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Abstract
We focus on the existence and rigidity problems of the vectorial Peierls–
Nabarro (PN) model for dislocations. Under the assumption that the misfit
potential on the slip plane only depends on the shear displacement along the
Burgers vector, a reduced non-local scalar Ginzburg–Landau equation with an
anisotropic positive (if Poisson ratio belongs to (−1/2, 1/3)) singular kernel is
derived on the slip plane. We first prove that minimizers of the PN energy for
this reduced scalar problem exist. Starting from H1/2 regularity, we prove that
these minimizers are smooth 1D profiles only depending on the shear direction,
monotonically and uniformly converge to two stable states at far fields in the
direction of the Burgers vector. Then a De Giorgi-type conjecture of single-
variable symmetry for both minimizers and layer solutions is established. As a
direct corollary, minimizers and layer solutions are unique up to translations.
The proof of this De Giorgi-type conjecture relies on a delicate spectral analy-
sis which is especially powerful for nonlocal pseudo-differential operators with
strong maximal principle. All these results hold in any dimension since we
work on the domain periodic in the transverse directions of the slip plane. The
physical interpretation of this rigidity result is that the equilibrium dislocation
on the slip plane only admits shear displacements and is a strictly monotonic
1D profile provided exclusive dependence of the misfit potential on the shear
displacement.
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1. Introduction and main results

In materials science, the Peierls–Nabarro (PN) model with Poisson ratio ν ∈ [−1, 1/2] plays
a fundamental role in describing dislocations or line defects in materials [6, 27]. Under-
standing this model provides insights on designing new materials with robust performance
[8, 16, 21, 24]. However, the existence and rigidity problem regarding the vector-field PN
model has not been explored.

The PN model is a nonlinear model that studies the core structure of the dislocation by
incorporating the atomistic effect in the dislocation core into the continuum elastic model. In
the PN model in three dimensions, two half-spaces separated by the slip plane of a dislocation
are assumed to be linear elastic continua. Here the slip plane is assumed to be a fixed plane
Γ = {(x, y, z) : y = 0}, where the horizontal displacement discontinuity (known as disregistry)
happens. Without loss of generality, we assume that the Burgers vector is b = (b, 0, 0) where
b > 0. The magnitude of the Burgers vector represents the typical length to observe a heavily
distorted region in the dislocation core. Hence it is natural to rescale all the quantities including
spatial variable x, y, z, the displacement vector u = (u1, u2, u3) and b with respect to the magni-
tude of the Burgers vector. After rescaling, we regard all these quantities (with same notations)
as dimensionless quantities and b = 1.

In this paper, the shear direction is referred to as the direction of the Burgers vector, i.e.
the x direction; the vertical direction of the slip plane is referred to as the y direction and the
transverse direction in the slip plane is referred to as the z direction.

The PN model is a minimization problem for the total energy E which is given by

E(u) :=Eels(u) + Emis(u). (1.1)

Here u = (u1, u2, u3) is the displacement vector. (1.1) incorporates not only the elastic energy
in the bulk but also the atomistic effect in the dislocation core. The elastic energy in the two
half-spaces is defined as

Eels(u) =
∫
R3\Γ

1
2
σ : ε dx dy dz, (1.2)

where σ : ε =
∑3

i, j=1 σi jεi j. Here ε and σ are the strain tensor and the stress tensor respectively,
defined as

εi j =
1
2

(∂ jui + ∂iu j), σi j = 2Gεi j +
2νG

1 − 2ν

3∑
k=1

εkkδi j, i, j = 1, 2, 3.

(1.3)

Here ν ∈ [−1, 1/2] is the Poisson ratio and G is the shear modulus.
On the slip plane, we denote the upper limit and lower limit of the displacement as

u+
i (x, z) = ui(x, 0+, z), u−

i (x, z) = ui(x, 0−, z), i = 1, 2, 3. (1.4)
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Moreover, we assume that ui, i = 1, 2, 3 are subject to the following boundary conditions at the
slip plane:

u+
1 (x, z) = −u−

1 (x, z), u+
2 (x, z) = u−

2 (x, z), u+
3 (x, z) = −u−

3 (x, z).

(1.5)

We call (1.5) the symmetric assumption. Characterizing the nonlinear atomistic interactions,
the misfit energy Emis(u) is defined as the integral of the misfit potential γ : R2 → R on the slip
plane:

Emis(u) :=
∫
Γ

γ(u+
1 − u−

1 , u+
3 − u−

3 ) dx dz =
∫
Γ

γ(2u+
1 , 2u+

3 ) dx dz. (1.6)

The last equality is due to the symmetric assumption (1.5). Notice, u is already dimensionless
quantity so Emis is well-defined. For brevity, we will omit factor 2 in (1.6) before u+

1 and u+
3

which makes no difference in the conclusions.
In this paper, to characterize the key property imposed by the Burgers vector, i.e., the direc-

tion of the dislocation and existence of two stable states, we assume that γ depends only on
the shear displacement in the Burgers direction, i.e.,

γ(u1, u3) = γ(u1), (1.7)

where the misfit potential is a double-well type potential, i.e. γ : R→ R is a C2 function
satisfying

γ(x) > 0 if − 1 < x < 1, γ(±1) = 0, γ ′′(±1) > 0. (1.8)

We remark that this assumption on the misfit potential also includes some other typical peri-
odic potentials which satisfy γ(x + 2) = γ(x) and represent the periodic lattice structure of
crystalline materials; see γ0 in an explicit example (1.16).

