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Abstract. We prove the existence and uniqueness of positive analytical solutions with

positive initial data to the mean field equation (the Dyson equation) of the Dyson Brow-

nian motion through the complex Burgers equation with a force term on the upper half

complex plane. These solutions converge to a steady state given by Wigner’s semicircle

law. A unique global weak solution with nonnegative initial data to the Dyson equation

is obtained, and some explicit solutions are given by Wigner’s semicircle laws. We also

construct a bi-Hamiltonian structure for the system of real and imaginary components of

the complex Burgers equation (coupled Burgers system). We establish a kinetic formu-

lation for the coupled Burgers system and prove the existence and uniqueness of entropy

solutions. The coupled Burgers system in Lagrangian variable naturally leads to two in-

teracting particle systems, the Fermi–Pasta–Ulam–Tsingou model with nearest-neighbor

interactions, and the Calogero–Moser model. These two particle systems yield the same

Lagrangian dynamics in the continuum limit.

1. Introduction. The complex Burgers equation arises, although in different ways,

from many different fields such as fluid mechanics, random surface minimizing prob-

lem, and Burgers turbulence in quantum chromodynamics, which always unveils some

mechanisms of singularity formations. We only list several examples here. [31] uses the

complex Burgers equation to construct a family of singular solutions to the zero-gravity
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water wave system. [11] uses the complex Burgers equation to study the limit shape and

singularity formations of random surface models. For other applications of the complex

Burgers equation such as singularity tracking in the evolution of the complex system and

the large-N limit of induced quantum chromodynamics, we refer to [9] and the references

therein.

In this paper, we study the complex Burgers equation with a force term γ2z on the

upper half complex plane C+ := {z : �(z) > 0}:
∂tg + g∂zg = γ2z, z ∈ C+, t > 0. (1.1)

Here, γ ≥ 0 is a constant. We use �(z) and �(z) to stand for the real and imaginary

parts of a complex number z, respectively.

Take the trace of a solution g(z, t) to (1.1) on the real line and there are two real

functions u(x, t) and ρ(x, t) such that

g(x, t) + γx = u(x, t) + iπρ(x, t), x ∈ R, t > 0, (1.2)

where π is the circumference ratio. If g(z, t) is a C+-holomorphic function, then we have

the following relation between u and ρ:

u(x, t) = (πHρ)(x, t), (1.3)

where Hρ stands for the Hilbert transform of ρ given by

(Hρ)(x, t) =
1

π
p. v.

∫
R

ρ(y, t)

x− y
dy, x ∈ R.

Take (1.2) into (1.1) and we obtain the following nonlocal partial differential equation

for ρ:

∂tρ+ ∂x[ρ(u− γx)] = 0, u(x, t) = (πHρ)(x, t), x ∈ R, t > 0. (1.4)

The equation for u can be obtained from (1.4) by the Hilbert transform (see (2.6)).

We refer to (1.4) as the Dyson equation which is a mean field equation for the Dyson

Brownian motion as described below.

The N ×N complex Hermitian matrices form an N2-dimensional linear vector space

over field R. Consider a Hermitian matrix-valued Ornstein–Uhlenbeck (OU) process

A(t) = (Ajk(t))N×N given by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dAjj(t) =
1√
N

dBjj(t)− γAjj(t) dt, j = 1, . . . , N,

d�Ajk(t) =
1√
2N

dBR
jk(t)− γ�Ajk(t) dt, j < k,

d�Ajk(t) =
1√
2N

dBI
jk(t)− γ�Ajk(t) dt, j < k,

(1.5)

with A(0) = 0. Here Bjj(t) (1 ≤ j ≤ N), BR
jk(t), BI

jk(t) (1 ≤ j < k ≤ N), are N2

independent standard Brownian motions in R. The eigenvalues λ1(t) ≤ · · · ≤ λN (t) of

A(t) form some real stochastic processes. By applying Ito’s formula to λj(t)(= λj(A(t))),

one can show that λj(t) evolve by ([7, 8, 29])

dλj(t) =
1√
N

dBj(t) +
1

N

∑
k �=j

dt

λj(t)− λk(t)
− γλj(t) dt, 1 ≤ j ≤ N. (1.6)

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



THE COMPLEX BURGERS EQUATION 57

This evolution of eigenvalues are referred to as the Dyson Brownian motion. One can

refer to [8,29] for more details about random matrices and the Dyson Brownian motion.

It is well known that the effects of the harmonic trap term −γλj(t) dt in the OU process

(1.6) can be reformulated into the case γ = 0, i.e., (1.6) without the trap term, by a

space-time rescaling. We describe this space-time rescaling for complex Burgers equation

below. Let g be a solution to (1.1) and set

g̃(w, τ )
√
1 + 2γτ = g(z, t) + γz, z =

w√
1 + 2γτ

, t =
1

2γ
log(1 + 2γτ ). (1.7)

Then, g̃ is a solution to the complex Burgers equation without the force term:

∂τ g̃ + g̃∂w g̃ = 0. (1.8)

Note that g̃(·, τ ) is a C+-holomorphic (C+-holomorphic) solution to (1.8) if and only if

g(·, t) is a C+-holomorphic (C+-holomorphic) solution to (1.1).

The mean field limit of the Dyson Brownian motion (1.6) yields the Dyson equa-

tion (1.4) ([2, 5, 25]), and (1.4) is a gradient flow in the probability measure space with

Wasserstein distance with respect to a free energy functional given by [1, Chapter 11]:

E(ρ(·, t)) = γ

2

∫
R

x2ρ(x, t) dx− 1

2

∫
R

∫
R

log |x− y|ρ(x, t)ρ(y, t) dx dy

=: Eh(ρ(·, t)) + Ei(ρ(·, t)). (1.9)

Here Eh is a harmonic trap energy and Ei is an interaction energy. Then, the Dyson

equation (1.4) is recast to

∂tρ− ∂x

ï
ρ∂x

Å
δE

δρ

ãò
= 0,

δE

δρ
=

γ

2
x2 −

∫
R

log |x− y|ρ(y, t) dy. (1.10)

With initial data ρ0 > 0 and ρ0 ∈ L2(R) ∩ C0,δ(R), Castro and Córdoba [4] proved

global existence and uniqueness of real analytical solutions for t > 0 to the case γ = 0 of

(1.4). This instantaneous analytical property is suggested by the gradient flow structure

(1.10). However, if there is x0 ∈ R such that ρ(x0) = 0, then the solution ρ will blow up in

Hs(R), s > 3
2 , at finite time [4]. Thanks to the transformation in (1.7), these two results

hold also for γ > 0; see Theorem 2.1 and Remark 2.1. Moreover, we prove the existence

and uniqueness of the global weak solution ρ ∈ L∞(0, T ;H
1
2 (R) ∩ L1

+(R)) to (1.4) in

Theorem 2.2. The global regularity or finite time blow up in the space Hs(R), s ∈ ( 12 ,
3
2 ]

remain open.

The steady state for the Dyson equation is given by Wigner’s semicircle law

μ1(dx) = ρ1(x) dx :=

√
(4− x2)+

2π
dx, (1.11)

which has compact support. Hence the solution ρ is not absolutely continuous with re-

spect to the steady state and the relative entropy method cannot be directly applied

here. There are two methods to prove the convergence of the solution ρ to its steady

state: (i) For strictly positive initial data ρ0(x) > 0, following the idea of [25] we prove

the pointwise convergence as t goes to infinity using an analytical method; see Appendix

A. (ii) Notice that the free energy E(ρ) given by (1.9) for the Dyson equation consists

of a harmonic trap energy Eh and an interaction energy Ei. Since Ei is convex along
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generalized Wasserstein geodesics and Eh is γ-convex along Wasserstein geodesics, the

standard gradient flow theory yields W2-contraction and hence the exponential conver-

gence to the steady state in Wasserstein distance (see Remark 2.4 and Carrillo et al.

[3]).

Consider the complex Burgers equation (1.1) with γ = 0. If g(x, t) given by (1.2) is

no longer a trace of a C+-holomorphic function, then the relation between u and ρ in

(1.3) does not hold. We need to treat u and ρ independently. Take (1.2) into (1.1), and

we obtain the following system on the real line:®
ρt + (ρu)x = 0, x ∈ R, t > 0,

∂tu+ u∂xu− π2ρ∂xρ = 0.
(1.12)

Unfortunately, for the Cauchy problem, the above system is ill-posed as described below.

We introduce the following system of conservation law with general constant α ∈ R:⎧⎪⎨
⎪⎩
∂tρ+ ∂x(ρu) = 0, x ∈ R, t > 0,

∂tu+ ∂x

Å
u2 + αρ2

2

ã
= 0.

(1.13)

Due to the relation between system (1.12) ((1.13) with α = −π2) and the complex

Burgers equation (1.1), in the paper we call system (1.13) the coupled Burgers system.

System (1.13) can be rewritten as the quasilinear system

∂

∂t

Ñ
ρ

u

é
+A(ρ, u)

∂

∂x

Ñ
ρ

u

é
= 0, A(ρ, u) =

Ñ
u ρ

αρ u

é
. (1.14)

The eigenvalues of A are given by u ±√
αρ, where

√
α =

√
−1

√
|α| = i

√
|α| for α < 0.

When α > 0, this system is a hyperbolic system of conservation laws. When α < 0 and

ρ 	= 0, A has two imaginary eigenvalues and system (1.13) is elliptic and has ill-posedness.

For α 	= 0, we set the eigenvalues as

f+ := u+
√
αρ, f− := u−

√
αρ. (1.15)

A linear transformation from the coupled Burgers system (1.13) shows that the eigenval-

ues satisfy the following decoupled Burgers equations:

∂tf+ + f+∂xf+ = 0, x ∈ R, t > 0, (1.16)

∂tf− + f−∂xf− = 0, x ∈ R, t > 0. (1.17)

When α < 0, (1.17) is just the conjugate of equation (1.16). When α = −π2, (1.16) is

exactly the complex Burgers equation (1.1) (γ = 0) on the real line.

For α > 1, notice that f± are Riemann invariants of the following system of isentropic

gas dynamics: ®
∂tρ+ ∂x(ρu) = 0, x ∈ R, t > 0,

∂t(ρu) + ∂x(ρu
2) + ∂xp = 0,

(1.18)

where the pressure p is given by

p(x, t) =
α

3
ρ3(x, t). (1.19)
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Formally, system (1.18) is a nonlinear transformation of the coupled Burgers system

(1.13) and it expresses in physics the conservation of mass and the conservation of mo-

mentum, i.e., m := ρu, for an isentropic gas system. In the quasilinear form, we have

∂

∂t

Ñ
ρ

m

é
+B(ρ,m)

∂

∂x

Ñ
ρ

m

é
= 0, B(ρ,m) =

Ñ
0 1

−m2

ρ2 + αρ2 2m
ρ

é
. (1.20)

The functions f± = u±√
αρ are also the eigenvalues of B. Notice that classical solutions

of the coupled Burgers system (1.13) are also classical solutions to (1.18). However,

when shock appears, shock speed for the coupled Burgers system (1.13) and (1.18) are

different. For smooth solutions of system (1.18), the following conservation of energy

holds:

∂tE + ∂x[u(E + p)] = 0, (1.21)

where the total energy density is given by

E(x, t) =
1

2
ρu2 +

p

2
=

1

2
ρu2 +

α

6
ρ3. (1.22)

Although there is no bi-Hamiltonian structure for the Burgers equation, we use the

decoupled Burgers equations (1.16) and (1.17) to construct a bi-Hamiltonian structure

for the coupled Burgers system (1.13) (see Theorem 3.1). Moreover, we obtain infin-

itely many conserved quantities for the coupled Burgers system (1.13). Bi-Hamiltonian

structures for system (1.18) and the p-system (which is the gas dynamics in Lagrangian

coordinates; see (1.23) below) are also obtained. To discover a bi-Hamiltonian struc-

ture or a Lax pair for an integrable system is very important. Indeed, according to the

fundamental theorem of Magri [18], any bi-Hamiltonian system associated with a non-

degenerate Hamiltonian pair induces a hierarchy of commuting Hamiltonian flows and,

provided enough of these Hamiltonians are functionally independent, is therefore com-

pletely integrable. For general discussions about Hamiltonian structures for systems of

hyperbolic conservation laws, one can refer to [22].

When α > 0, we establish a kinetic formulation for the coupled Burgers system (1.13).

Using the kinetic formulation, we define a class of entropy pairs to the coupled Burgers

system (1.13). Notice that our definition of entropies corresponds to the counterpart (in

the sense as explained in Remark 4.2) of entropies used in [15] for system (1.18). In [15],

Lions, Perthame, and Tadmor proved the existence of global entropy solutions to (1.18)

and that the uniqueness is unknown. In contrast, we prove the existence and uniqueness

of entropy solutions to the coupled Burgers system (1.13) (see Section 4.2). Moreover,

we show that an entropy solution to the coupled Burgers system (1.13) corresponds to an

entropy solution to the decoupled Burgers equations (1.16) and (1.17) (see Proposition

4.3). For more details on relations of entropy solutions and weak solutions to kinetic

equations, one can refer to [24].

We also derive the Lagrangian dynamics (see (5.11)) for the coupled Burgers system

(1.13), which resembles the gas dynamics in Lagrangian variables, or p-system [27]®
∂tτ − ∂ξV = 0,

∂tV + ∂ξp = 0,
(1.23)
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where τ (ξ, t) = 1/ρ(X(ξ, t), t) = Xξ(ξ, t) stands for the specific volume and ξ are the

Lagrangian labels. X(ξ, t) is the flow map according to velocity field u(X(ξ, t), t) (see

(5.5)). V is the velocity in Lagrangian variable V (ξ, t) := u(X(ξ, t), t) and p(τ ) = α/(3τ3)

is the pressure given by (1.19) (see more details in Section 5.1). The Lagrangian dynamics

of the coupled Burgers system (1.13) naturally leads to a spring-mass system (Fermi–

Pasta–Ulam–Tsingou model) such that each mass evolves by the elastic force between

adjacent masses that is in reciprocal proportion to the cubic of distances between the

mass and the adjacent masses (see (5.15)). Instead of the nearest-neighbor interaction,

if the mass interacts with all the other masses with the same manner, we obtain the

Calogero–Moser model with different coefficients. As it is known, the Calogero–Moser

model is an integrable systems with a Lax-pair; see [21]. An interesting fact is that the

continuum limit of the Calogero–Moser model gives the same Lagrangian dynamics of

the coupled Burgers system (1.13); see [19].

The rest of this paper is organized as follows. In Section 2, we prove the global

existence and uniqueness of real analytical solutions to the complex Burgers equation

(1.1) and the Dyson equation (1.4) (γ ≥ 0) with strictly positive initial datum ρ0 ∈
Hs(R)∩L1(R), s > 1/2. We also obtain the pointwise convergence to the steady state for

analytical solutions. Some explicit solutions are constructed by using Wigner’s semicircle

law, which converge to the steady state exponentially when γ > 0. The same explicit

solution is given in Appendix B by the Stieltjes transform of Wigner’s semicircle law

μ1. Moreover, we prove the global existence of weak solutions in H1/2(R) ∩ L1(R) for

nonnegative initial data. In Section 3, we construct bi-Hamiltonian structures for the

coupled Burgers system (1.13), isentropic gas system (1.18), and p-system (1.23). In

Section 4, we establish kinetic formulation for the coupled Burgers system (1.13) with

α > 0. The existence and uniqueness of entropy solutions to (1.13) are also proved. In

Section 5, we study the Lagrangian dynamics for the coupled Burgers system (1.13) and

explore the connection between the Lagrangian dynamics system and a Fermi–Pasta–

Ulam–Tsingou model with nearest-neighbor interactions. In Appendix A, we give the

proof of Theorem 2.1.

