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1 Introduction

In this work, we revisit the derivation of continuum model for step flow with elasticity
on vicinal surfaces. The starting point is the Burton—Cabrera—Frank (BCF)-type mod-
els for step flow (Burton et al. 1951); see Duport et al. (1995a,b), Tersoff et al. (1995),
Liu et al. (1998) for extensions to include elastic effects. These are mesoscopic models
which track the position of each individual step (and hence keep the discrete nature
of the step fronts), while adopt a continuum approximation for the interactions of the
steps with surrounding atoms of the thin film. The step motion is hence characterized
by a system of ODEs. Such models are widely used for crystal growth of thin films on
substrates, with many scientific and engineering applications (Pimpinelli and Villain
1998; Weeks and Gilmer 1979; Zangwill 1988). The goal of this work is to rigorously
understand the PDE limit of such models.

To avoid unnecessary technical difficulties, we will study a periodic train of steps
in this work. Denote the step locations at time 7 by x;(¢), i € Z, we assume that

XitN(@®) —xi(t) = L, VieZ Yt >0, (1.1)

where L is a fixed length of the period. Thus, only the step locations in one period

{xi(¥), i =1,..., N} are considered as degrees of freedom, see Fig. 1 for example.
We denote the height of each step asa = %, and thus the total height change across

the N steps in the period is given by 1. Corresponding to the step locations, we define

the height profile 4y of the steps as
N —i .
hy(x,t) = —~ forx € [x;(¢), xi+1(2)), i=1,...,N. (1.2)

Moreover, iy can be further extended, consistent with the periodic assumption (1.1),
such that
hn(x+ L) —hy(x) =—1, Vx eR. (1.3)

Fnel
h(xN+ . )=0

< >

Fig. 1 An example of one periodic steps
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For the continuum limit, we consider the step heighta — 0 or equivalently, the number
of steps in one period N — oo.

In the pioneering work (Xiang 2002) (see also Xiang and E 2004), XIANG considered
a BCF-type model which incorporates the elastic interaction as'

ﬂ=a2<ﬁ“_ﬁ—ﬁ_ﬁ“>, i=1,...,N, (1.4)

dt Xitl —Xi  Xi — Xi—]

where f;’s are the local chemical potential given by

.____ o2
fii= ax; Z( (xj —x,-)3)’

J#

with the parameters o] = %a“, oy = %a(’ and the energy functional E given by

1
ZZ o Inlx; — xj| + —2>
- lJ;ﬁl( 2 (x;i —xj)

For the limit ¢ — 0, Xiang (2002) asymptotically derived the corresponding contin-
uum model

1 ah hoh
h =naa® | —Hhy) + — s T8 il ) (1.5)
2w hy 201 a ).,

Here H (-) is the L-periodic Hilbert transform:

L
(Hu)(x) = %PV/O u(x — 5) cot (%) ds. (1.6)

Observe that for the particular choice of the parameters «; and «p, (1.5) suggests to
rescale ¢ to consider timescale of the order O(a’6). Moreover, the coefficients in
front of the term h,h,, and the term };fj” in the bracket scale as a so they become
higher-order terms compared with the first one. As argued in Xiang and E (2004),
the term a};l is the correction to the misfit elastic energy density due to the discrete
nature of the stepped surface. Although it is small compared to the leading-order term
H (hy), it is comparable with the term ahh,,, which comes from the broken bond
elastic interaction between steps. When formally ignoring these terms with small
a-dependent amplitude, the PDE analysis for i; = —H (hy ).y is easy because the
operator H (), is a negative operator.

1 Compared to Xiang (2002), we drop all the physical constants that are mathematically unimportant.
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Recently, motivated by the PDE (1.5) proposed by Xiang (2002), Dal Maso et al.
(2014) studied the weak solution of 2

2 1
hy = <_TH(hx) + <3hx + /’l_> hxx) , (L.7)

X

in terms of a variational inequality. Note that all the coefficients in this PDE are
O (1), unlike the PDE (1.5). They validated (1.7) analytically by verifying the posi-
tivity of &, . Rather remarkably, they found an approximation problem and proved the
limit of the solution to the approximation problem also satisfies the weak version of
variational inequality, which is satisfied by strong solution. Moreover, Fonseca et al.
(2015) obtained the existence and uniqueness of the weak solution. They applied Rothe
method and truncation method to carefully deal with the singularity term.

Our goal is to rigorously prove the continuum limit of BCF-type models for step
flow. While it would be nice to recover (1.5) using the scaling considered in Xiang
(2002), it is quite challenging (if not impossible) since the PDE (1.5) involves two
scales, corresponding to the three terms on the right-hand side:

hxx

O(l): H(hy); 0(@a): hyihyy; O(a) : P

Instead, we follow the scaling of the PDE (1.7) considered in Dal Maso et al. (2014),
Fonseca et al. (2015). We will derive (1.7) as the continuum limit from a slightly
modified BCF-type mesoscopic model: We consider the step-flow ODE (1.4) with a
rescaled time, i.e.,

ﬂ:l<fi+l—fi_fi—fi—1>’ R

dt a \xip1—xi X —Xi-1

(1.8)

with a modified chemical potential

2 a 1 1 a? a?
fi=—= + ( - ) + - ;
' L ; Xj— X Xikl — X Xj —Xi— (g1 —x)3 (o —xi—1)3

(1.9
see Sect.4. The first term in f; comes from the misfit elastic interaction between the
steps, which is an attractive interaction. The second and third terms come from the
broken bond elastic interaction between steps, which are repulsive terms. Different
from XIANG’s chemical potential in Xiang (2002), we choose the scaling so that
the attractive and repulsive interactions have the same order as a — 0. We add the
repulsive term ol (¢ cancel a singularity from the first term, which
seems to be necessary. Moreover, to ease the mathematical derivation, we restrict the
repulsive terms to the nearest neighbor, which is the dominant contribution.

2 For the convenience of calculation, we set the coefficients slightly different from Dal Maso et al. (2014).
Moreover, instead of taking % to be increasing as in Dal Maso et al. (2014), we take & to be decreasing
corresponding to physical interpretation of & being the height of the vicinal surface, which is the same
convention as Xiang (2002), Xiang and E (2004).
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Our modified ODE system, from both the view of chemical potential and free
energy, is balanced in order. Therefore unlike the original ODE systems which (at
least heuristically) lead to a PDE with multiple scales, our system converges to PDE
(1.7) in the limit. We are also able to obtain the convergence rate of order a for local
strong solution of the continuum PDE.

For the study of the PDE (1.7), we discover four variational structures with four
corresponding energy functionals, in terms of step height 4, step location ¢, step
density p and anti-derivative of %, denoted as u. Those four kinds of descriptions are
equivalent rigorously for strong local solution, but it is convenient to use different one
when studying different aspects of our problem. The height # is the original variable
indicating the evolution of surface height, while it is a better idea to use p and u to
study the strong local solution of continuum model (1.7) due to its concise variational
structure. In the proof of convergence rate in Sects.4, 5 and 6, since the original
discrete model is described by each step location x;, it is more natural to use the
variational structure of step location ¢, which is the inverse function of step height /,
ie.,

o =h(p(a,1),1), VYa. (1.10)

For the properties of local strong solution of continuum PDE (1.7), we used the
variational structures for # and p to establish some a priori estimates and then obtain
the existence and uniqueness for local strong solution to the continuum PDE; see
Sect. 3. We state the main result of Sect.3 below, with the notations I := [0, L],

Wffgfl(l) = {u(x) € WEP(R); u(x + L) — u(x) = —1}, (1.11)
and

Wé‘é{(’)(l) ={u e Wk’/’(l); u is L -periodic and mean value zero in one period}.
(1.12)
Standard notations for Sobolev spaces are assumed above.

Theorem 1.1 Assume h° € W;Z’r%(l), hg < B, for some constant B < 0,m € Z, m >

6. Then there exists time T, > 0 depending on B, ||h0||Wm,z such that
per*

h e L0, T, ]: W™2(1)) N L*([0, T, J; W™E22(1)) N C ([0, Ty, 1; W™SH2(1)),

per* per* per*

hi € L([0, T ]; Wity #2(1)

is the unique strong solution of (1.7) with initial data h°, and h satisfies
B
hy < 50 ae t €0, T,], x €0, L]. (1.13)

Moreover, we also study the stability of the linearized ¢-PDE. This is important
in the construction of approximate solutions to the PDE with high-order consistency,
which is crucial in the proof of convergence.
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For the convergence result of mesoscopic model, we first testify our modified ODE
system has a global-in-time solution; see Proposition 4.1. More explicitly, we prove
that the steps and terraces will keep monotone if we have monotone initial data. This
is consistent with the positivity of step density p of the PDE. Then we calculate the
consistency of the step location continuum equation and ODE system till order a;
see Theorem 5.1. However, due to the nonlinearity and fourth-order derivative in our
problem, we need to utilize a priori assumption method and construct an auxiliary
solution with high-order consistency. By establishing the stability of the linearized
ODE system and carefully calculating the Hessian of coefficient matrix of ODE system,
which is a third-order tensor, we finally get the convergence rate O (a) of modified
ODE system to its continuum PDE limit.

Recall the definition (1.2) and (1.10). Denote

N —i
@ =h(xi(0),0) = ——,

and

i (1) = ¢(aj, 1).

We state the main convergence result in this work as follows:

Theorem 1.2 Let the step height be a = % Assume for some constant f < 0, some
m € N large enough, the initial datum h(0) € W;" 2(I) satisfies

hy(0) < B <0. (1.14)

Let h(x, t) be the exact solution of (1.7) on [0, T,,], where Ty, is the maximal existence
time for strong solution defined in Theorem 1.1. Let ¢ (a, t) be the inverse function of
h(x, t) defined in (1.10), whose nodal values are denoted as ¢y (t) = {¢p(aj, 1), | =
1,...,N}. Let x(t) = (x1(2), ..., xn(2)) be the solution to ODE (1.8) with f; defined
in (1.9) and initial data x(0) = ¢n(0). Then there exists Ny large enough such that
for N > Ny, we have x(t) converges to ¢(«, t) with convergence rate a, in the sense

of
X)) — w2 < C (ﬂ, ||h°||Wm,3) a, fort€l0,T,], (115

where C(B, ||h° ) is a constant depending only on B and ||h°|| w2
per*

2
”VVI’)" "

er’

Several remarks of the main result are in order.

Remark 1 In fact, we can achieve a better convergence rate O(az), if f; is modified
to be

~ 2 a a 1 1
F=m2 ~(1-9)( - )
i L;xj—x,- 27 \Xit1 —Xi  Xj —Xi—]

+( a2 a2 )
(Xip1 — X)) (i —xi21)3)
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Compared with (1.9), the coefficient of the second term is changed from 1 to 1 — 7.
This is done to better correct the error from the discretization of the Hilbert transform
as a — 0 (recall the second term in (1.9) is introduced to correct the singularity from
the first term). In fact, by Lemma 5.2, we know the leading error %%" in Lemma 5.3
can be removed by such a correction term. Hence we can get O(a?) consistency in
Sect. 5, and consequently, the convergence rate can be improved to O (a?) in Theorem

1.2 for the modified microscopic model.