Because the magnitude of the rescaled Burgers vector is order 1, for convenience, we take
u1 = ±1 as bi-states at far fields, i.e.,

lim
x1→±∞

u1(x) = ±1, (1.9)

which equivalent to the magnitude of the dislocation is assumed to be b = 4.
In this bi-states case (1.9), the total energy E in (1.1) in the whole space is always infinite.

Therefore, we consider the global minimizer in the following perturbed sense. However we
remark that for a dislocation loop, i.e., a disregistry with compact support instead of the bi-
states far field condition, energy E in (1.1) is finite.

Definition 1. A function u : R3 → R3 satisfying (1.9) is called a global minimizer of E
defined in (1.1) if it satisfies

E(u +ϕ) − E(u) � 0 (1.10)

for any perturbation ϕ = (ϕ1,ϕ2,ϕ3) ∈ C∞(R3\Γ;R3) supported in some ball B(R) ⊂ R3

satisfying (1.5), i.e.

ϕ+
1 (x, z) = −ϕ−

1 (x, z), ϕ+
2 (x, z) = ϕ−

2 (x, z), ϕ+
3 (x, z) = −ϕ−

3 (x, z).

(1.11)
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The problem of existence and rigidity for the PN model interests us the most:

(a) Does the minimizer of total energy (1.1) in the sense of definition 1 exist?
(b) Do minimizers in (a) and layer solutions (see definition 3) have 1D symmetry on the slip

plane, i.e. are only depending on the shear direction, but independent with the transverse
direction?

The answers to these two questions are both positive. To provide explicit and complete
answers to these two questions, we consider the resulting Euler–Lagrange equation satisfied
by the minimizer, which is a Lamé system with nonlinear boundary conditions on the slip
plane (see (1.13)). Because we assume (1.7), i.e., the misfit potential γ depends only on the
shear displacement u1, this Euler–Lagrange equation is reduced to a nonlocal semi-linear scalar
equation on the slip plane with an elliptic pseudo-differential operator of order 1 (see (1.15)).
In particular, when ν ∈ (−1/2, 1/3), the pseudo-differential operator can be described in the
singular kernel formulation; see assumptions (A)–(D).

After these simplifications and reformulation, we only need to focus on the existence
and rigidity of this reduced scalar nonlocal equation (see (1.23)). This equation is the
Euler–Lagrange equation of a reduced energy function F on the slip plane (see (1.37)). We
will first prove that minimizers of energy functional F (see (1.37)) in set (1.35) exist by con-
structing a minimizing sequence in which each function is an H1/2 perturbation of a given 1D
profile; see theorem 1. Although starting from this weak regularity, we finally prove that these
minimizers are smooth 1D profiles that monotonically and uniformly converge to stable states
of the misfit functional γ in the shear direction, i.e., they converge to ±1 as x →±∞.

After proving theorem 1, we also establish a rigidity result of De Giorgi-type conjecture on
1D symmetry for all minimizers in set (1.35), and more generally for all layer solutions (see
definition 3). As a corollary, the uniqueness of these minimizers, as well as layer solutions, is
also demonstrated; see theorems 2 and 3. The existence and rigidity results are also stated for
the original vectorial PN model (1.13) in theorem 4.

Our results on both existence and rigidity hold in any dimension d � 1 due to the periodic
assumption: we are interested in solutions that are periodic in d − 1 transverse directions. This
dimension-independent rigidity is also observed in other equations if the domain is armed with
periodicity [22].

In terms of materials science, our results provide a compatible physical interpretation. For
Poisson ratio ν ∈ (−1/2, 1/3), if the misfit potential γ depends only on the shear displacement,
then the equilibrium dislocation profile only admits shear displacements on the slip plane.
Furthermore, this uniquely (up to translations) determined shear displacement is a strictly
monotonic 1D profile connecting two stable states. In view of this rigidity result, the vecto-
rial PN model (1.13) in three dimensions is reduced to a two-dimensional problem which was
thoroughly investigated in our previous work [19].

In the remaining parts of the introduction, we will introduce the vectorial PN model and
its reduced scalar equation (see (1.15)) in section 1.1. From the reduced scalar equation, in
section 1.3, we introduce the nonlocal high-dimensional equation (see (1.23)) which contains
the PN model as a special case. Finally, in this general context, we will present our main results
and strategies in section 1.4 to provide a rigorous and complete answer to the main questions
(a) and (b).
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1.1. The vectorial Peierls–Nabarro model and its reduced scalar equation

Denote the unit torusR/Z as T. Instead of minimizing the total energy (1.1) onR3, we consider
the model on R2 × T. Correspondingly, the slip plane Γ is replaced by Γ′ which is defined as

Γ′ = {(x, y, z) ∈ R
2 × T : y = 0}. (1.12)

A standard calculation of the first variation of the total energy (1.1) derives the following
Euler–Lagrange equation satisfied by minimizers of (1.1) in the sense of definition 1. The
proof of this lemma can be found in appendix B or our previous work [19].

