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GRADIENT FLOW APPROACH TO AN EXPONENTIAL THIN FILM

EQUATION: GLOBAL EXISTENCE AND LATENT SINGULARITY

Yuan Gao1,2,*, Jian-Guo Liu3 and Xin Yang Lu4,5

Abstract. In this work, we study a fourth order exponential equation, ut = ∆e−∆u, derived from
thin film growth on crystal surface in multiple space dimensions. We use the gradient flow method in
metric space to characterize the latent singularity in global strong solution, which is intrinsic due to
high degeneration. We define a suitable functional, which reveals where the singularity happens, and
then prove the variational inequality solution under very weak assumptions for initial data. Moreover,
the existence of global strong solution is established with regular initial data.
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1. Introduction

1.1. Background

Thin film growth on crystal surface includes kinetic processes by which adatoms detach from above, diffuse
on the substrate and then are absorbed at a new position. These processes drive the morphological changes
of crystal surface, which is related to various nanoscale phenomena [16, 27]. Below the roughing temperature,
crystal surfaces consist of facets and steps, which are interacting line defects. At the macroscopic scale, the
evolution of those interacting line defects is generally formulated as nonlinear PDEs using macroscopic variables;
see [7, 11, 17, 23, 26, 30, 31]. Especially from rigorously mathematical level, [1, 9, 12–14, 22] focus on the
existence, long time behavior, singularity and self-similarity of solutions to various dynamic models under
different regimes.

Let us first review the continuum model with respect to the surface height profile u(t, x). Consider the general
surface energy,

G(u) :=

∫
Ω

(β1|∇u|+
β2

p
|∇u|p) dx, (1.1)
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where Ω is the “step locations area” we are concerned with. Then the chemical potential µ, defined as the
change per atom in the surface energy, can be expressed as

µ :=
δG

δu
= −∇ ·

(
β1
∇u
|∇u|

+ β2|∇u|p−2∇u
)
.

Now by conservation of mass, we write down the evolution equation for surface height of a solid film u(t, x):

ut +∇ · J = 0,

where

J = −M(∇u)∇ρs,

is the adatom flux by Fick’s law [23], the mobility function M(∇u) is a functional of the gradients in u and ρs
is the local equilibrium density of adatoms. By the Gibbs–Thomson relation [19, 23, 25], which is connected to
the theory of molecular capillarity, the corresponding local equilibrium density of adatoms is given by

ρs = ρ0e
µ
kT ,

where ρ0 is the constant reference density, T the temperature and k is the Bolzmann constant.
Notice those parameters can be absorbed in the scaling of the time or spatial variables. The evolution equation

for u can be rewritten as

ut = ∇ ·
(
M(∇u)∇e δGδu

)
. (1.2)

It should be pointed out that in past, the exponential of µ/kT is typically linearized under the hypothesis
that |µ| � kT ; see for instant [18, 20, 29] and most rigorous results in [1, 9, 12–14, 22] are established for
linearized Gibbs–Thomson relation. This simplification, eµ ≈ 1 + µ, yields the linear Fick’s law for the flux J
in terms of the chemical potential

J = −M(∇u)∇µ.

The resulting evolution equation is

∂u

∂t
= ∇ ·

(
M(∇u)∇

(
δG

δu

))
, (1.3)

which is widely studied when the mobility function M(∇u) takes distinctive forms in different limiting regimes.
For example, in the diffusion-limited (DL) regime, where the dynamics is dominated by the diffusion across
the terraces and M is a constant M ≡ 1, Giga and Kohn [14] rigorously showed that with periodic boundary
conditions on u, finite-time flattening occurs for β1 6= 0. A heuristic argument provided by Kohn [17] indicates
that the flattening dynamics is linear in time. While in the attachment-detachment-limited (ADL) case, i.e. the
dominant processes are the attachment and detachment of atoms at step edges and the mobility function [17]
takes the form M(∇u) = |∇u|−1, we refer readers to [1, 12, 13, 17] for analytical results.

Note that the simplifed version of PDE (1.3), which linearizes the Gibbs–Thomson relation, does not distin-
guish between convex and concave parts of surface profiles. However, the convex and concave parts of surface
profiles actually have very different dynamic processes due to the exponential effect, which is explained in
Section 1.2 below; see also numerical simulations in [21].
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Now we consider the original exponential model (1.2) in DL regime

ut = ∇ ·
(
∇e δGδu

)
= ∆e

−∇·
(
|∇u|p−2∇u

)
, (1.4)

with surface energy G :=
∫
Ω

1
p |∇u|

p dx, p ≥ 1. The physical explanation of the p-Laplacian surface energy can

be found in [24]. From the atomistic scale of solid-on-solid (SOS) model, the transitions between atomistic
configurations are determined by the number of bonds that each atom would be required to break in order to
move. It worth noting for p = 1 [21] developed an explicit solution to characterize the dynamics of facet position
in one-dimensional, which is also verified by numerical simulation.

In this work, we focus on the case p = 2 for high dimensional and use the gradient flow approach to study
the strong solution with latent singularity to (1.4). We will see clearly the different performs between convex
and concave parts of the surface. Explicitly, given T > 0 and a bounded, spatial domain Ω ⊆ Rd with smooth
boundary, we consider the evolution problem

 ut = ∆e−∆u in Ω × [0, T ],
∇u · ν = ∇e−∆u · ν = 0 on ∂Ω × [0, T ],

u(x, 0) = u0(x) on Ω,
(1.5)

where ν denotes the outer unit normal vector to ∂Ω. The main results of this work is to prove the existence of
variational inequality solution to (1.5) under weak assumptions for initial data and also the existence of strong
solution to (1.5) under strong assumptions for initial data; see Theorems 2.13 and 3.4 separately.

1.2. Formal observations

We first show some a priori estimates to see the mathematical structures of (1.5).
On one hand, formally define a beam type free energy φ(u) =

∫
Ω
e−∆u dx (see rigorous definition in (2.7)),

so we can rewrite the original equation as a gradient flow

ut = −δφ
δu

= ∆e−∆u, (1.6)

and

φ(T ) +

∫ T

0

∫
Ω

∣∣δφ
δu

∣∣2 dx dt = φ(0),

for any T > 0.
Notice boundary condition ∇u · ν = 0. We have

∫
Ω

∆u dx = 0,

which gives

‖(∆u)+‖L1(Ω) = ‖(∆u)−‖L1(Ω) =
‖∆u‖L1(Ω)

2
, (1.7)
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where (∆u)+ := max{0,∆u} is the positive part of ∆u and (∆u)− := −min{0,∆u} is the negative part of ∆u.
Since

‖(∆u)−‖L1 =

∫
Ω

(∆u)− dx ≤
∫
Ω

e(∆u)− dx ≤
∫
Ω

e−(∆u)++(∆u)− dx = φ(u) ≤ φ(u0) < +∞,

where Ω, is the area such that (∆u)+ = 0, we know ‖∆u‖L1(Ω) ≤ 2φ(u0) < +∞. However, since L1 is non-
reflexive Banach space, the uniform bound of L1 norm for ∆u dose not prevent the limit being a Radon measure.
In fact, from φ(u) =

∫
Ω
e−∆u dx and (1.6), we can see a positive singularity in ∆u should be allowed for the

dynamic model; also see an example in page 6 of [22] for a stationary solution with singularity. We will introduce
the latent singularity in (∆u)+ in Section 2.1.