Remark 2 Theorem 1.2 is aresult of local convergence to strong solutions to the PDE.
The global convergence of the ODE system to the (weak) global-in-time solution to the
PDE (1.7) is more challenging and will be left for the future. We hope the additional
understanding of the variational structures of the PDE (1.7) provided in this work
would help the future investigation on global convergence.

Remark 3 To avoid unnecessary technical complications and to make the presentation
of the convergence result clear, in this work we do not try to optimize the initial
regularity that is needed in the Theorem 1.2. We just set m to be large enough, so that
we may assume sufficient regularity of the solution.

While a comprehensive review of the vast literature of crystal growth is beyond the
scope of this work, let us review here some related works mostly in the mathematical
literature. Besides the work of Xiang (2002), the derivation of the continuum limit of
BCF models has also been considered in other works, see, e.g., Tang (1997), E and Yip
(2001), Shenoy and Freund (2002), Margetis and Nakamura (2011). However, as far
as we know, the derivation has not been done on the rigorous level, and moreover, the
convergence rate is provided here, which seems to be missing before in the literature.
The idea using step location for formal asymptotic analysis was inspired by Xiang
(2002). In order to get the convergence rate rigorously, we find it is better to first study
the continuum PDE for the inverse function ¢, instead of the height /2. Recently, in the
attachment—detachment-limited (ADL) regime, Al Hajj Shehadeh et al. (2011) studied
the continuum limit of self-similar solution and obtained the convergence rate. Related
to the stability analysis, the linear stability of thin film (known as the ATG instability)
has been analyzed in previous works, see, e.g., Xiang and E (2004), Grinfeld (1986),
Srolovitz (1989). While we consider here the one spatial-dimensional models, the
asymptotic derivation of two-dimensional continuum models has been considered in
Margetis and Kohn (2006) and Xu and Xiang (2009), and the rigorous aspects of these
results will be interesting future research directions.

For the discrete BCF model considered in Xiang (2002), very recently, Luo et al.
(2016) rigorously proved the step bunch phenomenon, which characterized the limiting
behavior of the system as # — oo. They have also connected the step bunching with
continuum models through a I'-convergence argument [16]. These works motivate
further study of the continuum limit of mesoscopic models of crystal growth.

Let us also mention that while our starting point is step-flow models, the derivation
of the continuum limit can be also considered starting from a more atomistic descrip-
tion, such as a kinetic Monte Carlo-type model. See the works Guo et al. (1988), Yau
(1991), Funaki and Spohn (1997), Nishikawa (2002) and more recently Marzuola and
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Weare (2013). See also a recent work that aims to derive BCF-type models from a
kinetic Monte Carlo lattice model (Lu et al. 2015).

The rest of this paper is organized as follows: In Sect. 2, after setting up some nota-
tions, we introduce four equivalent forms of continuum PDE (1.7) and their variational
structures. Section 3 is devoted to establishing the existence, uniqueness and stability
for local strong solution of the PDE. We then introduce the modified step-flow ODE
in Sect. 4 and state the global existence result for the modified ODE system. Section 5
is devoted to proving the consistency result for ODE system and its continuum limit
PDE. Finally, by constructing an auxiliary solution with high-order consistency, we
obtain the convergence rate of the modified ODE to its continuum PDE limit in Sect. 6,
which completes the proof of our main result Theorem 1.2.

2 The Continuum Model
In this section, we discuss the properties of the continuum model. Besides using the

height profile 4, it would be useful to rewrite the dynamics in a few equivalent ways.
Let us introduce the following definitions

e Step location ¢ («, 1), the inverse function of A:
a=h(p(,t),1), Ya;
e Step density p(x, 1), the (negative) gradient of &:
p(x,1) = —h(x,1); 2.1
e u(x,1t), the (negative) anti-derivative of h:
h(x,t) = —uy(x,t) — bx — ko, 2.2)
where b, kg are constants chosen to guarantee the periodicity of u,.
Now we establish the variational structures for &, u, p, ¢. In Sect.3, it will be

convenient to use p-equation and u-equation, while it will be proper to use ¢-equation
when studying the continuum limit in Sects. 4, 5, 6.

2.1 Equation for Height Profile i

Let us consider the PDE for the height profile

2 1
hy = —TH(hx)—i— 3hx+a /. i

As mentioned in Introduction, the coefficients here are independent of a. In Sect. 5, we
will show that this continuum PDE can be derived as the limit of a BCF-type discrete
atomistic model.
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First we observe that the evolution equation (1.7) has a variational structure. Define

the total energy Ej, as a functional of A:

L 1 L ) T h3
Ey(h) ::/0 (Z/o ln’sm<z(x—y))’h hydy — hyln(—h )—_> dx.

Then we have

SE,
hi = pxx = Sh
XX

where the chemical potential x is given by

Sh L?

(2.3)

(2.4)

SE Lo By
:—h:—PVf —ncot%h () dy +h 3. (25)
0

. . . ... SEY
To see this, let us calculate in Lemma 2.1 the functional derivative (S_hh for

Eh (h) := / / In sm Y) ‘ hyhydxdy. (2.6)
The derivative of the other two terms in Ej, is straightforward.
Lemma 2.1 Assume h(x) € Cc([0, L).
We have
SE) Logr  ma(x—y)
— =—PV —cot———h dy.
5 /0 7 <o 7 y(»)dy
Proof First denote
L xX— )
ES(h) :=f (/ f >ln gin ——=~ ‘hh dy dx.
0 0 x+6
By the definition of the principal value integral, we have
— | E)h+eh) = lim Ej(h+ eh),
de e=0 8 e=0 §—0t
and since In|sin x| is even, we have
. d s - LN =2 mw(x—y) .
51—1>r8+ FH s:OEh (h+¢eh) = hm </ /Ha) - cot T hy(y)h(x)dydx.
2.7

Now we claim

d d
— lim E2(h + eh lim —
B g 23 BRI 60 =,

e=0

E)(h + eh).
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Obviously, E;z(h + efl) is continuous with respect to §. It suffices to show that

d Efl (h + ¢h) is also continuous respect to §. Hence from (2.7), it suffices to

de le=0
prove
li // 7 ot TF )h()h()dd 0.
Pt L€ L PR =
Indeed
/ / % L )h (y)h(x)dydx
T(x — y) x+8
zf —nsin 22 0| ) da
0 L y=x—98
L x+38 _ ~
+/ / In |sin y)‘hyy(y)h(x)dydx.
0 x—38

Notice that ~(x) € C%([0, L]). Let 8§ — 0. The first term tends to zero by Taylor
expansion, and the second term tends to zero as the integrand is integrable. O

Note that the energy Ej, we use here has a slightly different form compared to the
one in Xiang (2002), denoted by Ej, (), which reads in the periodic setting as

L 3
E,,(h):/ < T (h+ )H(h ) — hy In(—h )—h—> dr.  (28)
0

In fact, the two energy functionals only differ by a null Lagrangian, as we show below,
so we prefer the more symmetric expression Ej,.

Lemma 2.2 Let

W(h) = LZ/ f 1n sin = )|h dxdy. (2.9)
Then we have
Ej(h) = Ep(h) + W(h),

and

SE, 55]1

Sh S

Proof First by the definition of the periodic Hilbert transform,

- L T X L gx—y) h3
Ep(h) = —— (h+ — )PV t ———hydy — hyIn(—hy) — == ) dx.
i = [ (=55 (7)Y [ oo™ 0y~ g - B ) ax
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Notice that

L b4 X L T(x —y)
1 [F X _ax—y "
_—Z/(; ((h—i—z)ln'smT .
L 1
—PV/O <hx+z) In

sin @‘ dx) hydy
1/ 0
= — In

ﬂ(x—y)‘
/ / In

where we have used that & + 7 is L-periodic function. Therefore for W defined in
(2.9), we get

sin hyhydxdy

Y

s1n hydxdy,

Ep(h) = Ep(h) + W(h).

Similar to the proof of Lemma 2.1, we can see

W -
<E’h>= / / In sm )‘dxhydy,
L
1 ~ _
= —2/ hln smM dx
0

/ PV/ Ty = Cdxh(y)dy

Hence W (h) is a null Lagrangian. O

2.2 Equation for Step Location Function ¢

Consider the step location function ¢, which is defined in (1.10) as the inverse function
of h. From the definition, we have

h ¢
¢>z=—i, 1 = hya, hxx:—d)ig. (2.10)

Then changing variable from % to ¢ in (2.4), we have

1
¢r = —Galixx = —0y (qzﬂa) , (2.11)
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due to (2.10) and the chain rule p, = gy ¢la Note that this immediately implies that

fol ¢ do is a constant of motion.
The equation of ¢ (2.11) also has a variational structure. To this end, let us rewrite
the energy in terms of ¢ such that E4(¢) = Ej (h):

1 1 _
Ey(¢) :/(; <%f0 ln’sinw‘ dB — In(—¢y) +

We will show that

1
ﬁ) de. (2.12)

o

1 (SEy
O = —QPalhxx = —0y <¢— (W) ) . (2.13)

SEY
Similar to the proof of Lemma 2.1, let us first calculate 8_¢¢’ where

0 1 1
E = 1
9(6) /0 fo n

Lemma 2.3 Assume h(x) € C 2([0, L)), and there exists a constant C > 0 such that
|hy| = C. We have

sin M‘ da dp.

SEY 1 _
¢ _py 2_7fct7r(¢(a) ¢>(/3))d

Y L p.

