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a b s t r a c t

We consider a system coupling the incompressible Navier–Stokes equations to the Vlasov–
Fokker–Planck equation. Such a problem arises in the description of particulate flows. We
design a numerical scheme to simulate the behavior of the system. This scheme is asymp-
totic-preserving, thus efficient in both the kinetic and hydrodynamic regimes. It has a
numerical stability condition controlled by the non-stiff convection operator, with an
implicit treatment of the stiff drag term and the Fokker–Planck operator. Yet, consistent
to a standard asymptotic-preserving Fokker–Planck solver or an incompressible Navier–
Stokes solver, only the conjugate–gradient method and fast Poisson and Helmholtz solvers
are needed. Numerical experiments are presented to demonstrate the accuracy and asymp-
totic behavior of the scheme, with several interesting applications.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

This paper is concerned with the simulation of a system of PDEs describing the evolution of disperse two-phase flows.
While these flows can be modeled by a continuum description for all phases [1] we adopt here a kinetic-fluid modeling
[2]. Such models are applicable to suspensions of solids as well as droplets. We use a kinetic description for the particulate
phase and a hydrodynamic one for the underlying continuous fluid phase. Typical applications cover the dynamics of sprays
[3–6], particulate flows in fluidized beds [7], the calibration of fire prevention devices [8], environmental studies on pollutant
transport [9–14], combustion theory [2,15,16] and engine design [17].

There exists a large variety of kinetic-fluid models, depending on the considered physical regime. Here and below, we
adopt the following assumptions:

� The fluid phase is incompressible and viscous. For the sake of simplicity, we suppose that the fluid density is con-
stant and homogeneous (see Remark 2.1 below).

� Both the fluid and particle phases are isothermal.
� We consider a single species of particles, with a given and fixed mass density and size.
).
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� We assume there is no mass exchange between the phases, or in other words, the volume fraction occupied by the
particles does not influence significantly the fluid density. According to O’Rourke [2], it corresponds to the so-
called Thin Sprays modeling.

� Particles are subject to Brownian motion: according to Einstein [18,19] it leads to diffusion with respect to the
velocity variable in the equation for the particle distribution function.

� Each phase exerts an influence on the other phase through drag forces. Models for the drag forces are developed
through experimental investigation and can have quite intricate expressions. Here we shall use the simplest Stokes
formula where the drag force is proportional to the relative velocity ðv � uÞ. An interesting derivation through
homogenization arguments is discussed in [20].

Then, the flows are described by the fluid velocity field uðt; xÞ 2 RN , depending on time t P 0 and space x 2 RN , and the par-
ticle distribution function f ðt; x;vÞ, which additionally depends on the (particle) velocity variable v 2 RN . The evolution of
the density f is governed by
@tf þ v � rx f ¼ 1
e

Luf þrxU � rv f ; ð1Þ
where we have set
Lu f ¼ rv � ðv � uÞf þrv f Þð : ð2Þ
A derivation of such an operator for particles in inhomogeneous flows is discussed in [21]. The evolution of the fluid obeys
the Incompressible Navier–Stokes system
@tuþrx � ðu� uÞ þ rxp� Dxu ¼ 1
e j
R
ðv � uÞf dv ;

rx � u ¼ 0;

(
ð3Þ
with j > 0 a coupling constant that depends on the physical properties of the two phases.
The two phases are subject to external forces, embodied into the potential U. Of course, in the momentum Eq. (3), the

external force term is incorporated within the pressure. Note however that the strength and the orientation of the external
force might be different for the two phases. A relevant example is given by gravity driven flows whererxU is proportional to
g, the gravitational acceleration. For the particles, the coefficient is gP ¼ ð1� qF=qPÞ which accounts for the buoyancy force,
with qF and qP (typical) densities of the fluid and the particles, respectively. The system (1)–(3) is written here in dimension-
less form. The scaling parameter e is associated to the Stokes settling time
2qPa2

9l
with l the dynamic viscosity of the fluid, a the typical radius of the particles. We refer e.g. to [22,23] for further details on the
scaling issues.

The goal of the present paper is the design of a performing numerical scheme, able to handle different regimes, from
e ¼ Oð1Þ (the kinetic regime) to e� 1 (the hydrodynamic regime). As will be detailed below, in the hydrodynamic regime,

the particle distribution function relaxes to the Maxwellian nðt;xÞ
ð2pÞN=2 e�jv�uðt;xÞj2=2 and the limiting system for particle density n

and particle macroscopic velocity u, which coincides to the fluid velocity, looks like the non homogeneous incompressible
Navier–Stokes system, see (10) and (11).

Existence of weak solutions of system (1)–(3) has been investigated in [24] by fixed point methods and the theory has
been revisited in [25] by using compactness techniques. Definitely, a difficulty relies on the construction of approximate
solutions that preserve the conservation/dissipation properties of the model. We also refer to [26] for the analysis of com-
pressible models. Smooth solutions close to equilibrium are studied in [27], see also [28] for a similar analysis of macroscopic
models. The analysis of the asymptotics e! 0 in (1)–(3) is due to [29] by means of relative entropy methods, see also [30]. It
is also worth mentioning related works like the local existence of smooth solutions for the case without velocity-diffusion
[31], several studies of coupling with the Euler system (i.e. viscosity is sensible only at the scale of the particles) [23,32,33]
and systems with energy exchanges [34–36].