On the other hand, we introduce another free energy

E(u) :=
1

2

∫
Ω

u2
t dx =

∫
Ω

(∆e−∆u)2 dx, (1.8)

and variational structure

dE(u)

dt
=

1

2

d

dt

∫
Ω

u2
t dx (1.9)

=

∫
Ω

ut(∆e
−∆u)t dx =

∫
Ω

∆ut(e
−∆u)t dx =

∫
Ω

−(∆ut)
2e−∆u dx ≤ 0, (1.10)

which shows a priori estimate∫
Ω

u2
t dx =

∫
Ω

(∆e−∆u)2 dx ≤
∫
Ω

(∆e−∆u0

)2 dx = E(u0);

see also [22]. Noticing φ(u) =
∫
Ω
e−∆u dx ≤ φ(u0), from Poincáre’s inequality, Young’s inequality and the

boundary condition ∇e−∆u · ν = 0, we have∫
Ω

|e−∆u|2 dx ≤ c
∫
Ω

|∇e−∆u|2 dx+
1

|Ω|
φ2(u0)

= c

∫
Ω

−e−∆u∆e−∆u dx+
1

|Ω|
φ2(u0)

≤ 1

2

∫
Ω

|e−∆u|2 dx+ c

∫
Ω

|∆e−∆u|2 dx+
1

|Ω|
φ2(u0),

(1.11)

where c is a general constant changing from line to line. Hence we know∫
Ω

|e−∆u|2 dx ≤ c
∫
Ω

|∆e−∆u|2 dx+
2

|Ω|
φ2(u0).

Then by Lemma 1 of [22], we have∫
Ω

|D2e−∆u|2 dx ≤ c
∫
Ω

(∆e−∆u)2 dx+ C(u0) ≤ C(u0), (1.12)

where C(u0) is a genetic constant depending only on u0. This, together with (1.11), implies

‖e−∆u‖H2(Ω) ≤ C(u0). (1.13)
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Although these are formal observations for now, later we will prove them rigorously except for (1.13), which
used formal boundary condition ∇e−∆u · ν = 0.

1.3. Overview of our method and related method

Although from formal observations in Section 1.2 the original problem can be recast as a standard gradient
flow, the main difficulty is how to characterize the latent singularity in (∆u)+ and choose a natural working
space.

As we explained before, the possible existence of singular part for ∆u is intrinsic, so the best regularity we
can expect for ∆u is Radon measure space. To get the uniform bound of ‖∆u‖M(Ω), we need to first construct
an invariant ball, which is realized by an indicator functional ψ defined in (2.13), then we show that ψ is indeed
never enforced in the solution after we obtain the variational inequality solution; see Theorem 2.13 and Corollary
3.1. After we choose the working space M(Ω) for ∆u, we can define the energy functional φ rigorously in (2.7)
using Lebesgue decomposition. Using the gradient flow approach in metric space introduced by [2], we consider
a curve of maximal slope of the energy functional φ + ψ and try to gain the evolution variational inequality
(EVI) solution defined in Definition 2.4 under weak assumptions for the initial data following Theorem 4.0.4 of
[2]. However, since the functional φ is defined only on the absolutely continuous part of ∆u, it is not easy to
verify the lower semi-continuity and convexity of φ, which is developed in Sections 2.3 and 2.4. Finally, when
the initial data have enough regularities, we prove the variational inequality solution has higher regularities and
is also strong solution to (1.5) defined in Definition 3.2. We remark that the gradient flow in metric space is
consistent with classical setting of gradient flow in Hilbert space. An alternative approach to study EVI solution
is to use classical well-posednees theory for m-accretive operator in Hilbert Space; see for instant Theorem 3.1
in [5] or Theorem 4.5 in [3]. However, to gain potential generalization to general energy functional, we ignore
the Banach space structure and use the framework for gradient flow in metric space introduced by [2], which
contains more understandings.

Recently, [22] also studies the same problem (1.5) using the method of approximating solutions. Their method
based on carefully chosen regularization, which is delicate but the construction is subtle to reveal the mathemat-
ical structure of our problem. Instead, our method using gradient flow structure is natural and more general,
which is flexible to wide classes of dynamic systems with latent singularity. When proving the variational
inequality solution to (1.5), we also provide an additional understanding for the evolution of thin film growth,
i.e., the solution u is a curve of maximal slope of the well-defined energy functional φ+ ψ; see Definition 2.12.

The rest of this work is devoted to first introduce the abstract setup of our problem in Sections 2.1 and 2.2.
Then in Sections 2.3–2.5, we prove the variational inequality solution following Theorem 4.0.4 of [2]. In Section 3,
under more assumptions on initial data, we finally obtain the strong solution to (1.5).

2. Gradient flow approach and variational inequality solution

2.1. Preliminaries

We first introduce the spaces we will work in. Since we are not expecting classical solution to (1.5), the
boundary condition in (1.5) cannot be recovered exactly. Instead, we equip the boundary condition in the space

H, Ṽ defined blow.
Let

H :=

{
u ∈ L2(Ω) :

∫
Ω

u dx = 0

}
, (2.1)

endowed with the standard scalar product 〈u, v〉H :=
∫
Ω
uv dx.

Since L1 is not reflexive Banach space and has no weak compactness, those a priori estimates in Section 1.2
cannot guarantee the W 2,1(Ω)-regularity of solutions to (1.5). Hence, we define the space Ṽ as follows. Denote
M as the space of finite signed Radon measures and Cb(Ω) as the space of all the bounded continuous functions
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on Ω. Denote ‖ · ‖M(Ω) the total variation of the measure. Take d < p <∞, 1
p + 1

q = 1. Define Banach space

Ṽ := {u ∈ H; ∇u ∈ Lq(Ω), ∆u ∈M(Ω),

∫
Ω

ϕ d(∆u) = −
∫
Ω

∇u · ∇ϕ dx for any ϕ ∈W 1,p(Ω)}. (2.2)

Endow Ṽ with the norm

‖u‖Ṽ := ‖u‖L2(Ω) + ‖∆u‖M(Ω). (2.3)

Next, we claim the norm is equivalent to ‖u‖L2(Ω) + ‖∇u‖Lq(Ω) + ‖∆u‖M(Ω) by proving

‖∇u‖Lq(Ω) ≤ c‖∆u‖M(Ω). (2.4)

Indeed, it is obvious when d = 1 and we will prove it for d ≥ 2. For d < p < ∞, 1
p + 1

q = 1, we have

W 1,p(Ω) ↪→ Cb(Ω). Noticing the Helmholtz-Weyl decomposition in Theorem III.1.2 and Lemma III.1.2 of [10],
we know for any vector function w ∈ Lp(Ω) we have the Helmholtz-Weyl decomposition w = Pw +∇ϕ such
that

∫
Ω
Pw · ∇v dx = 0 for any v ∈W 1,q(Ω), ∇ϕ ∈ Lp(Ω) and ‖Pw‖Lp ≤ C(p,Ω)‖w‖Lp . Hence for such ϕ and

any u ∈ Ṽ , we know∫
Ω

ϕd(∆u) = −
∫
Ω

∇ϕ · ∇u dx =

∫
Ω

(Pw − w) · ∇u dx = −
∫
Ω

w · ∇u dx. (2.5)

Noticing also

‖∇ϕ‖Lp ≤ ‖w‖Lp + ‖Pw‖Lp ≤ C(p,Ω)‖w‖Lp ,

we can obtain (2.4) by

‖∇u‖Lq ≤ sup
w∈Lp

|〈w,∇u〉|
‖w‖Lp

= sup
w∈Lp

|
∫
Ω
ϕd(∆u)|
‖w‖Lp

≤ sup
w∈Lp

‖ϕ‖L∞‖∆u‖M
‖w‖Lp

≤ sup
w∈Lp

‖∇ϕ‖Lp‖∆u‖M
‖w‖Lp

≤ c‖∆u‖M.