2. The complex Burgers equation and the Dyson Brownian motion. Recall

the Dyson Brownian motion (1.6). The eigenvalues λj given by (1.6) evolve by Brownian

motion, combined with a deterministic repulsion force that repels nearby eigenvalues

from each other with a strength inversely proportional to the separation. Notice that

system (1.6) can also be rewritten as

dλj(t) =
1√
N

dBj(t)− ∂λj
Φ(λ1(t), . . . , λN (t)), 1 ≤ j ≤ N, (2.1)

with potential function given by

Φ(λ1(t), . . . , λN (t)) :=
γ

2

N∑
j=1

λ2
j(t)−

1

2N

N∑
j=1

∑
k �=j

log |λj(t)− λk(t)|. (2.2)
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It can be proved that the eigenvalues almost surely do not collide with each other (see

[14,16,25]) and the solutions to system (1.6) exist globally. Hence, the empirical measure

μN (t) :=
1

N

N∑
j=1

δλj(t) (2.3)

is well defined for t ∈ [0,∞). One can prove that μN (t) converges to some probability

measure satisfying the Dyson equation (1.4) ([2, 5, 25]).

Next, we derive the complex Burgers equation (1.1) from the Dyson equation (1.4).

For f, g ∈ Lp(R) (p > 1), the Hilbert transform has the following properties (see, e.g.,

[23]):

H(Hf) = −f, ∂x(Hf) = H∂xf,

and

H(fHg + gHf) = HfHg − fg.

Applying the Hilbert transform to the Dyson equation (1.4) yields

∂t(Hρ) + πHρH∂xρ− πρ∂xρ− γ∂xH(ρx) = 0.

Moreover, for any function g : R → R, we have

H(xg(x)) =
1

π
p. v.

∫
R

yg(y)

x− y
dy =

1

π
p. v.

∫
R

(y − x)g(y)

x− y
dy +

1

π
p. v.

∫
R

xg(y)

x− y
dy

=xHg(x)− 1

π

∫
R

g(x) dx, (2.4)

which implies

H(ρx) = −‖ρ(t)‖L1

π
+

1

π
ux. (2.5)

Combining the above two equations, we have

∂tu+ u∂xu− π2ρ∂xρ− γ∂x(ux) = 0. (2.6)

Set

f = u− iπρ, u = πHρ.

Hence, f gives the trace of an analytic function in the upper half-plane. Combining (1.4)

and (2.6) yields

∂tf + f∂xf − γ∂x(fx) = 0, x ∈ R, t > 0.

This corresponds to the following complex equation in C+:

∂tf + f∂zf − γ∂z(fz) = ∂tf + f∂zf − γz∂zf − γf = 0, t > 0. (2.7)

By the linear transformation g(z, t) = f(z, t)− γz, we have

∂tg + g∂zg − γ2z = ∂tf + (f − γz)(∂zf − γ)− γ2z = ∂tf + f∂zf − γz∂zf − γf = 0,

which is the Burgers equation with force term γ2z (1.1). Moreover, from the above

computation we see that the Dyson equation (1.4) with γ = 0 is equivalent to the

coupled Burgers system (1.13) with α = −π2 and u = πHρ.
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2.1. Analytical solutions to the Dyson equation (1.4), convergence to steady state,

and finite time blow up. In this subsection, we prove the existence and uniqueness of

positive analytical solutions to the Dyson equation (1.4) with γ > 0 and initial datum

0 < ρ0 ∈ Hs(R) ∩ L1(R) (s > 1/2) by proving the well-posedness results for complex

Burgers equation (1.1). We also show the pointwise convergence to the steady state for

analytical solutions.

Let ρ0(x) > 0, and let ρ0 ∈ Hs(R) ∩ L1(R) with s > 1/2 be the initial datum for

the Dyson equation (1.4). The initial datum ρ0 can be extended to a C+-holomorphic

function by the Hilbert transform (also called the Stieltjes transform, Borel transform,

or Markov function) for positive measures:

f0(z) :=
1

π

∫
R

ρ0(s)

z − s
ds, z = x+ iy ∈ C+. (2.8)

Let

g0(z) := f0(z)− γz, z = x+ iy ∈ C+. (2.9)

Then, g0 is a C+-holomorphic function. Consider the following Cauchy problem of the

Burgers equation with force term γ2z in C+:®
[∂tg + g∂zg](z, t) = γ2z, z = x+ iy ∈ C+,

g(z, 0) = g0(z).
(2.10)

First let us list some simple estimates for the Dyson equation (1.4).

Fact 1 (L1-conservation law): ‖ρ(t)‖L1(R) = ‖ρ0‖L1(R).

Fact 2 (Second moment estimate): Multiplying (1.4) by x2 and taking an integral

yields
d

dt

∫
R

x2ρ(x, t) dx = 2π

∫
R

xρHρ dx− 2γ

∫
R

x2ρ(x, t) dx.

Notice from (2.5) that we have ∫
R

xρHρ dx =
1

2π
‖ρ‖2L1 ,

and hence
d

dt

∫
R

x2ρ(x, t) dx = ‖ρ0‖2L1 − 2γ

∫
R

x2ρ(x, t) dx,

which implies

m2(t) =
‖ρ0‖2L1

2γ
− ‖ρ0‖2L1 − 2γm2(0)

2γ
e−2γt ∀t > 0.

Fact 3 (L2 estimate): Multiplying (1.4) by ρ and integration by parts show that

d

dt

∫
R

ρ2 dx+ 2

∫
R

∫
R

ρ(x, t)
|ρ(x, t)− ρ(y, t)|2

|x− y|2 dx dy = γ

∫
R

ρ2 dx;

see more details in the proof of Theorem 2.2.

Fact 4 (Ḣ
1
2 estimate):

d

dt
‖(−Δ)1/4ρ‖2L2 + π

∫
R

(∂xHρ)2ρ dx+ π

∫
R

ρ(∂xρ)
2 dx = 2γ‖(−Δ)1/4ρ‖2L2 ;

see more details in the proof of Theorem 2.2.
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Fact 5 (Entropy estimate): Taking the time derivative to
∫
R
ρ log ρ dx and integration

by parts show that

d

dt

∫
R

ρ log ρ dx =

∫
R

∂tρ(log ρ+ 1) dx =

∫
R

−(ρHρ+ γxρ)x(log ρ+ 1) dx

=

∫
R

(Hρ− γx)ρx dx = −‖(−Δ)1/4ρ‖2L2 .

Fact 6 (Energy dissipation): Since the Dyson equation is a W2-gradient flow with

respect to the energy (1.9), we have the following energy dissipation property:

d

dt
E(ρ) =

∫
R

δE

δρ
· ∂tρ dx = −

∫
R

ρ

∣∣∣∣∂x
Å
δE

δρ

ã∣∣∣∣2 dx
= −

∫
R

ρ(x, t)
∣∣γx− πHρ(x, t)

∣∣2 dx.
Now we have the following theorem.

Theorem 2.1. Let γ ≥ 0, and let 0 < ρ0 ∈ Hs(R) ∩ L1(R) with s > 1/2. Then:

(i) The complex Burgers equation (2.10) has a unique C+-holomorphic solution g(·, t)
for t ∈ (0,∞), and ∂k

∂tk
g(·, t) is an analytical function of z on C+ for any positive integer

k and t > 0.

(ii) For any t > 0, the trace of f(z, t) = g(z, t) + γz on the real line gives a positive

analytical solution ρ(x, t) > 0 to the Dyson equation (1.4) with ρ(x, 0) = ρ0(x) and
∂k

∂tk
ρ(x, t) is an analytical function of x ∈ R for any positive integer k. The following

estimates hold:

(a) The total mass ‖ρ(t)‖L1 is conserved:

‖ρ(t)‖L1 = ‖ρ0‖L1 . (2.11)

(b) If x2ρ0 ∈ L1(R), then the second moment m2(t) :=
∫
R
x2ρ(x, t) dx satisfies

m2(t) =

⎧⎪⎨
⎪⎩

‖ρ0‖2L1

2γ
− ‖ρ0‖2L1 − 2γm2(0)

2γ
e−2γt, γ > 0,

m2(0) + ‖ρ0‖2L1t, γ = 0.

(2.12)

(c) The following energy dissipation holds:

d

dt
E(ρ) = −

∫
R

ρ(x, t)
∣∣γx− πHρ(x, t)

∣∣2 dx, (2.13)

with E defined by (1.9).

(d) If ρ0 log ρ0 ∈ L1(R), then the entropy θ(t) :=
∫
R
ρ(x, t) log ρ(x, t) dx satisfies

θ(t) ≤ γ‖ρ0‖L1t+ θ(0). (2.14)

(iii) For γ > 0, g(z, t) converges to the steady state:

lim
t→∞

g(z, t) = −
√

γ2z2 − 2γ ∀z ∈ C+,

and ρ(x, t) converges to the steady state given by semicircle law:

lim
t→∞

ρ(x, t) = ρ∞(x) :=

√
(2γ − γ2x2)+

π
∀x ∈ R. (2.15)
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(iv) For γ = 0, the solutions g(z, t) and ρ(x, t) converge to steady state after scaling

in the following sense:

etg

Å
etz,

e2t−1

2

ã
− z → −

√
z2 − 2 as t → ∞

and

etρ

Å
etx,

e2t − 1

2

ã
→

√
(2− x2)+

π
as t → ∞.

We remark that part (i) of Theorem 2.1 is derived directly by combining the solutions

given by [4] and the space-time rescaling (1.7) as described below. Consider the complex

Burgers equation ®
[∂τ g̃ + g̃∂w g̃](w, τ ) = 0, w ∈ C+,

g̃(w, 0) = g0(w) + γw,
(2.16)

where g0 is defined by (2.9). Castro and Córdoba [4] proved global existence and unique-

ness of the C+-holomorphic solution g̃ to (2.16) by the method of characteristics. For

t > 0, g̃(·, t) is C+-holomorphic. Hence, from (1.7) we obtain a C+-holomorphic solution

g to (2.10) with initial datum g0 and for t > 0, g(·, t) is C+-holomorphic. This proves

part (i) of Theorem 2.1. For part (ii), let

f(z, t) := g(z, t) + γz, z ∈ C+, t > 0.

Then, f is a C+-holomorphic solution to (2.7) with initial datum f0 given by (2.8), and

for t > 0, g(·, t) is C+-holomorphic. Consider the trace of f on the real line and define

f(x, t) := u(x, t)− iπρ(x, t), x ∈ R, t > 0.

Then, we have u = πHρ and ρ(x, t) is an analytical solution to the Dyson equation (1.4)

with initial datum ρ0. This proves part (ii) of Theorem 2.1.

Since, the acceleration of characteristics for complex Burgers (2.10) is not zero, which is

different with (2.16). This also brings some detailed information of solutions. Therefore,

for completeness and to unveil this information, we provide a direct proof for Theorem

2.1 in Appendix A.

Remark 2.1 (Finite time blow up). Note that condition ρ0 > 0 is essential to Theorem

2.1. Castro and Córdoba [4, Theorem 4.4, Remark 4.5] proved that if ρ0 ≥ 0 and ρ0 ∈
H2(R), then there exists a unique local solution ρ ∈ C([0, T ];H2(R))∩C1([0, T ];H1(R))

to (1.4) with γ = 0. Moreover, if ρ0(x0) = 0 = infx∈R ρ0(x) for some point x0 ∈ R, the

solution blows up in finite time (see [4, Theorem 4.8, Remark 4.9]). Precisely, along the

trajectories of characteristics X(x0, t) starting from x0, we have

X(x0, t) = Hρ0(x0)t+ x0,

and

∂xHρ(X(x0, t), t) → −∞ as t → t∗ := − 1

∂xHρ0(x0)
.

Due to (1.7), there exists a unique local solution ρ̃ to (1.4) for γ > 0 given by

ρ̃(y, τ ) = eγτρ

Å
eγτy,

e2γτ − 1

2γ

ã
, y ∈ R, τ > 0.
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Moreover, we have

∂yHρ̃(y, τ ) = e2γτ∂xHρ

Å
eγτy,

e2γτ − 1

2γ

ã
.

Let

t =
e2γτ − 1

2γ
, y = e−γτX(x0, t) = e−γτ

ï
Hρ0(x0)(e

2γτ − 1)

2γ
+ x0

ò
,

and

τ∗ =
1

2γ
log(1 + 2γt∗).

Then, we have

lim
τ→τ∗

∂yHρ̃(y, τ ) = lim
τ→τ∗

e2γτ∂xHρ

Å
eγτy,

e2γτ − 1

2γ

ã
= e2γτ

∗
lim
t→t∗

∂xHρ (X(x0, t), t) = −∞.

Hence, the solution to (1.4) with γ > 0 also blows up in finite time.

2.2. Explicit solutions to the Dyson equation (1.4) from semicircle law and exponential

convergence to the steady state for γ > 0. In this subsection, we give some explicit

solutions to the Dyson equation (1.4) by using Wigner’s semicircle law (1.11). When

γ > 0 the explicit solutions converge exponentially to steady state given by (2.15).

2.2.1. An explicit solution to the Dyson equation (1.4)with γ = 0. For γ = 0, notice

that
√
NA(t)/

√
t is a Wigner matrix (Hermitian matrix with i.i.d. entries which have

mean zero and variance one), where A(t) is defined by (1.5) with A(0) = 0. Let {λj(t)}Nj=1

be the eigenvalues of matrix A(t). Hence, as N goes to infinity, the empirical measure
1
N

∑N
j=1 δλj(t)/

√
t almost surely converges to Wigner’s semicircle law μ1(x) given by (1.11)

weakly in probability measure space (see [30] or [29, Theorem 2.4.2]). On the other hand,

the empirical measure μN (t) = 1
N

∑N
j=1 δλj(t)(x) almost surely converges to a measure

solution ρ(x, t) of the Dyson equation (1.4) with γ = 0 [25]. We can obtain the relation

between ρ(x, t) and μ1(x) by the following lemma.

Lemma 2.1. For any constant a > 0, if we have the following narrow convergences in

probability measure space P(R):

ν̃N (x) :=
1

N

N∑
j=1

δxj/a(x) → ν̃(x) and νN (x) :=
1

N

N∑
j=1

δxj
(x) → ν(x)

for two probability measures ν̃, ν, then we have

ν(x) =
1

a
ν̃
(x
a

)
. (2.17)
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Proof. For any test function ϕ ∈ Cb(R), we have

∫
R

ϕ(x) dν̃(x) = lim
N→∞

∫
R

ϕ(x) dν̃N(x) =
1

N

N∑
j=1

ϕ(xj/a)

= lim
N→∞

∫
R

ϕ(y/a) dνN(y) = a lim
N→∞

∫
R

ϕ(x) dνN(ax)

=

∫
R

ϕ(y/a) dν(y) = a

∫
R

ϕ(x) dν(ax).

Hence, aν(ax) = ν̃(x), which implies (2.17). �
From Lemma 2.1, we choose ρ as the rescaling of ρ1 defined in (1.11):

ρ(x, t) =
1√
t
ρ1

Å
x√
t

ã
=

√
(4t− x2)+

2πt
, (2.18)

where ρ(x, t) is the limit of the empirical measure 1
N

∑N
j=1 δλj(t)(x) for γ = 0. This

implies that ρ(x, t) is a kind of self-similar rarefaction wave solution of the Dyson equation

(1.4) with γ = 0. Next, we calculate u(x, t) using the Hilbert transform of πρ(x, t) and

then verify that the obtained (ρ, u) satisfies (1.4) (γ = 0). For x ∈ R \ [−2
√
t, 2

√
t], by

changing of variable with y = 2
√
t sin θ, we have

(πHρ)(x, t) =
1

2tπ

∫ 2
√
t

−2
√
t

√
4t− y2

x− y
dy

=
1

2tπ

∫ π/2

−π/2

Ä
x+ 2

√
t sin θ

ä
dθ +

4t− x2

2tπ

∫ π/2

−π/2

1

x− 2
√
t sin θ

dθ

=
x

2t
+

4t− x2

2tπ

∫ π/2

−π/2

1

x− 2
√
t sin θ

dθ

=
x

2t
+

4t− x2

2tπ

2√
x2 − 4t

ñ
arctan

Ç
x− 2

√
t√

x2 − 4t

å
+ arctan

Ç
x+ 2

√
t√

x2 − 4t

åô
.