This work is organized as follows. In Section 2 we detail a few basic facts about the system (1)–(3) and the regime e! 0.
In Section 3 we detail the construction of the numerical scheme. Our method takes place among the so-called ‘‘Asymptotic
Preserving Schemes’’, a terminology coined in [37]. It means that the scheme is suitable for the kinetic equation in such a
way that letting e go to 0 while holding the mesh size and time step fixed, the scheme becomes a suitable scheme for the
limiting equations. In particular, the stability constraints do not degenerate in the asymptotic regime. We refer to [38]
and references therein for a recent review on the AP schemes and their applications. Roughly speaking the idea consists
in evaluating implicitly the stiff terms of the equation. Here, it will require to invert the Fokker–Planck operator (2). To this
end, we will follow the discretization introduced in [39]. Furthermore, our formulation of the scheme follows the framework
of the projection method (see Chorin [40,41], Temam [42]), in the sense that only fast Helmholtz or Poisson solvers are
needed, even with the implicit, nonlocal coupling terms between particles and the fluid. This is most natural when the
incompressible fluid equations are solved by the projection method. The Fokker–Planck solver here, on the other hand,



T. Goudon et al. / Journal of Computational Physics 246 (2013) 145–164 147
has a computational cost and complexity comparable to the previously developed AP scheme without the coupling to the
fluid equation [39]. Both first and second order schemes are presented in this framework. Section 4 is devoted to the results
of numerical simulations for checking accuracy, asymptotic behavior as well as some applications.

2. Hydrodynamic limit

Let us briefly recall some basic facts about the system (1)–(3) and the regime e! 0. The key remark, observed in [43,29],
relies on the following energy-entropy dissipation property
d
dt

j
Z

RN�RN
f 1þUþ v2=2þ lnðf Þ
� �

dvdxþ
Z

RN
juj2=2dx

� �
þ
Z

RN
jrxuj2dxþ j

e

Z
RN�RN

jðv � uÞ
ffiffiffi
f

p
þ 2rv

ffiffiffi
f

p
j2dvdx ¼ 0:

ð4Þ
A similar relation holds when the problem is set on a bounded smooth domain X with reasonable boundary conditions. For
instance we can assume no–slip of the fluid
uj@X ¼ 0 ð5Þ
and specular reflection of the particles
c�f ðt; x;vÞ ¼ cþf t; x; v � 2v � m̂ðxÞm̂ðxÞð Þ; ð6Þ
where m̂ðxÞ stands for the unit outer normal at point x 2 @X and c� denote the trace operators on the set
ðt; x; vÞ 2 ð0;1Þ� @X� RN ; �v � m̂ðxÞ > 0
� �

:

We refer to further comments in [23]. It is worth rewriting the Fokker–Planck operator as
Luf ¼ rv � Murv
f

Mu

� �� �
; MuðvÞ ¼

1

ð2pÞN=2 exp � jv � uðt; xÞj2

2

 !
:

As e goes to 0, since the Fokker–Planck operator is penalized, we expect that f makes Luf (and the dissipation term in (4))
vanish which means that f becomes proportional to the Maxwellian centered to the fluid velocity
f ðt; x;vÞ ’ nðt; xÞMuðt;xÞ:
Hence the question is to identify the equation satisfied as e! 0 by the particles density n and the velocity u.
To this end, let us write the equations satisfied by the moments
nðt; xÞ ¼
Z

RN
f ðt; x;vÞdv ; Jðt; xÞ ¼

Z
RN

vf ðt; x;vÞdv:
Then one has
@tnþrx � J ¼ 0; ð7Þ

@tJ þrxPþ nrxU ¼ �
1
e
ðJ � nuÞ ð8Þ
where Z

Pðt; xÞ ¼

RN
v � vf ðt; x; vÞdv :
Combined to (3) one obtains
@t uþ jJð Þ þ rx � u� uþ jPð Þ þ rxpþ jnrxU ¼ Dxu: ð9Þ
Accordingly, when J and P are asymptotically defined by the moments of the Maxwellian nMu, one is led to
J ’ nu; P ’ nu� uþ nI:
Inserting this ansatz into (9) one arrives at
@t 1þ jnð Þuð Þ þ rx � 1þ jnð Þu� uð Þ þ rx pþ jnð Þ þ jnrxU ¼ Dxu; ð10Þ
where the velocity is still required to be divergence free while for the density of particles
@tnþrx � ðnuÞ ¼ 0: ð11Þ
The system (10) and (11) is (up to the gravity term) nothing but the incompressible Navier–Stokes system for the composite
and inhomogeneous density ð1þ jnÞ. Of course a rigorous justification of the convergence statement presents technical
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difficulties, due to the nonlinear passages to the limit it requires, in particular with the product nu� u. We refer to [29] for a
proof based on relative entropy arguments and to [26,30,23] where related questions are discussed.

Remark 2.1. Note that the problem does not simplify if we start with the Stokes equation for the fluid instead of (3), because
the convection term in the limit equation comes anyway from the kinetic pressure P. We point out also that it makes sense
to consider from the beginning that the fluid density qðt; xÞ is non homogeneous. In such a case (3) is replaced by
@tqþrx � ðquÞ ¼ 0;

@tðquÞ þ rx � ðqu� uÞ þ rxpþ gFqrx
~U ¼ Dxuþ 1

e
j
Z

RN
ðv � uÞf dv ;
coupled to the divergence free constraint rx � u ¼ 0. Here rx
~U ¼ 1

gP
rxU ¼ g. Note the coefficient gF , potentially different

from gP , characterizes the effect of the external forces on the fluid. The limiting problem will be of the same type for the
composite density qþ jn; namely one obtains as e! 0
@tqþrx � ðquÞ ¼ 0 ¼ @tnþrx � ðnuÞ ¼ 0;

@t qþ jnð Þuð Þ þ rx � qþ jnð Þu� uð Þ þ rx pþ jnð Þ þ ðgFqþ gPnÞrx
~Uþ Dxu ¼ 0;

rx � u ¼ 0:
Adaptation of our numerical method to fully non homogeneous flows is discussed in a forthcoming work [44].
3. An AP scheme for the kinetic-fluid coupling system