Next, since ∆u can be a Radon measure, we need to make those formal observations in Section 1.2 rigorous.
For any µ ∈M, from page 42 of [8], we have the decomposition

µ = µ‖ + µ⊥ (2.6)

with respect to the Lebesgue measure, where µ‖ ∈ L1(Ω) is the absolutely continuous part of µ and µ⊥ is the
singular part, i.e., the support of µ⊥ has Lebesgue measure zero. Define the beam type functional

φ : H −→ [0,+∞], φ(u) :=

{∫
Ω
e
−(∆u)+‖ +(∆u)−

dx, if u ∈ Ṽ and (∆u)− � Ld,
+∞, otherwise,

(2.7)

where (∆u)‖ denotes the absolutely continuous part of ∆u, (∆u)− is the negative part of ∆u and (∆u)+ is the
positive part of ∆u such that (∆u)± are two non-negative measures such that ∆u = (∆u)+ − (∆u)−. We call
the singular part (∆u)+

⊥ latent singularity in solution u.
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Remark 2.1. Although the singularity vanishes in the energy functional φ, it is not a removable singularity
in the dynamics. Indeed, noticing the boundary condition, we cannot recover a new solution v by removing the
singularity such that ∆v = (∆u)+

‖ − (∆u)− and vt = ∆e−∆v. So, the singularity in solution (∆u)+
⊥ actually has

effect on ut and we refer it as latent singularity.

An alternative definition and some useful properties for convex functional of measures can be found in [6, 15].
We claim in the following lemma that the definition using duality for convex functional of measures is equivalent
to our definition (2.7) if ∆u is bounded from below. However, we only prove that (∆u)− � Ld and do not have
a lower bound for ∆u. Therefore, we prefer the current definition (2.7), which is defined only on the absolutely
continuous part of ∆u.

Recall the conjugate convex function of f(x) := e−x for x ≥ 0 is

f∗(y) = sup
x≥0

(xy − f(x)) = xy − f(x)
∣∣
x=− ln(−y)

= y − y ln(−y), −1 ≤ y ≤ 0.

Given some positive measure µ, define the convex functional of µ

φ1(µ) := sup
−1≤ϕ≤0,ϕ∈C∞c (Ω)

{∫
Ω

ϕ dµ−
∫
Ω

f∗(ϕ) dx

}
, (2.8)

where f∗(y) = y − y ln(−y), −1 ≤ y ≤ 0.

Lemma 2.2. Assume µ ∈M+(Ω), µ‖ (resp. µ⊥) is the absolutely continuous part (resp. the singular part) of
µ in decomposition (2.6). Denote µ‖ = ρ dx, Ω+ = suppµ⊥ and Ω− = Ω\Ω+. Then

φ1(µ) =

∫
Ω

e−µ‖ dx. (2.9)

Proof. From the definition of φ1(µ), we have

φ1(µ) = sup
−1≤ϕ≤0,ϕ∈C∞c (Ω)

{∫
Ω

ϕ dµ−
∫
Ω

f∗(ϕ) dx

}
= sup
−1≤ϕ≤0,ϕ∈C∞c (Ω)

{∫
Ω

ϕ dµ−
∫
Ω

(ϕ− ϕ ln(−ϕ)) dx

}
= sup
−1≤ϕ≤0,ϕ∈C∞c (Ω)

{∫
Ω

(−ϕ+ ϕ ln(−ϕ)) dx+

∫
Ω

ϕ dµ‖ +

∫
Ω

ϕ dµ⊥

}
= sup
−1≤ϕ≤0,ϕ∈C∞c (Ω)

{∫
Ω

(−ϕ+ ϕ ln(−ϕ) + ϕρ) dx+

∫
Ω

ϕ dµ⊥

}
.

(2.10)

We claim

sup
−1≤ϕ≤0,ϕ∈C∞c (Ω)

{∫
Ω

ϕ(ρ− 1 + ln(−ϕ)) dx+

∫
Ω

ϕ dµ⊥

}
= sup
−1≤ϕ≤0,ϕ∈C∞c (Ω),

suppϕ∩Ω+=∅

{∫
Ω

ϕ(ρ− 1 + ln(−ϕ)) dx+

∫
Ω

ϕ dµ⊥

}
.

(2.11)
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In fact, on one hand it is obvious that LHS of (2.11) ≥ RHS of (2.11). On the other hand, Since −1 ≤ ϕ ≤ 0
and µ⊥ ∈M+(Ω), we know

∫
Ω
ϕ dµ⊥ ≤ 0 and

∫
Ω
ϕ dµ⊥ = 0 for suppϕ ∩Ω+ = ∅. Hence

LHS of (2.11) ≤ sup
−1≤ϕ≤0,ϕ∈C∞c (Ω)

{∫
Ω

ϕ(ρ− 1 + ln(−ϕ)) dx

}
.

For any ε > 0, there exists −1 ≤ ϕ0 ≤ 0, ϕ0 ∈ C∞c (Ω) such that

LHS of (2.11) ≤
∫
Ω

ϕ0(ρ− 1 + ln(−ϕ0)) dx+ ε.

Notice |Ω+| = 0. For ϕ0, from the strong Lusin’s theorem p. 8 of [28], there exist compact set K ⊂ Ω− and
f ∈ C∞c (Ω−) such that f = ϕ on K, −1 ≤ f ≤ 0 and

∫
Ω\K(ρ+ 1) dx ≤ ε. Hence we have

LHS of (2.11) ≤
(∫

K

+

∫
Ω\K

)(
ϕ0(ρ− 1 + ln(−ϕ0))

)
dx+ ε

≤
∫
K

f(ρ− 1 + ln(−f)) dx+ cε

≤
∫
Ω−

f(ρ− 1 + ln(−f)) dx+ cε

≤ sup
−1≤f≤0,f∈C∞c (Ω−)

{∫
Ω−

f(ρ− 1 + ln(−f)) dx

}
+ cε

= sup
−1≤ϕ≤0,ϕ∈C∞c (Ω),

suppϕ∩Ω+=∅

{∫
Ω

ϕ(ρ− 1 + ln(−ϕ)) dx

}
+ cε,

where the constant c does not depend on ε. This implies LHS of (2.11) ≤ RHS of (2.11) +cε and we know the
claim (2.11) holds.