Proof First denote

1 B—38 1
Eg(qs);:/ (f +/ >ln
0 0 B+5

It is obvious to see that

L T@@ —¢(B))
L

si da dB.

de

EG +o6) = <
-0 9(@ ted Cde

£=

lim Eg (¢ +29),
e=0°""

and

3 L[ pB—8  pl _ . .
L B +ed =/ (/ +/ )”cot 2O =P Ga) - () da dp.
=0 0 \Jo p+s) L

de L

Now we claim

_ d -
— lim E? = lim —| E? )
de|,—o 8—1>r{)1+ 9(@ +e0) 8_1)r51+ de L:O 09 +e9)
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Obviously, E5 (¢ + e) is continuous with respect to 8. It is sufficient to proof

di N ¢(¢ + &) is also continuous with respect to 8. In fact, since cot x is odd,

. 1/ rB=s | _
Homerep =2 [ ([ [ )T ™50 daap,
£=0 0 \Jo p+s) L L

de

Hence it is sufficient to proof

B+8 —
lim f f ot T @) ¢(ﬂ))¢( ) det df =
B—

§—0+ L

In fact, prs
+
/ / 7T(¢>(Ol)L ¢(ﬂ))¢( ) do df
B—
B B+6
U p(a) In 'Sm (p(@) — ¢ (B)) dp
0 Pul@) L a=B—3§
/3+6 _ 7
/' / 7T(¢(Ot) ¢(ﬂ))‘ () do dB.
B— L ¢o () o

As § — 0, the first term tends to zero by Taylor expansion. |<(;5(€‘a))) | is bounded
o a

since h(x) € C2([0, L]) and |h,| > C > 0, so the second term tends to zero as the
integrand is integrable. O

Hence we have

1 _
SEy _ 2_”pv/ oo TO@ =SB (o fur _ beu o1
sp L2 )y L oz b

It remains to show that . = 88%, ie., 51(; = ’SE” . For ¢ h satisfying

a=(h+eh)o(p+ed),

Taylor expansion shows that

Thus, by (2.10), we have

p = _¢al’~la

~ 3 (2.15)
Es(¢ + £¢) = Ep(h + eh).
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Hence
Eg(¢ +e¢) = DyEy - ¢
=0 (2.16)

En(h + 8%) = DyEj, - fl,
e=0

de

where D, Ej, : L2(R) — L2(R) is the Fréchet differential, i.e., D, E), - h is the dual
pair which means the first-order variation of Ej, at h along the direction of /.
By Riesz representation theorem, there exists V, Ej, € Lz([O, L], dx), such that

L
DyE, h= / VhEh/:l dx,
0

where Vj, Ej, is gradient of Ej (h) in LZ([O, L], dx), which is just what we denoted as
SEj
Sh -

Similarly, there exists V4 Ey € L%([0, 1], | | da), such that

1 1
DyEy- b= /0 Vo Esfldal da = [0 Ny Egdipa dor

where Vg Ey is gradient of Ey(¢) in L2([0, 11, |¢g | dov).
Combining (2.15) and (2.16), we get

1
VoEp = _d)_VhEh o .
o

Again we define 55% as gradient of Eg(¢) in Lz([O, 1], da). Noticing (2.15), we have

1

— E¢(¢+s¢3>=/ 2565 4o
de e=0 0 8¢
L
= — Eh(h—i-sﬁ) :/ VhEhﬁdx
de =0 0

13Eh~
°2h 3 da.
fo on e

Hence
SE), SEy 2
— = —— € L°([0, 1], do),
Sh o 50 € L7([0, 1], da)
and
SEy,

SEy

w= 5

Sh
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Therefore we conclude that (2.11) is equivalent to (2.13). Moreover, we obtain
energy identity for (2.13) as

ﬂ:/ 3L ) du /li«‘sﬂ) >2da. 2.17)
dr 0o ¢ 0 Pa 3¢/,

2.3 Equation for Step Density p

Now consider the step density p. From the definition, rewriting the energy in terms of
p, we obtain

oo [ i lin (% p(0)?
o= (7 [ Insin (T =) | p@p ) dy + o) In p(x) + 25 ) dx,

L
(2.18)
Eo [ Zinfsin (Zix )| o)y 10 p 414 2007
—r = —In|sin( —(x — n - ,
5 I 7@ =) p(ndy p(x 5P
and
SE Lox T(x —
—£ :PV/ —zcotup(y)dy—i-p—x—i-B’pxp:M. (2.19)
sp o L L P
Similar to the proof of Lemma 2.1, we can define
L _ xX—
PV/ cotup(y)dy= lim < / ) )p(y)dy
0 L s—0+ \Jo x+8
Then
L _
— lim </ / >ln sin it y)',o(y)dy
dx s—o+ x+8
x—48 L —
= lim — </ +/ >ln sin it y)‘p(y)dy.
s—0t dx 0 X468
Hence we also obtain a variational structure for p and (2.4) becomes
SE,
Pr = —Mxxx = — | o . (2.20)
ap XXXX

This also shows that fOL p dx is a constant of motion.
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2.4 Equation for u

Finally, from definition of u, the energy can be rewritten in terms of u as

Eu(u) =/0L (% /OLln\sin(%x—y))\(um ) (uyy + by

xx +b 3
+ (uxx +b) In(uyy +b) + %) dx, (2.21)

SE, 2m 3 2
= —H@uyx)y + | In(uxx +b) + = (uxx +b)" +1 = Mx-
Su L 2

XX

Hence we also obtain a variational structure for u and (2.4) becomes

SF,
Su

ur = —

(2.22)

2.5 Equivalence of the Formulations

We end this section with the rigorous justification of the equivalence of the above
formulations.
Recall the notations for W2 (1), Wael (I) in (1.11) and (1.12). If k < 0 and

per*
% + % =1, Wk-? is the dual of W 4. Denote

EmE+5, £>0,
®E):=140, £=0,
+00, £ <0,
and

y(§) == P(§ + D).

By the definition (2.18), we have

L 1 L
Ep(p) = /0 (Z [0 In|sin (7-0c = )| p@p () dy+<1>(p)> dr.  (2.23)

By (2.21), we have

L1 L oy
E, () =/0 (Z/o ln‘sm (Z(x—y))‘(uxx + b)tyy + b) dy+CI>b(uxx)) dx.

Since

SE,(u) 21 ,
s = —H(uyx)x + (Pp (Uxx))xx,
u L
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Eq. (2.22) can be recast as

2
U+ T”H(uxx)x + (@ (ttxx))xx = 0. (2.24)

In order to study the problem (1.7) in periodic and mean value zero setup, we
establish first, similar to Dal Maso et al. (2014), that

Proposition 2.4 For any integer m > 1, any T > 0 and some constant B < 0, the
following conditions are equivalent:
(a) There exists h € L([0, T]; Wi3(1) with hy € L0, TT: Woer *>/%(1)) a
solution of (1.7) satisfying
hy(x,t) < B <0 ae. xeR,te[0,T]

(b) Set b := + > 0. There exists u € L*®([0, T]; WH3(D) with u, €

pery
L0, T1; Wy >/2(1)) a solution of (2.24) satisfying

Upx(x,8) +b>—-B>0 ae. xR, te[0,T].

(c) There exists p € L([0, T1; W 13(I)) with p, € L®([0, T1; (Wper >>/2(1)))

per
a solution of (2.20) satisfying
ox,t) > —=B>0 ae.xeR,tel0,T],

and

L
/ px,t)dx = 1.
0

Proof Step 1. For (a)=(c), we simply take
p(t,x) = —hy(t,x) = uxx(t,x)+b (2.25)

and then (2.19) shows that p satisfies (c).
For (c)=(a), we take

h(xrt)z_/ p(svt)ds+k2(t)v
0
with

1 L X
ka(t) = z/ / p(y,t)dydx.
0 0

Then hy = —p and h € L*°([0, T]; Wgé;g(l)), with mean value zero.
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Noticing (2.19) again, we have

SE SF
hyr = —pr = (—p> = <—h) s
Sp XXXX 8h XXX

in distribution sense. Integrating from O to x, for a.e. r € [0, T'], there exists a constant

¢(t) such that
SEy
hy = — 1).
t ( Sh )xx +c(1)

That is, for any test function ¢ € Wgés’ (I), we have

d(h - SE,
ar =\ s

’ (pxx> + <C(t)? (p> .

Taking ¢ = 1, we get c(t) = 0, fora.e. t € [0, T]. Hence £ is the solution of (1.7).
Step 2. For (a)=(b), we take

hT (x, 1) = h(x, ) + bx,

with b = % From (1.3) and (1.7), we know h” is L-periodic function with respect to
X.

Denote
|-
ko = Z/o KT (s, 0)ds,
1 (L > L
kl(n:zfo /0 W (v, 1) dy dx — ko
Set

u(x, 1) = / (~h7 0.0+ ko) dy + i 0. (2.26)
0

We know u is L-periodic function with mean value zero. To prove such u satisfies
(2.24), we can proceed just the same as Step 1.
Note we also have

uy = —h — bx + ko, (2.27)
Uxy = —hy — b. (2.28)

For (b)=(a), we simply take
h = —uy — bx. (2.29)

Then (2.21) and (2.22) show that & satisfies (b). O
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Proposition 2.5 For any integer m > 2, the following conditions are equivalent:
(i) There exists h € L°°([0, T]; Wpléff(l) N W’”’z([)) with h, € L°°([0, T];

Wp_ef’oo(l)) a solution of (1.7) satisfying

hy(x,t) <B1 <0 a.e.x R, te]0,T], (2.30)
for some B1 < 0.

(ii) There exists ¢ € L°°([0,T]; Wplejf,o([O, 1) N wW™2([0, 11)) with ¢, €
L*° (0, T7; Wp_ef’oo([o, 11)) a solution of (2.13) satisfying

Gu(a, 1) <Br <0 ae. axeR,tel0,T], (2.31)

for some By < 0.

Proof Notice condition (2.30), (2.31). By inverse function theorem, /2 and ¢ are inverse
functions of each other. Noticing (1.10) and (2.10), h € L*°([0, T]; WI’OO(I)) with

per*

condition (2.30) implies that ¢ € L*°([0, T']; Wl’oo([O, 1])) with condition (2.31).

. L. . . per*
From the differentiation of inverse function, we also know

¢(m) < C(ﬂl)(h(m) + Z pla @) h(am)).

0<a;j<m—1

Since W2 < W=D e have

L
/0 6" 1 do < CBOUIR3ymz + 121170 2)-

Hence h € L*([0, T]; W™2(I)) with condition (2.30) implies that ¢ € L>([0, T'];
W’"’z([O, 1])) with condition (2.31), vice versa. O

3 Local Strong Solution and Proof of Theorem 1.1

We continue studying the properties of the continuum PDE. From now on, denote

n

d
To(x),

(n) —
" (x) e

and ¢ as a generic constant whose value may change from line to line. We first establish
the existence and uniqueness of the local strong solution to (2.24).

Theorem 3.1 Assume u° € W;’é’rg(l ), ud, + b > n, where n is a positive constant,

m € Z, m > 1. Then there exists time T,, depending on 1, ||u0||Wm,2 such that
per(

u € L=([0, T, 1; Wm2(1)) N L2([0, Ty, 1; WET22(1)) N C ([0, Tyl W242(1)),

pery pery pery
w € L0, T, 1; Wyer 42(1) 0 L2 ([0, Ty, 1; Ly, ()
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is the unique strong solution of (2.24) with initial data u°, and u satisfies

Uyx +b> =, ae. tel0,T,], x €[0,L].

N3

Proof We first make the a priori assumption

min(u,, +b) > 4 >0, ae.tel0, Tyl G.1)
xel 2

in which 7, will be determined later. We will prove the existence of local strong
solution under (3.1) in Steps 1 and 2, and then justify (3.1) in Step 3.

Let Js be the standard C2° (/) mollifier. Denote b = Js % ub.

Define Elf (u) := E,(Js xu). Then

SES ) . SE, (u)

sut ) Su ,;a'
We study problem
s SE )
{“r =TT (3.2)
w8 (0) = Js % u,
which is

{u? = (Jsx (= H@R))), = Us * @' (@.0)cx, (3.3)

u®(0) = Js % ul.