As announced in the Introduction, we wish to construct a numerical scheme for (1)–(3), with the specific request to cap-
ture the asymptotic regime e! 0 efficiently. In particular, as e goes to 0, the scheme should become a robust solver for the
limit system (10), (11). Furthermore, the asymptotic regime should not introduce prohibitive numerical constraints, by hav-
ing the stability condition independent of e. A scheme that fulfills these requirements is said Asymptotic Preserving
[37,45,38]. Roughly speaking, the idea is to evaluate implicitly the stiff terms in the equations, namely the drag force in
(3) and the Fokker–Planck operator in (1). The key point of the method that provides the AP property to the scheme relies
on a convenient time splitting which allows to compute implicitly the stiff terms efficiently. Recall that an AP scheme for the
Fokker–Planck equation, developed in [39], relies just on a conjugate gradient method for the implicit Fokker–Planck oper-
ator, while a typical incompressible Navier–Stokes solver, such as the projection method, requires a fast Poisson or Helm-
holtz solver. For the problem under study, even if more implicit coupling terms are involved than the problems studied
previously, our AP schemes do not require more than the conjugate gradient method and a fast Poisson or Helmholtz solver.

3.1. Projection method for INS system with variable fluid density

In this section we recall the projection method for the incompressible Navier–Stokes (INS) system with variable fluid den-
sity with no–slip boundary condition:
@tqþrx � ðquÞ ¼ 0;
@tðquÞ þ rx � ðu� uÞ þ rxp� Du ¼ S;

rx � u ¼ 0;
uðt; xÞ ¼ 0; on @X:

8>>><
>>>:

ð12Þ
Here we can assume S is a stiff source term.
Although the fluid is modeled by (3) with constant fluid density, we have a good reason to start with the review of the

projection scheme for (12). That is, the limit system (10), (11) itself is a variable density INS system. We want our scheme
automatically becomes a projection method for (10), (11) as e! 0.

The projection method for INS system with constant fluid density was first introduced by Chorin ([40,46,41]) and Temam
([42]). The extensions to second order have been studied a lot, for example, in [47–49]. It is also generalized to (12), the INS
system with variable density, for example, in [50–53]. In this section we focus on the temporal discretization. The space
derivative is assumed to be continuous at this moment. We leave the spatial discretization to the end of this section.

3.1.1. A first order method
A first order projection method can be summarized as
qkþ1�qk

Dt þrx � ðqkukÞ ¼ 0;
qkþ1u	�qkuk

Dt þrx � ðqkuk � ukÞ � Dxu	 ¼ S	;
ukþ1�u	

Dt þ 1
qkþ1rxpkþ1 ¼ 0; with rx � ukþ1 ¼ 0:

8>>><
>>>:

ð13Þ
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The system is solved with no-slip boundary condition for u	, Neumann boundary condition for pkþ1,
u	 ¼ uk ¼ @pkþ1

@m̂
¼ 0; on @X: ð14Þ
The momentum equation is split into a viscosity step (for u	) and a projection step (for ukþ1). The viscosity step needs a
Helmholtz solver. Similarly to the projection method for the constant density INS system, the projection step is solved in two
steps. First the pressure pkþ1 is computed by taking the divergence of both sides,
rx �
1

qkþ1rxpkþ1

� �
¼ 1

Dt
rx � u	;
where a variable coefficient Poisson solver is needed. Then ukþ1 is updated via
ukþ1 ¼ u	 þ Dt
qkþ1rxpkþ1:
This is a direct generalization of Chorin-Temam projection method to the system (12).

3.1.2. A second order method
The second order projection methods for (12) have been studied in [50], with a Crank–Nicolson type stiff term. However,

to obtain an AP scheme, we hope the stiff term is solved fully implicitly. Illustrated by [52], we give the following BDF based
second order pressure incremental (also called pressure correction) projection method:
3qkþ1�4qkþqk�1

2Dt þr � ð2qkuk � qk�1uk�1Þ ¼ 0;
3qkþ1u	�4qkukþqk�1uk�1

2Dt þ 2ðrx � ðu� uÞÞk � ðrx � ðu� uÞÞk�1 þrxpk � Du	 ¼ S	;
3ukþ1�3u	

2Dt þ 1
qkþ1rxðpkþ1 � pkÞ ¼ 0; with rx � ukþ1 ¼ 0:

8>>><
>>>:

ð15Þ
The same boundary conditions (14) are applied. This is solved in a similar way as in the first order method.
This second order method is based on the pressure correction idea introduced in [48], which is necessary for the INS sys-

tem with variable density. The viscosity part of momentum equation is solved with current pressurerxpk. Then the pressure
increment, ðpkþ1 � pkÞ, is computed in the projection step.

3.2. Construction of the AP schemes

The AP scheme works in two steps. Firstly we update the macroscopic quantities n; J;u; p and secondly we update the
microscopic density of particles. The former leads to invert a coupled linear system. The latter needs to invert the Fok-
ker–Planck operator, which relies on a specific discretization to obtain an appropriate structure for using performing
algorithms.

To start with, we compute the macroscopic density of particles,
1
Dt
ðnkþ1 � nkÞ ¼ �

Z
v � rx f kdv: ð16Þ
Next we solve the coupled momentum Eqs. (8) with (3), based on the projection method described in Section 3.1.1. We
would like to point out that, to derive an AP scheme, one has to impose the stiff coupling term (1=e term) in both the vis-
cosity step and the projection step.

We solve the viscosity part of momentum equations with only part of the stiff term:
1
Dt
ðJ	 � JkÞ ¼ �

Z
v � vrx f k dv � nkrxU�

1� a
e

J	 � nkþ1u	
� �

; ð17aÞ

1
Dt
ðu	 � ukÞ � Dxu	 ¼ �rx � ðuk � ukÞ þ 1� a

e
j J	 � nkþ1u	
� �

; ð17bÞ
where a 2 ð0;1Þ is any constant. One can simply choose a ¼ 1
2.