Combining (2.10) and (2.11), we obtain therefore

φ1(µ) = sup
−1≤ϕ≤0,ϕ∈C∞c (Ω−)

{∫
Ω−

ϕ(ρ− 1 + ln(−ϕ)) dx

}

=

∫
Ω−

ϕ∗(ρ− 1 + ln(−ϕ∗)) dx,

where ϕ∗ = −e−ρ such that F (ϕ) :=
∫
Ω−

ϕ(ρ− 1 + ln(−ϕ)) dx, δF (ϕ)
δϕ = 0 at ϕ = ϕ∗. Hence we have

φ1(µ) =

∫
Ω−

−ϕ∗(1− ln |ϕ∗| − ρ) dx =

∫
Ω−

e−ρ dx =

∫
Ω

e−µ‖ dx. (2.12)

Remark 2.3. If ∆u ∈ M+(Ω), taking µ = ∆u in the definition (2.7), we can see from Lemma 2.2 that the
two definitions are equivalent. If ∆u+C ∈M+(Ω), then we can take µ = ∆u+C in Lemma 2.2 and definition
(2.7).
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In view of the a priori estimate on the mass of the measure ∆u, we introduce the indicator function

ψ : H −→ {0,+∞}, ψ(u) :=

{
0 if u ∈ Ṽ , ‖∆u‖M(Ω) ≤ C∗,
+∞ otherwise.

(2.13)

Here C∗ is a fixed constant, which is determined in (3.7) by the initial datum later.

2.2. Euler schemes

Even if (1.5) has a nice variational structure, and V has Banach space structure, the non-reflexivity of V
imposes extra technical difficulties. Instead of arguing with maximal monotone operator like in [13], we try
to use the result Theorem 4.0.4 of [2] by Ambrosio et al. After defining the energy functional rigorously, we
take the counterintuitive approach of ignoring the differentiability property and the Banach space structure of
W 2,1(Ω). In other words, we consider the gradient flow evolution in the metric space (H, dist), with distance
dist(u, v) := ‖u− v‖H .

Let u0 ∈ H be a given initial datum and 0 < τ � 1 be a given parameter. We consider a sequence {xτn}
which satisfies the following unconditional-stable backward Euler scheme x

(τ)
n ∈ argminx′∈H

{
(φ+ ψ)(x′) +

1

2τ
‖x′ − x(τ)

n−1‖2H
}
, n ≥ 1,

x
(τ)
0 := u0 ∈ H.

(2.14)

The existence and uniqueness of the sequence {xτn} will be proved later in Proposition 2.11. Thus, we are
considering the gradient descent with respect to φ+ ψ in the space (H, dist).

Now for any 0 < τ � 1 we define the resolvent operator (see [2], p. 40)

Jτ [u] := argminv∈H

{
(φ+ ψ)(v) +

1

2τ
‖v − u‖2H

}
,

then the variational approximation of u at t is obtained by Euler scheme (2.14) as

un(t) := (Jt/n)n[u0]. (2.15)

The results for gradient flow in metric space Theorem 4.0.4 of [2] establish the convergence of the variational
approximation un to variational inequality solution to (1.5), which is defined below.

Definition 2.4. Given initial data u0 ∈ H, we call u : [0,+∞) −→ H a variational inequality solution to (1.5)
if u(t) is a locally absolutely continuous curve such that limt→0 u(t) = u0 in H and

1

2

d

dt
‖u(t)− v‖2 ≤ (φ+ ψ)(v)− (φ+ ψ)(u(t)), for a.e. t > 0, ∀v ∈ D(φ+ ψ). (2.16)

Before proving the existence of variational inequality solution to (1.5), we first study some properties of the
functional φ+ ψ in Sections 2.3 and 2.4.

2.3. Weak-* lower semi-continuity for functional φ in Ṽ

For any µ ∈ M(Ω), we denote µ� Ld if µ is absolutely continuous with respect to Lebesgue measure and
denote µ̄ := dµ

dLd as the density of µ. For notational simplification, denote µ‖ (resp. µ⊥) as the absolutely
continuous part (resp. singular part) of µ with respect to Lebesgue measure.
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Let us first give the following proposition claiming weak-* lower semi-continuity for functional φ in Ṽ , which
will be used in Lemma 2.9.

Proposition 2.5. Let un, u ∈ Ṽ . If ∆un
∗
⇀∆u in M(Ω), we have

lim inf
n→+∞

φ(un) ≥ φ(u). (2.17)

Before proving Proposition 2.5, we first prove some lemmas.
From now on, we identify µn � Ld with its density µ̄n := dµn

dLd and do not distinguish them for brevity. Given

N > 0 and a sequence of measures µn such that µn � Ld, observe that

µn = min{µn, N}+ max{µn, N} −N. (2.18)

To simplify the expression, we introduce new notation ϕ(µn) :=
∫
Ω
e−(µn)‖ dx. First we state a lemma which

shows that the uniform bound for ϕ(µn) immediately rules out a negative singular part of µ.

Lemma 2.6. For any measure µ� Ld any N > 0, if ϕ(µ) =
∫
Ω
e−µ dx ≤ A < +∞ for some bounded constant

A, then we have the uniform estimate

‖min{µ,N}‖2L2(Ω) ≤ 4eNA+ 2|Ω|N2. (2.19)

Proof. Noticing e|x| ≥ x2

2 for any x, we have

e−N
∫
Ω

|N −min{µ,N}|2 dx = e−N
∫
{µ≤N}

|N −min{µ,N}|2 dx

≤ 2e−N
∫
{µ≤N}

eN−min{µ,N} dx

= 2

∫
{µ≤N}

e−min{µ,N} dx

= 2

∫
{µ≤N}

e−µ dx ≤ 2A.

Therefore we obtain

‖min{µ,N}‖2L2(Ω) ≤
∫
Ω

2|N −min{µ,N}|2 + 2N2 dx

≤4eNA+ 2|Ω|N2.

Next we prove a lemma about the limit of the truncated measure min{µn, N}.

Lemma 2.7. For any N > 0, given a sequence of measures µn such that µn � Ld, we assume moreover
that µn

∗
⇀µ and ϕ(µn) ≤ A < +∞ for some bounded constant A. Then there exist measure µdown � L

d and

subsequence (nk still denoted as n) µn, such that N ≥ µdown and min{µn, N}
∗
⇀µdown.

Proof. Since µn
∗
⇀µ, we know there exists µdown ∈M(Ω) such that min{µn, N}

∗
⇀µdown (upto subsequence).

From N −min{µn, N} ≥ 0 we have N − µdown ≥ 0. Moreover, we claim µdown � L
d. From the assumption

in Lemma 2.7 we know ϕ(µn) ≤ A + 1 for all n. Therefore, from Lemma 2.6 we know ‖min{µn, N}‖2L2(Ω) ≤
C(N,A). Hence µdown � L

d. Moreover, from N −min{µn, N} ≥ 0 we have N − µdown ≥ 0.
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We also need the following useful lemma to clarify the relation between µdown and the weak-∗ limit of µn.

Lemma 2.8. Given a sequence of measures µn such that µn � Ld, we assume moreover that µn
∗
⇀µ and

ϕ(µn) ≤ A < +∞ for some bounded constant A. Then for any N > 0, there exist µdown, µup ∈ M(Ω) and
subsequence (nk still denoted as n) µn, such that

min{µn, N}
∗
⇀µdown, µdown � L

d, µdown ≤ µ‖, (2.20)

max{µn, N}
∗
⇀µup, (µup)‖ ≥ N, (2.21)

where µ‖ (resp. µ⊥) is the absolutely continuous part (resp. singular part) of µ. Moreover,∫
Ω

e−µ|| dx ≤
∫
Ω

e−µdown dx. (2.22)

Proof. From Lemma 2.7 we know, upon subsequence, min{µn, N}
∗
⇀µdown for some measure µdown satisfying

µdown � L
d and N ≥ µdown. By Lebesgue decomposition theorem, there exist unique measures µ‖ � Ld and

µ⊥⊥Ld such that µ = µ‖ + µ⊥. The decomposition (2.18) then gives

0 ≤ µn −min{µn, N} = max{µn, N} −N
∗
⇀µ− µdown.