Lemma 1.1. Assume that u ∈ C2(R2 × T\Γ′) is a minimizer of the total energy E in the sense
of definition 1 satisfying the boundary conditions (1.5). Then u satisfies the Euler–Lagrange
equation ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δu +
1

1 − 2ν
∇(∇ · u) = 0, in R

2 × T\Γ′,

σ+
12 + σ−

12 =
∂γ

∂u1
(u+

1 , u+
3 ), on Γ′,

σ+
22 = σ−

22, on Γ′,

σ+
32 + σ−

32 =
∂γ

∂u3
(u+

1 , u+
3 ), on Γ′.

(1.13)

Remark 1. We can view (1.13), especially the second and the fourth equations as an incorpo-
ration of the linear response theory. Moreover, they are coupled equations of u1 and u3. Notice
that taking trace in (1.3), σ12 = G(∂1u2 + ∂2u1) on Γ′. (i) Regard the elastic bulks R3\Γ′ as an
environment and the slip plane Γ as an open system. (ii) Given a Dirichlet disregistry boundary
condition u+

1 , u+
3 , by solving∇ · σ = 0 in the environment, one can obtain the trace σ12, σ32 on

Γ′. (iii) We call this operator (u+
1 , u+

3 ) 	→ (σ±
12, σ±

32) the Dirichlet to Neumann map; also known
as a nonlocal linear response operator. As a consequence, this enables us to consider a nonlocal
semi-linear elliptic system on Γ′; see section 2 on the kernel representation of this Dirichlet to
Neumann map.

For the special case in (1.7), where γ only depends on the shear displacement u+
1 , we can

simplify and decouple the system (1.13) into two independent equations and finally drive a
reduced scalar equation of u+

1 , i.e. (1.15). In details, one can employ the Dirichlet to Neumann
map and the elastic extension introduced in [19] to reduce the problem from R2 × T onto Γ′,
i.e., to equations of (u+

1 , u+
3 ) on the split plane Γ′. Second, if further employing (1.7), one can

derive a linear representation formula between u+
1 and u+

3 on the Fourier side, i.e.,

û+
3 (k) = − νk1k2

(1 − ν)k2
1 + k2

2

û+1 (k). (1.14)

Here û+i (k1, k2), i = 1, 3 are the Fourier transform of u+
i , i = 1, 3 with frequency vector k =

(k1, k2), k1 ∈ R, k2 ∈ 2πZ. Substituting (1.14) into system (1.13), an independent equation of
u+

1 is derived, which contains a pseudo-differential operator L defined on H1(R× T):

Lu+
1 (x, z) +

γ ′(u+
1 (x, z))
2G

= 0, L̂u1(k) =
|k|3û1(k)

(1 − ν)k2
1 + k2

2

. (1.15)

The derivation of (1.15) is standard and can be found in section 2. Therefore, as long as
we can solve the non-local semi-linear equation of u+

1 , i.e. the first equation in (1.15), we can
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also find u+
3 by (1.14), and then derive the solution of the original system (1.13). For brevity,

we will omit the superscript ‘+’ in the following sections. We call (1.15) the reduced scalar
equation.

To solve (1.15), a meaningful observation is that we can write down an explicit solution
to it for certain double-well potential γ’s. Highly compatible with dislocations in Halite, the
cosine potential γ0 =

1
π2 (cos(πu) + 1) in the PN model implements an explicit solution [6, 17]

to (1.15) and (1.14):

u1(x, z) =
2
π

arctan

(
(1 − ν)x

2G

)
, u3(x, z) = 0. (1.16)

In particular, u1 in (1.16) is a layer solution (see definition 3) since it is strictly monotonic in
x direction and satisfies assumption (1.9). In fact, (1.16) is a good candidate for minimizers
of total energy (1.1) in the sense of definition 1. We will prove that this solution is the unique
minimizer up to translations which concludes the question on existence and rigidity. We remark
here that this is just a concrete example of our general result: for general double-well type
potentials, we prove that minimizers of the total energy F (see (1.37)) in function set (1.35)
exist and they are layer solutions (see definition 3). Moreover, they are unique up to translations.

1.2. Unsolved problems on the vectorial PN model

The existence and rigidity of the vectorial PN model are important in understanding disloca-
tions. Previous literature on the vectorial PN model mainly focused on numerical simulations
[28, 36, 40, 42] and physical experiments [39, 42], while only few rigorous mathematical
results [19] were derived. In this section, we aim at mathematically formulating those impor-
tant but unsolved problems into a framework and embedding our result into this macroscopic
framework.

Consider the Euler–Lagrange equation of the vectorial model. We first observed that the
second and fourth equations of (1.13) can be rewritten as

A
(

u+
1

u+
3

)
=

1
2G

⎛⎜⎜⎝
∂γ

∂u+
1

∂γ

∂u+
3

⎞⎟⎟⎠ , Â =

⎛⎜⎜⎝
k2

2

‖k‖ +
1

1 − ν
· k2

1

‖k‖
ν

1 − ν
· k1k2

‖k‖
ν

1 − ν
· k1k2

‖k‖
k2

1

‖k‖ +
1

1 − ν
· k2

2

‖k‖

⎞⎟⎟⎠ ,

(1.17)

where A is a pseudo-differential operator with Fourier symbol Â. Equation (1.17) is a non-
local reduced elliptic equations on slip plane Γ, which is an open system. Meanwhile, the
misfit potential here may depend on both u1 and u3: γ = γ(u1, u3). As far as we know, neither
existence nor rigidity of (1.17) was studied by previous literatures.