It is equivalent to solve
1
Dt
þ 1� a

eþ ð1� aÞDt
jnkþ1 � Dx

� �
u	 ¼ uk

Dt
�rx � ðuk � ukÞ þ ð1� aÞj

eþ ð1� aÞDt
Jk � Dt

Z
v � vrx f kdv � DtnkrxU

� �
: ð18Þ
The no-slip boundary condition for u	 is used,
u	j@X ¼ 0: ð19Þ
(18) is a Helmholtz equation for u	, which can be solved by the Preconditioned Conjugate Gradient method without dif-
ficulties (for example, see [54]). Then J	 is solved accordingly.

Next u	 is projected to the divergence free space, with the remaining stiff coupling term.
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1
Dt
ðJ		 � J	Þ ¼ �a

e
J		 � nkþ1ukþ1� �

;

1
Dt
ðukþ1 � u	Þ þ rxpkþ1 ¼ a

e
j J		 � nkþ1ukþ1� �

:

ð20Þ
With J		 canceled, one has,
ukþ1 þ
1
Dt þ a

e
1
Dt þ a

e ð1þ jnkþ1Þ
Dtrxpkþ1 ¼

1
Dt þ a

e

� �
u	 þ a

e jJ	

1
Dt þ a

e ð1þ jnkþ1Þ
: ð21Þ
Noting that ukþ1 is divergence free, by taking the divergence of both sides, one arrives at,
rx �
1

qkþ1
e
rxpkþ1

� �
¼ 1

Dt
rx �

1
Dt þ a

e

� �
u	 þ a

e jJ	

1
Dt þ a

e ð1þ jnkþ1Þ

 !
;

@pkþ1

@m̂
j@X ¼ 0; ð22Þ
with
qkþ1
e :¼

1
Dt þ a

e ð1þ jnkþ1Þ
1
Dt þ a

e
; ð23Þ
where the dependence on Dt and a is omitted in the notation, for the sake of simplicity.
pkþ1 is solved from Eq. (22) by a Conjugate Gradient method. Then ukþ1 is obtained from (21). Finally f kþ1 is solved based

on the kinetic Eq. (1), with a fully implicit Fokker–Panck operator
f kþ1 � f k

Dt
þ v � rx f k �rxU � rv f k ¼ 1

e
Lukþ1 f kþ1; ð24Þ
where
Lukþ1 f kþ1 ¼ rv � ððv � ukþ1Þf kþ1 þrv f kþ1Þ:
Then Jkþ1 is updated by taking the first moment of f kþ1.
This is a predictor–corrector method for the kinetic Eq. (1). One first predicts the momentum at tkþ1 by solving for u	. Then

the divergence free velocity ukþ1 is derived and the momentum Jkþ1 at tkþ1 is corrected accordingly. The only constraint on
time step is the CFL condition from the transport part of kinetic Eq. (1), i.e. Dt 6 Dx

max jv j, with Dx the space mesh size.

3.3. A second order scheme

However, any constant a 2 ð0;1Þwill result in a first order time splitting. To derive a second order scheme, we start with a
lemma on a toy model.

Lemma 3.1. The ODE equation
du
d t
¼ f ðuÞ
can be solved by
3u	 � 4uk þ uk�1

2Dt
¼ ð1� aÞf ðu	Þ;

3ukþ1 � 3u	

2Dt
¼ af ðukþ1Þ:
The method is second order if a ¼ 0;1. Furthermore, the second order is also achieved if
a ¼ OðDtÞ; or 1� a ¼ OðDtÞ:

The proof is straightforward if one studies the local truncation error. The case a ¼ OðDtÞ is what we need.

Now we generalize the first order scheme (16), (17a), (17b), (18)–(24) to second order. The convergence order can be im-
proved by the following techniques.

� The time derivative terms are approximated by a second order BDF method, i.e.,
@taðtkþ1Þ 
 3akþ1 � 4ak þ ak�1

2Dt
;

� The transport terms are approximated by extrapolation from previous two steps, i.e.,
bðtkþ1Þ 
 2bk � bk�1
;
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� The stiff terms are implicitly evaluated at tkþ1;
� Take a ¼ OðDtÞ in the splitting of stiff terms.
� Pressure incremental technique. The viscosity step in momentum equation is solved with pressure at current step. Then

the projection step computes the pressure increment.

We describe the detailed scheme now. For simplicity we denote
ay ¼ 2ak � ak�1:
First, the macroscopic density of particles nkþ1 is computed by,
1
2Dt
ð3nkþ1 � 4nk þ nk�1Þ ¼ �

Z
v � rx f ydv: ð25Þ
Next we solve the coupled momentum Eqs. (8) with (3), with part of stiff terms and pressure term at tk,
1
2Dt
ð3J	 � 4Jk þ Jk�1Þ ¼ �

Z
v � vrx f ydv � nyrxU�

1� a
e

J	 � nkþ1u	
� �

;

1
2Dt
ð3u	 � 4uk þ uk�1Þ � Dxu	 þ rxpk ¼ �rx � ðu� uÞy þ 1� a

e
j J	 � nkþ1u	
� �

:

ð26Þ
Again a 2 ð0;1Þ. Illustrated by Lemma 3.1, we need a ¼ OðDtÞ to ensure the second order accuracy. We take a ¼ Dt
tmax

, where
tmax is the final time of our simulation.

The above system can be recast as
3
2Dt
þ 3ð1� aÞ

3eþ 2ð1� aÞDt
jnkþ1 � Dx

� �
u	 ¼ 4uk � uk�1

2Dt
�rx � ðu� uÞy � rxpk

þ 1� a
3eþ 2ð1� aÞDt

j 4Jk � Jk�1 � 2Dt
Z

v � vrx f ydv þ nyrxU
� �	 


: ð27Þ
The no-slip boundary condition for u	 is used.
Eq. (27) can be solved by the Preconditioned Conjugate Gradient method without difficulties. Then J	 is solved using (26).