Taking µup := µ− µdown +N , as the sequence max{µn, N} −N ≥ 0, we obtain max{µn, N}
∗
⇀µup and (µ−

µdown)‖ = µup‖ − N ≥ 0. Besides, since e−µ‖ is decreasing with respect to µ‖ and µ‖ ≥ µdown, we obtain
(2.22).

Now we can start to prove Proposition 2.5.

Proof of Proposition 2.5. Assume ∆un
∗
⇀∆u in M. Denote fn := ∆un and f := ∆u. Set L :=

lim infn→+∞ φ(un). If L = +∞ then (2.17) holds. If L < ∞, which means there exists a subsequence such
that limk→∞ φ(unk) < +∞, then we take these subsequence (still denoted as un) and without loss of generality
assume limn→∞ φ(un) = L < +∞. So φ(un) ≤ L+ 1 for all large n and f−n � Ld.

Since φ is defined only on the regular part of ∆u, we concern about the “cross convergence” case. In fact,
by the convexity of ϕ(v) :=

∫
Ω
e−v dx on L1(Ω) and Corollary 3.9 of [4], we know ϕ(v) is l.s.c on L1(Ω) with

respect to the weak topology. Therefore, if we have fn‖
∗
⇀f‖ and fn⊥

∗
⇀f⊥, then (2.17) holds. This implies that

we only need to prove (2.17) for two “cross convergence” cases: (i) there are some fn are positive measures, i.e.

fn⊥ 6= 0, and fn‖
∗
⇀g1 � Ld, fn⊥

∗
⇀g2 ≥ 0 and g1 + g2 = f‖; or (ii) all fn are absolutely continuous and fn‖ = fn

may weakly-* converge to a singular measure.
For case (i), if we have fn‖

∗
⇀g1 � Ld, fn⊥

∗
⇀g2 ≥ 0 and g1 +g2 = f‖, then since e−f‖ is decreasing with respect

to f‖, we have
∫
Ω
e−g1 dx ≥

∫
Ω
e−f‖ dx. On the other hand, we know ϕ(v) :=

∫
Ω
e−v dx is lower-semicontinuous

on L1(Ω) with respect to the strong topology. Hence by the convexity of ϕ(v) :=
∫
Ω
e−v dx on L1(Ω) and

Corollary 3.9 of [4], we know ϕ(v) is l.s.c on L1(Ω) with respect to the weak topology. So fn‖
∗
⇀g1 � Ld gives

fn‖ ⇀ g1 in L1(Ω) and

lim inf
n

φ(un) = lim inf
n

∫
Ω

e−fn‖ dx ≥
∫
Ω

e−g1 dx ≥
∫
Ω

e−f‖ dx = φ(u) (2.23)

which ensure (2.17) holds.
Now we concern the case (ii): fn⊥ = 0 and fn‖ = fn may weakly-* converge to a singular measure. First

from φ(un) ≤ L + 1 and Lemma 2.6, we know f− � Ld. For any N > 0 large enough, denote φN (un)



12 Y. GAO ET AL.

:=
∫
Ω
e−min{fn,N} dx. Then the truncated measures min{fn, N} satisfy

φN (un) =

∫
Ω

e−min{fn,N} dx

=

∫
{fn≤N}

e−min{fn,N} dx+ e−NLd({fn > N})

≥
∫
{fn≤N}

e−fn dx+

∫
{fn>N}

e−fn dx = φ(un).

The second equality also shows

φN (un)− e−NLd({fn > N}) =

∫
{fn≤N}

e−min{fn,N} dx

≤
∫
Ω

e−fn dx = φ(un).

Hence we obtain

|φ(un)− φN (un)| ≤ e−NLd({fn > N}) ≤ e−N |Ω|. (2.24)

From Lemma 2.8, we know the truncated sequence min{fn, N} satisfies

min{fn, N}
∗
⇀fdown, fdown � L

d,

∫
Ω

e
−fdown dx ≥

∫
Ω

e−f‖ dx. (2.25)

Since min{fn, N}⇀ fdown in L1(Ω), using the same argument with (2.23), we obtain

lim inf
n→+∞

∫
Ω

e−min{fn,N} dx ≥
∫
Ω

e−fdown dx ≥
∫
Ω

e−f‖ dx = φ(u). (2.26)

Combining this with (2.24), we obtain

lim inf
n→+∞

φ(un) ≥ lim inf
n→+∞

φN (un)− e−N |Ω|

= lim inf
n→+∞

∫
Ω

e−min{fn,N} dx− e−N |Ω|

≥ φ(u)− e−N |Ω|,

(2.27)

and thus we complete the proof of Proposition 2.5 by the arbitrariness of N .

2.4. Convexity and lower semi-continuity of functional φ+ ψ in H

Lemma 2.9. The sum φ + ψ : H −→ [0,+∞] is proper, convex, lower semicontinuous in H and satisfies
coercivity defined in (2.4.10) of [2].

Proof. Clearly since u ≡ 0 ∈ D(φ+ ψ), D(φ+ ψ) = {φ+ ψ < +∞} is non-empty, hence φ+ ψ is proper. Due
to the positivity of φ, ψ, coercivity (2.4.10) of [2], i.e., ∃u∗ ∈ D(φ+ ψ), r∗ > 0 such that inf{(φ+ ψ)(v) : v ∈
H, dist(v, u∗) ≤ r∗} > −∞, can be obtained.
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Convexity. Note that since both φ, ψ ≥ 0, we have D(φ+ψ) = D(φ)∩D(ψ). Given u, v ∈ H, t ∈ (0, 1), without
loss of generality assume u, v ∈ D(φ+ ψ), otherwise convexity inequality is trivial. Thus (1 − t)u+ tv ∈ D(ψ),
and the measure ∆[(1− t)u+ tv] has no negative singular part, while its positive singular part satisfies

(∆[(1− t)u+ tv])+
⊥ = (1− t)(∆u)+

⊥ + t(∆v)+
⊥,

and its absolutely continuous part satisfies

(∆[(1− t)u+ tv])‖ = (1− t)(∆u)‖ + t(∆v)‖.

Thus

φ((1− t)u+ tv) =

∫
Ω

e−[(1−t)∆u+t∆v]‖ dx =

∫
Ω

e−[(1−t)(∆u)‖+t(∆v)‖] dx

≤
∫
Ω

[(1− t)e−(∆u)‖ + te−(∆v)‖ ] dx

= (1− t)φ(u) + tφ(v),

hence φ+ ψ is convex.
Lower semicontinuity. Consider a sequence un → u in H. We need to check

(φ+ ψ)(u) ≤ lim inf
n

(φ+ ψ)(un).

If un ∈ D(φ+ ψ) does not hold for all large n, then lower semicontinuity is trivial. Without loss of generality,
we can assume un ∈ D(φ+ ψ) for all n, and also

lim inf
n

(φ+ ψ)(un) = lim
n

(φ+ ψ)(un).

Since un ∈ D(ψ), we have ‖∆un‖M(Ω) ≤ C∗, hence there exists v ∈M(Ω) such that ∆un
∗
⇀v. Since we also have

un → u in H so v = ∆u and we know ‖∆u‖M(Ω) ≤ C∗. From (2.4) we also know u ∈ Ṽ . Then 0 = ψ(un) = ψ(u)
and by Proposition 2.5, we have

lim inf
n

φ(un) ≥ φ(u),

so the lower semicontinuity is proved.