Step 1. We devote to obtain some a priori estimates, which will be used to prove
the convergence of u® in (3.2).
Taking u as a test function in (2.24) gives

L Lox 3 )
usudx = — H (uxx)uy — | In(uyy +b) + = (tyx +b)" )ty dx.
Notice that
L L3 Ly
/ H(uyx)uydx < / “u? 4 2utdx < / —ud +2u?dx + C(L),
0 o 4 o 8

and that

L 1 L
/ In(uyy +b)uy,dx < C(n, L) + g / u)3€x dx,
0 0

due to (3.1). We obtain

d L L L
= u2dx+/ uixdxfc/ u>dx+C@, L).
dr Jo 0 0
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Then for some 77 > 0, Gronwall’s inequality implies that

0
Nl oo o, 1y1: 220y < €0, Ly |lu “Wp'fé;é’ 1),

lweell 2o, ey < CO1 L [ llyma T0). (3.4)

Here and in the following, C(n, L, ”I/[O”Wm‘Z, T1) is a constant depending only on
perq

n, L, IIuOIIWm,z and 7.
perq
Recall (2.25). We use p = uyyx + b from now.

Since
dE L 2
u(ut) +/ SEy,(u) dx — 0,
dt 0 Su

Ey(u) < Ey(up) < +oo. 3.5)

we have

Also notice

L L T
/ / In [sin 7 (x = )| p()p(v) dx dy‘
o Jo L

L L - 3 AL
</ / In? ’sin —(x - y)‘ dx dy) / p%(x)dx (3.6)
o Jo L 0

1 L
3
—/ p~dx + C(L),
0

8
L
/ plnpdx
0

These, together with (3.5), give that

IA

IA

and .
1
< g/ pddx +C@, L). (3.7)
0

1 L
— sup / p>dx < E,(0) +C(n, L). (3.8)
4O§I§T1 0

Now we devote to get a higher-order a priori estimate for m > 4.

Divide m times in Eq. (2.24) and then take ™ as a test function, which implies
that

d Lo (m+1), (m) (m+2), (m)
E”u”Wm,Zz A _TH('O) u™ — f(p) u'™ dx, 3.9)

where
/ 3 2
f(p)=<1>(p)=lnp+1+§p .
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For the first term in (3.9), we have

L
’/ — H(p) ™Dy gy
0

L
= '/ —H(p)™ p™=D qx
0

L L
/ P24y 42 / pm=D24  (3.10)
0 0

L L
/ p"™? dx + c/ pm 22 dx.
0 0

For the second term in (3.9), we have

IA

M| — 00| —

IA

L L
/0 —F ()™ u dy = /0 —F ()™ "™ dx

L
= / =" (P)p) "D p™ dx
0

L Lm=2
—1—= k
= /0 —F(p)p"™? dx + /O > Crf ()R p 0 pm gy,
k=0

(3.11)
Note that

1
fl(p)=3p+ = 23, forp > 0,

so the first term on the right-hand side of (3.11) is strictly negative. We will use it to
control the other terms later.

Now we carefully estimate the last term in (3.11). Denote

L m=2
M= [3 G o) 0 ax
0

k=0
m—2
< ||p""’||Lz[Z cknf’(p)('"—l‘k)pﬁ“||Lz]-
k=0
First the chain rule gives
f/(p)(mflfk) — Z Cﬁp(ﬂl)p(ﬁz) .. p(ﬂu)f(lﬂr])(p)'

Bi+Bat-tBu=m—1—k

Due to (3.1), we know

C C
(n+1) I I
f (p)fpwrlf,];m’ for u > 1.
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Also noticing that

101 < cllpllym—c,

we have

L' ()" P e < Cn, m>||p||';;;122, for2 <k <m—2,

LF @) 2 < Com)lpllyton + 10" P ps), fork =1,
and

LF )" Vls < ComyUlplynlas + 10" 2l ps + 10"Vl pa),  fork =0.

Second by interpolating, we know

104 < cllp™ 2%, 10 3 (3.12)

L2’

19" Dlls < el DL 1)} (3.13)

L

and for u < m — 2,

7 1
1" s < clp™ Pligs +cllollzs < cle™ 21510 115, +cllpllyn-22. (3.14)

Thus (3.12), (3.13) and (3.14) show that

m—2

DGl ()" R0

k=0

< chnf(p)“" R P P P
k=0

<cllf )" 2N pall paxll o (3.15)

m—2

1
+ ) Clen.mllpll b Ue™ 213 2||p<m>||zz
k=1

+ C”p”W)an,Z)

3 5
+Comlplialaalle™ 215 101,
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For the first term, we have

£ ()™l Lall ol 2

< Co.m)lpllntas + 1o 21 U™ Pllzs + lollyn-22)

=2}y b (3.16)
= COnm) 1015z + (o lyaz + DIP" 215101,

+ ||p<m‘2>||§2||p<’">||§2],
where we used (3.12) and (3.14).

Notice that (3.8) gives ||olLoc(0.7y:22¢1)) < C(n, L). By interpolating, (3.15) and
(3.16) lead to

S 1
My < C@. m)[np("”n N e o [ Y (3.17)
™ IS NP+ 10022 + Cln. D]Ie™l 318)

||p<’">||L2 +C,m)lpllns, + Cn, L). (3.19)
Combining (3.10), (3.11), (3.17) and Gronwall’s inequality, we finally obtain

0
||M||L°°([0,T1];W£}§(I)) S C(’L Lv ”M ”Wp’{é%v Tl),

0
<
”u”Lz([O Tl Wg'g{)“(l)) = C(’?, L7 ||M ”ng'érgv T])

Step 2. Define Fj : W];'QLOZ 2 W]%;gz’z with

Fg(ué) = <J5 * (—ZTNH (L_tix))) — (Js * CDb/(ﬁix))xx-

We can easily check that Fj is locally Lipschitz continuous in W”+22(I) form > 1.
Hence by Majda and Bertozzi (2002, Theorem 3.1), we know (3.3) has a unique
local solution u® € C'([0, Tp]; Wgﬁ;;z’z(l )) and those estimates in Step 1 hold true
uniformly in §. That is, for Ty, we have

|Iu5”L°°([0,TO] ;:’érz ) — < C(’?» L, ”u()”W[’)"'e»r(z)s TO)v (320)

“ub‘”LZ([O Tol: Wg;:(')z 2(1)) E C(’h La “uOHW};gi‘(Z)’ TO) (321)

Since
T L
E;j(uS(T))Jr/ / ud? dx dr = EX(u®(0)),
0 0
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we also have
g 220, 71y < €01 Lo 12 ). (3.22)

Notice W"+2.2 < W +1.2 compactly and W12 < L2, Therefore as § — 0, we
can use Lions—Aubin’s compactness lemma to obtain there exists a subsequence, still
denoted as u®, such that

u’ = u, in L*([0, Tol; Wpert 12 (1).

And (3.20), (3.21) and (3.22) show that

u € L*([0, Tol; Wh2(1)) N L2([0, Tol; WiF22(1)),

pery perg

u € L([0, Tol; W—+2(I)).

perg

Thus we can take limit in (3.3) and u satisfies (2.24) almost everywhere, i.e., u is the
local strong solution of (2.24).
Since

el 2o gopery < Hmin ey 2o,y < €00 Lol ),
ur € L*([0, Tol x I),
by Evans (1998, Theorem 4, p. 288), we actually have
u € C([0, Tol; Wper (1)

Step 3. We justify the a priori assumption (3.1). Note that
t
Uxx (X, 1) = ur(0) + / Uy (x, T)dT, (3.23)
0

and u?, + b > n, so Step 2 and Sobolev embedding theorem lead to
e € L0, Tol, W"02(1) < L*([0, Tol. L*(1)),

for m > 7. Then

t
/ Uy (x, T)dT
0

where T, < Ty depends only on n, L and ||MO||Wm.2(I). This, together with (3.23),
gives (3.1). O

n
< tHluxxellLoo o, 101, L0(1)) < 5 1€ [0, T 1,

By using the above Theorem 3.1, we now prove Theorem 1.1.
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Proof of Theorem 1.1 Step 1 (Existence). Assume Ko e W’”’E ), hg < B, for some

per
m+1,2

constant 8 < 0, m € Z, m > 6. From (2.26), there exists ul e Wper* (1) satisfying

ugx + b > —pB. Then by Theorem 3.1, there exists 7, > 0, such that there exists a
unique u satisfying (2.24) with the following regularity:

u € L0, Tnl; WHL2(1)) 0 L2([0, Tp]; WE32(1) N C([0, Ty, ); W32(1)),

pery pery pery
ur € L0, Tn]; Wher P2 (1)),
and u satisfies
B
Uxx +b > —5 ae.te|0,T,], x €[0,L].
Let h := —u, — bx. Hence we can get the existence of solution to (1.7) satisfying

(1.13) and the regularity stated in Theorem 1.1.

Step 2 (Uniqueness). Now we assume /1, hy are two solutions of (1.7) satisfying
(1.13) and the same regularity stated in Theorem 1.1. Subtract #;-equation from /-
equation and multiply &1 — &7 on both sides. Then integration by parts shows that

d L ) L
Ff (h1 = h2) dx=/ (h1s — hao)(hy — ) dx
t Jo 0

L on 1
= / __H(hlx - h2x)(hlxx - h2xx) + [ 3h1x + — hlxx
o L h

1x

1
- (3h2x + _) h2xx](h1xx — hoxy) dx
h2x

Loy (3.24)
‘/OA —TH(hlx - h2x)(h1xx - h2xx)

2x

1
=+ <3h2x + I’l_> (hlxx - h2xx)2

1 1
+ <3h1x + ]’l_ —3hpy — /’l_> Rixx(Mixx — hoyy) dx

1x 2x

=L+ DL+

Since

1
3hoy + — = —24/3, dueto hyy <O, (3.25)
2x

the second term on the right-hand side of (3.24) is strictly negative, which will be
used to control the other two terms. For 1, notice the property of Hilbert transform
I|H@)|lLr < cllullrr for 1 < p < o00; see Butzer and Nessel (2011, Proposi-
tion 9.1.3). We can use Young’s inequality and interpolating to obtain

L
1
In< /O 30— o) + ey — )P d. (3.26)
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To estimate I3, first notice that /11, is bounded by ||/21(0)|| =2 and that
B B
|hlx| > _5 >0, |h2x| > _5 >0,
due to (1.13). Hence

L

1 1 2

/ [<3h1x = 3hyy + — — 7) hlxx] dx < C(B, 1h1 O) [lyym2)(h1x — hox)? dx,
0 hix  hox

where C(8, ||h1(0)||ym.2) depends only on B, ||/21(0)| ym2. Then Young’s inequality
and interpolating show that

L
1
hfl;CwWMQWWMWH—Mﬁ+ZmUx—MmPM7 (3.27)

where C (B, ||h1(0)]ym2) depends only on B, ||/1(0)] ym2. Now combining (3.25),
(3.26), (3.27) with (3.24) leads to

d L L
51/(m—h»%uscwmmmmmmy/(M—hg%m
tJo 0

Then by Gronwall’s inequality, we have

L L
fo (1 — h2)*dx < C(B, [h1(0) || yn.2, Tm)/o (h1(0) — h2(0)*dx,  (3.28)

where C(B, ||h1(0)|lym.2, T) depends only on B, [|1(0)|ym2 and T,,. This gives
the uniqueness of the solution to (1.7). O

3.1 Stability of Linearized ¢-PDE

Now we set up the stability of linearized ¢-PDE under assumption

he(0) € WI2(I), he(0) <28 <0,

perg

with m > 6.
Recall Theorem 1.1 and Proposition 2.5. There exists 7;, > 0, such that