Next u	 is projected to the divergence free space, with pressure correction and the remaining part of stiff terms,
3
2Dt
ðJ		 � J	Þ ¼ �a

e
J		 � nkþ1ukþ1� �

;

3
2Dt
ðukþ1 � u	Þ þ rxðpkþ1 � pkÞ ¼ a

e
j J		 � nkþ1ukþ1� �

:

ð28Þ
With J		 canceled, one has
ukþ1 þ
3

2Dt þ a
e

3
2Dt þ a

e ð1þ jnkþ1Þ
2Dt

3
rxðpkþ1 � pkÞ ¼

3
2Dt þ a

e

� �
u	 þ a

e jJ	

3
2Dt þ a

e ð1þ jnkþ1Þ
: ð29Þ
Then as in the first order scheme, one can take the divergence of both side. The first term vanishes since ukþ1 is divergence
free. One can solve for pkþ1 � pk. Then pkþ1 is derived.

Finally f kþ1 is solved based on the kinetic Eq. (1),
3f kþ1 � 4f k þ f k�1

2Dt
þ ðv � rx �rxU � rvÞð2f k � f k�1Þ ¼ 1

e
Lukþ1 f kþ1; ð30Þ
and Jkþ1 is updated by taking the first moment of f kþ1.
Eqs. (25)–(30) give a second order scheme in time. We will check this convergence order numerically in Section 4.1.
Note that this second order scheme is a multistep method. To compute the solutions at tkþ1, we need the solutions from

both tk and tk�1. Therefore, with initial data at t0, it is necessary to apply the first order method to obtain the solutions at t1.
Then this second order scheme can be started.

Remark 3.2. We can formally check the second order accuracy. A rigorous proof is out of the scope of this paper.
First, (26) is (at least) a first order time discretization of the system (8) and (3). The local truncation error gives,
u	 ¼ ukþ1 þ OðDt2Þ; J	 ¼ Jkþ1 þ OðDt2Þ: ð31Þ
Next we add up Eqs. (26) and (28):
1
2Dt
ð3J		 � 4Jk þ Jk�1Þ ¼ �

Z
v � vrx f ydv � nyrxU�

1
e

J		 � nkþ1ukþ1� �
þ R1;

1
2Dt
ð3ukþ1 � 4uk þ uk�1Þ � Dxukþ1 þrxpkþ1 ¼ �rx � ðu� uÞy þ 1

e
j J		 � nkþ1ukþ1� �

þ R2;
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where the remainder terms are given by
R1 ¼ �
1� a

e
J	 � nkþ1u	
� �

� J		 � nkþ1ukþ1� �� �
;

R2 ¼
1� a

e
j J	 � nkþ1u	
� �

� J		 � nkþ1ukþ1
� �� �

þ Dxðu	 � ukþ1Þ:
Noting that (28) combined with (26) is also (at least) a first order time discretization of the system (8) and (3), one has
J		 ¼ Jkþ1 þ OðDt2Þ. Combined with (31), one has
R1 ¼ OðDt2Þ; R2 ¼ OðDt2Þ:
Therefore ukþ1 and J		 are second order approximations of uðtkþ1Þ and Jðtkþ1Þ. Then the distribution f kþ1 is solved via the sec-
ond order discretization (30).
3.4. The AP property

Now we show that the first order scheme (16), (17a), (17b), (18)–(24) is asymptotic preserving and the limiting scheme
gives a first order approximation for the limiting system (10), (11).

As e! 0, (24) gives
Lukþ1 f kþ1 ¼ OðeÞ; for k P 0:
This is equivalent to
f k ¼ nkMuk þ OðeÞ; for k P 1:
Then one has
Jk ¼ nkuk þ OðeÞ;

Z
RN

v � vf kdv ¼ nkuk � uk þ nkIþ OðeÞ:
Therefore, (16) is just
1
Dt
ðnkþ1 � nkÞ ¼ �rx � ðnkukÞ þ OðeÞ: ð32Þ
Besides, Eq. (17a) gives
J	 ¼ nkþ1u	 þ OðeÞ:
Multiply (17a) by j and add to (17b). One obtains,
1
Dt

1þ jnkþ1� �
u	 � 1þ jnk

� �
uk

� �
� Dxu	 ¼ �rx � 1þ jnk

� �
uk � uk

� �
� jrxnk � jnkrxUþ OðeÞ: ð33Þ
Eq. (32) and (33) give a first order discretization of the limiting system (10), (11), without the pressure term.
Moreover, as e! 0, (21) becomes,
ukþ1 þ 1
1þ jnkþ1 Dtrxpkþ1 ¼ u	; ð34Þ
which is exactly the projection step for (10), (11).
Similarly one can show the e! 0 limit of (25)–(30) is
1
2Dt
ð3nkþ1 � 4nk þ nk�1Þ ¼ �rx � ðnkukÞy;

1
2Dt

3 1þ jnkþ1
� �

u	 � 4 1þ jnk
� �

uk þ 1þ jnk�1
� �

uk�1
� �

� Dxu	 þ rxpk ¼ �rx � 1þ jnð Þu� uð Þy � jrxny � jnyrxU;

3ðukþ1 � u	Þ
2Dt

þ 1
1þ jnkþ1rxðpkþ1 � pkÞ ¼ 0;

rx � ukþ1 ¼ 0:

ð35Þ
It is the second order projection scheme described in Section 3.1.2 for the limiting system (10), (11), an INS system with
spatial variable density ð1þ jnÞ.
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3.5. Full discretization

3.5.1. Space and velocity discretization
For the sake of concreteness, let us discuss space and velocity discretization issues by restricting to the two-dimension

case. The extension to higher dimension is straightforward. Only Cartesian grids are considered. We denote by Dx the (uni-
form) mesh size. We define a regularly spaced and symmetric velocity grid, with step Dv . Denoting j ¼ ðj; j0Þ and m ¼ ðm;m0Þ
in N2, f k

j;m stands for the numerical approximation of f ðkDt; ðj� 1=2ÞDx; ðm� 1=2ÞDv � vmaxÞ. Here we assume
v 2 ½�vmaxvmax�2. The grid points are located in the cell center.