Lemma 2.10 (τ−1-convexity). For any u, v0, v1 ∈ D(φ+ ψ), there exists a curve v : [0, 1] −→ D(φ+ ψ) such
that v(0) = v0, v(1) = v1 and the functional

Φ(τ, u; v) := (φ+ ψ)(v) +
1

2τ
‖u− v‖2H , (2.28)

satisfies

Φ(τ, u; v(t)) ≤ (1− t)Φ(τ, u; v0) + tΦ(τ, u; v1)− 1

2τ
t(1− t)‖v0 − v1‖2H , (2.29)

for all τ > 0.

We remark that (2.29) is the so-called “τ−1-convexity” Assumption 4.0.1 of [2].
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Proof. Let v(t) := (1− t)v0 + tv1. The proof follows from the simple identity

‖(1− t)v0 + tv1 − u‖2H = (1− t)‖u− v0‖2H + t‖u− v1‖2H − t(1− t)‖v0 − v1‖2H .

The convexity of φ+ ψ then gives

Φ(τ, u; v(t)) = (φ+ ψ)((1− t)v0 + tv1) +
1

2τ
‖u− [(1− t)v0 + tv1]‖2H

≤ (1− t)(φ+ ψ)(v0) + t(φ+ ψ)(v1)

+
1

2τ
(1− t)‖u− v0‖2H +

1

2τ
t‖u− v1‖2H −

1

2τ
t(1− t)‖v0 − v1‖2H

= (1− t)Φ(τ, u; v0) + tΦ(τ, u; v1)− 1

2τ
t(1− t)‖v0 − v1‖2H ,

and concludes the proof.

After above properties for functional φ+ ψ, we state existence and uniqueness of the sequence {xτn} chosen
by Euler scheme (2.14).

Proposition 2.11. Given parameter τ > 0, u0 ∈ H, then for any n ≥ 1, there exists unique xτn satisfying
(2.14).

Proof. Given n ≥ 1, we will prove this proposition by the direct method in calculus of variation. Let Φ(τ, xn−1;x)
defined in (2.28) and A := infx∈H Φ(τ, xn−1;x). Then there exist {xni} ⊆ D(Φ) such that Φ(τ, xn−1;xni)→ A
as i → +∞ and Φ(τ, xn−1;xni) are uniformly bounded. Hence upon a subsequence, there exists xn ∈ H such

that xni ⇀ xn in H. This, together with the uniform boundedness of ‖∆xni‖M(Ω) shows that ∆xni
∗
⇀v = ∆xn

in M(Ω). Then by Proposition 2.5 we have

A = lim inf
i→+∞

Φ(τ, xn−1;xni) ≥ Φ(τ, xn−1;xn) ≥ A,

which gives the existence of xn satisfying (2.14).
The uniqueness of xn follows obviously by the convexity of φ and the strong convexity of ‖ · ‖H .

2.5. Existence of variational inequality solution

After those preparations in Sections 2.3 and 2.4, in this section we apply the convergence result in The-
orem 4.0.4 of [2] to derive that the discrete solution un obtained by Euler scheme (2.14) converges to the
variational inequality solution defined in Definition 2.4. For v ∈ D(f), denote the local slope

|∂f |(v) := lim sup
w→v

max{f(v)− f(w), 0}
dist(v, w)

. (2.30)

Take f = φ + ψ, by the τ−1-convexity in Lemma 2.10 and Theorem 2.4.9 of [2] for λ = 0, the local slope
coincides with the global slope

ιf (v) := sup
v 6=w

max{f(v)− f(w), 0}
‖v − w‖H

,

i.e.

|∂f |(v) = ιf (v). (2.31)
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We point out that with Lemma 2.9 and Theorem 1.2.5 of [2], we also know the global slope ιf is a strong
upper gradient for f = φ+ ψ. Hence for ιf , we recall Definition 1.3.2 of [2] for curves of maximal slope.

Definition 2.12. Given a functional f : D(φ) → R and the global slope ιf , we say that a locally absolutely
continuous map u : (0, T )→ H is a curve of maximal slope for the functional f with respect to ιf if

(f(u(t)))′ ≤ −1

2
|ut|2 −

1

2
ιf (u)2 for a.e. t ∈ (0, T ). (2.32)

Now the hypotheses of Theorem 4.0.4 of [2] are all satisfied: Lemma 2.9 gives convexity, lower semicontinuity
and coercivity of φ + ψ which is (4.0.1) in [2], while Lemma 2.10 gives τ−1-convexity of φ + ψ with λ = 0
assumption 4.0.1 of [2]. Thus we have:

Theorem 2.13. Given u0 ∈ H,

(i) (convergence and error estimate) for any t > 0, t = nτ , let un in (2.15) be the solution obtained by Euler
scheme (2.14), then there exists a local Lipschitz curve u(t) : [0,+∞)→ H such that

un → u(t) in L2(Ω), (2.33)

and if further φ(u0) < +∞, we have the error estimate

‖u(t)− un‖H ≤
τ√
2
|∂φ|(u0); (2.34)

(ii) u : [0,+∞) −→ H is the unique EVI solution to (1.5), i.e., u is unique among all the locally absolutely
continuous curves such that limt→0 u(t) = u0 in H and

1

2

d

dt
‖u(t)− v‖2 ≤ (φ+ ψ)(v)− (φ+ ψ)(u(t)), for a.e. t > 0, ∀v ∈ D(φ+ ψ); (2.35)

(iii) u(t) is a locally Lipschitz curve of maximal slope of φ for t > 0 in the sense

(
(φ+ ψ)(u(t))

)′ ≤ −1

2
|ut|2 −

1

2
ιφ(u)2; (2.36)

(iv) moreover, we have the following regularities

(φ+ ψ)(u(t)) ≤ (φ+ ψ)(v) +
1

2t
‖v − u0‖2H , ∀v ∈ D(φ+ ψ), (2.37)

|∂(φ+ ψ)|2(u(t)) ≤ |∂(φ+ ψ)|2(v) +
1

t2
‖v − u0‖2H , ∀v ∈ D(|∂(φ+ ψ)|), (2.38)

|∂(φ+ ψ)|(u(t)) ≤ ‖u
0 − ū‖H
t

, (φ+ ψ)(u(t))− (φ+ ψ)(ū) ≤ ‖u
0 − ū‖2H

2t
, (2.39)

and t 7→ ‖u(t)− ū‖H is non-increasing, where ū is a minimum point for φ+ψ and |∂(φ+ψ)|(v) = ιφ+ψ(v)
is the local slope;

(v) (L2-contraction) let u0, v0 ∈ H and u(t), v(t) be solutions to the variational inequality (2.35), then

‖u(t)− v(t)‖H ≤ ‖u0 − v0‖H . (2.40)

Proof. Since from Lemma 2.9 and Lemma 2.10, we are under the hypotheses of Theorem 4.0.4 of [2], we
apply it with energy functional φ + ψ, and metric space (H, dist), dist(u, v) = ‖u − v‖H to obtain (2.33).
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Notice the assumption in Theorem 4.0.4 of [2] requires u0 ∈ D(φ+ ψ)
‖·‖H

. We notice that u0 ∈ D(φ+ψ) means
(a) φ(u0) < +∞ and (b) ψ(u0) < +∞. From the definition (2.7) we know (a) requires u0 ∈ Ṽ , (∆u0)− � Ld

and
∫
Ω
e
−(∆u0)+‖ +(∆u0)−

dx < +∞. Similar to the discussion for (3.6) we also know (a) implies (b) for C∗ =

2φ(u0) + 1 in (3.7). Therefore, u0 ∈ D(φ + ψ) if and only if φ(u0) < +∞, i.e., u0 ∈ Ṽ , (∆u0)− � Ld and∫
Ω
e
−(∆u0)+‖ +(∆u0)−

dx < +∞. Since W 2,∞(Ω) is dense in H, we also know D(φ+ ψ)
‖·‖H

= H.
Therefore, the convergence result (i) comes from (4.0.11),(4.0.15) of [2]. The variational inequality (2.35)

follows from (4.0.13) of [2]. Theorem 4.0.4 (ii) of [2] shows the result (iii) and (2.36) follows Definition 2.12 of
maximal slope.