In fact, if the misfit potential is carefully selected [6, 28, 36, 42], solutions of (1.17)
determine the underlying structure of dislocations in crystals such as Cu (ν = 0.36) and Al
(ν = 0.33), no matter straight ones or curved ones. Considering symmetry of the crystal lat-
tice, authors of [40] adopted a truncated Fourier expansion for the generalized stacking fault
energy (see equation (14) in [40]) as the misfit energy γ(u1, u3), with different coefficients for
Cu and Al.

Numerical simulations in [40] indicated that straight edge dislocations in both Cu (figure 4
in [40]) and Al (figure 5 in [40]) possess the following structure: the displacement in the shear
direction (i.e. u1) is a layer solution (see definition 2) and the displacement in the transverse
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direction (i.e. u3) is a solitary wave. As claimed by authors in [40], this numerical result agrees
with data from experiments on real materials [39].

To understand this consistency between the numerical result and the experimental data, we
consider (1.17) where the Poisson ratio ν = 0, which is exactly the case for cork. This special
case is less obscure since equations for u1 and u3 are decoupled now. Furthermore, we assume
that the misfit potential consists of two parts which depend merely on u1 and u3 respectively:

γ(u1, u3) = γ1(u1) + γ3(u3). (1.18)

Suppose that γ1 is a double-well potential (see (1.8)) and γ3 is the nonlinear potential in the
Benjamin–Ono equation [7], i.e.

γ3(u3) =
u2

3

2
− u3

3

3
. (1.19)

If u is a minimizer of (1.1) with boundary conditions

lim
x→±∞

u1(x, y, z) = ±1, lim
x→±∞

u3(x, y, z) = 0, (1.20)

then separately, u1 and u3 satisfy

2G · (−Δ)1/2u+
i + γ ′

i(u
+
i ) = 0, i = 1, 3. (1.21)

For i = 1, because γ1 is a double-well potential, [9] proved that (1.21) admits layer solutions
u1 (unique up to translations) in the sense of definition 2. For i = 3, (1.21) is the traveling wave
form of the Benjamin–Ono equation which admits

u+
3 (x, z) =

4G
4G2 + x2

(1.22)

as a solitary solution [7]. These solutions also satisfy the boundary condition (1.20). These
special solutions partially explain the structure of minimizers observed in [39, 40], i.e., it is a
layer solution in the shear direction while it is a solitary wave in the transverse direction.

As far as we know, a complete answer on the rigidity of minimizers is still unknown even
for the case ν = 0. More explicitly, does the De Giorgi conjecture hold in this case? Does
(1.17) (or (1.21)) admit any other solution? Existing evidence indicates negative results. If
(−Δ)1/2 is replaced by −Δ in (1.21) and we take i = 3, the author of [11] proved that there
exist solutions being a soliton in the x direction while being periodic (but non-constant) in
the z direction. Thus, the one-dimensional symmetry (or the De Giorgi conjecture) fails in
this case. This evidence strongly indicates the existence of high-dimensional solutions of u3 in
(1.21). High dimensionality physically indicates the existence of curved dislocations but the
construction of a counterexample for the De Giorgi conjecture in the nonlocal case is still open.

For general cases where the Poisson ratio ν is non-zero, neither existence nor rigidity result
is proved to our best knowledge. In particular, no matter u3 has a one-dimensional profile or
not, no conclusion can be drawn on the rigidity of u1.

Another question regarding the De Giorgi conjecture is also of great interest: for what misfit
potential γ, there exist one-dimensional solutions for (1.17)? For what misfit potential γ, the
De Giorgi conjecture holds, i.e. all solutions of (1.17) are one dimensional? No previous study
has ever considered these problems as far as we know.

In summary, the rigidity and existence of the vectorial PN model is an important problem
that is central to studies of dislocations, both straight and curved dislocations. Our contribution
to this macroscopic framework is that, under the assumption γ = γ(u1), i.e. γ only depends on
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u1, a complete answer to existence and rigidity is justified even for high dimensions. See the
following sections in the introduction.

1.3. The nonlocal scalar equation in high dimensions

We remind our audience here that we will focus on the case where γ only depends on u1 and
γ is a double-well type potential (see (1.8)) in the following sections.

We extend the discussion to any dimension d � 1 and clarify the set up. Denote
Ωd :=R× Td−1, consider the high-dimensional reduced scalar equation in Ωd:

Lu(w) + γ ′(u(w)) = 0, w ∈ Ωd. (1.23)

The potential function γ ∈ C2(R) is a double-well potential that satisfies (1.8). The linear
operator L is a convolution-type singular integral operator [38] which is defined as

(Lu)(w) :=P.V.

∫
Ωd

(u(w) − u(w′))K(w −w′)dw′ (1.24)

whose convolution kernel K(w) can be written as

K(x, y) =
∑

j∈Zd−1

H(x, y + j) (1.25)

where w = (x, y), x ∈ R, y ∈ Td−1.
We impose several assumptions on the operator L and its kernel H. To clarify these

assumptions, we first introduce the Fourier transform on Ωd and the Sobolev spaces Hs(Ωd).
Denote Ω′

d = R× (2πZ)d−1. The Fourier transform on Ωd is understood as a composition
in two directions: the Fourier transform onR in the x direction and the Fourier series expansion
on Td−1 in the y direction. Denote ν = (ξ, k) where ξ ∈ R and k ∈ (2πZ)d−1, then the Fourier
transform of u(w), denoted as û(ν), is defined as

û(ν) =
∫
Ωd

e−2πi(xξ+y·k)u(x, y)dx dy.