For the transport term v � rx f in (24) and (30), we apply the upwind type second order shock capturing schemes (see
[36]). Discrete differential operators are defined dimension-by-dimension.

The specular reflection law is used to define the ghost points. For instance, labeling the numerical unknown with indices
j; j0 2 f1; . . . ; Jg and m;m0 2 f1; . . . ;2Mg, where the M first (resp. last) velocities are negative (resp. positive), leads to
f k
0; j0 ;m;m0 ¼ f k

1; j0 ;2Mþ1�m;m0 ; f k
Jþ1; j0 ;m;m0 ¼ f k

J; j0 ;2Mþ1�m;m0 :
For the pressure, Neumann boundary condition (22) leads to
pkþ1
0; j0 ¼ pkþ1

1; j0 ; pkþ1
Jþ1; j0 ¼ pkþ1

J; j0 :
The no-slip boundary of u	 (19) leads to

u	0; j0 ¼ �u	1; j0 ; u	Jþ1; j0 ¼ �u	J; j0 :
Similar expression holds when exchanging the role of u	1;u
	
2; j; j0 and m0;m0.

The convection term rx � ðu� uÞ and the diffusion term Dxu in incompressible Navier–Stokes system (3), as well as the
terms rx � u	 and rxp in the projection steps (22) – (21), are approximated by centered differences.

Macroscopic quantities are defined by using the 2-dimensional version of the trapezoidal rule in order to ensure that the
even moments of the odd functions with respect to v vanish.

The derivative with respect to velocity which appears in the acceleration term is also solved by the upwind type second
order shock capturing schemes (see [36]).

3.5.2. Inversion of the Fokker–Planck operator
We have already discussed the discretization of the transport term. Now we focus on how to solve f kþ1 from (24), where

the stiff term is treated implicitly. We need to invert the Fokker–Planck operator. To this end, we follow the approach intro-
duced in [39]. We writeffiffiffiffiffiffiffip
Luf ¼ Mu
~Luh
with � �� �

h ¼ fffiffiffiffiffiffiffi

Mu
p ; ~Luh ¼ 1ffiffiffiffiffiffiffi

Mu
p rv � Murv

hffiffiffiffiffiffiffi
Mu
p :
Note that ~Lu is symmetric for the standard L2 inner productZ Z

RN

~Luh gdv ¼
RN

h ~Lugdv :
Accordingly, we set
hj;m ¼
f kþ1
j;mffiffiffiffiffiffiffiffiffiffiffi
Mkþ1

j;m

q ; Lf kþ1
j;m ¼

ffiffiffiffiffiffiffiffiffiffiffi
Mkþ1

j;m

q
~Lhj;m:
The discrete operator ~L is symmetric which allows to make use of the Conjugate Gradient algorithm. In dimension two, the
discrete operator ~L is defined as follows
~Lhj; j0 ;m;m0 ¼
1

Dv2 hj; j0 ;m;m0þ1 þ hj; j0 ;mþ1;m �Mkþ1
j; j0 ;m;m0hj; j0 ;m;m0 þ hj; j0 ;m;m0�1 þ hj; j0 ;m�1;m0

� �
;

Mkþ1
j; j0 ;m;m0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mkþ1

j; j0 ;mþ1;m0

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mkþ1

j; j0 ;m;m0þ1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mkþ1

j; j0 ;m�1;m0

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mkþ1

j; j0 ;m;m0�1

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mkþ1

j; j0 ;m;m0

q ð36Þ
which indeed leads to a symmetric matrix. Observe that ~L
ffiffiffiffiffiffiffiffiffiffiffi
Mkþ1

p� �
j;m
¼ 0. Therefore, the updating of the particles distri-

bution function� �

1� Dt

e
L f kþ1

j;m ¼ Sk
j;m
obeys the following rules:

� Solve the linear system
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1� Dt
e

~L

� �
hj;m ¼

Sk
j;mffiffiffiffiffiffiffiffiffiffiffi

Mkþ1
j;m

q :
� Set f kþ1
j;m ¼ hj;m

ffiffiffiffiffiffiffiffiffiffiffi
Mkþ1

j;m

q
.

4. Numerical simulations

From now on we will use the following notations: x ¼ ðx; yÞ is the position variable, v ¼ ðv1;v2Þ is the velocity variable,
u ¼ ðu1;u2Þ is the fluid velocity and up ¼ ðup1;up2Þ is the macroscopic particle velocity.

We apply the second order method described in Section 3.3. Unless otherwise specified, we always use the following
settings.

The computation is performed on ðx;vÞ 2 ½0;1�2 � ½�vmax;vmax�2, with vmax ¼ 8. The specular boundary condition is ap-
plied on particle distribution f, while no-flip boundary condition is used for fluid velocity u.

We take Nx ¼ 128 grid points in each x direction and Nv ¼ 32 grid points in each v direction. We apply the van Leer type
slope limiter on the discretization of the advection parts, and take Dt ¼ Dx

5vmax
, which guarantees the stability.

All the simulations are performed on a PC with a single-core 2:2 GH CPU. Using the second order method with the given
numerical parameters, it takes around 6 h to simulate up to time t ¼ 1.

We always take
f ð0; x;vÞ ¼ nð0;xÞMupð0;xÞ
as the initial data for particles distribution. Here up ¼ J
n is the macroscopic velocity of particles. Note that this is not necess-

aryly the equilibrium in the sense that Luf – 0 in (2) since we do not require up ¼ u.
We take j ¼ 2 throughout the simulations. However the schemes can be applied to the case when j is very large, without

any difficulty.