¢ (a, 1) € L=([0, T,1; W&SO(O, 1)) (3.29)

is the strong solution of (2.13) and there exists constants m1, m > 0 such that

$o <—my <0, |9V <my i=1,...,6. (3.30)
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Recall Eq. (2.13):

_ - 1 SFE
Or = —Paixx = —0q ((P_a (E)Ot) s

SE 2w /‘ (@) —d(B)) boa  ,Paa
cot ——————~ -3
0

where

s¢ L2 Py L a6 - 92 o8
We want to show that the linearized ¢-PDE is stable, which will be used in the con-
struction of high-order consistency solution (Sect. 6.2).
For ¢, ¢ satisfying Eq. (2.13), set ¢ + ey = q) Denote

A=—

1 _
Gua _bo _PV / oo TO@ — 0B o 331)

w2 et L

1 2¢qq 12¢aa>
B = —— aa + o
( 2 %) v ( 0 e )Y

2 b
——PV/ sec” —(¢(@) —d(BNW (@) —¥(A)dp.  (3.32)

and

L3

So the linearized equation of ¢-PDE (2.13) is

Y 04 B
R (—d)—gaaA 1y ) . (3.33)

Proposition 3.2 Assume ¥ (0) € Lper([O, 1]) and m1, my > 0 defined in (3.30). Let
T > 0 be the maximal existence time for strong solution ¢ in (3.29). The linearized
equation (3.33) is stable in the sense

G Dz, qo1y = COn,ma, T) Y G Oz, o1y fort €10, Tl (3.34)

where C(m1, my, Ty, is a constant depending only on my, my and T,.

Proof Step 1. We perform without the Hilbert transform term i—’; PV fol
cot M dB. Then A, B in (3.33) become

A= Qo 3Pu

2 4
¢0{ o

I 2ea 1200
B‘z(_% ¢4>V’“‘” <¢3 S )‘”"'

and
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Because ¢ is 1-periodic function with respect to o, we have

w=se(gaa(3)-(3),7)
U ¢ $a)  \$u)q
B Wa ¢Oll1 )
= — Oyu Oy Ay — —B
() (& 22
1 2000 | 12¢0a
o [<_¢_2 ) ¢>_3) ot A )”
Pua 3%) < 2500 1204, ) }
+ aa oo - +
[( o o8 v o 4 s Ve
Multiplying both sides by ¥ and integration by parts show that
: (v 3 3¢aa | 15¢aa
[ vomsa= | [(?f@)‘”g“_( ) v

202 12¢2 Agy
+ ( zg“ + ng““ — ¢—§> 1//3] da. (3.35)

From Young’s inequality, for any §, ¢ > 0, we have

|
VaaVe < eViy, + EI/"%" (3.36)

1 1
/ ¥ da 5/ (awﬁa + igﬁ) da. (3.37)
0 0 46

Note that ¢,, is negative and from (3.29), (3.30), we know

1+3< 1+1
5 o=\l )

Now choose ¢, § in (3.36) and (3.37) such that the last two terms in (3.35) can be

and

controlled by fol — (m% + #) w§a+C(m1, m2)1//2 da. Therefore combining (3.36),
2 2
(3.37) and (3.30), we have

1 1 1
i/ wzda—l—C(mz)/ W2 dagf C(my, my)y? da, (3.38)
dr Jo o 0

where C(m3), C(my, my) > 0 are constants depending on m1, m,.

By Gronwall’s inequality, we finally achieve the stability for v in the sense of
(3.34).

Step 2. If we consider Hilbert transform, then A, B are defined in (3.31) and (3.32).
First notice that change of variable from 4 to ¢ does not affect the Cauchy principal
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value integral and that 4, < 0. Then for any « € [0, 1], by variable substitution, we
have

PV[1 Zcot(l (¢ () —qj(ﬁ))) dg = —PV/1 > ! g
o L \L B 0 S o(B) —¢a) — kL

+oo 1 oo g,
S Y T

—0 Q(B) —d(@) oo YT X
Lk h L _
:PVZ/2 y dy:zPV/Zhycot<un> dy
rep ) -hkL Y — X L -L L
=-—nmH(hy) o,

(3.39)
where we used the relation for Hilbert kernel

1 T T
Z :—cot(—x).
X+ kL L L

keZ

Hence
1
(PV/O cot %(qb(a) —¢(B)) dﬂ) = —L(H(hxy) 0 $)Py

is L? bounded due to the property of Hilbert transform H (#), = H (u,) foru, € L?
with 1 < p < o0.
Second, using the periodicity of y, integration by parts shows that

T ! 2 T
ZPV/ sec” —(@(@) — ()W (@) — ¥(B)) dp
0

oy /1 o T8 @ — 6(p)) [_ Ve W@ = ¥(B)u (ﬂ)] a8
=, L $%(B) ¢z(B) '

For any ¢ > 0, by Young’s inequality, we have

1 1
/0 PV/O Voo (@) (Y (@) — Y (B)) sec” %(¢>(a) —¢(p))dBda

1 1 1 B
528/ wﬁada+£/ [PV/ cot T@ — 9(P))
0 g Jo 0 L

( Ve (B) (w(a)—W(ﬁ))%a(ﬁ)) ]2
x| — - dg| da.
b5(B) $2(B)
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Similar to (3.39), we have
. /1 o TG @ — $(B) (_ V(B (W(a) = 1//(ﬁ))¢aa(ﬂ)> as
0 L o2(B) 2(B)

= |:H <—I//—;{oh> <¢aa3w oh) +1/I(0t)H<_¢;m oh)i| o¢.
é o b
Then notice the property of Hilbert transform ||H (u)|zr < cllullLr for 1 < p <

oo; see Butzer and Nessel (2011, Proposition 9.1.3). For any ¢, 5 > 0, by Holder’s
inequality and interpolating, we have

1 1
/OPV/O %a(a)(w(a)—w(ﬁ))secz%(rﬁ(a)—¢(ﬂ))dﬂda
! c ! VYo Pua Paa 2
525/0 wgadaJrg/O [H(—th)+H< Py oh)+w( )H( Py oh>:| o ¢ da

1 2 2 2 1
o [ visger [ [0 e o ([ i) ([ o)
1 1
5(28+§)/ wgada+M/ V(@) da
& 0 85 0

where C(m1, my) depends only on m, m,. Here we used variable substitution twice
and (3.30).

Then we can perform just like Step 1 to get (3.38) and complete the proof of
Proposition 3.2. O

4 Modified BCF-Type Model

We want to rigorously study the continuum limit of a BCF-type model and figure out
the convergence rate. From now on, we assume the initial data x; (0) satisfying

x(0) < xi41(0), fori=1,...,N. .1

As mentioned in Introduction, we need to modify the ODE as follows

ﬂ:l<f"“_f"_f"_f”> i=1,...,N 4.2)
a

dr Xipl —Xi  Xp —Xi—]

where the chemical potential

B Z < 1 1 ) . a? a?
CXj X Xipl —Xi  Xj —Xj—] (i1 —x)3 i —xim3 )

4.3)
fori = 1,..., N. Notice (4.2) with (4.3) is exactly the ODE (1.8) with (1.9), so we
refer to (4.2) in the following.
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From now on, keep in mind the relation between the Hilbert kernel and Cauchy
kernel is

1 b4 b4
3 kL::Zcm<Zx>. (4.4)
keZ X+
The corresponding energy is

— Xi+1

. a? 1 >
2 (% — xi41)?

4.5)
Since as a — 0, we have x; = O(a), so the contribution of the various terms in E N
is on the same order.

EN .= 42 Z %ln‘sin<%(xj—x,)’+a2(

1<i<j<N

We have
fN_laEN
"Ta ox
and energy identity
dE (fis1 — f)?
+ =0, (4.6)
Z Xi+l — X

which is analogous to (2.17).

We will first study some properties of (4.2) and obtain the consistence result
in Sect.5. Then we construct an auxiliary solution with high-order consistency in
Sect. 6.2, which is important when we prove the convergence rate of the modified
ODE system. After those preparations, the proof of Theorem 1.2 will be given in
Sect. 6.3.

4.1 Global Solution of ODE

In this section, we will prove that for any fixed N > 2, the ODE system (4.2) has a
global-in-time solution.

Proposition 4.1 Assume initial data satisfy (4.1). Then for any N > 2, the ODE
system (4.2) has a global-in-time solution.

Proof Let Tax be the maximal existence time. Then if Ty,x < +00, from standard
extension theory for ODE, we know either two steps collide, i.e., there exists i such
that x; (Tnax) = Xi+1(Tmax), or step reaches infinity, i.e., x; (Tjhax) = +00.

Denote

Lin(t) = riI;iI{Tl{xi+1(l) —x;i (D)},

and we state a proposition that we have a positive lower bound for €,,;, (). We will
prove this proposition later.
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Proposition 4.2 For any N > 2, assume initial data satisfy (4.1) and system (4.2)
has initial energy E™ (0). Then for any time t the solution of (4.2) exists, we have

Lmin(t) = C(N) > 0,
where C(N) is a constant depending only on N.
By Proposition 4.2, we have

Linin (Tmax) > , li;n Lnin(t) = C(N) > 0,

max

which contradicts with x; (Tax) = Xi+1(Tmax)-
On the other hand, combining Proposition 4.2 with Eq. (4.2) gives

max |x;| < C(N),
1<i<N

where C(N) is a constant depending only on N. Hence there will be no finite time
blowup and we conclude Trax = +00. O

Proof of Proposition 4.2. First from (4.6), we know, for any time ¢ the solution exists,
EN(t) < EN(0).
Let 0 < ¢* < 1 small enough. Then

2 b4 1a? N
—cot —f — —— <0, forO <t <¢*.
L? L 203

Thus, at least for 0 < £ < min{¢*, %}, we know

© =21 ( ”e)+a2
= —In(sin — —
§ L L) 7" a2
is positive, i.e.,
2 sinZe L 2
— Insin — — > 0.
L L 42
Hence
2l . nZ—i— a? a?
— Insin — —_— > —
L L 202 7 442
and

2 In (sinnk) In ¢ + a’ > a’ +Ina > co(N)
- —L) — — — > — a>c ,
L L a) 227 a2 =0
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where co(N) is a constant depending only on N. Then we obtain

2 Nz a? N(N -1
EN > 2 [L In (sm (zzmin)) ~ (i) +Ina+ o + < (N-1) 1) CO(N)}
min

2

4
>
- 2

min

+c1(NV),

where c¢1(N) is a constant depending only on N.
Therefore we have

L <cw, BV,

min
where C(N, EN(0)) is a positive constant depending only on N and initial data.
So we finally get

. L . 1
Limin = min E»Ey— .

VCN, EN(0))

5 Consistency

In this section, we study the local consistency between exact solution ¢ of Eq. (2.13)
and solution x of Eq. (4.2). From now on, we always assume there exists a constant
B < 0 such that the initial data satisfy

he(0) € WD), he(0) <28 <0,
withm > 6.