Thus the Fourier transform on Ωd maps functions defined on Ωd into functions defined on Ω′
d .

For any s > 0, we define Sobolev spaces Hs(Ωd) in the classical way on the Fourier side:

Hs(Ωd) := {u ∈ L2(Ωd) : |ν|sû(ν) ∈ L2(Ω′
d)}. (1.26)

Hs(Ωd), s > 0 are Hilbert spaces with inner product

〈u, v〉Hs(Ωd) := 〈û, v̂〉L2(Ω′
d ) + 〈|ν|sû, |ν|sv̂〉L2(Ω′

d). (1.27)

Denote the norm induced by this inner product as ‖ · ‖Hs(Ωd). We also define the homoge-
neous norm ‖ · ‖Ḣs(Ωd ) as

‖u‖Ḣs(Ωd) := ‖|ν|sû‖L2(Ω′
d). (1.28)

Now we are ready to impose assumptions of L in (1.24) and introduce several important
properties of it. We assume that:
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(A) (Symbol of order 1). The Fourier symbol of L is positive with same order as |ν|, i.e. for
any ν ∈ Ω′

d = R× (2πZ)d−1, there exist positive constants c and C such that

L̂u(ν) = σL(ν)û(ν), c|ν| � σL(ν) � C|ν| (1.29)

(B) (Positivity and continuity). H(z) : Rd → R is positive and continuous on Rd\{0}.
(C) (Homogeneity). For any z 
= 0 and a > 0,

H(az) = a−d−1H(z). (1.30)

(D) (Symmetry). For any z ∈ Rd, H(z) = H(−z).

The assumptions we impose on L and its kernel K include two important cases. First, in
dimension d = 2, the non-local operator in equation (1.15) derived from the PN model is
included if the Poisson ratio ν ∈ (−1/2, 1/3). In this case, the operator L has Fourier sym-
bol |k|3/((1 − ν)k2

1 + k2
2) (see (1.15)) which is of the same order as |k|, so assumption (A) is

satisfied. Moreover, the authors of [14] proved that K satisfies assumptions (B)–(D) if and only
if ν ∈ (−1/2, 1/3). So equation (1.15) is included in this context if ν ∈ (−1/2, 1/3). Second,
in arbitrary dimensions, if we take ν = 0, then L = (−Δ)1/2 defined on Ωd is also included. In
this case, the Fourier symbol is exactly |k| and according to [26], there exists a constant Cd > 0
such that

H(z) =
Cd

|z|d+1
. (1.31)

So all assumptions are satisfied.
We remark here that we adopt two different but equivalent definitions for L: one is as a

Fourier multiplier and the other is as a singular convolution. The result that these two definitions
for fractional Laplacian (−Δ)α,α ∈ (0, 1) are equivalent is thoroughly investigated in [26]. For
equation (1.15), the equivalence of these two definitions is also well-studied in [14]. So in later
sections, we will switch between these two definitions for the sake of convenience.

1.4. Main results and strategies

Before presenting the main results, we introduce the fractional Allen–Cahn equation [5]:

(−Δ)1/2u(x) + γ ′(u(x)) = 0, x ∈ R
d. (1.32)

Here the double-well type potential γ ∈ C2(R) satisfying (1.8) is exactly the misfit potential
in the PN model. Taking ν = 0 in (1.15), we see that (1.32) is a special case of (1.23) and
(1.15). (1.32) has already been thoroughly investigated in the literatures [9, 15, 32, 34, 35, 37].
In particular, the well-posedness result of (1.32) is completely developed. A long standing
conjecture named after De Giorgi [12, 21] (which originally discussed the local case, i.e., one
replaces (−Δ)1/2 by −Δ in (1.32), but then generalized to the non-local case (1.32)) is proved
for dimension d � 8. The De Giorgi conjecture claims that any layer solution (see below) to
(1.32) is a simple 1D profile for dimensions d � 8. In the classical Allen–Cahn equation, this
conjecture is optimal in the sense that a counterexample in dimension d = 9 is constructed
[13]. The layer solution in the De Giorgi conjecture is defined as:

Definition 2. u : Rd → R is a layer solution to equation (1.32) if

∂u(x)
∂x1

> 0, lim
x1→±∞

u(x) = ±1. (1.33)
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The layer solution is also of main interest in the PN model since it models a dislocation
profile that monotonically converges to two stable states at far field in the shear direction.

Now we are ready to articulate our existence and rigidity result on the PN model and
(1.23). Although the PN model and (1.23) share the common double-well nonlinearity and
non-localness with the fractional Landau–Ginzburg equation (see (1.32)), the main difference
between our setting and previous work on (1.32) is that we work on a partially periodic domain
Ωd and Hilbert spaces Hs(Ωd) while previous work focused on the whole domain Rd and
Banach spaces Ck,α(Rd). This discrepancy in the setting urges us to develop more appropriate
methods while referring to some valuable techniques introduced in previous work.

For the existence problem, although we know that (1.16) is a solution to (1.15) and
(1.14), we are still not aware of whether a minimizer of the total energy (1.1) in function set
(1.35) exists. In [9], authors worked on Hölder spaces Ck,α(Rd), k = 0, 1, 2, and derived some
Schauder’s estimates of the weak solution to (1.32). Based on these estimates, they proved the
existence of the classical solutions to (1.32) for d = 1 by considering the harmonic extension
of (1.32) on the upper half-plane. In [32], the authors adopted the direct method in calculus of
variations minimizing the total energy on a subset of L1

loc(R), i.e.