(2.19)

Using the fact

arctanx+ arctan y =

⎧⎪⎨
⎪⎩

π

2
for x · y = 1, x, y > 0,

−π

2
for x · y = 1, x, y < 0,

we obtain

(πHρ)(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

x

2t
+

√
x2 − 4t

2t
, x < −2

√
t,

x

2t
−

√
x2 − 4t

2t
, x > 2

√
t.

(2.20)
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For x ∈ [−2
√
t, 2

√
t], we have

(πHρ)(x, t) =
1

2tπ
p. v.

∫ 2
√
t

−2
√
t

√
4− y2

x− y
dy

=
1

2tπ
lim
ε→0

(∫ x−ε

−2
√
t

+

∫ 2
√
t

x+ε

) √
4− y2

x− y
dy.

Then, using a similar calculation as in (2.19) we have (πHρ)(x, t) = x
2t , x ∈ [−2

√
t, 2

√
t].

Therefore we have

u(x, t) = (πHρ)(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x+
√
x2 − 4t

2t
, x < −2

√
t,

x

2t
, x ∈ [−2

√
t, 2

√
t],

x−
√
x2 − 4t

2t
, x > 2

√
t,

(2.21)

and (ρ, u) satisfies (1.4) (γ = 0) with initial datum

ρ(x, 0) = δ(0), u(x, 0) = (πHρ)(x, 0) = p.v.
1

x
. (2.22)

Notice that the above self-similar solution (ρ, u) corresponds to the self-similar solution

to the complex Burgers equation given in [20, Section 1.2].

In Appendix B we will give the same explicit solution by the Stieltjes transform of

Wigner’s semicircle law μ1 (see (B.8)).

Remark 2.2 (Connection with Barenblatt solutions to porous media equation). Con-

sider the following one-dimensional porous media equation:

∂th =
π2

3
∂xx(h

3), h|t=0 = δ(0).

It has a self-similar solution called the Barenblatt solution (see [26, page 104]) given by

h(x, t) =

»
(4
√
t− x2)+

2π
√
t

=
1

t1/4
·

√Ä
4−

(
x

t1/4

)2ä
+

2π
.

Notice that

ρ(x, t) = h(x, t2) =

√
(4t− x2)+

2πt

is exactly the explicit solution (2.18) to the Dyson equation (1.4) with γ = 0.

2.2.2. An explicit solution to the Dyson equation (1.4)with γ > 0 and exponential

convergence to the steady state. When γ > 0, we first show that (2.18) with t = 1
2γ gives

a steady state of (1.4) with γ > 0. Actually, we have

ρ

Å
x,

1

2γ

ã
=

√
(2γ − γ2x2)+

π
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and

u

Å
x,

1

2γ

ã
= πHρ

Å
x,

1

2γ

ã
=

⎧⎪⎪⎨
⎪⎪⎩
γx+

√
γ2x2 − 2γ, x < −

√
2,

γx, x ∈ [−
√
2,
√
2],

γx−
√
γ2x2 − 2γ, x >

√
2.

Define

ρ∞(x) := ρ

Å
x,

1

2γ

ã
, u∞(x) = u

Å
x,

1

2γ

ã
, (2.23)

and then

ρ∞(u∞ − γx) ≡ 0,

which implies that ρ∞ is a steady state of the Dyson equation (1.4) when γ > 0. Due to

the convexity of the energy E in (1.9), the steady state is the minimizer and it is unique

(see Remark 2.4).

Next, we construct an explicit solution which converges to ρ∞ exponentially. Let σ(t)

be an unknown function, let σ(0) = σ0 > 0, and assume the solution ρ(x, t) to (1.4) with

γ > 0 has the following form:

ρ(x, t) =

√
(2σ(t)− x2)+

πσ(t)
. (2.24)

Correspondingly, we have

u(x, t) = πHρ(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x+
√
x2 − 2σ(t)

σ(t)
, x < −

»
2σ(t),

x

σ(t)
, |x| ≤

»
2σ(t),

x−
√
x2 − 2σ(t)

σ(t)
, x >

»
2σ(t).

Obviously, (ρ, u) satisfies (1.4) when |x| >
√
2σ(t). Next, we consider the case |x| ≤√

2σ(t) to obtain a proper ordinary differential equation for σ(t) such that (ρ, u) is a

solution of (1.4). Direct calculations show that

∂tρ = −
√
2σ − x2

πσ2
σ̇ +

σ̇

πσ
√
2σ − x2

, ∂xρ = − x

πσ
√
2σ − x2

,

and

ρ+ x∂xρ = 2σ

Ç√
2σ − x2

πσ2
− 1

πσ
√
2σ − x2

å
.

Take the above equalities into (1.4) and obtain

∂tρ+ ∂x[ρ(u− γx)] = ∂tρ+

Å
1

σ
− γ

ã
(ρ+ x∂xρ)

=(−σ̇ + 2− 2γσ)

Ç√
2σ − x2

πσ2
− 1

πσ
√
2σ − x2

å
= 0, |x| ≤

»
2σ(t).

Hence, we have

σ̇(t) = 2− 2γσ, σ(0) = σ0 > 0,
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which implies

σ(t) =
1

γ
− 1− γσ0

γ
e−2γt > 0.

Hence, for any σ0 > 0, an explicit solution to (1.4) is given by

ρ(x, t) =

»
(2γ[1− (1− γσ0)e−2γt]− γ2x2)+

π[1− (1− γσ0)e−2γt]
. (2.25)

This solution tends to ρ∞ (defined by (2.23)) exponentially as t → ∞.

2.3. Global weak solutions of the Dyson equation (1.4). In Theorem 2.1, we proved

global existence and uniqueness of a positive analytical solution to (1.4) with a strictly

positive initial datum ρ0 > 0 and ρ0 ∈ Hs(R) ∩ L1(R) with s > 1/2. If ρ0 ≥ 0 and

ρ0(x0) = 0 for some x0 ∈ R, the solution to (1.4) blows up in finite time (see Remark

2.1) in the sense that ∂xHρ goes to −∞. Consequently, there is also a finite time blow

up in the space Hs(R) for s > 3/2. Next, we show global existence of the weak solution

in Ḣ1/2(R) ∩ L1(R). Note that we have an interpolation inequality

‖ρ‖L2 ≤ 3‖ρ‖1/2L1 ‖ρ‖1/2
Ḣ1/2

.

Hence ρ ∈ Ḣ1/2(R)∩L1(R) is equivalent to ρ ∈ H1/2(R)∩L1(R). Let us define the weak

solutions below.

Definition 2.1. For T > 0, ρ0 ∈ H1/2(R)∩L1(R), and ρ0 ≥ 0, a nonnegative function

ρ ∈ L∞(0, T ;H1/2(R) ∩ L1(R)) ∩ W 1,∞(0, T ;H−m(R)) for some m > 0 is said to be a

weak solution of the Dyson equation (1.4) if

∫ T

0

∫
R

∂tφ(x, t)ρ(x, t) dx dt+

∫
R

φ(x, 0)ρ0(x) dx

= −1

2

∫ T

0

∫
R

∫
R

∂xφ(x, t)− ∂xφ(y, t)

x− y
ρ(x, t)ρ(y, t) dx dy dt

+ γ

∫ T

0

∫
R

x∂xφ(x, t)ρ(x, t) dx dt (2.26)

holds for any test function φ ∈ C∞
c (R× [0, T )).

Theorem 2.2. Assume 0 ≤ ρ0 ∈ H1/2(R) ∩ L1(R) and m2(0) :=
∫
R
x2ρ0(x) dx < ∞.

Then, there exists a unique global nonnegative weak solution to the Dyson equation (1.4)

satisfying

ρ ∈ L∞(0, T ;H1/2(R) ∩ L1(R)) ∩W 1,∞(0, T ;H−3(R))

for any time T > 0. Moreover, we have the following estimates:

(a)

‖ρ(t)‖H1/2 ≤ eγt‖ρ0‖H1/2 , t > 0. (2.27)

(b) The mass ‖ρ(t)‖L1 is conserved:

‖ρ(t)‖L1 = ‖ρ0‖L1 . (2.28)
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(c) For a.e. t > 0, the second moment m2(t) :=
∫
R
x2ρ(x, t) dx satisfies

m2(t) ≤

⎧⎪⎨
⎪⎩

‖ρ0‖2L1

2γ
− ‖ρ0‖2L1 − 2γm2(0)

2γ
e−2γt, γ > 0,

m2(0) + ‖ρ0‖2L1t, γ = 0.

(2.29)

(d) The following energy dissipation holds:

E(ρ(·, t)) +
∫ t

0

∫
R

ρ(x, s)
∣∣γx− πHρ(x, s)

∣∣2 dx ds ≤ E(ρ0) for any t > 0, (2.30)

with E defined by (1.9).

(e) If ρ0 log ρ0 ∈ L1(R), then the entropy θ(t) :=
∫
R
ρ(x, t) log ρ(x, t) dx satisfies

θ(t) ≤ γ‖ρ0‖L1t+ θ(0), t > 0. (2.31)

Proof. Let ϕε > 0 (ε > 0) be the standard Friedrichs mollifier. Set

ρε0 = ρ0 ∗ ϕε.

Then, for nontrival initial datum ρ0, we have ρ
ε
0(x) > 0 for x ∈ R and ρε0 ∈ Hs(R)∩L1(R)

(s > 1/2). Moreover, from Young’s inequality for convolution, we have

‖ρε0‖L2 ≤ ‖ρ0‖L2 , ‖ρε0‖Ḣ1/2 ≤ ‖ρ0‖Ḣ1/2 , ‖ρε0‖L1 = ‖ρ0‖L1 . (2.32)

By Theorem 2.1, we have a global positive analytical solution ρε to (1.4) with initial data

ρε0:

∂tρ
ε + ∂x[ρ

ε(πHρε − γx)] = 0. (2.33)

Step 1 (Uniform estimates for ρε). First, multiplying (2.33) by ρε and integration by

parts show that

d

dt

∫
R

(ρε)2

2
dx+

π

2

∫
R

(ρε)2∂xHρε dx− γ

2

∫
R

(ρε)2 dx = 0.

Since the second term on the left-hand side is

π

2

∫
R

(ρε)2∂xHρε dx =

∫
R

∫
R

(ρε(x, t))2
ρε(x, t)− ρε(y, t)

|x− y|2 dy dx

=

∫
R

∫
R

ρε(x)
|ρε(x, t)− ρε(y, t)|2

|x− y|2 dx dy,

we obtain

d

dt

∫
R

(ρε)2 dx+ 2

∫
R

∫
R

ρε(x, t)
|ρε(x, t)− ρε(y, t)|2

|x− y|2 dx dy = γ

∫
R

(ρε)2 dx. (2.34)

Grönwall’s inequality and (2.32) imply

‖ρε(t)‖2L2 ≤ eγt‖ρε0‖2L2 ≤ eγt‖ρ0‖2L2 , t > 0. (2.35)

Second, multiplying (2.33) by Hρεx gives the following estimate:

1

2

d

dt
‖(−Δ)1/4ρε‖2L2 + π

∫
R2

(∂xHρε)2ρε dx+ π

∫
R

∂xρ
ε∂xHρεHρε dx

− γ

∫
R

∂xHρε∂x(xρ
ε) = 0. (2.36)
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On the one hand, we have

π

∫
R

∂xρ
ε∂xHρεHρε dx = −π

∫
R

H(∂xρ
ε∂xHρε)ρε dx = −π

2

∫
R

[(∂xHρε)2 − (∂xρ
ε)2]ρε dx.

(2.37)

On the other hand, we estimate the last term in (2.36) as below. Due to (2.4), we derive

γ

∫
R

∂xHρε∂x(xρ
ε) =− γ

∫
R

∂xρ
ε∂xH(xρε) = −γ

∫
R

∂xρ
ε∂x(xHρε) dx

= −γ

∫
R

∂xρ
εHρε dx− γ

∫
R

x∂xρ
ε∂xHρε dx

= γ‖(−Δ)1/4ρε‖2L2 − γ

∫
R

x∂xρ
ε∂xHρε dx.

Use (2.4) again and we have

−γ

∫
R

x∂xρ
ε∂xHρε dx = γ

∫
R

H(x∂xρ
ε)∂xρ

ε dx = γ

∫
R

x∂xHρε∂xρ
ε dx.

This implies γ
∫
R
x∂xρ

ε∂xHρε dx = 0, and hence

γ

∫
R

∂xHρε∂x(xρ
ε) = γ‖(−Δ)1/4ρε‖2L2 . (2.38)

Combining (2.36), (2.37), and (2.38) shows that

d

dt
‖(−Δ)1/4ρε‖2L2 + π

∫
R

(∂xHρε)2ρε dx+ π

∫
R

ρε(∂xρ
ε)2 dx = 2γ‖(−Δ)1/4ρε‖2L2 . (2.39)

Grönwall’s inequality and (2.32) imply

‖ρε(t)‖2
Ḣ1/2 ≤ e2γt‖ρ0‖2Ḣ1/2 , t > 0. (2.40)

Inequalities (2.35) and (2.40) yield

‖ρε(t)‖2H1/2 ≤ e2γt‖ρ0‖2H1/2 , t > 0, (2.41)

and hence we have

ρε ∈ L∞(0, T ;H1/2(R)) for any T > 0.

Third, for time regularity, the following estimate holds for any φ ∈ C∞
c (R),∫

R

φ(x)∂tρ
ε(x, t) dx

=− 1

2

∫
R

∫
R

∂xφ(x)− ∂xφ(y)

x− y
ρε(x, t)ρε(y, t) dx dy + γ

∫
R

xφx(x, t)ρ
ε(x, t) dx

≤C(‖∂xxφ‖L∞ + (m2(ρ
ε) + ‖ρε‖L1)‖∂xφ‖L∞) ≤ C‖φ‖H3 ,

and hence

‖∂tρε‖L∞(0,∞;H−3(R)) ≤ C, ∂tρ
ε ∈ L∞(0,∞;H−3(R)). (2.42)
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Step 2 (Take limits for ρε as ε goes to 0). First, from uniform estimates (2.41)

and (2.42) in Step 1, there exist ρ ∈ L∞(0, T ;H1/2(R)) ∩ W 1,∞(0, T ;H−3(R)) and a

subsequence of {ρε}ε>0 (still denoted as {ρε}ε>0) such that

ρε
∗
⇀ ρ in L∞(0, T ;H1/2(R)) as ε → 0

and

∂tρ
ε ∗
⇀ ∂tρ in L∞(0, T ;H−3(R)) as ε → 0.

Hence, we have (2.27).

Second, from (2.41) and (2.42), by the Lions–Aubin Lemma, we also know that

ρε → ρ in L∞(0, T ;L2
loc(R)) as ε → 0,

and consequently

ρε → ρ in L∞(0, T ;L1
loc(R)) as ε → 0. (2.43)

Due to ‖ρε(t)‖L1 ≡ ‖ρ0‖L1 , we have

‖ρ(t)‖L1 = lim
R→+∞

∫ R

−R

ρ(x, t) dx = lim
R→+∞

lim
ε→0

∫ R

−R

ρε(x, t) dx ≡ ‖ρ0‖L1 ,

where in the last step we used the uniform bound of second momentum for ρε (2.12).

Hence,

ρ ∈ L∞(0, T ;L1(R)),

and (2.28) holds. For any test function φ ∈ C∞
c (R× [0, T )), by (2.32) we have∫ T

0

∫
R

∂tφ(x, t)ρ
ε(x, t) dx dt+

∫
R

φ(x, 0)ρε0(x) dx

= −1

2

∫ T

0

∫
R

∫
R

∂xφ(x, t)− ∂xφ(y, t)

x− y
ρε(x, t)ρε(y, t) dx dy dt

+ γ

∫ T

0

∫
R

x∂xφ(x, t)ρ
ε(x, t) dx dt. (2.44)

By the strong convergence of ρε in (2.43), we can take the limit as ε → 0 in (2.44) and

conclude that ρ satisfies (2.26). Hence, ρ is a global weak solution to (1.4).