From Theorem 1.1, we know there exists T,, > 0, for ¢t € [0, T,;], h(x,t) €
L*°([0,T7; Wg,ff’ (R)) is the strong solution of (1.7) and

he < B <O. 5.1

Also by Proposition 2.5, we know ¢ («, t) is the strong solution of (2.13) satisfying
(3.29) and (3.30).
Denote

_ 2 a 1 1
fii= _z;(ﬁj — ¢ * (¢i+1 — ¢ ¢ —¢i—1>
(5.2)

(12 (12
* <(¢>,~+1 6 @i ¢i_1>3> '
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The main result in this section is Theorem 5.1:
Theorem 5.1 Foralli =1,...,N, let f_l be defined in (5.2), and

¢Ot0(
2(])2

vi(a; @) == —

VigPaa Ulaa) (@). (5.3)

(@), rola; @)= <¢—§ 'y

Then we have

%_1<ﬁ‘+1—fi _ fi—fi
dt div1 — @i i —di

) +ro(eis p)a+ Ria®, t€[0.T]. (5.4)

and
Iro(eis 9 = CB. 1RO w2y, 1Rl < CB, IAO) Iyragy)s  (5.5)
where C (B, ||h(0)||W7,z(1)) depends on B, ||h(O)I|W7,z(1), and R; is defined in (5.35).

In addition, we have
dEN (¢) fiv1— fi
& T > ( ) = Ca.

i=l

To achieve this goal, first we need to set up some notations and lemmas.
From (3.29) and (3.30), there exist constants ¢y, ¢ > 0, such that

cla < ¢iy1 — ¢ < coa. (5.6)

Denoting

Fi:=l<ﬁ+1_ﬁ_ﬁ_ﬁ—l>, 5.7)
div1 — i i —di

we want to estimate the difference between F; and %. From PDE (1.7) and (2.10),

we have
i (—%’H(hx) + (,,l + 3hx> hxx>

dt hy

XX

(5.8)

[

The main task is then to calculate the term F;. Let us first estimate f; till order a
accuracy by writing B
fi=hi+ L+,

where

2
hi = _sz), =__ZZ ¢,+kL

J#i keZ j= 1
J#i
1 1 5.9)
12,1 = - 9
Giv1 —¢i G —di1
02 (12
I =

Bie1 — )3 (¢ —pi-1)®
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To simplify notations, we will henceforth denote

@i = @(X)|x=x;-

Next, we state four lemmas to estimate Iy ;, I»;, I3; one by one, from which we
know O (a) error only shows up when estimating the first term /; ; in Lemma 5.6.

Lemma 5.2 Let I ; be defined in (5.9) and vy be function of o defined as

A <1 @ 1,
n(a; @) = — +—F 5P — =9 . (5.10)
1292~ ¢4 \37" 4o
Then we have
hyx . 2
Li=—| “+uve;p)a”+ Rai, (5.11)
ha o

where |Ryi| < a*C (B, |h(0)ly7.2(p))-
Proof Notice we have

1 1 1 1 s 1
Gie1 = 9 — uiat 5 Gunia” — §¢§ )a3+4—!¢§ Ja* — §¢>§ 'a® + G0 0@,
(5.12)

1 1 1 1 s 1 _
9i-1 = @i + Guia + S funia’ + 5«»} )a3+4—,¢§ ’a4+§¢§ 'a® + 0@,

(5.13)
where 1 € [oy, aj11], £ € [o_1, a;].
Hence using (2.10), we have
1 1
L= -
Giv1 — i i — Pi-1
2¢i=¢it1=¢i—1
(¢i+l*¢i> (¢i*¢i—l>
a a
1 1
= <—¢w,,- - 5#0a = @ OE) + ¢ (S))a“)
1
i + dbuia — 58002 + 5oV} — LoOat + Lo© EH)as
o, T 5 Poa,i 319i P 51 6!
1

1 1.3 1,4 1 1 _
~ui = Puaia — 5 @ — §i6Va} — §$Dat — F© (E)ad

~Puai — 30V — L@OE) + 6O E))at
(b2, + Ai(ai; p)a® + Az ia*)
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_¢0wt> ¢(4) ¢0wt 2 4
= +| -5+ 541 ¢ +Asa
( 92 )i\ 1262 0i") ’

h) oY fua ) 4
=|\—=5) +|-—=5+-5A41) a°+ A3,a",
<h£ ; 2¢;  ¢u ), ’

where
Al(a; @) = §¢a¢ — g% lA2il =c lAsil =c.
Denote "
et ¢) = — & )2 ey, (5.14)
12¢5 ¢
and we complete the proof of Lemma 5.2. O

Now we claim an approximation for periodic Hilbert transform.

Lemma 5.3 Forany ¢(o;),i =1,..., N, we have

a Gaa

17T T N M3 T
PV/O Teot (T@@) —9@)) da = jg:laz cot (L@ (@) = 0)))+5 75 +Ru
(5.15)

where Ry ;| < a*C (B, |h(O)lyr2(7)).

Proof We use the Euler—Maclaurin expansion in Sidi and Israeli (1988) to estimate
R1 ;. Without loss of generality, we assume i = 1, ..., N — I, thatis o; # 0, 1. For
i = N, we can change interval [0, 1] to [—a, 1 — a] due to periodicity. Using (4.4),
we can see

v [ oot (% ) d
/Ozcot(z(qs(a)—mal))) @

1
=ZPV/ ! do
2y gte) — glan) kL
! 1 ! 1
=PV —d d
| o= °‘+k€ZZ/o $(@) — plar) kL
k0
=T+ 1.

Denote

N N—-1 1
FLBi=D Bty ) B
j=0 j=1

j=0,N

First we recall Theorem 1 and Theorem 4 in Sidi and Israeli (1988) as follows:
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Theorem 5.4 (Theorem 1 of Sidi and Israeli 1988) Let function g(x) be 2m times
differentiable on [0, 1]. Then

/ g(x)dx = a* Zg(x,>+z 2"[ @D =06 4 Romlg: (0, D],
0

where

! BZm[ ] By
. _ 2m (Zm)
Romlg; (0, D] = a /0 —(2m)‘ (x) dx,

By, is the Bernoulli number, and Bu is the periodic Bernoullian function of order 1.

Theorem 5.5 (Theorem 4 of Sidi and Israeh 1988) Let function G(x) be 2m times
differentiable on [0, 1], and let g(x) = x) . Then

N

I
/ ¢@dr=a* 3 g(x))+aG’ (t)+z 2u[ @) r=01,20
0 .

J=0,x#t

+Ramlg; (0, D],

where

~ 1B, [X1— B
Romlg: (0, )] = a® PV / Dol = Bom oy (.
o Qm)!

For the nonsingular 7>, we apply Theorem 5.4 to obtain

# ,By d 1 a=0
é[“( Z¢(a]>—¢<a,>+kL)+“ 2 da <¢><a) ¢(a,)+kL> +”‘(k)]
k0

(5.16)
where

) _' UB4] - By dt ! g ‘
ler (k)| = /0 41 W(q&(a)—qﬁ(ai)-i-kl‘) *

<c

ot (sersmrrar)
max —- .
~ ael0.1] da* \ (o) — ¢ (a;) + kL

(5.17)
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Due to ¢y (1) — ¢, (0) = 0, the second term in (5.16) becomes

B, d 1 =0
LY N
= 2 da \¢(a) — ¢p(a;) +kL )|,y
k£ (5.18)
B 1 1
= Z _¢(¥ (O) 2 2 .
= 2 (kL — ¢(i))=  (L+kL — ¢(ci))
k#£0
To estimate the last term in (5.16), since maxqeo,1] ddT; (m) in (5.17)
is summable with respect to k, we get
Y e1®)] < CB MOy (5.19)
keZ
k#£0

a—q;

Now we deal with the singular term 77. Denote G(«) = P@—p@) Applying
Theorem 5.5 to

I F@—o@ _ !
o — o — ¢ (o) — Pplo)’
then we have
# al 1 a Gaa
Ty =a — | —
Lol =) | 262,
B, d 1 =0
222~ (—) + a*es, (5.20)
2 da \¢(a) —p(@i) ) |4—i

where

ey = PV/1 —34[%] _ B4d—4 (—1 ) do
SRR 4 do* \p(@) — o)

Due to ¢y (1) — ¢4 (0) = 0 again, the third term in (5.20) becomes

a=0

P &i(—l )
YT da \p@) —gan /|,

_ By (0)( 1 ) (5.21)
2 7T (= (@i))? (L —p(i))?) '
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Without loss of generality, we can also assume «; < % Denote p(x) := w,
we have
1 4
d G(a) — G(o; G(o;
62:PV[ P(Q)W< (Ol) (051) + (Olz)> do
0 o o — o — o (5.22)

1 d* 1
< CB. 1hO)llwr.2¢1y) ~|—PV/0 cp(ot)w< ) da,

o —

where we used the differentiability of G («). For the last term in (5.22), since «; is the
singular point, we do variable substitution to obtain

! a* 1
PV —|—]d
/0 cp() do? <Ol - Oli) *
1—q; d4 1
:PV/ cp(o;+ot,~)—4 (—) da
—a; do* \

o 1 1—(3{,‘
=PV/ cp(a+ai)—5da+/
o

—a; o

1
cp(a + ot,-)—5 do
o
1—a; 1
= / cp(ot—l—otl-)—5 do.
a; o

Here we used

due to ‘% is integer. Since By (x) iseven, cp(a + oc,-)o%5 is odd, so the Cauchy principal

value integral PV /‘ilx, cp(a + Ot,-)w]—5 de is zero.
Hence we get
le2] < CB, 1RO lwr2(p))- (5.23)

On the other hand, (5.18) and (5.21) show that

B 1 1 -0
L+ Ko=) )((kL—¢(ou))2 B (L+kL—¢<a,-)>2> o

keZ

Denote e := ZkeZel (k) 4+ e2. Combining the calculations for 7 and 7>, we obtain
k#0

U i X 7 7
PV/O I cot <Z (P(a) — qb(a,-))) da = j#%::] az cot (Z (¢j - ¢(Ofi)))
a o

4
+ea’,
2 ¢2

o
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with le| < C(B, [[h(0)|ly7.2¢;)). This concludes (5.15) and [R;;| < a*C (B,

12O lw7.27))- o

Notice that change of variable from / to ¢ does not affect the Cauchy principal value
integral and that 4, < 0. Then similar to (3.39), by (4.4) and variable substitution, we
have

PV/1 zcot(z (b () —¢(a))) do = —PV/1 3 ! d
o L \L T a 0 & ¢(e) —¢lai) —kL

+o00 1 +o00 h
:_PV/ —da:PV/ ~— dx
—00 ¢((¥) _d)(ai) o X — ¢
Skl L o
:PVZ/_Z x dx:%PVf_z hxcot(x L¢ln)dx

to )Lk X — @i
= —mH (hy)lg;

L
2

This, combined with Lemma 5.3, leads to

Lemma 5.6 Let I ; be defined in (5.9) and v\ be function of o defined as

Do
vi(a; @) i= — . (5.24)
Lg2
Then we have 5
Vs
;= _TH(hx) +vi(i; P)a+ Ry, (5.25)
[
with |Ry ;| < a*C(B, |hO)lly.2())-
We now turn to estimate /3 ;.
Lemma 5.7 Let I3 ; be defined in (5.9) and v3 be function of o defined as
53 lg2p 4o (©)
v3(a; @) = 2Pue ~ 39a® < Pataud . (5.26)
bq
Then we have
Bi = 3hychelg, + va(ais ¢)a” + Ra, (5.27)

where |R3 ;| < a*C(B, [R(O0)[ly72(7))-
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Proof Using (2.10) and Taylor expansion, it is similar to the proof of Lemma 5.2 that

I =a2< ! - ! )
' (Dig1 — i) (i —dic1)?