4.1. Convergence order

First we numerically check that the scheme described in Section 3.3 is indeed second order in Dx (therefore in Dt). We
start with the initial data
nð0; xÞ ¼ 10�10 þ exp �80ðx� 0:5Þ2 � 80ðy� 0:5Þ2
� �

;

upð0; xÞ ¼
sin2ðpxÞ sinð2pyÞ
� sin2ðpyÞ sinð2pxÞ

 !
;

uð0;xÞ ¼ upð0;xÞ:

ð37Þ
We compute the solutions on a grid of Nx � Nx � Nv � Nv , with Nx ¼ 16;32;64;128 respectively. As mentioned before,
Nv ¼ 32. After time tmax ¼ 0:025 we check the following error,
eDxðf Þ ¼ max
t2ð0;tmaxÞ

kfDxðtÞ � f2DxðtÞkp

kf2Dxð0Þkp
;

eDxðuÞ ¼ max
t2ð0;tmaxÞ

kuDxðtÞ � u2DxðtÞkp

ku2DxðtmaxÞkp
:

ð38Þ
This can be considered as an estimation of the relative error in lp norm, where fDx and uDx are the numerical solutions com-
puted from a grid of size Dx ¼ 1

Nx
. The numerical scheme is said to be k-th order if eDx 6 CDxk, for Dx small enough.

Fig. 1 gives the convergence order in l1 norm for particle distribution f and in l2 norm for fluid velocity u. This shows that
the scheme is second order in space (hence in time) uniformly in e for both particle distribution f and fluid velocity u, as
expected. Here we have turned off the limiters on the convection part to avoid its influence. With the limiters on, the uniform
convergence order would be around 1:7.

4.2. AP property

Now we check the AP property we proposed in Section 3.4. We take the volcano like initial data
nð0; xÞ ¼ ð0:5þ 100ððx� 0:5Þ2 þ ðy� 0:5Þ2ÞÞ exp �40ðx� 0:5Þ2 � 40ðy� 0:5Þ2
� �

;

upð0; xÞ ¼
� sinð2pðy� 0:5ÞÞ
sinð2pðx� 0:5ÞÞ

� �
exp �20ðx� 0:5Þ2 � 20ðy� 0:5Þ2

� �
;

uð0;xÞ ¼ 0:

ð39Þ
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Fig. 1. The test of convergence order with initial data (37). This figure shows the l1 errors (38) in particle distribution f (left) and l2 norm of fluid velocity u
(right) with different e.
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Fig. 2. Numerical simulation with initial data (39) for e ¼ 1. This figure shows the particle density n (left column), streamlines of particle velocity up

(middle column) and fluid velocity u (right column) at t ¼ 0 (upper row), t ¼ Dt (middle row) and t ¼ 500Dt (lower row). The gravity is neglected.
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Therefore initially up – u and the equilibrium is not assumed. We apply the second order scheme and perform the simula-
tion until tmax ¼ 0:5. In Fig. 2, where e ¼ 1, we show the pictures of particle density n, streamlines of particle velocity up and
fluid velocity u at t0 (the initial time), t1 (after one time step) and t450 (the end time). The streamlines of particles and fluid
are totally different. The particles expand to the whole square domain and are not significantly affected by the circulating
fluid. We show the same quantities in Fig. 3 with e ¼ 10�5. In this case the drag force between different phases is so strong
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Fig. 5. The time evolution of particle density (left) and streamlines of velocities of particles (middle) and fluid (right) corresponding to the dam like initial
data. The gravity is considered. e ¼ 1.
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that the particles also circulate in the square domain. Besides, the expansion in particle density is decelerated by the fluid.
The particles keep the volcano shape well in this period of time.

At last, we check the time evolution of l1 distances kf � nMuk1. Note that Mu is a Maxwellian centered at the fluid velocity
u. The result is shown in Fig. 4. As expected, we have f � nMu ¼ OðeÞ after one time step. This gives a direct evidence of the AP
property we proposed.

4.3. Some applications

Our schemes are easily extended to more complicated circumstances. In this section we apply our schemes to several dif-
ferent problems. We also incorporate the Reynolds number into the incompressible Navier–Stokes system in the usual way
@tuþrx � ðu� uÞ þ rxp� 1
Re Dxu ¼ 1

e j
R
ðv � uÞf dv ;

rx � u ¼ 0:

(
ð40Þ
The parameters in our simulation allow us to compute with Reynolds number up to Re ¼ 1000 without trouble in stabil-
ity. In the following simulation we will take Re ¼ 1000. Larger Reynolds number, which requires smaller mesh size Dx for the
sake of accuracy, is beyond the scope of this work.

In Section 4.3.1 the external force (the gravity) is considered. In Section 4.3.2 a different boundary condition is applied to
the particle distribution f, while in Section 4.3.3 we apply a different boundary condition to the fluid velocity u.

4.3.1. Simulation of gravity driven flow
Now we consider the dam like initial data,
nð0; xÞ ¼ 10�10 þ 106x60:5;

upð0;xÞ ¼ 0;
uð0;xÞ ¼ 0:

ð41Þ
In this case the movement of particles and fluid are initiated by the gravity. We include the external force term rxU � rv f in
our simulation, where U ¼ gy with gravity constant g ¼ 1. The particles are uniformly distributed on the left hand side. As
the simulation starts, the particles fall down and cause the circulation of fluid.

Fig. 5 shows the time evolution of particle density (left) when e ¼ 1, as well as the evolution of streamlines of velocity of
particles (middle) and fluid (right). In this case the drag force between particles and fluid is not significant. The particles just
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fall down and cover the whole bottom. The streamlines show clearly the behavior of particles is quite different from that of
the fluid.