Step 3 (Consequent estimates for Hρ). First, from (2.41) and

‖(−Δ)
1
4 ρε‖2L2 =

∫
R

(Hρε)H∂x(Hρε) dx = ‖(−Δ)
1
4 (Hρε)‖2L2 , (2.45)

we have uniform estimates

‖Hρε‖
L∞(0,T ;H

1
2 (R))

≤ C for any T > 0. (2.46)

Second, from the equation for uε (2.6) with uε = πHρε, we have for any φ ∈ C∞
c (R)∫

R

φ(x)∂tu
ε(x, t) dx =

∫
R

∂xφ(x)

ï
(uε)2

2
− π2

2
(ρε)2 − γxuε

ò
dx

≤C‖∂xφ‖L∞‖ρε‖2L2 +

∫
R

γH(x∂xφ)ρ
ε dx = C‖∂xφ‖L∞‖ρε‖2L2 +

∫
R

γH(∂xφ)xρ
ε dx

≤C[‖∂xφ‖L∞‖ρε‖2L2 + (m2(ρ
ε)

1
2 ‖ρε‖

1
2

L2)‖H∂xφ‖L4 ] ≤ C(‖∂xφ‖L∞ + ‖∂xφ‖L4),

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



THE COMPLEX BURGERS EQUATION 73

and hence

‖∂tuε‖L∞(0,∞;H−2(R)) ≤ C, ∂tu
ε ∈ L∞(0,∞;H−2(R)). (2.47)

Similar to ρε, combining (2.46), (2.47), and the Lions–Aubin Lemma, we also know that

for u = πHρ ∈ L∞(0, T ;H1/2(R)) ∩W 1,∞(0, T ;H−2(R)),

uε ∗
⇀ u in L∞(0, T ;H1/2(R)) as ε → 0, (2.48)

∂tu
ε ∗
⇀ ∂tu in L∞(0, T ;H−2(R)) as ε → 0, (2.49)

uε → u in L∞(0, T ;L2
loc(R)) as ε → 0. (2.50)

Consequently, we have for a.e. t ∈ [0, T ],

Hρε(·, t) → Hρ(·, t) for a.e. x ∈ R as ε → 0. (2.51)

Step 4. The uniqueness of weak solutions is a direct result of the contraction property

of Wasserstein distance as stated in (2.58).

Step 5. We prove properties (2.29), (2.30), and (2.31) below.

Due to (2.12), we have

mε
2(t) =

⎧⎪⎨
⎪⎩

‖ρ0‖2L1

2γ
− ‖ρ0‖2L1 − 2γmε

2(0)

2γ
e−2γt, γ > 0,

mε
2(0) + ‖ρ0‖2L1t, γ = 0,

(2.52)

where

mε
2(t) :=

∫
R

x2ρε(x, t) dx.

Due to strong convergence of ρε to ρ in L∞(0, T ;L1
loc(R)), for a.e. t ∈ (0, T ) we have

ρε(·, t) → ρ(·, t) for a.e. x ∈ R as ε → 0. (2.53)

To take the limit in (2.52), first notice mε
2(0) → m2(0) by Young’s convolution inequality.

Second, by Levi’s lemma and Fatou’s lemma, we have

m2(t) = lim
N→+∞

∫
R

(x2)Nρ dx ≤ lim
N→+∞

lim inf
ε→0

∫
R

(x2)Nρε dx

≤ lim
N→+∞

lim inf
ε→0

∫
R

x2ρε dx ≤ lim inf
ε→0

mε
2(t),

(2.54)

where (x2)N means the cutoff (x2)N = min{x2, N}. Hence, we obtain (2.29).

For the energy dissipation (2.30), we prove it by taking limit in (2.13), Levi’s lemma,

and Fatou’s lemma. First by pointwise convergence of ρε in (2.53), pointwise convergence

of Hρε in (2.51), and Fatou’s lemma, we have

∫ T

0

∫
R

ρ|γx− πHρ(x, t)|2 dx ≤ lim inf
ε→0

∫ T

0

∫
R

ρε|γx− πHρε(x, t)|2 dx. (2.55)
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Second, there exists a constant c such that K(x, y) := 1
2γ(x

2 + y2) + log 1
|x−y| + c ≥ 0,

so we rewire the energy as

E(ρ) =
1

2

∫
R2

K(x, y)ρ(x)ρ(y) dx dy − c

2
. (2.56)

Denote the cutoff of K as KN (x, y) := min{K(x, y), N} such that 0 ≤ KN (x, y) ≤
K(x, y), which increasingly converges to K(x, y) for a.e. (x, y) ∈ R2. Then by Levi’s

lemma and Fatou’s lemma, we obtain

E(ρ) +
c

2
= lim

N→+∞

1

2

∫
R2

KN (x, y)ρ(x)ρ(y) dx dy

≤ lim
N→+∞

lim inf
ε→0

1

2

∫
R2

KN (x, y)ρε(x)ρε(y) dx dy

≤ lim
N→+∞

lim inf
ε→0

1

2

∫
R2

K(x, y)ρε(x)ρε(y) dx dy

≤ lim inf
ε→0

E(ρε) +
c

2
.

(2.57)

The entropy inequality (2.31) can be obtained by (2.14) and the weak lower semi-

continuity of the entropy [10]. �
Remark 2.3. We shall remark that the global existence of weak solutions for the

following nonconservative equation remains open:

∂tρ− u∂xρ = 0, u = Hρ.

We refer to [6,28] for an in-depth study of this equation with or without a viscous term.

Remark 2.4 (Exponential convergence to the steady state). Carrillo et al. [3] proved

the existence and uniqueness of probability solutions by using gradient flow structure in

Wasserstein distance. Notice the free energy E(ρ) given by (1.9) for the Dyson equation

consists of a harmonic trap energy Eh and an interaction energy Ei. Ei is convex (or

displacement convex) along generalized Wasserstein geodesics and Eh is γ-convex along

Wasserstein geodesics as explained below. Assume ρ0, ρ1 ∈ PAC(R) and T : ρ0 dx →
ρ1 dy is a W2-optimal transport (Bernier’s map). Then ρt := [tI + (1 − t)T ]#ρ0 is

a Wasserstein geodesic (or displacement interpolation between ρ0 and ρ1). From the

definition of push forward (see [1, Section 5.2]),

Eh(ρt) =γ

∫
R

x2

2
ρt(dx) = γ

∫
R

[tx+ (1− t)T (x)]2

2
ρ0(dx)

=γ

∫
R

tx2 − t(1− t)(x− T (x))2 + (1− t)T 2(x)

2
ρ0(dx)

=tEh(ρ0) + (1− t)Eh(ρ1)− γ
t(1− t)

2
W 2

2 (ρ0, ρ1).

Therefore Eh(ρ) is γ-geodesically convex (see [1, Definition 2.4.3]). For the geodesical

convexity of the interaction energy Ei(ρ), due to the singularity in logarithmic func-

tion, it relies heavily on monotonicity of the optimal map. We illustrate the idea for

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



THE COMPLEX BURGERS EQUATION 75

ρ0, ρ1 ∈ PAC(R), ρ0 > 0, which ensures that the optimal map T is strictly increasing:

Ei(ρt) =

∫
R2

− log(|x− y|)ρt(dx)ρt(dy)

=

∫
R2

− log(|t(x− y) + (1− t)(T (x)− T (y))|)ρ0(x)ρ0(y) dx dy

≤ t

∫
R2

− log |x− y|ρ0(x)ρ0(y) dx dy

+ (1− t)

∫
R2

− log |T (x)− T (y)|ρ0(x)ρ0(y) dx dy

= t

∫
R2

− log |x− y|ρ0(x)ρ0(y) dx dy + (1− t)

∫
R2

− log |x− y|ρ1(x)ρ1(y) dx dy

= tEi(ρ0) + (1− t)Ei(ρ1),

where we used the convexity of logarithmic function in the first inequality and strict

increase of T in the third equality. However, without the strictly increasing property, we

refer to [3, Proposition 2.7], where Carrillo et al. proved the generalized geodesic convex

of Ei(ρ) using the essential monotonicity property (excluding a null set) of the optimal

transport maps between absolutely continuous probability measures in one dimension.

The standard gradient flow theory [1, Theorem 11.2.1] yields the exponential convergence

to the steady state in W2 distance; see also [2, 3]. More precisely, if ρ and ρ̃ are two

probability measure solutions for initial date ρ0 and ρ̃0 respectively, then we have

W2(ρ(t), ρ̃(t)) ≤ e−γtW2(ρ0, ρ̃0). (2.58)

This implies the uniqueness of probability measure solutions and exponential convergence

to the steady state.

When γ > 0, we also remark that γ-convexity of E implies the uniqueness of the

steady state (minimizer). Indeed, if μ and ν are two distinct minimizers, consider μ1/2 :=

[ 12I +
1
2 T̃ ]#μ, where T̃ is Bernier’s map between μ and ν. Then, we have

E(μ1/2) ≤
1

2
[E(μ) + E(ν)]− γ

8
W 2

2 (μ, ν) <
1

2
[E(μ) + E(ν)],

which is a contradiction with the assumption that μ and ν are distinct.

3. Bi-Hamiltonian structures. In this section, we construct a bi-Hamiltonian

structure for the coupled Burgers system (1.13) by using the decoupled Burgers equations

(1.16) and (1.17). First, we present infinitely many conserved quantities for the coupled

Burgers system (1.13). Recall (1.15). Because
∫
R
fk
±(x, t) dx are conserved quantities of

the decoupled Burgers equations (1.16) and (1.17), we have the following proposition.

Proposition 3.1. Let (ρ, u) be a classical solution to the coupled Burgers system (1.13).

Then, the quantities

λ1

∫
R

(u+
√
αρ)k1 dx+ λ2

∫
R

(u−
√
αρ)k2 dx (3.1)

are conserved for any constants λ1, λ2 ∈ C and any positive integers k1, k2 ∈ N+.
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Remark 3.1. Notice that when α < 0, we have f− = f̄+. When λ1 = λ̄2 and

k1 = k2 = k in (3.1), we have

λ1(u+
√
αρ)k = λ2(u−

√
αρ)k.

In this case, (3.1) gives real conserved quantities.

Next, we consider the case for k1 = k2 = 3 in (3.1) and derive a bi-Hamiltonian

structure for the coupled Burgers system (1.13). Define the following functionals of

f±(= u±
√
αρ):

Hf
1 (f+, f−) :=

∫
R

f3
+ + f3

−
12

dx, Hf
2 (f+, f−) :=

∫
R

f3
+ − f3

−
12
√
α

dx. (3.2)

Due to Remark 3.1, we know that both Hf
1 and Hf

2 are real conserved quantities. More-

over, the decoupled Burgers equations (1.16) and (1.17) can be rewritten as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
∂tf+ + 2∂x

Ç
δHf

1

δf+

å
= 0,

∂tf− + 2∂x

Ç
δHf

1

δf−

å
= 0

and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
∂tf+ + 2

√
α∂x

Ç
δHf

2

δf+

å
= 0,

∂tf− − 2
√
α∂x

Ç
δHf

2

δf−

å
= 0.

(3.3)

Define

Hu
1 (ρ, u) :=

∫
R

Å
1

6
u3 +

α

2
ρ2u

ã
dx, Hu

2 (ρ, u) :=

∫
R

Å
1

2
ρu2 +

α

6
ρ3
ã
dx. (3.4)

Then, direct calculations show that

Hu
j (ρ, u) = Hf

j (f+, f−), j = 1, 2, (3.5)

and we have the following theorem.

Theorem 3.1. For α 	= 0, the coupled Burgers system (1.13) has a bi-Hamiltonian

structure:

∂

∂t

Ñ
ρ

u

é
= J

Ñ
δHu

1

δρ

δHu
1

δu

é
= K

Ñ
δHu

2

δρ

δHu
2

δu

é
, (3.6)

where J and K are antisymmetric operators given by

J :=

Ñ
− 1

α∂x 0

0 −∂x

é
, K :=

Ñ
0 −∂x

−∂x 0

é
. (3.7)

Proof. Due to f± = u±
√
αρ, we have ρ = 1

2
√
α
(f+ − f−) and u = 1

2 (f+ + f−). From

(3.3), we obtain⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
∂tρ+

1√
α
∂x

Ç
δHf

1

δf+
− δHf

1

δf−

å
= 0,

∂tu+ ∂x

Ç
δHf

1

δf+
+

δHf
1

δf−

å
= 0

and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
∂tρ+ ∂x

Ç
δHf

2

δf+
+

δHf
2

δf−

å
= 0,

∂tu+
√
α∂x

Ç
δHf

2

δf+
− δHf

2

δf−

å
= 0.

(3.8)
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Due to (3.5), we have the following relations:

δHu
j

δρ
=

√
α

(
δHf

j

δf+
−

δHf
j

δf−

)
,

δHu
j

δu
=

δHf
j

δf+
+

δHf
j

δf−
, j = 1, 2. (3.9)

Put (3.9) into (3.8) and we obtain

⎧⎪⎪⎨
⎪⎪⎩
∂tρ+

1

α
∂x

Å
δHu

1

δρ

ã
= 0,

∂tu+ ∂x

Å
δHu

1

δu

ã
= 0

and

⎧⎪⎪⎨
⎪⎪⎩
∂tρ+ ∂x

Å
δHu

2

δu

ã
= 0,

∂tu+ ∂x

Å
δHu

2

δρ

ã
= 0,

which is (3.6). �
From Theorem 3.1, we can directly obtain a bi-Hamiltonian structure for system

(1.18), as shown in the following corollary.

Corollary 3.1. For α 	= 0, the isentropic gas dynamics (1.18) can be rewritten as the

following bi-Hamiltonian structure:

∂

∂t

Ñ
ρ

m

é
= J̃

Ñ
δHm

1

δρ

δHm
1

δm

é
= K̃

Ñ
δHm

2

δρ

δHm
2

δm

é
, (3.10)

where J̃ and K̃ are antisymmetric operators given by

J̃ =

Ñ
− 1

α∂x − 1
α∂xu

− 1
αu∂x − 1

αu∂xu− ρ∂xρ

é
, K̃ =

Ñ
0 −∂xρ

−ρ∂x −u∂xρ− ρ∂xu

é
, (3.11)

and the Hamiltonians are given by

Hm
1 (ρ,m) =

∫
R

Å
m3

6ρ3
+

α

2
mρ

ã
dx, Hm

2 (ρ,m) =

∫
R

Å
m2

2ρ
+

α

6
ρ3
ã
dx. (3.12)

Proof. Due to m = ρu, we have

Hm
j (ρ,m) := Hu

j (ρ, u), j = 1, 2.

Moreover, we have the following relations:

δHu
j

δρ
=

δHm
j

δρ
+ u

δHm
j

δm
,

δHu
j

δu
= ρ

δHm
j

δm
,

or equivalently Ñ
δHu

j

δρ

δHu
j

δu

é
=

Ñ
1 u

0 ρ

éÑ
δHm

j

δρ

δHm
j

δm

é
, j = 1, 2. (3.13)
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Combining (3.6) and (3.13), we obtain

∂

∂t

Ñ
ρ

m

é
=

Ñ
1 0

u ρ

éÑ
∂tρ

∂tu

é
=

Ñ
1 0

u ρ

é
J

Ñ
1 u

0 ρ

éÑ
δHm

1

δρ

δHm
1

δm

é

=

Ñ
1 0

u ρ

é
K

Ñ
1 u

0 ρ

éÑ
δHm

2

δρ

δHm
2

δm

é
. (3.14)

Hence, we have

J̃ =

Ñ
1 0

u ρ

é
J

Ñ
1 u

0 ρ

é
=

Ñ
− 1

α∂x − 1
α∂xu

− 1
αu∂x − 1

αu∂xu− ρ∂xρ

é

and

K̃ =

Ñ
1 0

u ρ

é
K

Ñ
1 u

0 ρ

é
=

Ñ
0 −∂xρ

−ρ∂x −u∂xρ− ρ∂xu

é
.