Regularities (2.37) and (2.38) follow from (4.0.12) of [2]. Asymptotic behavior (2.39) and monotonicity of
t 7→ ‖u(t)− ū‖H follow from Corollary 4.0.6 of [2], which requires the same hypotheses of Theorem 4.0.4 of [2].
Finally, the contraction result (v) follows from (4.0.14) of [2].

3. Strong solution

We will prove the variational inequality solution obtain in Theorem 2.13 is actually a strong solution in this
section.

Now we assume u : [0,+∞) −→ H is the unique solution of EVI (2.35), i.e.,

1

2

d

dt
‖u(t)− v‖2 ≤ (φ+ ψ)(v)− (φ+ ψ)(u(t)), for a.e. t > 0, ∀v ∈ D(φ+ ψ). (3.1)

3.1. Regularity of variational inequality solution

First we state EVI solution has further regularities.

Corollary 3.1. Given T > 0 and initial datum u0 ∈ H such that φ(u0) < +∞, the solution obtained in Theorem
2.13 has the following regularities

u ∈ L∞([0, T ]; Ṽ ) ∩ C0([0, T ];H), ut ∈ L∞([0, T ];H),

(∆u)− � Ld for a.e. t ∈ [0, T ],

where (∆u)− is the negative part of ∆u. Besides, we can rewrite EVI (2.35) as

〈ut(t), u(t)− v〉H′,H ≤ φ(v)− φ(u(t)) for a.e. t > 0, ∀v ∈ D(φ+ ψ). (3.2)

The dual pair 〈·, ·〉H′,H is the usual integration so we just use 〈·, ·〉 in the remaining of this paper. Recall the

definition of φ in (2.7). φ(u0) < +∞ if and only if u0 ∈ Ṽ , (∆u0)− � Ld and
∫
Ω
e
−(∆u0)+‖ +(∆u0)−

dx < +∞.

Proof. First, we claim the functional ψ in formula (3.1) is indeed never enforced. Indeed, from (2.37) we have

(φ+ ψ)(u(t)) ≤ (φ+ ψ)(v) +
1

2t
‖v − u0‖2H ∀v ∈ D(φ+ ψ). (3.3)

Then taking v = u0 gives

(φ+ ψ)(u(t)) ≤ (φ+ ψ)(u0) < +∞, (3.4)

which also implies

φ(u(t)) ≤ φ(u0) < +∞ for a.e. t ∈ [0, T ]. (3.5)
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To make Section 1.2 rigorous, notice u ∈ Ṽ we have∫
Ω

ϕ d(∆u) = −
∫
Ω

∇u · ∇ϕ dx for any ϕ ∈W 1,p(Ω).

Particularly, taking ϕ ≡ 1 gives
∫
Ω

d(∆u) = 0, so we have

‖(∆u)+‖M(Ω) = ‖(∆u)−‖M(Ω) =
1

2
‖∆u‖M(Ω).

Since

‖(∆u)−‖L1(Ω) =

∫
Ω

(∆u)− dx ≤
∫
Ω

e(∆u)− dx ≤
∫
Ω

e
−(∆u)+‖ +(∆u)−

dx = φ(u) ≤ φ(u0),

we know

(∆u)− � Ld, for a.e. t ∈ [0, T ], ‖∆u‖M(Ω) ≤ 2φ(u0), (3.6)

so in Definition (2.13), we can just take

C∗ := 2φ(u0) + 1, (3.7)

and

ψ(u(t)) ≡ 0 ≡ ∂ψ(u(t)). (3.8)

The idea of introducing invariant ball by ψ is similar to the idea of a priori assumption method in PDE.
We first obtain the solution in some invariant ball ‖∆u‖M ≤ C∗, then we prove to a priori assumption can be
verified by showing the solution truly locates within the ball ‖∆u‖M ≤ C∗ − 1. Noticing also that if v ∈ D(ψ),
ψ(v) = 0, so we can rewrite EVI (3.1) as

1

2

d

dt
‖u(t)− v‖2 ≤ φ(v)− φ(u(t)), for a.e. t > 0, ∀v ∈ D(φ+ ψ).

Next, we need to show that ut ∈ L∞(0, T ;L2(Ω)). From Theorem 2.13 we know that t 7→ u(t) is locally
Lipschitz in (0, T ), i.e. for any t0 > 0 there exists L = L(t0) > 0 such that

‖u(t0 + ε)− u(t0)‖L2(Ω) ≤ L(t0)ε for all ε ∈ [0, T − t0].

The key point is to obtain a uniform bound for L(t0) for arbitrary t0 ≥ 0. Since u(t) is the variational solution
satisfying (2.35), taking v = u(t0) in (2.35) gives

1

2

d

dt
‖u(t0)− u(t)‖2L2(Ω) ≤ φ(u(t0))− φ(u(t)) ≤ 〈ξ, u(t0)− u(t)〉,

for any ξ ∈ ∂φ(u(t0)). In particular, by Proposition 1.4.4 of [2], we have

|∂φ|(u(t0)) = min{‖ξ‖H′ ; ξ ∈ ∂φ(u(t0))}. (3.9)
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Hence taking ξ as the elements of minimal dual norm in ∂φ(u(t0)) implies

1

2

d

dt
‖u(t0)− u(t)‖2L2(Ω) ≤ φ(u(t0))− φ(u(t))

≤ ‖ξ‖L2(Ω)′‖u(t0)− u(t)‖L2(Ω)

≤ |∂φ|(u(t0))‖u(t0)− u(t)‖L2(Ω).

Furthermore, since t 7→ ‖u(t0)− u(t)‖L2(Ω) is locally Lipschitz, hence differentiable for a.e. t, we have

d

dt
‖u(t0)− u(t)‖L2(Ω) ≤ |∂φ|(u(t0)) ≤ |∂φ|(u0), for a.e. t > 0, (3.10)

where we have used (2.38) in the last inequality. From (3.9), |∂φ|(u0) is just the subdifferential of φ(u0) =∫
Ω
e−(∆u0)‖ dx. We know if the Gateaux-derivative of φ(u0) exists in some dense set of D(φ), then the sub-

differential of φ(u0) is single-valued. Therefore, direct calculation gives ∂φ(u0) = ∆e−(∆u0)‖ and |∂φ|(u0) =

‖∆e−(∆u0)‖‖L2(Ω). Thus, the function t 7→ ‖u(t0)− u(t)‖L2(Ω) is globally Lipschitz with Lipschitz constant less
than |∂φ|(u0), which is independent of t0. From Theorem 1.17 of [3], u is differentiable a.e. in [0, T ] w.r.t H,
and belongs to W 1,∞([0, T ];H). Hence we know∥∥∥∥u(t0)− u(t0 + ε)

ε

∥∥∥∥
L2(Ω)

≤ |∂φ|(u0).