_ W%M ' <¢i — i1 )2 N <¢i+l —¢i)2 . <¢7i _Qbi—l) <¢i+1 —¢i)
(¢i+1—¢1)3 (¢z_¢i71)3 a a a a

a

(~buwi = 180 = §@OEN) + 0O € Nat) (362, + Bria® + Bria?)
@S + Cria® + Cyat
_ 3Pua 7%‘?2& — %¢§¢(4) + 2¢a¢aa¢(3)
e )t 9
¢gza - %¢§¢(4) + 2¢0{¢a0{¢(3)
g ]

a’+ C3,,-a4
i

_5
= Bhyxhy)i + [ 2 a? + Cya*,

i

where
@10
B = | ¢u9 +Z¢°‘°‘ . Bl <,
i

3
cl,,~=<—z¢3¢§a+¢2¢@>>, |Cail <¢, |Cail <c.

i

Denote

_%¢2a - Z11¢¢%¢(4) + 2¢a¢wx¢(3)
S '

We conclude the proof of Lemma 5.7. O

vi(a; @) =

Denote

2 h
A(x; h) = (——”H(hx) + 3hychy + ) (x), (5.28)
L hy
and

Rs; '=Ry; + Ry; + R3;.

The above three lemmas yield

Lemma 5.8 For f; defined in (5.2), v\ defined in (5.24), v» defined in (5.10), and v3
defined in (5.26), we have

fi = A(is h) + vi(es; d)a + (v2 + v3) (s p)a” + Rai, (5.29)

where | Ry i| < a*C (B, [h(0)[lyr.2(p)).

Now we are ready to prove the main result of this section, Theorem 5.1.
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Proof of Theorem 5.1. Step 1. To calculate F; in (5.7), by (5.29) in Lemma 5.8, we
first need to calculate

Aig1 — A A — A
Giv1 —di i —Pi1

A Pt @ = i) @i ¢t = 200)

2 3l i
= —¢uiArx.ia + 2 P)a’ +r3a’,
(5.30)
where [r1 |, [r3.i] < C(B, |h(0)|lw72(s)) and

1
ra(a; @) = (—§¢<3>(Axx o¢) — 2¢a¢w) ().

Second, for any smooth function v(«) with respect to «, notice that

L3 e+ 3
Vil = Vi = Vi (X1 = &) + 2 Vi (i1 = )’ + o v ED@ip — i),
Lo 3
Vi) — U = Vg i(@i-1 — ;) + 2vaal(0¢z =) T E (o1 — ;).

Then for other terms in (5.29), we have

Vi+1 — Vi Vi — Vi—1

Giv1 — i i — i
_ Uikl =V higi —hi v —vic hi —hig
Aipl — & Pit1 — Qi A — i1 Pi — Pi—1

1 1 i i
= |:Ua,i - Evaa,ia + §U(3)($+)a2:| |:hx i+ hxx i ) +12 ¢ Poxx (77 V(i1 — ¢i)2]

1 1 _ ¢ i1
. . (3) 2 . 32
|:Ua,1 B Vaa,i 31 v (€7 )a :| |:hx,t hx» i B 31 hxx’c(n )i — di—1) :|

= ra(ai; p)a +rsa’

)

(5.31)
where [r5 ;| < C(B, [|h(0)lyr.21))s 1" € [is Giv1], N~ € [pi—1, ¢i] and

ra(et; ) = (”“;;““ ”‘“") @.

b
Denote
roe: ¢) = <”“"¢“°‘ - ”1—) @), (532)
02
and

ra: ¢) — <U2¢;§aa . U;;:a + U3¢;§aa . U;aot) (@) + ra(a; ¢) (5.33)
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Thus for F; in (5.7), combining (5.30) and (5.31), we get

Ryit1 —2R4 i+ Ry -1
o S (e () + 76,i)

F; =—@(@)+ro<a,~;¢)a+r(a,~;¢>a2+ :
Axx 2 2
= (¢>z) +rooy; da+r(a;; ¢p)a” + Rs ;ja”,

(5.34)
where |r6i| < C(B, |h(O0)lw72(;)), A(x;h) defined in (5.28). To obtain |Rs ;| <
Cc(B, ||h(0)||W7,z(,)), here we alsoused | R4 ;| < a4C(ﬂ, ||h(0)||W7,2(,)) due to Lemma
5.8.

Denote

R; i =r(ai; ¢) + Rs ;. (5.35)

For a small enough, we have |R; | < [r(a;; ¢)|+|Rsi| < C(B, [|h(0)|ly72(s))- Finally,
comparing (5.34) with (5.8), we conclude (5.4).
Step 2. Now using (5.4) and Lemma 5.8, we can claim

N
Z (F - —) = CB. NhOlwr2p). (5.36)

where C(B, |1(0)[ly7.2(7)) de_pends on B, [[1(0)[lyw7.2(z).-
From (5.36), multiplying f; in (5.4) and summation by parts show that

dEV Y (fin @) — fi9)’
@Dy (fﬁ.ﬁ _J;,.( ) < 6. IOl
i=1 ' '

Then by (5.6), we have

dEN (¢) +ai <ﬁ+1(¢> - ﬁ-(¢>>2

P ; = CB, 1hO)llwr2(1))a,

i=1

which completes the proof of Theorem 5.1. O

6 Convergence and the Proof of Theorem 1.2

In this section, our goal is to prove Theorem 1.2. The main idea is to first construct
an auxiliary solution with high-order consistency (see Sect.6.2) and then prove the
convergence rate for the auxiliary solution, which helps us obtain the convergence rate
for the original PDE solution.
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6.1 Stability of Linearized x-ODE

First of all, we devote to study the stability of linearized ODE, which is important
when we estimate the convergence rate for the auxiliary solution. The procedure here
is analogous to the stability result of linearized ¢-PDE; see Sect.3.1.

For vector x, y satisfying (4.2), set x = y 4 ¢z. We also assume y; (1) = ¢ (¢, 1),
and ¢ is the solution of (2.13) satisfying (3.29) and (3.30). Denote

1 a? 1 a’ 2
M; = + - — == . (6.1)
Yiel = Yi Qi1 = ¥yi)®  yi —Yi-1 (Vi = Yi-1) Vi T
and
T, = — Zi+1_Zi2_ a? Zi+1—Zi4 Zi—Zi—l2 342 Zi —Zi— 14
()’i+1 — Vi) Git1 = y)* (i —yi-1) i = yi-1)
a(zj —zi
2 Z @ ’2 (6.2)
]#l yj— )
Then z satisfies the following linearized equation
d 1 (T —T; T, —T;,_ 1 i
L= _( i+1 i L i 1) _[ Tit+l — 2(Ml+1 M;)
dr Viel = Vi Vi = Yi-l (Vi1 — yi)
Zi — Zi—1
— L (M - M- o} 6.3)
i — yi-1)

Proposition 6.1 Assume z(0) € 02 and my,mp > 0 defined in (3.30). Let T, > 0
be the maximal existence time for strong solution ¢ in (3.29). The linearized equation
(6.3) is stable in the sense

2Dl = COmy,ma, T)lzO0) 2, fort € [0, T, (6.4)

where C(my, ma, Ty;,) is a constant depending only on my, my and T,.

Proof Step 1. Similar to the proof of Proposition 3. 2 first we study the linearized
system for (4.2) without the Hilbert transform term — 7 Z A T . Thus M;, T; in

(6.1) and (6.2) become

M — 1 n a? 1 a?
YTy =y Qi =) yi—yict i —yim)¥
and
i+l — i 2 Zi+1 — T Zi —Zi—1 2 Zi —Zi-1
L 3 R e ——
Yit1 = ¥i) Yit1 — ¥i) i —yi-1) i —yi-1)
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Since z;4n = z;, multiplying both sides of (6.3) by az; and taking summation by
parts, we have

N

N N
. Zi41 — 3 Zi+l — <3
Yazizi=-Y LT =T+ Y Gig1 — 5) — o — (Mg — M;)
— — Vit1 — Vi — Vi1 —¥i)
i=l1 i=l1 i=l1
Tiyy _ T _n T
Vil i ViVl N ViVl Yitl Vi
a

N
:_aZZiH—Zi T_azzi-ﬂ_ziT a
a a a a

i=1 i=1

N 2

+“Z Zi+1 — Zi 1 Mt —M;
a Yi+1—YiN2 a

i=1 ( a )

=L+ 1L+

Next, we will estimate /1, I, I3 one by one. First we deal with

Titi T;

Vit1 Vi Vi Vi1
a

N . .
Il:—aZZl—H_Zl 2
a a

i=1

N Zit1—3Zi Zi—Zi—1

]‘i t+u Lo L ut
=a),
Yi—Yi—1 a

i=1 a

We can see

. — 27 . 1 2
2Zi+1 Zi +2i—1 3a

Ii=a 2 - 2= 7

a Yi+1 = i) Yi+1 — i)

N [ 1 3a% N 1 N 3a? ]z,- —zi-]
al — — .
Oit1 —y)% Qi1 —y)*  Oi—yi—?  Gi —yi—* a

Due to Young’s inequality, for any ¢ > 0, we have
N 2 N
Tigl — Zi+1 — 22i +2Zi-1
oY (BE) -t
i=1

i=1
N 2
1 i1 — 2z +zi—
<a —ziz te Zi+1 Zi +Zi—1 . 6.5)
: 4¢ a?

Besides, due to y; (r) = ¢ (a4, t), we have

[ 1 3a> N 1 N 3a? } a
al = _
Gie1 —¥D? Gier —yD* i —yi—D? i —yi—D ] yi — yie
< Co(my, my),
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< 1 3a? ) 5 a < _Clmy)
- - a = — my
Yiv1 —¥D?* Qg1 — yi)? Yi — Yi—1

for a small enough.
Then for I}, we have

Zigl =% _ Zi—Zi-1

N
§ : Tl a a
11 =a ——
Yi—Yi—1 a
i=1 a

3 Zivl — 22 +zio1 )2
Scl(ml,m2)a2zi2—ZC(mz)aZ(% .

i i

Let us keep in mind that functions, such as M;, involving only can be
bounded by a constant depending only on m21, my. Then similar to the estimate for /1,
together with (6.5), we have

Yi+1—Yi
a

a

1 Zig1 —2zi +zic1 )2
I, < Cy(my, mp)a ZZ% + ZC(m2)aZ ( s 21 l 1) )
i

i

and

1 Zidl — 22 +zi1\°
Iz < C3(my,mp)a Zziz-l-ZC(mz)aZ( i+1 21 i 1> .
i

- a
i

Here C;(m1,m3), i =0, 1, 2, 3 are positive constants depending only on m1, m>.
Combining estimates for /1, I>, I3, we have

dllz(@)113
dr

IC Zit1 —2zi +zi1 ) <C 2
+ (mz)aZ . < C(my, mo)|zll%.
1

a

Then Gronwall’s inequality yields (6.4).