Hence, we obtain a bi-Hamiltonian structure for system (1.18). �
Notice that Hm

2 is nothing but the total energy of system (1.18), which is given by

Hm
2 (ρ,m) =

∫
R

E(x, t) dx =

∫
R

Å
1

2
ρu2 +

α

6
ρ3
ã
dx =

∫
R

Å
m2

2ρ
+

αρ3

6

ã
dx. (3.15)

where E(x, t) is defined by (1.22).

Remark 3.2 (A bi-Hamiltonian structure for p-system (1.23)). Set

η(ξ, t) :=
1

τ (ξ, t)
, ξ ∈ (0, 1), t > 0.

Then, the p-system (1.23) becomes the following system for (η, V ) :{
∂ξη = −η2∂ξV,

∂tV = −αη2∂ξη.
(3.16)

We have the following bi-Hamiltonian structure for system (3.16):

∂

∂t

Ñ
η

V

é
=

Ñ
− 3

4αη∂ξη − 1
4αη∂ξV + 3

2αV ∂ξη − 1
α∂ξηV

− 1
4αV ∂ξη + 3

2αη∂ξV − 1
αηV ∂ξ

1
4αV ∂ξV + 1

αη∂ξη

éÑ
δHη

1

δη

δHη
1

δV

é

and

∂

∂t

Ñ
η

V

é
=

Ñ
0 −η2∂ξ

−∂ξη
2 0

éÑ
δHη

2

δη

δHη
2

δV

é
,

where

Hη
1 (η, V ) =

∫
R

Å
V 3

6η
+ α

ηV

2

ã
dξ, Hη

2 (η, V ) =

∫
R

Å
V 2

2
+ α

η2

6

ã
dξ.
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4. Kinetic formulations and entropy solutions for the coupled Burgers sys-

tem (1.13) with α > 0. In this section, we study the kinetic formulation for the coupled

Burgers system (1.13) with α > 0. In contrast, Lions, Perthame, and Tadmor [15] studied

system (1.18) and used the kinetic formulation to obtain global entropy solutions without

uniqueness. Here, we show the existence and uniqueness of global entropy solutions for

(1.13).

4.1. Kinetic formulations. Kinetic formulation is a method which uses the distribution

function κ(v, x, t) at time t in the phase plane for velocity v and the position x to study

the continuum equation for u(x, t) (and ρ(x, t)). At fixed continnum variable (x, t), u and

ρ are some v-moments of κ. In the local thermal equilibrium the distribution function

κ(v, x, t) can be described by v-equilibrium distribution χ(v;u, ρ) with parameters u and

ρ, i.e., κ(v, x, t) = χ(v;u(x, t), ρ(x, t)). In kinetic theory, the v-equilibrium distribution is

also known as Maxwellian. Following the idea of the celebrated work by Lions, Perthame,

and Tadmor [15], we use the combinations of the Heaviside function,

H(v) =

®
1, v ≥ 0,

0, v < 0,

to construct the equilibrium distribution. Let (ρ, u) be a solution to the coupled Burgers

system (1.13) with α > 0. Recall (1.15)

f± = u±
√
αρ.

Then, f± are solutions to the decoupled Burgers equations (1.16) and (1.17). We use the

following v-equilibrium distributions:

χ+(v; ρ, u) := H(v)−H(v − f+), χ−(v; ρ, u) := H(v)−H(v − f−),

χ(v; ρ, u) :=
1

2
√
α
(χ+ − χ−) =

1

2
√
α
[H(v − f−)−H(v − f+)], (4.1)

and

χ̂(v; ρ, u) :=
1

2
(χ+ + χ−) =

1

2
[2H(v)−H(v − f−)−H(v − f+)].

For any nonnegative integer k, direct calculations show that the following k-moment

equality holds: ∫
R

vkχ±(v; ρ, u) dv =
fk+1
±

k + 1
. (4.2)

Hence, the conserved quantities given by (3.1) correspond to the integration (w.r.t. the

x variable) of the following kinetic formulations:

λ1

∫
R

vk1χ+(v; ρ, u) dv + λ2

∫
R

vk2χ−(v; ρ, u) dv, λi ∈ C, ki ∈ N+, i = 1, 2. (4.3)

Choosing λ1 = λ2 = 1
4 and k1 = k2 = 2, we obtain the Hamiltonian Hu

1 , and choosing

λ1 = −λ2 = 1
4
√
α
and k1 = k2 = 2, we obtain the Hamiltonian Hu

2 given by (3.4). More

precisely, we have

Hu
1 (ρ, u) =

1

2

∫
R

v2χ̂(v; ρ, u) dv, Hu
2 (ρ, u) =

1

2

∫
R

v2χ(v; ρ, u) dv. (4.4)
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By (4.2), the decoupled Burgers equations (1.16) and (1.17) have the following kinetic

formulations: ∫
R

(∂tχ± + v∂xχ±) dv = ∂tf± + f±∂xf± = 0.

Besides, we also have

u =

∫
R

χ̂(v; ρ, u) dv, ρ =

∫
R

χ(v; ρ, u) dv.

Hence, the coupled Burgers system (1.13) has the following kinetic formulation:

∫
R

Ñ
∂tχ+ v∂xχ

∂tχ̂+ v∂xχ̂

é
dv =

Ñ
∂tρ+ ∂x(ρu)

∂tu+ ∂x
Ä
u2+αρ2

2

ä
é

=

Ñ
0

0

é
. (4.5)

Moreover, direct calculations show thatÑ
ρu

E

é
=

∫
R

Ñ
v

v2

2

é
χ(v; ρ, u) dv, (4.6)

where E is the total energy given by (1.22). Comparing with (4.5), we have the following

kinetic formulation for the isentropic gas system (1.18):

∫
R

Ñ
1

v

é
(∂tχ+ v∂xχ) dv =

Ñ
∂tρ+ ∂x(ρu)

∂t(ρu) + ∂x(ρu
2 + p)

é
=

Ñ
0

0

é
.

4.2. Existence and uniqueness of entropy solutions for the coupled Burgers system

(1.13). The notion of the entropy-entropy-flux pair refers to the pair of regular functions

(η, q) defined on the space of the states (ρ, u) for which every classical solution (ρ, u) of

the coupled Burgers system (1.13) also satisfies

∂tη(ρ, u) + ∂xq(ρ, u) = 0. (4.7)

Combining the coupled Burgers system (1.13) and (4.7) gives

(∂ρq − u∂ρη − αρ∂uη)∂xρ+ (∂uq − ρ∂ρη − u∂uη)∂xu = 0,

which holds for any smooth solutions (ρ, u). The entropy pair (η, q) can be found by

solving the following Euler–Poisson–Darboux equations. First, given ψ(u), g(u), we solve

η(ρ, u) satisfying ®
∂ρρη − α∂uuη = 0,

η(0, u) = ψ(u), ∂ρη(0, u) = g(u).
(4.8)

Then we solve the entropy flux q by

∂uq = ρ∂ρη + u∂uη, ∂ρq = u∂ρη + αρ∂uη. (4.9)

From (4.8), we know ∂uρq = ∂ρuq, so (4.9) is solvable. We have the following results.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



THE COMPLEX BURGERS EQUATION 81

Proposition 4.1. For two given functions ψ, g ∈ C2(R), let (η(0, u), ∂ρη(0, u)) =

(ψ(u), g(u)) be the initial datum for (4.8). Then:

(i) The solution η(ρ, u) to (4.8) can be recast in a kinetic representation

η(ρ, u) =

∫
R

ψ′(v)χ̂(v; ρ, u) dv +

∫
R

g(v)χ(v; ρ, u) dv. (4.10)

(ii) When ψ = 0 and ρ ≥ 0, we have kinetic representations

ηg(ρ, u) :=

∫
R

g(v)χ(v; ρ, u) dv, qg(ρ, u) :=

∫
R

vg(v)χ(v; ρ, u) dv. (4.11)

Moreover, ηg is convex with respect to (ρ,m) if and only if g(v) is convex, where m = ρu.

(iii) When g = 0, we have kinetic representations

ηψ(ρ, u) :=

∫
R

ψ′(v)χ̂(v; ρ, u) dv, (4.12)

qψ(ρ, u) :=

∫
R

vψ′(v)χ̂(v; ρ, u) dv =
φ(u+

√
αρ) + φ(u−√

αρ)

2
, (4.13)

where φ′(v) = vψ′(v) for v ∈ R. Moreover, ηψ is convex with respect to (ρ, u) if and

only if ψ is a convex function.

Proof.

(i) By d’Alembert’s formula, we have

η(ρ, u) =
ψ(f+) + ψ(f−)

2
+

1

2
√
α

∫ f+

f−

g(v) dv, (4.14)

where f±(ρ, u) = u ± √
αρ. Formula (4.10) is exactly the kinetic formulation for the

formula (4.14).

(ii) First we verify that (4.11) satisfies (4.9). We have

∂uηg = g(u+
√
αρ)− g(u−

√
αρ), ∂ρηg =

√
α
(
g(u+

√
αρ) + g(u−

√
αρ)

)
,

and

∂uqg =(u+
√
αρ)g(u+

√
αρ)− (u−

√
αρ)g(u−

√
αρ)

=u∂uηg + ρ∂ρηg.

Similarly, we also have ∂ρqψ = u∂ρηψ + αρ∂uηψ.

Second, we check the convexity condition for ηg in terms of (ρ,m), where m = ρu. By

the changing of variables v = u± ξρ, we have

ηg(ρ, u) =

∫
R

g(v)χ(v; ρ, u) dv =
1

2
√
α

∫ f+

f−

g(v) dv

=
1

2
√
α

∫ √
α

−
√
α

ρg

Å
m

ρ
+ ξρ

ã
dξ. (4.15)

Taking derivatives of (4.15), we can obtain

∂ρρηg =
1

2
√
α

∫ √
α

−
√
α

ρg′′
Å
m

ρ
+ ξρ

ãÅ
−m

ρ2
+ ξ

ã2

dξ+
1√
α

∫ √
α

0

ξ
[
g′(u+ξρ)−g′(u−ξρ)

]
dξ.
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When g is convex, g′ is increasing and g′′ > 0. Hence ∂ρρηg ≥ 0. Moreover, we have

∂ρmηg =
1

2
√
α

∫ √
α

−
√
α

g′′
Å
m

ρ
+ ξρ

ãÅ
−m

ρ2
+ ξ

ã
dξ

and

∂mmηg =
1

2
√
α

∫ √
α

−
√
α

1

ρ
g′′

Å
m

ρ
+ ξρ

ã
dξ ≥ 0.

By Hölder’s inequality, we can obtain

∂ρρηg · ∂mmηg − (∂ρmηg)
2 ≥ 0.

Hence, ηg(ρ, u) is convex about (ρ,m). When g is not convex, we have g′′ < 0 in some

interval. This implies ∂mmηg < 0. Hence, ηg is not convex. This proves that ηg is convex

if and only if g is convex.

(iii) First, we verify that the equalities in (4.9) hold for (ηψ, qψ). For f± = u±√
αρ,

we have

∂uqψ =
f+ψ

′(f+) + f−ψ
′(f−)

2
=u

ψ′(f+) + ψ′(f−)

2
+ ρ

√
αψ′(f+)−

√
αψ′(f−)

2
=u∂uηψ + ρ∂ρηψ.

Similarly, ∂ρqψ = u∂ρηψ + αρ∂uηψ. Hence, equalities in (4.9) hold for (ηψ, qψ). This

proves that qψ is the corresponding entropy flux of ηψ.

Second, we check the convexity condition for ηψ in terms of (ρ, u). Notice that

ηψ(ρ, u) =

∫
R

ψ′(v)χ̂(v; ρ, u) dv =
ψ(f+) + ψ(f−)

2
, (4.16)

where f± = u±
√
αρ. Taking the derivative of (4.16), we can obtain

∂ρuηψ =

√
α(ψ′′(f+)− ψ′′(f−))

2
, ∂ρρηψ =

α(ψ′′(f+) + ψ′′(f−))

2
,

and

∂uuηψ =
ψ′′(f+) + ψ′′(f−)

2
.

When ψ is convex, we have

∂uuηψ ≥ 0, ∂uuηψ ≥ 0 and ∂ρρηψ∂uuηψ ≥ (∂ρuηψ)
2,

which means ηψ is convex with respect to (ρ, u). Conversely, if ηψ is convex with respect

to (ρ, u), ψ(u) = ηψ(0, u) is convex. �
In [15], Lions, Perthame, and Tadmor studied the kinetic formulation of the isentropic

gas system (1.18). The convex entropies they used to define solutions correspond to

ηg(ρ, u) given by (4.10) for convex functions g. The corresponding entropy flux is given

by (4.11). Recall their definition of the entropy solutions to the isentropic gas system

(1.18) (see [15, Definition 2]).

Definition 4.1. A couple (ρ,m) is called an entropy solution of (1.18) if it satisfies

∂tηg(ρ, u) + ∂xqg(ρ, u) ≤ 0 (4.17)

in distribution sense for all convex entropies ηg given by (4.10) with convex g.
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An important example for this is taking g(v) = v2

2 in (4.15). Direct calculations show

that the entropy has the kinetic formulation

ηg =
1

2
ρu2 +

α

6
ρ3 =: E

and that the entropic flux is

qg =

∫
R

vg(v)χ(v; ρ, u) dv =
1

4
√
α

∫ f+

f−

v3 dv =
1

16
√
α
(f4

+ − f4
−) = u(E + p).

Then (4.17) in Definition 4.1 becomes

∂tE + ∂x[(E + p)u] ≤ 0 (4.18)

in the distributional sense. Notice that g(v) = v2

2 is convex and hence E is convex with

respect to (ρ,m).

Remark 4.1. Note that global existence of entropy solutions to system (1.18) was

proved [15]. It is shown in [15] that (ρ,m) is a weak entropy solution with respect to the

family {ηg}, if and only if the kinetic function χ(v; ρ, u) given by (4.1) is a weak solution

of the kinetic equation

∂tχ+ v∂xχ = −∂vvμ,

for some finite Radon measure μ ∈ M+. Hence, the entropy inequality (4.17) has a

kinetic formulation

∂tηg(ρ, u) + ∂xqg(ρ, u) =

∫
R

g(v)(∂tχ+ v∂xχ) dv = −
∫
R

g′′(ν) dμ ≤ 0

in the distributional sense for all g ∈ C2
0 (R) and g′′ ≥ 0 on the support of μ.

4.2.1. Existence and uniqueness of entropy solutions of (1.13). Next, to obtain the

uniqueness of entropy solutions, we consider the entropy solutions of the coupled Burgers

system (1.13). We have the following proposition for entropy pairs (η, q).

Proposition 4.2. Let ψ1, ψ2 ∈ C2(R) be two convex functions. Define

η(ρ, u) : = k1

∫
R

ψ′
1(v)χ+(v; ρ, u) dv + k2

∫
R

ψ′
2(v)χ−(v; ρ, u) dv

= k1ψ1(u+
√
αρ) + k2ψ2(u−

√
αρ) (4.19)

and

q(ρ, u) : = k1

∫
R

vψ′
1(v)χ+(v; ρ, u) dv + k2

∫
R

vψ′
2(v)χ−(v; ρ, u) dv

= k1φ1(u+
√
αρ) + k2φ2(u−

√
αρ), (4.20)

where k1 and k2 are two nonnegative real numbers and φ satisfies φ′
i(v) = vψ′

i(v) for

i = 1, 2 and v ∈ R. Then, η(ρ, u) are convex entropies with respect to (ρ, u). Moreover,

q(ρ, u) is the corresponding entropy flux of η(ρ, u).

Proof. The proof is similar to Proposition 4.1 and we therefore omit it. �
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Remark 4.2. When k1 = k2 = 1
2 and ψ1 = ψ2 = ψ, the entropy η defined by (4.19)

is equivalent to ηψ given in (4.10). Recall Definition 4.1. For system (1.18), the entropy

is defined by ηg which is one part of (4.10). If we use the counter part ηψ in (4.10)

to define entropy class and entropy solutions of the coupled Burgers system (1.13), we

can also obtain the global existence of solutions. This cannot ensure the uniqueness of

entropy solutions. However, if we use the entropies given by (4.19), which can be viewed

as a class of entropies modifying ηψ, to define entropy solutions of the coupled Burgers

system (1.13), we can obtain the stability (hence uniqueness) of solutions (see Theorem

4.1).