X := { f ∈ L1
loc(R) : lim

x→±∞
f (x) = ±1}. (1.34)

They proved the existence and uniqueness of the minimizer in one dimension and the existence
result is generalized to any dimension d.

For the high-dimensional equation (1.23), we will follow the idea of [32] by using the direct
method in the calculus of variations to prove that the minimizer of a functional F(u) exists.
However, instead of requiring the far field assumption (1.9), we only consider H1/2 perturbation
of a given 1D profile η who satisfies (1.9):

A := {u ∈ H1/2
loc (Ωd) : u − η ∈ H1/2(Ωd)}. (1.35)

Here η(x, y) is a smooth 1D profile, i.e. η(x, y) = η(x) for any (x, y) ∈ Ωd, satisfying

η(x) ∈ C∞(R), η(x) =

{
1 if x ∈ [1,+∞) ,

−1 if x ∈ (−∞,−1] .
(1.36)

We will abuse the notation η to represent the profile defined on either Ωd or R. We remark here
that the weak H1/2 regularity does not ensure any far field limit behaviour in any dimension,
even in dimension d = 1.

The functional F that we aim to minimize is the perturbed version of the total energy (1.1):

F(u) :=
1
2

∫
Ωd

∫
Ωd

| (u(x, y)− u(x′, y′)|2K(x − x′, y − y′)

− | (η(x, y)− η(x′, y′)|2K(x − x′, y − y′)dx dy dx′ dy′

+

∫
Ωd

γ(u(x, y))dx dy. (1.37)

Here γ ∈ C2(R) is the double-well type potential considered in (1.23) that satisfies (1.8).
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Starting from functions only with H1/2 regularity and even not necessarily satisfying the
far field limit condition, we construct a minimizer with H2 regularity (in fact smooth) that also
satisfies the desired rigidity result that we aim to prove: it is a layer solution with 1D symmetry.

Theorem 1 (Existence of the minimizer). Suppose that γ ∈ C2(R) is a double-well
type potential satisfying condition (1.8). Consider set A defined in (1.35) and energy
functional F defined in (1.37). Then:

(a) (Existence). There exists u∗ ∈ A such that F(u∗) = min
u∈A

F(u). In particular, u∗ is a weak

solution to (1.23), i.e.

Lu∗ + γ ′(u∗) = 0.

Here L is defined as in (1.24).
(b) (Regularity). u∗ in (a) satisfies u∗ − η ∈ H2(Ωd). In particular, u∗ solves equation (1.23)

in L2 sense and satisfies the far end limit condition uniformly in y:

lim
x→±∞

u∗(x, y) = ±1

(c) (Monotonicity). u∗ in (a) satisfies ∂u∗(x,y)
∂x > 0 for any (x, y) ∈ Ωd , i.e. u∗(x, y) is strictly

increasing in x direction.
(d) (Symmetry). u∗ in (a) satisfies ∇yu∗(x, y) = 0 for any (x, y) ∈ Ωd, i.e. u∗(x, y) = u∗(x) is a

1D profile.

The critical technique in the proof is the energy decreasing rearrangement method in [32].
This method relies on the rearrangement inequality (see lemma 3.1) whose proof is quite ele-
mentary. However, driven by this basic inequality, the energy decreasing method is powerful
in proving monotonicity and 1D symmetry. We will introduce this method in section 3.1.

For the rigidity problem, it worth mentioning the De Giorgi conjecture on the fractional
Ginzburg–Landau equation (1.32). It claims that at least for d � 8, layer solutions to (1.32)
are in fact just 1D profiles. Here a layer solution is defined in definition 3. This conjecture
was proved for dimension d = 2 in [9] and finally completely proved by Savin in his series
of work [32, 34, 35]. We also mention the asymptotic analysis for the sharp interface limit of
the fractional diffusion-reaction equation with isotropic/anisotropic nonlocal kernel of order

1
rd+2s , s ∈ (0, 1) in [4, 20, 23, 30].

The common approach to prove the De Giorgi conjecture is to develop a Liouville-
type theorem and then apply the theorem on ratios of partial derivatives in different direc-
tions uxi/ux1 , i = 1, 2, . . . , d − 1. Then one can conclude that there exist constants ci, i =
1, 2, . . . , d − 1 such that

uxi = ciux1 , i = 1, 2, . . . , d − 1.

So u in fact only depends on x1 variable and hence is a 1D profile. For (1.23), we can prove
the following theorem which is true for any dimension d � 1, not only for dimension d � 8:

Theorem 2 (De Giorgi conjecture). For any dimension d � 1, suppose that u : Ωd → R

satisfies u − η ∈ H1(Ωd ) and is a layer solution (defined in definition 3) to equation (1.23),
i.e.

Lu + γ ′(u) = 0.
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Here γ ∈ C∞(R) is a double-well type potential satisfies (1.8) and L is defined in (1.24) satis-
fying assumptions (A)–(D). Then u(x, y) only depends on x variable, i.e. there exists φ : R→ R

such that u(x, y) = φ(x).