Fig. 6 shows the time evolution of particle density when e ¼ 10�3. Now the drag force between particles and fluid is stron-
ger. The streamlines of particles and the fluid are similar all the time. As time evolves, the particles fall down and drive the
fluid to circulate counter-clockwisely. Then the particles follow this circulation. Finally the particles settle at the bottom uni-
formly due to the loss of energy.

Fig. 7 shows the time evolution of particle density when e ¼ 10�8. In this case the drag force between particles and fluid is
so strong that the particles and the fluid always keep the same pace. The solution behavior is quite similar to the case when
e ¼ 10�3. But it has a much smaller dissipation effect in the particle density. In fact, since e is quite small, the composite den-
sity ð1þ jnÞ satisfies the INS system (10), (11). The only diffusion effect in particle density is due to the numerical
dissipation.

We also solve the limiting composite incompressible Navier–Stokes system with variable density (10), (11) directly by the
second order method in Section 3.1.2, with the same initial data (41). The numerical result at time t ¼ 5 is shown in Fig. 8
(right). To compare, the composite density ð1þ jnÞ obtained from the kinetic system (1)–(3) with different e is also shown in
Fig. 8. As e! 0, the solution to the kinetic system approaches to that of the limiting system, which shows that the AP prop-
erty is obtained.

4.3.2. Simulation of Injecting Problem
Now let us consider the situation when the particles are injected into the square domain. We take the initial data as

follows.
Fig. 6.
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The time evolution of particle density (left) and streamlines of velocities of particles (middle) and fluid (right) corresponding to the dam like initial
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Fig. 7. The time evolution of particle density (left) and streamlines of velocities of particles (middle) and fluid (right) corresponding to the dam like initial
data. The gravity is considered. e ¼ 10�8.
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nð0;xÞ ¼ 10�10; upð0;xÞ ¼ uð0;xÞ ¼ 0:
The injecting particle flow is described by the boundary condition on f,
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Fig. 9. The particle density (left), streamlines of velocities of particles (middle) and fluid (right) at t ¼ 5 for the injecting problem, with different e. The
gravity is neglected.
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f ðt;x;vÞ ¼ 126v163; if x 2 C
where v1 is the first component of v. The entrance of flow C locates at the center of the left boundary,
C ¼ fð0; yÞj0:45 6 y 6 0:55g:
We perform the simulation with different e. In Fig. 9 we show the particle density (left) and streamlines of particle veloc-
ity (middle) and fluid velocity (right) at time t ¼ 5. We ignore the gravity effect.

In Fig. 9(a), where e ¼ 1, the particles spread to the right end of the domain. The streamlines of fluid and particles are
quite different, which suggests the interaction between them are not obvious.

In Fig. 9(b), where e ¼ 10�3, the spreading of particles to the right end is decelerated by the strong drag force from the
fluid. A mushroom-shape front is formed. The streamline of particles and fluid are similar to each other, with visible
difference.
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Fig. 10. The time evolution of cavity flow, with Reynolds number Re ¼ 1000. Here e ¼ 10�8. The gravity is neglected. Left: the particle density; Middle:
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Fig. 12. The time evolution of injecting problem in mixing regime. From left to right are the particle density, the particle velocity up , the fluid velocity u and
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In Fig. 9(c), where e ¼ 10�6, a similar mushroom-shape front is formed, with a lower spreading speed. The streamline of
particles and fluid are quite close to each other.

4.3.3. Simulation of cavity flow
Finally we apply our scheme to cavity flow. The cavity flow happens in a wide range of area, for example, the car sunroof

and aircraft landing gear well.
We simulate the fluid flowing past an open cavity. Initially the cavity is full of rest fluid and the particle sediments are

resting near the bottom corner of the cavity. The outside fluid flows past the opening of the cavity with a constant velocity,
which drives the inside fluid circulating in the cavity. For simplicity we assume that the particle cannot escape the cavity,
although our scheme can be easily generalized to the case when this escape happens.

We give the initial and boundary conditions corresponding to this description,
nð0; xÞ ¼ 10�10 þ 106x60:5;06y60:5;

upð0; xÞ ¼ 0;
uð0;xÞ ¼ 0:
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with
uðt; xÞ ¼
1
0

� �
; if y ¼ 1:
We need to modify (19) accordingly to incorporate this boundary condition.
We take e ¼ 10�8 and neglect the gravity effect. The simulation is performed with Reynolds number Re ¼ 1000. Fig. 10

(left) shows the time evolution of particle density distribution until tmax ¼ 16. The particles move along the streamline of
fluid and circulate in the cavity. A second circulation is observed in the right corner.

4.3.4. Simulation of injection problem in mixing regime
Until now we have considered the case that e is a constant over the spatial domain. However one of the advantages of AP

schemes is that they can capture the solution behaviors in different regimes automatically. Illustrated by [45], we study a
mixing regime problem, with an x-dependent eðxÞ,
eðx; yÞ ¼ 1þ e0 �
1
2

tanhð10� 40ðx� 0:5ÞÞ þ tanhð10þ 40ðx� 0:5ÞÞð Þ: ð42Þ
We take e0 ¼ 10�5. eðxÞ varies from e0 to Oð1Þ smoothly, as shown in Fig. 11.
We study the injecting problem in the mixing regime. We take exactly the same physical and numerical parameters as in

Section 4.3.2, except eðxÞ. We do not discuss here the physical relevancy of working with space variable e’s; we only discuss
(42) as an evidence of feasibility.

From left to right, Fig. 12 shows several snapshots of the time evolution of the particle density, the particle velocity, the
fluid velocity and the discrepancy of the two velocities jup � uj. The two phases behave quite differently in the weak inter-
action regimes where e ¼ Oð1Þ. While in the strong interaction regime (e� 1), jup � uj � 1, which suggests that the fluid
limit of this two-phase system is achieved automatically in this domain.
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