We give the definition of entropy solutions of the coupled Burgers system (1.13).

Definition 4.2. A couple (ρ, u) is called an entropy solution of the coupled Burgers

system (1.13) if ρ ≥ 0 and it satisfies

∂tη(ρ, u) + ∂xq(ρ, u) ≤ 0 (4.21)

in the distribution sense for any convex entropies (η, q) given by (4.19), (4.20).

Next, we present an important result about the equivalent relations between entropy

solutions of the coupled Burgers system (1.13) and solutions of the decoupled Burgers

equations (1.16) and (1.17).

Proposition 4.3. If (ρ, u) is an entropy solution to the coupled Burgers system (1.13),

then f± = u ±
√
αρ are entropy solutions to the decoupled Burgers equations (1.16)

and (1.17). Conversely, if f± such that f+ ≥ f− are entropy solutions to the decoupled

Burgers equations (1.16) and (1.17), then (ρ, u) =
Ä
f++f−

2 , f+−f−
2
√
α

ä
is an entropy solution

to the coupled Burgers system (1.13).

Proof.

Step 1. Assume (ρ, u) is an entropy solution to the coupled Burgers system (1.13).

Hence, the inequality (4.21) holds for any η given by (4.19). For any convex function ψ,

let k1 = 1, k2 = 0, and ψ1 = ψ in (4.19). At this time, the inequality (4.21) gives

∂tψ(f+) + ∂xφ(f+) ≤ 0, (4.22)

where φ′(v) = vψ′(v) and f+ = u +
√
αρ. Similarly, when k1 = 0, k2 = 1 and ψ2 = ψ,

we can obtain

∂tψ(f−) + ∂xφ(f−) ≤ 0 (4.23)

in the distribution sense. Inequalities (4.22) and (4.23) are exactly the entropy inequal-

ities for the decoupled Burgers equations (1.16) and (1.17). Hence, f± are entropy

solutions to (1.16) and (1.17).

Step 2. Let f± be an entropy solution of the decoupled Burgers equations (1.16) and

(1.17). Due to f+ ≥ f−, we have ρ = f+−f−
2
√
α

≥ 0. Moreover, inequality (4.22) holds

for any entropy pair (ψ1, φ1) with φ′
1(v) = vψ′

1(v), and inequality (4.23) holds for any

entropy pair (ψ2, φ2) with φ′
2(v) = vψ′

2(v). The linear combination of (4.22) and (4.23)

with nonnegative coefficients k1 and k2 generates the inequality (4.21). Hence, (ρ, u) is

an entropy solution to the coupled Burgers system (1.13). �

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



THE COMPLEX BURGERS EQUATION 85

Due to the well-posedness of the scalar conservation law (Burgers equation), we have

the following well-posedness result for the coupled Burgers system (1.13).

Theorem 4.1. Let ρ0(x) and u0(x) be two bounded measurable functions satisfying

ρ0 ≥ 0. Then

(i) There exist a unique entropy solution (ρ(x, t), u(x, t)) to the coupled Burgers system

(1.13) such that ρ ≥ 0 and (ρ, u)|t=0 = (ρ0, u0).

(ii) Let (ρ̃, ũ) be another entropy solution of the coupled Burgers system (1.13) subject

to initial datum (ρ̃0(x), ũ0(x)) with ρ̃0 ≥ 0. If u0 − ũ0, ρ0 − ρ̃0 ∈ L1(R), then u(·, t) −
ũ(·, t), ρ(·, t)− ρ̃(·, t) ∈ L1(R), and
√
α‖ρ(·, t)− ρ̃(·, t)‖L1 + ‖u(·, t)− ũ(·, t)‖L1 ≤ 2(

√
α‖ρ0 − ρ̃0‖L1 + ‖u0 − ũ0‖L1). (4.24)

Proof.

(i) Consider the decoupled Burgers equations (1.16) and (1.17) with initial datum

f±(x, 0) := u0(x)±
√
αρ0(x). Then, there is a unique entropy solution f±(x, t) to (1.16)

and (1.17), respectively. Due to ρ0 ≥ 0, we have f+(x, 0) ≥ f−(x, 0). Hence, from

[27, Proposition 2.3.6 ], we have f+(x, t) ≥ f−(x, t) for any t > 0 and x ∈ R. By

Proposition 4.3, there is a unique solution to the coupled Burgers system (1.13) given by

u(x, t) =
f+(x, t) + f−(x, t)

2
, ρ(x, t) =

f+(x, t)− f−(x, t)

2
√
α

. (4.25)

Moreover, we have ρ ≥ 0.

(ii) Let f± := u±
√
αρ, and let f̃± := ũ±

√
αρ̃. Then, f± and f̃± are entropy solutions

to the decoupled Burgers equations (1.16) and (1.17). By the stability results for scalar

conservation law (see [27, Proposition 2.3.6 ]), we have
√
α‖ρ(·, t)− ρ̃(·, t)‖L1 + ‖u(·, t)− ũ(·, t)‖L1

=

∥∥∥∥∥f+(·, t)− f−(·, t)
2

− f̃+(·, t)− f̃−(·, t)
2

∥∥∥∥∥
L1

+

∥∥∥∥∥f+(·, t) + f−(·, t)
2

− f̃+(·, t) + f̃−(·, t)
2

∥∥∥∥∥
L1

≤‖f+(·, 0)− f̃+(·, 0)‖L1 + ‖f−(·, 0)− f̃−(·, 0)‖L1

≤2(
√
α‖ρ0 − ρ̃0‖L1 + ‖u0 − ũ0)‖L1).

�
Remark 4.3. We remark that f+ and f− are entropy solutions to the decoupled

Burgers equations (1.16) and (1.17), respectively, if and only if there are two positive

Radon measures μ+, μ− ∈ M+(R) such that the kinetic functions χ±(v; ρ, u) given by

(4.1) are a weak solution of the kinetic equations [24]

∂tχ± + v∂xχ± = ∂vμ±.

Actually, for an entropy pair (ψ, φ), one has

∂tψ(f±) + ∂xφ(f±) =

∫
R

ψ′(v)(∂tχ± + v∂xχ±) dv = −
∫
R

ψ′′(v)μ± dv ≤ 0
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in the distributional sense. For more detailed discussions of using these kinetic density

functions to study the coupled Burgers system (1.13) for (ρ, u), one can refer to [24].

Remark 4.4 (Difference between Definition 4.1 and Definition 4.2). From (4.4), the

Hamiltonian Hu
1 corresponds to (4.19) for ψ1(v) = ψ2(v) = v3 and k1 = k2 = 1/12.

At this time ψ is not convex, and hence from Proposition 4.1 we know that Hu
1 is not

convex with respect to (ρ, u). When ρ ≥ 0, we also have that Hu
2 is convex with respect

to (ρ, u). However, we have

Hu
2 (ρ, u) =

1

4

∫
R

v2χ+(v; ρ, u) dv −
1

4

∫
R

v2χ−(v; ρ, u) dv,

which is not a proper entropy as in Definition 4.2.

Similarly, one can show that Hm
1 is not a proper entropy as in Definition 4.1, while

Hm
2 is a convex entropy for system (1.18).

To end this subsection, we give the kinetic formulation for the well-known Lax entropy

[13]. Let the solution of the wave equation (4.8) have the form η(k; ρ, u) = ekuσ(k; ρ) for

some constant parameter k 	= 0. Then, equation (4.8) becomes the ODE

σρρ(ρ) = αk2σ(ρ), σ(0) = 0, σ′(0) = 1.

Hence, we have

σ(ρ) =
e
√
αkρ − e−

√
αkρ

2
√
αk

, η(k; ρ, u) =
ekf+ − ekf−

2
√
αk

.

This yields a family of Lax entropy pairs:

η(k; ρ, u) =
ekf+ − ekf−

2
√
αk

, q(k; ρ, u) =
(kf+ − 1)ekf+ − (kf− − 1)ekf−

2
√
αk2

. (4.26)

Note that both η and q are real functions. When g(v) = ekv in (4.15), ηg(ρ,m) recovers

the Lax entropy given in (4.26).

5. Lagrangian dynamics for (1.13) and its relation with the Calogero–Moser

model. In this section, we derive the Lagrangian dynamics for the coupled Burgers sys-

tem (1.13), which recovers the dynamics (1.23) for gas. Moreover, we present a nonlinear

spring-mass system (Fermi–Pasta–Ulam–Tsingou model) with nearest-neighbor interac-

tions, and its continuum limit yields the Lagrangian dynamics of the coupled Burgers

system (1.13).

5.1. Lagrangian dynamics for the coupled Burgers system (1.13). Consider an initial

datum for the coupled Burgers system (1.13):

u(x, 0) = u0(x), ρ(x, 0) = ρ0(x), x ∈ R. (5.1)

Assume that the initial density function ρ0 : R → R satisfies ρ0(x) > 0 and the total

mass ||ρ0||L1 = 1. Define the initial cumulative mass distribution function Z0:

Z0(x) :=

∫ x

−∞
ρ0(y) dy for x ∈ R. (5.2)
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Then, function Z0 : R → (0, 1) is strictly increasing. Hence, there is an inverse function

X0 : (0, 1) → R such that

Z0(X0(ξ)) = ξ, X0(Z0(x)) = x for x ∈ R, ξ ∈ (0, 1). (5.3)

Moreover, we have

Z0(0) = X0(0) = 0, and
1

X ′
0(ξ)

= Z ′
0(x) = ρ0(x) for ξ = Z0(x). (5.4)

Here, x is the Eulerian coordinates and we take ξ as the Lagrangian coordinates.

Give an Eulerian velocity field u : R × [0,∞) → R. Define the flow map X(ξ, t)

satisfying ®
Ẋ(ξ, t) = u(X(ξ, t), t), ξ ∈ (0, 1), t > 0,

X(ξ, 0) = X0(ξ).
(5.5)

Here, Ẋ(ξ, t) denotes ∂tX(ξ, t). Hence, we have ∂ξẊ = ∂xu∂ξX, and thus

∂ξX(ξ, t) = X ′
0(ξ)e

∫ t

0
∂xu(X(ξ,s),s) ds

> 0, ξ ∈ (0, 1). (5.6)

Define the density function in Lagrangian coordinates at time t as

ρ(X(ξ, t), t) :=
1

∂ξX(ξ, t)
. (5.7)

Hence,

ρ(x, t) dx = dξ and ∂tρ+ ∂x(ρu) = 0, ρ(x, 0) = ρ0(x), (5.8)

which is the first equation in the coupled Burgers system (1.13). We also have local mass

conservation law:∫ X(ξ2,t)

X(ξ1,t)

ρ(x, t) dx = ξ1 − ξ2 =

∫ X0(ξ1)

X0(ξ2)

ρ0(x) dx for any ξi ∈ (0, 1), i = 1, 2.

By (5.7), we obtain

∂xρ(X(ξ, t), t) =
1

∂ξX(ξ, t)
∂ξ

Å
1

∂ξX(ξ, t)

ã
= − ∂ξξX(ξ, t)

(∂ξX)3(ξ, t)
,

which gives

−(αρ∂xρ)(X(ξ, t), t) = α
∂ξξX(ξ, t)

(∂ξX)4(ξ, t)
. (5.9)

Set

V (ξ, t) := u(X(ξ, t), t). (5.10)

Combining (5.9), the coupled Burgers system (1.13) is recast to the Lagrangian dynamics:⎧⎪⎨
⎪⎩
Ẋ(ξ, t) = V (ξ, t), ξ ∈ (0, 1), t > 0,

V̇ (ξ, t) = α
∂ξξX(ξ, t)

(∂ξX)4(ξ, t)
= −α

3
∂ξ

Å
1

(∂ξX)3(ξ, t)

ã
,

(5.11)
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subject to initial datum ®
X(ξ, 0) = X0(ξ), ξ ∈ (0, 1),

V (ξ, 0) = u0(ξ).
(5.12)

Here, u0 is given by (5.1) and X0(ξ) is given by (5.3). Taking the derivative of the first

equation in (5.11) with respect to ξ, we can recover the dynamics (1.23) for gas with

τ (ξ, t) := Xξ(ξ, t).

Next, we briefly show the least action principle for the Lagrangian dynamics (5.11).

Corresponding to the total energy Hm
2 (ρ,m) given by (3.12), we use Legendre transfor-

mation to obtain the Lagrangian functional as

L (ρ, u) =

∫
R

m
δHm

2

δm
dx−Hm

2 (ρ,m) =

∫
R

Å
1

2
ρu2 − α

6
ρ3
ã
dx.

The momentum m is recovered by taking the variation of L with respect to u:

m =
δL

δu
= ρu.

The action is defined by

A(X) =
1

2

∫ 1

0

∫
R

(
ρu2 − α

3
ρ3
)
dx dt =

1

2

∫ 1

0

∫ 1

0

Å
Ẋ2(ξ, t)− α

3(∂ξX)2(ξ, t)

ã
dξ dt.

(5.13)

Next, consider two increasing functions for ξ ∈ [0, 1]: X(ξ, 0) = X0(ξ) and X(ξ, 1) =

X1(ξ). We formally show that the coupled Burgers system (1.13) corresponds to a critical

path of the action A(X) in some manifold connecting X0 and X1 for t ∈ [0, 1]. For any

Y ∈ C∞
c ((0, 1)× (0, 1)), we have

∫ 1

0

∫ 1

0

δA
δX

· Y dξ dt = lim
ε→0

A(X + εY )−A(X)

ε

=
1

2

∫ 1

0

∫ 1

0

Å
2ẊẎ +

2α

3(∂ξX)3
∂ξY

ã
dξ dt =

∫ 1

0

∫ 1

0

ï
−Ẍ − ∂ξ

Å
α

3(∂ξX)3

ãò
Y dξ dt.

This gives

δA
δX

= −Ẍ − ∂ξ

Å
α

3(∂ξX)3

ã
.

Take δA
δX = 0, and we have

Ẍ − α
∂ξξX

(∂ξX)4
= 0, (5.14)

which corresponds to the Lagrangian dynamics (5.11).
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5.2. A spring-mass system with nearest-neighbor interactions. In this subsection, we

present a local interaction model for N masses and show that the Lagrangian dynamics

system (5.11) is exactly the continuum limit equation of this model. For N ordered

masses x1(t) < · · · < xN (t), each mass is evolved by a force generated by interactions

between nearest neighbors and the model is described by⎧⎪⎨
⎪⎩
ẋj(t) = vj(t), 1 ≤ j ≤ N,

v̇j(t) =
α

3N2

ï
1

(xj+1(t)− xj(t))3
+

1

(xj−1(t)− xj(t))3

ò
.

(5.15)

Here we assume

x0 = xN+1 = +∞ and
1

(x0(t)− x1(t))3
=

1

(xN+1(t)− xN (t))3
= 0. (5.16)

The masses accelerate by a repulsive force if α < 0. While α > 0, the masses attract

each other. System (5.15) is a Hamiltonian system corresponding to the Hamiltonian

functional:

H(x, p) =
N

2

N∑
j=1

p2j −
α

12N3

N∑
j=1

∑
k=j±1

1

(xj − xk)2
. (5.17)

Momentum pi equals to mass 1/N times velocity vi, which means vi = Npi. Hence,

(5.15) equals ®
ẋj(t) = ∂pj

H, 1 ≤ j ≤ N,

ṗj(t) = −∂xj
H.

Model (5.15) describes local interactions between masses and their nearest-neighbors,

which is a special case of the Fermi–Pasta–Ulam–Tsingou lattice system. We compare

(5.15) with another Fermi–Pasta–Ulam–Tsingou lattice system, the Toda lattice, given

by the system of ordinary differential equations

d2qj
dt2

= eqj+1−qj − eqj−qj−1 , j ∈ Z. (5.18)

Note that the Toda lattice is an integrable system. We do not know whether or not

system (5.15) is an integrable system. However, if each mass interacts with all the other

masses in the same manner, we can obtain an integrable global interaction model, the

Calogero–Moser model (see Remark 5.1).