We emphasize here that the main reason of theorem 2 being true in any dimension d � 1
instead of only dimensions less than eight is that we fully employed the compactness of the
torus Td−1. The compactness ensures convergence of a sequence which is a key step in our
proof (see the proof of theorem 2). As we explained in section 1.2, without periodicity, the
De Giorgi conjecture may fail in the classical case [11]. Therefore, domain Ωd = R× Td−1 is
critical to our result which is also physically meaningful since it incorporates the periodicity
in materials.

Instead of using Liouville type theorems, we prove theorem 2 by analyzing the spectrum
of a linear operator. This method sufficiently respects the maximal property of operator L
(see lemma 2.1) which is realized by the positivity assumption (assumption (B)). Utilized in
our previous work [18], this spectral analysis method is straightforward and appropriate in our
setting since the working spaces are selected as Hilbert spaces Hs(Ωd) instead of Banach spaces
Ck,α(Rd) in [9]. Under this setting, we can use the perturbation theory of self-adjoint operators
on Hilbert spaces [25].

Specifically speaking, suppose that u is a given solution to (1.23) that satisfies condi-
tions in theorem 2. Differentiating on both sides of equation (1.23), we see that ux and
uyi , i = 1, 2, . . . , d − 1 are solutions to the following non-local linear elliptic equation of φ
on Ωd which is given by:[

L+ γ ′′(u)
]
φ = 0.

Equivalently, ux and uyi , i = 1, 2, . . . , d − 1 are eigenfunctions of eigenvalue 0 for the linear
operator linearized along profile u:

L : H1(Ωd) ⊂ L2(Ωd) → L2(Ωd), Lφ = Lφ+ γ ′′(u)φ. (1.38)

Therefore, as long as we can prove that 0 is a simple eigenvalue of L, i.e. the eigenspace of 0
is only 1 dimension, then we prove that ux and uyi , i = 1, 2, . . . , d − 1 are linearly dependent,
which indicates 1D symmetry. This is the main idea and approach we will utilize to prove
theorem 2.

As a direct corollary of theorem 2, we can prove that both layer solutions and minimizers
of F on A are unique up to translations. Define A� and Am as

A� := {u ∈ Ḣ1(Ωd) : u − η ∈ H1(Ωd), u is a layer solution to (1.23)},

Am := {u ∈ A : F(u) = min
v∈A

F(v)},

(1.39)

i.e. A� is the set of layer solutions to (1.23) with H1 regularity and Am is the set of minimizers
of F on set A. Then we can prove the following theorem:

Theorem 3 (Uniqueness of minimizers and layer solutions). For any dimension
d � 1, suppose that γ ∈ C∞(R) is a double-well type potential satisfying (1.8). Consider
functional energy F in (1.37), set A in (1.35), set A� and set Am in (1.39). Then

Am = A� = {u : u(x, y) = u∗(x + x0) for some x0 ∈ R}. (1.40)
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Here u∗(x) is the unique solution to equation

cL(−∂xx)1/2u∗ + γ ′(u∗) = 0, u∗(0) = 0. (1.41)

Here cL is the constant in lemma 2.2.

Theorem 3 provides a compatible physical interpretation of the PN model in three dimen-
sions (with periodicity in the transverse direction): if we assume exclusive dependence of
the misfit potential on the shear displacement, then the equilibrium dislocation on the slip
plane only admits shear displacements. Furthermore, this uniquely (up to translations) deter-
mined shear displacement is a strictly monotonic 1D profile connecting two stable states. This
reduces the vectorial PN model to the two-dimensional PN model which was investigated in
our previous work [19]. In summary, we have the following theorem:

Theorem 4. Suppose that γ ∈ C∞(R) is a double-well type potential satisfying (1.8).
Consider the functional energy E in (1.1) integrating on R2 × T, i.e.

Ẽ(u) =
∫
R2×T\Γ′

1
2
σ : ε dx dy dz +

∫
Γ′
γ(u+

1 )dx dz. (1.42)

Here u = (u1, u2, u3) is the displacement vector, σ and ε are the strain tensor and the stress
tensor respectively given by (1.3) and Γ′ is the slip plane defined in (1.12). Assume ν ∈
(−1/2, 1/3). Suppose that u is a global minimizer of Ẽ as in definition 1, then:

(a) (Regularity). The displacement vector u is smooth in R2 × T\Γ′.
(b) (Rigidity). The displacement in transverse direction is 0, i.e. u3 = 0 in R2 × T; u+

1 is the
unique (up to translation in x direction) 1D profile independent with z variable, strictly
monotonic in x direction satisfying

lim
x→±∞

u+
1 (x) = ±1. (1.43)

(c) (Fourier representation). u1 and u2 only depend on x and y in R2 × T. On the Fourier
side, u1 and u2 can be uniquely represented by u±

1 (x):

û±
1 (ξ, y) = û±

1 (ξ)

(
1 − |ξy|

2 − 2ν

)
e−|ξy| (1.44)

û±2 (ξ, y) = − û±1 (ξ)
2 − 2ν

(
(1 − 2ν)

iξ
|ξ| + iξ|y|

)
e−|ξy|. (1.45)

(d) (Dirichlet to Neumann map). On Γ′, the stress tensor can be expressed as

σ+
12(x) = σ−

12(x) = − G
(1 − ν)π

P.V.

∫
R

(u+
1 )′(s)

x − s
ds (1.46)

σ+
22(x) = σ−

22 = 0. (1.47)

(e) The stress tensor is divergence free, i.e.