Step 2. Now we consider Hilbert transform term —+ Zy. A T—m . Then the terms
M;, T; in (6.3) become (6.1) and (6.2).

First Lemmas 5.3 and 5.6 show that ), iy —42— can be estimated by C(m, m3)

and PVfO cot Z(¢p(a) — ¢(B)) dB.

Second, from the proof of Lemma 5.3, we knowa > i

C(mi, my) and PV [} sec? @@—BDT (y, (o) vy (8)) dB, where ¥ is the piecewise-
cubic interpolant of z.

Then using the same arguments in Step 2 of the proof of Proposition 3.2, we can
conclude (6.4). O

2j % .
G,y can be estimated by

@ Springer



920 J Nonlinear Sci (2017) 27:873-926

6.2 Construction of Solution with High-Order Truncation Error

From now on, we proceed under the same hypothesis of Theorem 1.2, i.e., we assume
for some B < 0, the initial datum /(0) is smooth enough and satisfies

hy(0) < B <0. (6.6)

By Theorem 1.1 and Proposition 2.5, for some constant m € N large enough, we
know there exists 7,, > 0, such that

¢ (o, 1) € C([0, T, 1; C™[0, 1]) (6.7)

is the strong solution to (2.13). Obviously, there exist M > 0, whose values depend
only on g and ||2(0)||ym.2, such that

$a < § <0, [P <M, forl<i<m. (6.8)

Recalling Eq. (2.13), we define F(¢) : C*°[0, 1] — C°[0, 1] as an operator

o= (3 ()
T \ge \89 )]

¢ = F(9). (6.9)

Then we have

For F; defined in (5.7), denote
Fy:={F,i=1,...,N}, rny(@) ={rolai;9),i=1,..., N},

where ro(c; ¢) is the function defined in (5.3). Then for ¢y = {¢;, i = 1,..., N},
Theorem 5.1 shows that

by = Fn(pn) + ry(d)a + 0(d?).

Now we want to construct y = ¢ 4 a/, for i satisfying the same regularity with
¢, such that y has a higher truncation error than ¢. In fact, we state

Proposition 6.2 Let T,, > 0 in (6.7) and ¢ be the solution of (6.9). Then there exists
Y smooth enough such that |V (-, )| 120, 17)is uniformly bounded fort € [0, Ty,
and

yia,t) =¢(a,t) +ay(a, t) (6.10)

satisfies the ODE system (4.2) till order 0(d"), ie., the nodal values YN =
{y(aj, 1), i =1,..., N} satisfy

v = Fy(yn) + 0(@@)). (6.11)

@ Springer



J Nonlinear Sci (2017) 27:873-926 921

Proof To simplify the calculation, first we show there exists i such that

yn = Fn(yn) + 0(@a?). (6.12)

For yy = ¢n +ayy, where ¥y is the nodal values of iy, Theorem 5.1 shows that

Fy(yn) = Fn(@n +ayn) = F($ + aP)lo=a; — rn (¢ + ap)a — 0 (a?).

Hence yy satisfies

IN — FN(N) = ayry + [F(¢) — F(@ + a¥)lla=a; + rn (¢ +ay)a + 0(a?).

Now by Proposition 3.2, we can choose i to be the solution of (6.9)’s linearized
system

Va do B
Y = —0 (——3 A+
t o ¢§ o ¢a
where A, B are defined in (3.31) and (3.32). After that, (6.12) holds.
To obtain higher-order truncation error construction, we can repeat above processes
to get higher-order corrections. We omit the details here. O

> —ro(9), (6.13)

6.3 Convergence of ODE and PDE System
In this section, we will combine above results and complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Assume ¢ is the strong solution of (2.13) satisfying (6.7) and
(6.8) with maximal existence time 7, > 0. Let 8, M be constants in Eq. (6.8). Recall
vector x(t) = {x;(¢); i = 1,..., N} is the solution of (4.2), and with slight abuse of
notation, denote y(¢) := {y(«;, t); i = 1,..., N} being the constructed vector value
function yy in Proposition 6.2. We will first obtain the convergence rate for x, y in
Steps 1 and 2, and then obtain the convergence rate for x, ¢ in Step 3.

Step 1. We first claim that under the a priori assumption

1x(6) — y(O) |l < a®F3, fort € [0, Ty, (6.14)

we have
lx(2) — y(®)llp2 < C(B, M, Tyy)a’, fort € [0, Ty, (6.15)

where C (8, M, T,;) is a constant depending only on 8, M, T,,. We will verify the a
priori assumption (6.14) in Step 2.
In fact, from Proposition 6.2, we know y has a’-order consistence error, i.e.,

d(y —x)

o = FvO) = Fy( + 0(@a).

@ Springer



922 J Nonlinear Sci (2017) 27:873-926

Denote the inner product for x, y as

N
(x,y) =Y _axiyi.
i=1

Then for 8, M defined in (6.8), we have

(x =y, % =)= (x =y, VENO)(x — »)) + (x — 3, (x = WVZEy) (x — »)7)
+C(B, M)(x —y,d’),

(6.16)
where C (8, M) depends only on 8, M.
For the second term in (6.16), we can see
2 T
(x =y, x =V Ny (x—y)7)
N
<llx=yllel Y @i =y =y Flle
i,j=1
1\ 2
2
(6.17)

N N
<lx=ylnlx = yles | DD D@ Fo?
1

k=1 \i=1 \j=

N N
DO @ F? |

i=1 j=1

2
< Il = ¥lZllx = ylle N max

where we used Holder’s inequality in the last step.
Now keep in mind that functions involving only
constant depending only on 8, M, and that

Yit1—Yi
a

can be bounded by a

‘ 1 1 1

< max{ , }.
Yj — Vi Yi+l —YVi Yi — Yi—1

We can start to estimate the term maxy ( /Y Zj (0 Fk)2) )

Fork =1,..., N, denote

k:_;[_ Yoy

Ykt — Yk G e e w

1 1 1
+ ( ) + )
V42 — Yk+1 Yk+1 — Yk Yk — Yk—1

+( @ ¢« )}
Ok+2 — k41 Ok — 90 Ok — w13 /)]
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Then Fi = 1(Qx — Qx—1), and

1
(3 Fo)* < ~1@; 01)* + (3 Qk-1)°1.

First calculate 0; Q, fork =1,..., N.

a [ 1 _ 1 } for 1<i<k-2,
Verl = e LG —wir)? i — )2 k+3<i=<N;
a [ 1 1 ]
Virl — Yk LOk—1 = nerD? k-1 — y)?
1 1 3a ..
3 + 7 fori =k —1;
Yi+1 — Yk Yk — Yk—1) Yi+1 — Yk (Vk — Yk—1)
a 4 8a2
Okt =903 k1 =% k1 — )
N Vk+1 — 2Yk + Yi—1 2 3(Vk+1 — Yi) — (Vk — Yk—1) N
asz— - > zfa 5 T fori =k;
k1 = Y)* Ok — Yk—-1) Ok+1 = Y=k — Yk—1)
a " 4 n 842
Ok+1 =Y Okt = 30> k1 — w)?
Vi+2 — 2Vk+1 + Yk 2 k2 = Yk+1) — 3(Vk+1 — Vi) . )
5 5 +a 3 4,forl_k-|—1,
k41 = V)" (Vk+2 — Yk+1) Ok+1 = Y= k42 — Yk+1)
a [ 1 1 ]
Ver1 = Yk LOks2 = yir1)? kg2 — i)?
1 1 1 3a? .
— 5 = e fori =k + 2.
Vi1 — Yk (Vk+2 — Yk+1) Vi1 = Vi (Vk+2 — Yk+1)
Hence
j=1-k=2k—-1 j=kk+1k+2 ...N—-1j=N
1 1 1
o()o o 0o o(k)o(L) o 0 0 o0
i =1 : 1 1
i 0 0 0 o(X)o(x) o 0o 0 o
. 1 1 1
: 0 00 ;3) 0 o 73) 0((73 0 0 0 0
k—2 1 1 1
. 0 0 0 0;4)0“7)0(“7) 0 0 0 0
1 1 1
0,0 = K 0 0 0 o(k)o(k)o(L) o o o o |
k+1 0 0 o0 o(X)o(k)o(k) o o o
k+2
ki3 | o 0 o o(k)o()o(k) o o o
0 0 0 0 o a%)o(a% 0 0(%)0 0
i=N 1 1
0 o ?) 0(73) 0 0 . 0
1 1 1
0 o ﬁ)o(ﬁ) 0 00(73)
where {0;; Ok} j=1,...k—2 and {0;; O }i, j=k+3,...,N are diagonal matrixes with O(a%)

main diagonal entries and the bold zeros 0 represent zero matrices with corresponding
dimensions.
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For Qk—1, we have a similar Hessian matrix. Notice that only three terms in one
row are nonzero and that only at most four terms in one column are of order ;—4 Hence
for a small enough, we have

1
max ZZ(aiij)z < C(,B,M)a—s'
Vi

where C (8, M) is a constant depending only on 8, M.
Then from (6.17) and the a priori condition (6.14), we have

1
(x —y, (x =NV EN(M & — ') < C(B, M)a3||x — yf.
Combining this with (6.16), together with linearized stability in Proposition 6.1, gives

dllx = ylI2,

o = CBM)x =yl + CB, Mya’|lx =yl

Therefore by Gronwall’s inequality, we obtain
Ix(0) = yOll2 < CB, M, T)(IX(0) — y(O) |2 +a”), fort € [0, T,], (6.18)

where C (B8, M, T,,) is a constant depending only on 8, M, T,,. We choose initial data
of y such that y(0) = x(0), so (6.18) leads to (6.15).

Step 2. Now we need to verify the a priori assumption (6.14) is true for ¢ € [0, T;,].
In fact,

lx(@) — y®)ll2

Ja

for a small enough, ¢ € [0, T,,]. Hence (6.15) actually verifies the a priori condition
(6.14).

Step 3. For the exact strong solution ¢ of (2.13), recall the nodal values ¢y =
{¢i, i = 1,..., N}. By Proposition 6.2, we know that the constructed function y in
(6.10) satisfies

1 1
lx () — y(@)llee < <C(B, M, Ty)a"7 « a3,

[y(@) = én Ol = llayn @2 < ca, forz € [0, T,

where we used 1 (¢), defined in Proposition 6.2, which is uniformly bounded. This,
together with (6.15), shows that

lx(@®) —dn D2 < x@) —yDll2 +y(0) —dNn DOl 2 < C(B, M, Tin)a, fort € [0, Tl

(6.19)
where C(B, M, T,,) is a constant depending only on B8, M, T,,. This completes the
proof of Theorem 1.2. O
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