Next, we formally derive the continuum limit of the local interaction mass system. To

do this, we assume that the masses initially distribute uniformly and xj(t) = X(ξ, t),

xj+1(t) = X(ξ + 1/N, t), and xj−1(t) = X(ξ − 1/N, t) for some ξ ∈ (0, 1) and 2 ≤ j ≤
N − 1. Using Taylor expansion, we have

xj+1(t)− xj(t) = ∂ξX(ξ, t)N−1 +
1

2
∂ξξX(ξ, t)N−2 +

1

6
∂ξξξX(ξ, t)N−3 +O((N−4))

and

xj−1(t)− xj(t) = −∂ξX(ξ, t)N−1 +
1

2
∂ξξX(ξ, t)N−2 − 1

6
∂ξξξX(ξ, t)N−3 +O((N−4)).
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Hence, we can obtain

α

3N2

ï
1

(xj+1(t)− xj(t))3
+

1

(xj−1(t)− xj(t))3

ò

=
α

3N2

(xj−1 + xj+1 − 2xj)
[
(xj−1 − xj)

2 + (xj+1 − xj)
2 − (xj−1 − xj)(xj+1 − xj)

]
(xj+1 − xj)3(xj−1 − xj)3

=
α

3N2

[
∂ξξX(ξ, t)N−2 +O(N−4)

]
·
[
3(∂ξX)2(ξ, t)N−2 +O(N−3)

]
(∂ξX)6(ξ, t)N−6 +O(N−7)

=
α

3N2

N−4

N−6

[
∂ξξX(ξ, t) +O(N−2)

]
·
[
3(∂ξX)2(ξ, t) +O(N−1)

]
(∂ξX)6(ξ, t) +O(N−1)

=α
∂ξξX(ξ, t) +O(N−1)

(∂ξX)4(ξ, t) +O(N−1)
.

Let N → ∞ and we obtain

lim
N→∞

α

3N2

ï
1

(xj+1(t)− xj(t))3
+

1

(xj−1(t)− xj(t))3

ò
= α

∂ξξX(ξ, t)

(∂ξX)4(ξ, t)
.

This gives the continuum coupled Burgers system in Lagrangian coordinate (5.11).

Remark 5.1. If each mass interacts with all the other masses in the same manner (the

force between each pair of two masses is of reciprocal proportion to the cubic of distance

between them), we can obtain an integrable global interaction model, the Calogero–Moser

model [21]: ⎧⎪⎪⎨
⎪⎪⎩
ẋj(t) = vj(t),

v̇j(t) =
4α

N2π2

N∑
k=1,k �=j

1

(xj(t)− xk(t))3
, 1 ≤ j ≤ N.

(5.19)

The coefficients of (5.19) are different from the coefficients in (5.15). System (5.19) is

also a Hamiltonian system and the rescaled (pj = vj/N) Hamiltonian is given by

H̃(x, q) =
N

2

N∑
j=1

p2j +
α

2N3π2

N∑
j=1

∑
k �=j

1

(xj − xk)2
. (5.20)

By using the Euler–MacLaurin asymptotic expansion for the Riemann integral of func-

tions, Menon [19] showed that system (5.11) is the N → ∞ limit of the Calogero–Moser

system corresponding to the rescaled Hamiltonian (5.20). As shown by [19, Eqs. (5.13),

(5.26)], the Hamiltonian H̃ corresponds to the total energy Hm
2 (see (3.15)) of system

(1.18).

Appendix A. Proof of Theorem 2.1. Consider the initial datum given by (2.8).

Direct calculation shows that

f0(z) =
1

π

∫
R

ρ0(s)

z − s
ds =

1

π

∫
R

x− s

y2 + (x− s)2
ρ0(s) ds−

i

π

∫
R

y

y2 + (x− s)2
ρ0(s) ds

=: Rρ0(x, y)− iPρ0(x, y),
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where Pρ0(x, y) and Rρ0(x, y) are given by the convolution of ρ0 with the Poisson kernel

and the conjugate Poisson kernel given by

Py(x) :=
1

π

y

y2 + x2
and Ry(x) :=

1

π

x

y2 + x2
. (A.1)

Furthermore, we have

lim
y→0+

[Rρ0(x, y)− iPρ0(x, y)] = Hρ0(x)− iρ0(x) for a.e. x ∈ R.

Recall the following properties of the Poisson kernel:

(i) If h ∈ L2(R), then

Rh(x, y) = PHh(x, y) on R
2
+.

(ii) If h ∈ L∞(R) and is vanishing at infinity, then

lim
y→+∞

Ph(x, y) = 0, x ∈ R,

and

lim
x→±∞

Ph(x, y) = 0, y ≥ 0.

(iii) If h ∈ L∞(R), then Ph(x, y) is a bounded function on R2
+.

Next, we prove the existence and uniqueness of C+-holomorphic solutions to (2.10)

by the characteristics method. Consider the characteristics given by

d

dt
Z(w, t) = g(Z(w, t), t), Z(w, 0) = w ∈ C+. (A.2)

Then,
d2

dt2
Z(w, t) =

d

dt
g(Z(w, t), t) = [∂tg + g∂zg](Z(w, t), t) = γ2Z(w, t),

with initial data

Z(w, 0) = w,
d

dt
Z(w, t)

∣∣∣
t=0

= g0(w), w ∈ C+.

Equation (A.2) gives the following complex trajectories:

Z(w, t) =

⎧⎨
⎩w cosh γt+

1

γ
g0(w) sinh γt, γ > 0,

g0(w)t+ w = f0(w)t+ w, γ = 0.
(A.3)

Here, we only treat the case for γ > 0 where the convergence to the steady state for

analytical solutions happens. For the well-posedness results of the case γ = 0, one can

refer to [4]. Let

Z(w, t) = Z1(x, y, t) + iZ2(x, y, t), w = x+ iy ∈ C+,

and we have

Z1(x, y, t) = x cosh γt+
π

γ
Rρ0(x, y) sinh t− x sinh γt = xe−γt +

π

γ
Rρ0(x, y) sinh γt,

(A.4)

Z2(x, y, t) = y cosh γt− π

γ
Pρ0(x, y) sinh γt− y sinh γt = ye−γt − π

γ
Pρ0(x, y) sinh γt.

(A.5)
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Because the initial data g0(w) in (2.10) is a C+-holomorphic function, Z(w, t) given by

(A.3) is C+-holomorphic of w for any t ≥ 0. Next, we present a lemma to show that for

any fixed time t > 0 the backward characteristics of (A.3) are well defined on the set

C+. We have the following lemma.

Lemma A.1. Let 0 < ρ0 ∈ Hs(R) ∩ L1(R) with s > 1/2. For fixed t0 > 0 and fixed

Z = Z1 + iZ2 ∈ C+, there exists a unique w = x + iy ∈ C+ such that (A.4) and (A.5)

hold.

Proof. Given t0 > 0, denote

a := e−γt0 , b :=
π

γ
sinh γt0.

Then (A.4) and (A.5) become

Z1 = ax+ bRρ0(x, y), Z2 = ay − bPρ0(x, y).

Step 1. In this step, we prove that for any x, there exists a unique y > 0 that satisfies

(A.5) for Z2 ≥ 0 and t0 > 0.

Because Pρ0(x, y) > 0 is a bounded function on R
2
+, by the property of the Poisson

kernel we have

lim
y→+∞

Z2(x, y, t0) = +∞, lim
y→0+

Z2(x, y, t0) = −bρ0(x) < 0. (A.6)

Hence, for any fixed Z2 ≥ 0, there exists a point y > 0 depending on x such that

Z2 = ay − bPρ0(x, y).

Now we prove that y is unique. Suppose that there exist y1 > y2 such that

Z2 = ay1 − bPρ0(x, y1),

Z2 = ay2 − bPρ0(x, y2),

which implies

y1, y2 > Z2/a and
Pρ0(x, y1)

y1 − Z2/a
=

Pρ0(x, y2)

y2 − Z2/a
.

Because function

h(y) =
y

y − Z2/a
· 1

y2 + (x− s)2

is a decreasing function for y > Z2/a, we obtain a contradiction.

Now we denote by yZ2
(x) the solution of (A.5) with fixed Z2 ≥ 0, t0 > 0, and x ∈ R.

Hence, we obtain

ayZ2
(x)− Z2 = bPρ0(x, yZ2

(x)). (A.7)

Step 2. In this step, we prove that there exists a unique x that satisfies (A.4) for

fixed Z1, Z2, and t0. Taking the derivative of (A.7) with respect to x gives

d

dx
yZ2

(x) =
∂xPρ0(x, yZ2

(x))

a/b− ∂yPρ0(x, yZ2
(x))

. (A.8)
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Since ρ0 ∈ Hs(R) ∩ L1(R) (s > 1/2), it follows that Hρ0 ∈ L∞(R), and therefore

Rρ0 = PHρ0 is a bounded function over R2
+. Furthermore,

lim
x→±∞

[ax+ bRρ0(x, yZ2
(x))] = ±∞. (A.9)

Hence, for any Z1 ∈ R, we can find an x ∈ R such that

Z1 = ax+ bRρ0(x, yZ2
(x)).

To prove the uniqueness, we only have to prove that the function

q(x) = ax+ bRρ0(x, yZ2
(x))

is an increasing function. By using (A.8) and the Cauchy–Riemann equations

∂xRρ0 = −∂yPρ0, ∂xPρ0 = ∂yRρ0, (A.10)

and taking the derivative of q(x) gives

d

dx
q(x) =

b(a/b+ ∂xRρ0)
2 + (∂xPρ0)

2

a/b+ ∂xRρ0
(x, yZ2

(x)).

To prove the increase of q(x), it is sufficient to prove

a/b+ ∂xRρ0(x, y) > 0 (A.11)

for any (x, y) ∈ R2
+ satisfying ay − bPρ0(x, y) ≥ 0 and y > 0. Suppose that

a/b+ ∂xRρ0(x0, y0) ≤ 0

for some point (x0, y0) ∈ R2
+ with ay0 − bPρ0(x0, y0) ≥ 0. Then, we have

−a/b ≥ ∂xRρ0(x0, y0) =
1

π

∫
R

y20 − (x0 − s)2

[y20 + (x0 − s)2]2
ρ0(s) ds >

1

π

∫
R

−y20 − (x0 − s)2

[y20 + (x0 − s)2]2
ρ0(s) ds

=
1

π

∫
R

−1

y20 + (x0 − s)2
ρ0(s) ds = −Pρ0(x0, y0)

y0
,

which implies a contradiction:

ay0 − bPρ0(x0, y0) < 0.

�
From the above lemma, we know that the backward characteristics are well defined.

More importantly, for any Z ∈ C+ the initial point w must be an interior point in C+.

For any t ≥ 0, we denote the backward characteristics as

Z−1(·, t) : C+ → C+.

From the uniqueness in Lemma A.1, Z−1(·, t) is a 1-1 map.

Proof of Theorem 2.1. For simplicity, we only consider the case γ = 1. The proof for

arbitrary γ > 0 is similar.

Step 3. Proof of (i). From Lemma A.1, we have C+ ⊂ {Z(w, t) : w ∈ C+}, and
Z−1(·, t) is well defined on C+ for any fixed time t > 0. Denote the preimage of Z(·, t)
as

Z−1(C+, t) := {w ∈ C+; Z(w, t) ∈ C+}.
Denote

a(t) := e−t, b(t) := π sinh t.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



94 YU GAO, YUAN GAO, AND JIAN-GUO LIU

For (x, y) ∈ R2
+ and Z2(x, y, t) ≥ 0, by the Cauchy–Riemann equation (A.10), we have

|Zw(w, t)|=
∣∣∣∣∂(Z1, Z2)

∂(x, y)

∣∣∣∣ (x, y)=
∣∣∣∣∣∣∣
∂xZ1 ∂yZ1

∂xZ2 ∂yZ2

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
a(t) + b(t)∂xRρ0 b(t)∂yRρ0

−b∂xPρ0 a(t)− b(t)∂yPρ0

∣∣∣∣∣∣∣
=
[
a(t) + b(t)∂xRρ0

]2
+
[
b(t)∂xPρ0

]2∣∣∣
(x,y)

> 0. (A.12)

Due to (A.6) and (A.9), we obtain

|Z(w, t)| → +∞ as |w| → +∞,

which means that Z(·, t) is proper [12, Definition 6.2.2]. By the Hadamard global inverse

function theorem [12, Theorem 6.2.8], there exists an inverse function Z−1(·, t) such that

Z−1(·, t) : C+ → Z−1(C+, t)

is a bijection. We also know that Z−1 is C+-holomorphic since Z is C+-holomorphic.

Moreover, for any z ∈ C+, there exists w = Z−1(z, t) ∈ C+. Due to z = Z(Z−1(z, t), t) ∈
C+ and |Zw(w, t)| 	= 0 (by (A.12)), we have

∂tZ
−1(z, t) = − ∂tZ(w, t)

∂wZ(w, t)
, w = Z−1(z, t).

Because of (A.3), we know that ∂k

∂tk
Z(w, t) is C+-holomorphic for any positive integer k.

Hence, ∂k

∂tk
Z−1(z, t) is C+-holomorphic for any positive integer k. From (A.3), we have

z = Z−1(z, t) cosh t+ g0(Z
−1(z, t)) sinh t, z ∈ C+. (A.13)

By (A.2), we obtain

g(Z(w, t), t) =
d

dt
Z(w, t) = w sinh t+ g0(w) cosh t.

Hence,

g(z, t) = Z−1(z, t) sinh t+ g0(Z
−1(z, t)) cosh t, (A.14)

which is a C+-holomorphic solution to the complex Burgers equation (2.10) satisfy-

ing g(z, 0) = g0(z). Moreover, due to the time regularity for Z−1(z, t), we know that
∂k

∂tk
g(z, t) is C+-holomorphic for any positive integer k and t > 0.

Step 4. Proof of (ii). A C+-holomorphic solution to (2.7) is given by

f(z, t) := g(z, t) + z, z ∈ C+, t > 0, (A.15)

with initial datum f0(z) = πRρ0(x, y)− iπPρ0(x, y), z = x+ iy ∈ C+. Combining (A.13)

and (A.14), we obtain

f(z, t) = f0(Z
−1(z, t))et and z = e−tZ−1(z, t) + f0(Z

−1(z, t)) sinh t, z ∈ C+. (A.16)

Consider the trace of f(z, t) on the real line and define

f(x, t) =: u(x, t)− iπρ(x, t).
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Due to Lemma A.1, for any x ∈ R, we have Z−1(x, t) =: ax + ibx ∈ C+ with some

positive real number bx > 0. From (A.16), we have

f(x, t) = f0(ax + ibx)e
t = πRρ0(ax, bx)e

t − iπPρ0(ax, bx)e
t.

Therefore,

ρ(x, t) = Pρ0(ax, bx)e
t > 0, x ∈ R. (A.17)

Hence, ρ(x, t) is a positive analytical solution to the Dyson equation (1.4). Moreover, by

the uniqueness of solutions to the characteristics equation (2.10) we know that analytical

solutions to the Dyson equation (1.4) are unique.

The energy estimate (1.21) follows from

d

dt
E(ρ) =

∫
R

δE

δρ
· ∂tρ dx = −

∫
R

ρ

∣∣∣∣∂x
Å
δE

δρ

ã∣∣∣∣2 dx
= −

∫
R

ρ(x, t)
∣∣γx− πHρ(x, t)

∣∣2 dx.
For (2.12), direct calculations show that ‖ρ(t)‖L1(R) = ‖ρ0‖L1(R). Multiplying (1.4) by

x2 and taking an integral yields

d

dt

∫
R

x2ρ(x, t) dx = 2π

∫
R

xρHρ dx− 2

∫
R

x2ρ(x, t) dx = ‖ρ0‖2L1 − 2

∫
R

x2ρ(x, t) dx,

which implies (2.12). Inequality (2.14) follows from Grönwall’s inequality and gives the

following estimate:

d

dt

∫
R

ρ log ρ dx =

∫
R

∂tρ(log ρ+ 1) dx =

∫
R

−(ρHρ+ γxρ)x(log ρ+ 1) dx

=

∫
R

(Hρ− γx)ρx dx = −‖(−Δ)1/4ρ‖2L2 + γ‖ρ0‖L1 .