Thus for a.e. t we have

u(t+ ε)− u(t)

ε
∈ L2(Ω),

∥∥∥∥u(t+ ε)− u(t)

ε

∥∥∥∥
L2(Ω)

≤ |∂φ|(u0),

and the sequence of difference quotients
u(t+ ε)− u(t)

ε
is uniformly bounded in L2(Ω). Since u is differentiable

a.e. in [0, T ] and the derivative is unique, define ut(t) := limε→0
u(t+ ε)− u(t)

ε
. Consequently,

‖ut‖L∞(0,T ;L2(Ω)) ≤ |∂φ|(u0) = ‖∆e−(∆u0)‖‖L2(Ω). (3.11)

Finally, from

1

2

d

dt
‖u(t)− v‖2L2(Ω) = 〈ut(t), u(t)− v〉,

we obtain (3.2).

3.2. Existence of strong solution

After establishing the regularity of variational inequality solution in Section 3.1, we start to prove the varia-
tional inequality solution is also a strong solution. We first clarify the definition of strong solution, which has a
latent singularity.

Definition 3.2. Given initial datum u0 ∈ H such that φ(u0) < +∞, we call function

u ∈ L∞([0, T ]; Ṽ ) ∩ C0([0, T ];H), ut ∈ L∞([0, T ];H),
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a strong solution to (1.5) if u satisfies

ut = ∆(e−(∆u)‖), (3.12)

for a.e. (t, h) ∈ [0, T ]×Ω, where (∆u)‖ is the absolutely continuous part of ∆u in the decomposition (2.6).

Remark 3.3. The equation (3.12) holds for a.e. (t, x) ∈ [0, T ]×Ω in the sense that∫
Ω

[
ut(t)−∆e−(∆u(t))‖

]
ϕ dx = 0, ∀ϕ ∈ C∞c (Ω), (3.13)

for a.e. t ∈ [0, T ].

Let ϕ ∈ C∞c (Ω) be given. We prove the sub-differential of functional φ is single-valued along EVI solution
u. The idea of proof is to test (3.2) with v := u± εϕ and then take limit as ε→ 0. Recall the space notation H
in (2.1)

H =

{
u ∈ L2(Ω) :

∫
Ω

u dx = 0

}
.

Let us state our main theorem, existence result for strong solution as follows.

Theorem 3.4. Given T > 0, initial datum u0 ∈ H such that φ(u0) < +∞, then EVI solution u obtained in
Corollary 3.1 is also a strong solution to (1.5), i.e.,

ut = ∆(e−(∆u)‖), (3.14)

for a.e. (t, x) ∈ [0, T ]×Ω. Besides, we have

∆(e−(∆u)‖) ∈ L∞([0, T ];H),

and the following dissipation inequality

φ(u(t)) =

∫
Ω

e−(∆u(t))‖ dx ≤ φ(u0), t ≥ 0. (3.15)

Furthermore, if E(u0) = 1
2

∫
Ω

[
∆(e−(∆u0)‖)

]2
dx <∞, then

E(u(t)) :=
1

2

∫
Ω

[
∆(e−(∆u)‖)

]2
dx ≤ E(u0), t ≥ 0, (3.16)

where (∆u)‖ is the absolutely continuous part of ∆u in the decomposition (2.6).

Proof.
Step 1. Integrability results.
First from (3.5), we know

e−(∆u(t))‖ ∈ L1(Ω). (3.17)

Since ϕ ∈ C∞c (Ω) we also know

e−(∆u(t))‖−ε∆ϕ ∈ L1(Ω), (3.18)
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for all sufficiently small ε.

Step 2. Testing with v = u(t)± εϕ.
First we show v ∈ D(φ+ ψ). Since ϕ ∈ C∞c , it is sufficient to show v ∈ D(ψ) for ε small enough. Indeed, from
(3.6) we know ‖∆u‖M ≤ 2φ(u0) = C − 1. Hence, we choose ε small enough such that ε ≤ 1

2‖ϕ‖W2,∞
, which

implies ‖v‖M ≤ 2φ(u0) + 1
2 < C and ψ(v) = 0.

Plugging v = u(t) + εϕ in (3.2) gives

〈ut(t), εϕ〉+ φ(u(t) + εϕ)− φ(u(t)) ≥ 0. (3.19)

Direct computation shows that

φ(u(t) + εϕ)− φ(u(t)) =

∫
Ω

[
e−(∆u(t))‖−ε∆ϕ − e−(∆u(t))‖

]
dx

=

∫
Ω

e−(∆u(t))‖−ε∆ϕ
(

1− eε∆ϕ
)

dx

≤ −
∫
Ω

e−(∆u(t))‖−ε∆ϕ
(
ε∆ϕ

)
dx,

where we used 1− ex ≤ −x for all x ∈ R. This, together with (3.19), gives

〈ut(t), εϕ〉 −
∫
Ω

e−(∆u(t))‖−ε∆ϕ
(
ε∆ϕ

)
dx ≥ 0. (3.20)

To take limit in (3.20), we claim

lim
ε→0

∫
Ω

e−(∆u(t))‖−ε∆ϕ∆ϕ dx =

∫
Ω

e−(∆u(t))‖∆ϕ dx. (3.21)

Indeed we have

e−(∆u(t))‖−ε∆ϕ∆ϕ→ e−(∆u(t))‖∆ϕ, a.e. on Ω.

Then by (3.18) we can see ∫
Ω

e−(∆u(t))‖−ε∆ϕ∆ϕ dx < +∞.

Thus by dominated convergence theorem we infer (3.21).
Now we can divide by ε > 0 in (3.20) and take the limit ε→ 0+ to obtain

〈ut(t), ϕ〉 − lim
ε→0+

∫
Ω

e−(∆u(t))‖−ε∆ϕ∆ϕ dx = 〈ut(t), ϕ〉 −
∫
Ω

e−(∆u(t))‖∆ϕ dx ≥ 0.

Repeating the above arguments with v = u(t)− εϕ gives

〈ut(t), ϕ〉 −
∫
Ω

e−(∆u(t))‖∆ϕ dx ≤ 0.
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Thus we finally have ∫
Ω

[
ut(t)ϕ− e−(∆u(t))‖∆ϕ

]
dx = 0, ∀ϕ ∈ C∞c (Ω). (3.22)

Therefore, ut(t) − ∆e−(∆u(t))‖ = 0 in C∞c (Ω)′. From the Radon–Nikodym theorem, we also know ut =
∆e−(∆u(t))‖ for a.e. (t, x) ∈ [0, T ]×Ω.

Finally, we turn to verify (3.15) and (3.16). (3.15) is directly from (3.5) in the proof of Corollary 3.1.
Combining (3.14) and (3.11), we have the dissipation law

E(u(t)) =
1

2
‖ut(t)‖2H =

1

2
‖∆e−(∆u(t))‖‖2H ≤

1

2
E(u0), (3.23)

where E(u(t)) = 1
2

∫
Ω

[
∆e−(∆u(t))‖

]2
dx defined in (3.16). Hence, the dissipation inequality (3.16) holds and we

completes the proof of Theorem 3.4.
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