Here C4 =C4(T,d,λ,β,P0,m0,m2,g) is a positive constant.
Note that

|〈µh
t ,∂sg+v ·∇xg〉−〈µt,∂sg+v ·∇xg〉|≤ ||∂sg+v ·∇xg||C1d(µh

t ,µt)≤Ch,

and hence it is enough to show that

|〈µh
s ,λF(µh

s ) ·∇vg〉−〈µs,λF(µh
s ) ·∇vg〉|≤Ch. (6.9)
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By definition of F, we have

|〈µh
s ,λF(µh

s ) ·∇vg〉−〈µs,λF(µs) ·∇vg〉|

≤ λ
∣

∣

∣

∫

R2d

(F(µh
s )−F(µt)) ·∇vg µh

s (dx,dv)
∣

∣

∣

+ λ
∣

∣

∣

∫

R2d

[F(µt) ·∇vg]µh
s (dx,dv)−

∫

R2d

[F(µt) ·∇vg] µs(dx,dv)
∣

∣

∣

:= J1 +J2.

We next estimate Ji, i=1,2 as follows.

Case 1 (J1): We use Lemma 5.4 and Lemma 5.7 to see that

|F(x,v,µt)−F(x,v,µh
t )|≤ |a(x,µt)−a(x,µh

t )|+ |b(x,µt)−b(x,µh
t )||v|

≤dmax{P (t),βP (t)+1}d(µt,µ
h
t )+max{1,β}P (t)d(µt,µ

h
t )

≤Cd(µt,µ
h
t )

≤Ch.

This yields

J1≤m0λCh.

Case 2 (J2): In this case, we use Lemma 5.3 to obtain

||F(µt) ·∇vg||L∞ ≤|F(µt)||∇vg|≤C||∇vg||L∞

[

(m0m2)
1
2 +m0P (t)

]

≤C,

|F(x,v,µt) ·∇vg(x,v)−F(y,v∗,µt) ·∇vg(y,v∗)|

≤ |F(x,v,µt)−F(y,v∗,µt)|||∇vg||L∞ + ||F||L∞ |∇vg(x,v)−∇vg(y,v∗)|

≤
{

2
[

β
(

(m0m2)
1
2 +P (t)

)

+m0

]

||∇vg||L∞ + ||F||L∞ ||g||C2

}

|(x,v)−(y,v∗)|

≤C|(x,v)−(y,v∗)|.

Therefore, thanks to Remark 5.2 (3), the term J2 can be estimated as follows.

J2≤Cd(µt,µ
h
t )≤Ch.

Hence Case 1 and 2 verify that µ satisfies the equation (5.3).

(Uniqueness part): Let ν ∈L∞([0,T );M(R2d) be a measure valued solution to (5.2)
corresponding to same initial data µ0 with a compact support for each time slice:

spt(νt)⊂BR(t)(0)×BP (t)(0).

Then we apply the stability estimate in Proposition 5.10 to find

d(µt,νt)=0, i.e. µt =νt, ∀ t>0.

This yields µ=ν.
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[14] J.K. Parrish, S.V. Viscido and D. Grünbaum, Self-orgainzed fish schools: an examination of

emergent properties, The Biological Bulletin, 202, 296–305, 2002.
[15] P.A. Raviart, An analysis of particle methods. Numerical methods in fluid dynamics, (Como,

1983), 243-324, Lecture Notes in Math., Springer, Berlin, 1127, 1985.
[16] J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68, 694–

719, 2008.
[17] H. Sphohn, Large Scale Dynamics of Interacting Particles, Springer-Verlag, Berlin and Heidel-

berg, 1991.
[18] C.M. Topaz and A.L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for

biological groups, SIAM J. Appl. Math., 65, 152–174, 2004.
[19] J. Toner and Y. Tu, Flocks, herds, and schools: a quantitative theory of flocking, Physical

Review E., 58, 4828–4858, 1998.
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