Step 5. We prove (iii) following the idea of [25]. Recall formula (A.16). For fixed

z ∈ C+, denote

zr(t) + izi(t) := e−tZ−1(z, t).

Next, we prove that zr(t) + izi(t) converges to a point w = z∗r + iz∗i ∈ C+ as t → ∞.

To this end, we first prove that |zr(t)| and zi(t) are all bounded from above and below

uniformly in time t.

Because

f0(Z
−1(z, t)) = πRρ0(e

tzr(t), e
tzi(t))− iπPρ0(e

tzr(t), e
tzi(t)),

by (A.16), we have

z = zr(t) + πRρ0(e
tzr(t), e

tzi(t)) sinh t+ i
[
zi(t)− πPρ0(e

tzr(t), e
tzi(t)) sinh t

]
.

(A.18)

Due to πPρ0(e
tzr(t), e

tzi(t)) sinh t ≥ 0, we have

zi(t) ≥ �(z) > 0.
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Moreover, we have

�(z) = zi(t)− πPρ0(e
tzr(t), e

tzi(t)) sinh t

= zi(t)−
∫
R

etzi(t)

e2tz2i (t) + (etzr(t)− s)2
ρ0(s) ds sinh t

≥ zi(t)−
∫
R

e2tzi(t)

2e2tz2i (t) + 2(etzr(t)− s)2
ρ0(s) ds

≥ zi(t)−
1

zi(t)
,

which implies

zi(t) ≤ �(z) + 1.

Hence, zi(t) is bounded as

0 < �(z) ≤ zi(t) ≤ �(z) + 1.

Next, we prove

sup
t≥0

|zr(t)| < +∞.

We prove this by a contradiction argument. If there exists tn → ∞ such that zr(tn) → ∞,

then by the dominated convergence theorem we have

πRρ0(e
tnzr(tn), e

tnzi(tn)) sinh tn

=

∫
R

etnzr(tn)− s

e2tnz2i (tn) + (etnzr(tn)− s)2
dx sinh tn → 0, n → ∞.

By (A.18), we obtain a contradiction that

�(z) = zr(tn) + πRρ0(e
tnzr(tn), e

tnzi(tn)) sinh tn → ∞.

Since |zr(t)| and zi(t) are bounded, there exists tn → ∞ and two constants z∗r , z
∗
i > 0

such that

zr(tn) → z∗r , zi(tn) → z∗i , n → ∞.

Let w := z∗r + iz∗i . For any s ∈ R, we have

etnzr(tn)− s

e2tnz2i (tn) + (etnzr(tn)− s)2
sinh tn → z∗r

2(z∗i )
2 + 2(z∗r )

2
, n → ∞.

Then, by the dominated convergence theorem we have

lim
n→∞

πRρ0(e
tzr(tn), e

tzi(tn)) sinh tn

= lim
n→∞

∫
R

etnzr(tn)− s

e2tnz2i (tn) + (etnzr(tn)− s)2
dx sinh tn

=
z∗r

2(z∗i )
2 + 2(z∗r )

2
.

Similarly, we have

lim
n→∞

πPρ0(e
tzr(tn), e

tzi(tn)) sinh t =
z∗i

2(z∗i )
2 + 2(z∗r )

2
.
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Hence, from (A.18) we obtain

z = w +
1

2

z∗r − iz∗i
(z∗i )

2 + (z∗r )
2
= w +

1

2w
.

Similar to the calculation of (B.5), we know that the above equation has a unique solution

in C+:

w =
1

z −
√
z2 − 2

.

Hence, we have

e−tZ−1(z, t) = zr(t) + izi(t) → w =
1

z −
√
z2 − 2

, t → ∞.

By (A.16) and using the dominated convergence theorem again, we have

f(z, t) = f0(Z
−1(z, t))et

=

∫
R

e2tzr(t)− s

e2tz2i (t) + [etzr(t)− s]2
ρ0(s) ds− i

∫
R

e2tzi(t)

e2tz2i (t) + [etzr(t)− s]2
ρ0(s) ds

→ z∗r − iz∗i
(z∗i )

2 + (z∗r )
2
=

1

w
= z −

√
z2 − 2.

The trace of z −
√
z2 − 2 on the real line is

f∞(x) := πHρ∞(x)− iπρ∞(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x+

√
x2 − 2, x < −

√
2,

x− i
√
2− x2, x ∈ [−

√
2,
√
2],

x−
√
x2 − 2, x >

√
2.

Hence,

ρ(x, t) → ρ∞(x) =

√
(2− x2)+

π
,

which proves part (iii) in Theorem 2.1.

Step 6. We prove (iv). From (1.7), if g(z, t) and ρ(x, t) are analytical solutions to

(2.16) and (1.4) with γ = 0, then

g̃(z, t) := etg

Å
etz,

e2t−1

2

ã
− z, z ∈ C+, t > 0,

is a C+-holomorphic solution to (2.10), and

ρ̃(x, t) := etρ

Å
etx,

e2t − 1

2

ã
, x ∈ R, t > 0,

gives an analytical solution to (1.4) for γ = 1. By part (iii), we obtain part (iv). �
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Appendix B. An explicit solution to (1.4)with γ = 0. In this section, by the

Stieltjes transform of Wigner’s semicircle law μ1 in (1.11), we recover an explicit solution,

which is same as the explicit solution of the Dyson equation (1.4) constructed in (2.18)

and (2.21) (see (B.8)).

First, we begin by taking the Stieltjes transformation. Let f1(z) be the Stieltjes

transform of the Wigner’s semicircle law μ1 given by (1.11):

f1(z) =

∫ 2

−2

1

z − y
μ1(dy), z ∈ C \ [−2, 2].

Let y = 2 cos θ for θ ∈ [−π, 0], α = −θ and we have

f1(z) =
1

2π

∫ 2

−2

√
4− y2

z − y
dy =

1

π

∫ 0

−π

2 sin2 θ

z − 2 cos θ
dθ =

1

π

∫ π

0

2 sin2 α

z − 2 cosα
dα

=
1

π

∫ π

−π

sin2 θ

z − 2 cos θ
dθ.

Let ζ = eiθ and we obtain

f1(z) =
1

4πi

∮
|ζ|=1

(ζ2 − 1)2

ζ2(ζ2 + 1− zζ)
dζ.

Set

h(ζ) :=
(ζ2 − 1)2

ζ2(ζ2 + 1− zζ)
.

Function h(ζ) has three poles: ζ0 = 0, ζ1 = z+
√
z2−4
2 , and ζ2 = z−

√
z2−4
2 . Next, we

choose the branch cut of
√
z2 − 4. Due to√

z2 − 4 = |z2 − 4|1/2e i
2 [arg(z−2)+arg(z+2)],

we see that −2 and 2 are branch points. We take the branch cut along the interval

[−2, 2] and we set arg(z − 2) = π and arg(z + 2) = 0 for z on the upside of the branch

cut. In this case, on the upside of [−2, 2] we have
√
z2 − 4 = i

√
4− x2, while on the

downside of [−2, 2],
√
z2 − 4 = −i

√
4− x2 . Moreover, the square root of z2 − 4 has

a positive imaginary part when z ∈ C+ and it has a negative imaginary part when

z ∈ C− := {z : �(z) < 0}. Hence, for the imaginary part, we have

|�(z −
√
z2 − 4)| < |�(z +

√
z2 − 4)| for z ∈ C \ [−2, 2], (B.1)

which implies

|�(ζ2)| < |�(ζ1)| for z ∈ C \ [−2, 2].

Due to ζ1ζ2 = 1, we have

|ζ2| < 1 and |ζ1| > 1 for z ∈ C \ [−2, 2],

and we obtain for z ∈ C \ [−2, 2],

Resh(ζ0) = lim
ζ→ζ0

d

dζ
[(ζ − ζ0)

2h(ζ)] = z, Resh(ζ2) = −
√

z2 − 4.

Hence, by the residue theorem,

f1(z) =
z −

√
z2 − 4

2
, C \ [−2, 2]. (B.2)
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Second, we show that f1(−z) is a Herglotz (Pick) function, which is analytical on

C \ [−2, 2] and �(z)�(f1(−z)) > 0 for �(z) 	= 0, and we show that the decay order of

�(f1) and �(f1) as �(z) and �(z) tends to infinity. Direct calculations give

2�(
√
z)�(

√
z) = �(z), �(

√
z)2 =

|z|+ �(z)
2

, and �(
√
z)2 =

|z| − �(z)
2

. (B.3)

For z = x+ iy, we obtain

�(z2 − 4) = 2xy, �(
√
z2 − 4)2 =

√
(x2 − y2 − 4)2 + 4x2y2 + x2 − y2 − 4

2
,

and

�(
√
z2 − 4)2 =

√
(x2 − y2 − 4)2 + 4x2y2 − (x2 − y2 − 4)

2
.

Recall that in our settings of the branch cut, the square root of z2 − 4 has a positive

imaginary part when z ∈ C+ and it has a negative imaginary part when z ∈ C−. Due

to (B.3), we know that the sign of �(
√
z2 − 4) is the same as �(

√
z2 − 4) when xy > 0

and that they have different signs if xy < 0. By elementary calculations, we have

�(f1(z)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
2x−

»√
(x2 − y2 − 4)2 + 4x2y2 + (x2 − y2 − 4)

2
√
2

, x > 0,

√
2x+

»√
(x2 − y2 − 4)2 + 4x2y2 + (x2 − y2 − 4)

2
√
2

, x < 0,

(B.4)

and

�(f1(z)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
2y −

»√
(x2 − y2 − 4)2 + 4x2y2 − (x2 − y2 − 4)

2
√
2

< 0, y > 0,

√
2y +

»√
(x2 − y2 − 4)2 + 4x2y2 − (x2 − y2 − 4)

2
√
2

> 0, y < 0.

(B.5)

From the sign in (B.5), �(z) > 0 implies �(−z) < 0 and �(f(−z)) > 0. Therefore we

have �(z) · �(f1(−z)) ≥ 0, and thus f1(−z) is a Herglotz function. Moreover, for fixed

y ∈ R in (B.4), dividing �(f1(z)) by x shows that �(f1(z)) decays in the order O(|x|−1)

as |x| → ∞. Similarly, �(f1(z)) decays in the order O(|y|−1) as |y| → ∞ for fixed x ∈ R.

Third, we use f1 to recover the explicit solution to the Dyson equation (1.4) with

γ = 0 given by (2.18) and (2.21). Define

ft(z) =
1√
t
f1

Å
z√
t

ã
, z ∈ C \ [−2

√
t, 2

√
t].

Then, direct checking shows that ft(z) is a self-similar solution to the complex Burgers

equation (1.1).

Finally, we try to obtain the traces of f1 on the upper and lower half-planes, respec-

tively. In the above settings of the branch cut, we have

arg(z − 2) = π = arg(z + 2), z ∈ (−∞,−2),

which implies √
z2 − 4 =

√
x2 − 4eiπ = −

√
x2 − 4, z = x ∈ (−∞,−2).
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Similarly, we have√
z2 − 4 =

√
x2 − 4ei2π =

√
x2 − 4, z = x ∈ (2,+∞).

Hence, the trace of function f1(z) defined by (B.2) from the upper half-plane C+ is given

by

f1(x+) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x+
√
x2 − 4

2
, x < −2,

x− i
√
4− x2

2
, x ∈ [−2, 2],

x−
√
x2 − 4

2
, x > 2.

(B.6)

The trace of function f1(z) given by (B.2) from the lower half-plane C− is

f1(x−) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x+
√
x2 − 4

2
, x < −2,

x+ i
√
4− x2

2
, x ∈ [−2, 2],

x−
√
x2 − 4

2
, x > 2.

(B.7)

Direct computations show that 1√
t
f1(

x√
t
±) are solutions to the complex Burgers equation

on the real line R.

Recall Section 2. If ρ is a solution to the Dyson equation (1.4), then g = πHρ−iπρ−x

is a solution to the complex Burgers equation (1.1) on the real line and f = πHρ− iπρ

gives a trace of an analytical function on the upper half-plane. Hence, we use the trace

f1(x+) (given by (B.6)) to define

f(x, t) =
1√
t
f1

Å
x√
t
+

ã
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x

2t
+

√
x2 − 4t

2t
, x < −2

√
t,

x

2t
− i

√
4t− x2

2t
, x ∈ [−2

√
t, 2

√
t],

x

2t
−

√
x2 − 4t

2t
, x > 2

√
t,

and

u(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x+
√
x2 − 4t

2t
, x < −2

√
t,

x

2t
, x ∈ [−2

√
t, 2

√
t],

x−
√
x2 − 4t

2t
, x > 2

√
t,

ρ(x, t) =

√
(4t− x2)+

2πt
. (B.8)

To end this section, we provide another method to prove that f1(−z) is a Herglotz

(Pick) analytic on (−∞,−2) ∪ (2,+∞). Recall that μ1(dy) =
1
2π

√
(4− y2)+ dy. Then

changing the variable y = t− 2 gives that

f1(−z) =

∫ 4

0

1

−z + 2− t

1

2π

»
(t(4− t))+ dt. (B.9)
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Define the measure dμ∗(t) :=
1
2π

√
(t(4− t))+ dt and recast f1(−z) as

f1(−z) =

∫ 4

0

1

−z + 2− t
dμ∗(t). (B.10)

Changing the variable −z + 2 = 1
w gives

f1(−z) =

∫ 4

0

1
1
w − t

dμ∗(t) =

∫ 4

0

w

1− wt
dμ∗(t) =: wF (w). (B.11)

Here F (w) =
∫ 4

0
1

1−wt dμ∗(t) is a Pick function analytic on (−∞, 1
4 ). F (w) is also the

generating function of a completely monotone sequence {An(2, 2)}n≥0 [17, Lemma 3],

where An(2, 2) is the general Fuss–Catalan number (also called a Raney number) with

index (2, 2). Therefore from [17, Corollary 1 (iii)], F1(w) := wF (w) is a Pick function

analytic on w ∈ (−∞, 1
4 ). From the relation −z + 2 = 1

w , we know that w(z) = 1
2−w

is a Pick function mapping (−∞,−2) ∪ (2,+∞) to (−∞, 14 ). Therefore the composition

f1(−z) = F1 ◦ w(z) is a Pick function analytic on z ∈ (−∞,−2) ∪ (2,+∞).
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[5] E. Cépa and D. Lépingle, Diffusing particles with electrostatic repulsion, Probab. Theory Related
Fields 107 (1997), no. 4, 429–449, DOI 10.1007/s004400050092. MR1440140
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[8] L. Erdős and H.-T. Yau, A dynamical approach to random matrix theory, Courant Lecture Notes
in Mathematics, vol. 28, Courant Institute of Mathematical Sciences, New York; American Mathe-
matical Society, Providence, RI, 2017. MR3699468

[9] D. J. Gross and A. Matytsin, Some properties of large-N two-dimensional Yang-Mills theory, Nu-
clear Phys. B 437 (1995), no. 3, 541–584, DOI 10.1016/0550-3213(94)00570-5. MR1321333

[10] R. Jordan, D. Kinderlehrer, and F. Otto, The variational formulation of the Fokker-Planck equation,
SIAM J. Math. Anal. 29 (1998), no. 1, 1–17, DOI 10.1137/S0036141096303359. MR1617171

[11] R. Kenyon and A. Okounkov, Limit shapes and the complex Burgers equation, Acta Math. 199
(2007), no. 2, 263–302, DOI 10.1007/s11511-007-0021-0. MR2358053

[12] S. G. Krantz and H. R. Parks, The implicit function theorem: History, theory, and applications;
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