∇ · σ = 0, holds in D′(R2 × T). (1.48)

This also holds point-wisely in R
2 × T\Γ′.
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These four theorems (theorems 1–4) are the main results for this work which completely
close the problem of existence and rigidity in a general setting including the original PN model
with Poisson ratio ν ∈ (−1/2, 1/3). Following this logic, we will first conduct a preliminary
analysis in section 2 to assist readers to bridge some gaps in understanding the derivation of
(1.23) and be aware of some important properties of the linear operator L. Then we prove
theorem 1 in section 3 and theorems 2–4 in section 4. Finally, the spectral analysis of operator
L is established in section 5 which proves that 0 is simple and the principle eigenvalue of
L. For facts in functional analysis and details in the spectral analysis, readers may refer to
appendix A; for proofs of some lemmas in the proof of the theorems, readers may refer to
appendix B.

2. Preliminary analysis

In this section, we will first provide some details of the derivation of the reduced scalar
equation (1.15), then discuss three important properties that will be used in the proof of the
three theorems.

2.1. Derivation of the reduced scalar equation

Denote the Fourier transform of u+
i (x, z), i = 1, 2, 3 as û+

i (k), i = 1, 2, 3 where k =
(k1, k2), k1 ∈ R, k2 ∈ 2πZ is the frequency vector. Given u that satisfies equation (1.13), one
can rewrite (σ+

12, σ+
32) on Γ′ as a linear transform of (u+

1 (k), u+
3 (k)) on the Fourier side:(

σ̂+
12(k)

σ̂+
32(k)

)
= −A

(
û+1 (k)
û+3 (k)

)

:= − 2G

⎛⎜⎜⎝
(

k2
2

|k| +
1

1 − ν

k2
1

|k|

)
û+1 (k) +

ν

1 − ν

k1k2

|k| û+3 (k)

ν

1 − ν

k1k2

|k| û+
1 (k) +

(
k2

1

|k| +
1

1 − ν

k2
2

|k|

)
û+3 (k)

⎞⎟⎟⎠ .

(2.1)

Details of this derivation can be found in appendix [14].
From equation (2.1), the Euler–Lagrangian equation (1.13) can be rewritten as an equation

of u+
1 (x, z), u+

3 (x, z) on Γ, i.e.

−A
(

u+
1 (x, z)

u+
3 (x, z)

)
=

⎛⎜⎝ ∂γ

∂u1
(u+

1 , u+
3 )

∂γ

∂u3
(u+

1 , u+
3 )

⎞⎟⎠ . (2.2)

Here A is the nonlocal differential operator with Fourier symbol A.
A further simplification can be realized on equation (2.2) due to independence of γ

with u3, i.e. ∂γ
∂u3

= 0. This independence reduces equation (2.2) into an equation of u1.
On the Fourier side, the second component in (2.2) indicates that we can represent û3 by
û1, i.e.

û3(k) = − νk1k2

(1 − ν)k2
1 + k2

2

û1(k). (2.3)
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Substituting this equality to the first component in (2.1) yields

σ̂12(k) = −2G

[(
k2

2

|k| +
1

1 − ν

k2
1

|k|

)
û1(k) +

ν

1 − ν

k1k2

|k| û3(k)

]
= − 2G|k|3

(1 − ν)k2
1 + k2

2

û1(k).

Now denote L : H1(R× T) ⊂ L2(R× T) → L2(R× T) the linear operator with Fourier sym-

bol |k|3
(1−ν)k2

1+k2
2
. Then the first component of equation (2.2) is in fact an equation of u1, i.e.

equation (1.15):

Lu1 +
γ ′(u1)

2G
= 0. (2.4)

This equation is the reduced scalar equation.

2.2. Properties of L

Assumption (A) ensures thatL is a self-adjoint operator defined on H1(Ωd) ⊂ L2(Ωd) and maps
to L2(Ωd) (see lemma A.2). By assumptions (B) and (C), one can easily conclude that kernel
H satisfies that for any z 
= 0,

0 <
m

|z|d+1
� H(z) � M

|z|d+1
. (2.5)

Here m and M are positive constants. Indeed, for any non-zero z, we have

H(z) =
1

|z|n+1
H

(
z
|z|

)
and H(z) has a positive lower bound m and a positive upper bound M on the compact set Sd−1.
So (2.5) holds.

Furthermore, we will prove three important properties of the linear operator L which play
critical roles in the proof of theorems 1–3.

First, positivity of H ensures that if f attains global maximum at point (x0, y0) ∈ Ωd, then
L f |(x0,y0) � 0. We call it the maximal principle of operator L:

Lemma 2.1 (Maximal principle). Suppose that f ∈ Ḣ1(Ωd) attains global maximum at
(xM, yM) and global minimum at (xm, ym) on Ωd . Then

L f |(xM ,yM ) � 0, L f |(xm ,ym) � 0.

The equality holds if and only if f is constant.

Proof. By positivity of K, we know that

L f |(xM ,yM ) =

∫
Ωd

( f (xM, yM) − f (x, y))K(xM − x, yM − y)dx dy � 0,

L f |(xm ,ym) =

∫
Ωd

( f (xm, ym) − f (x, y))K(xm − x, ym − y)dx dy � 0.

Thus the inequality holds and the equality holds if and only if f (x, y) is constant. �
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We emphasize that this property of operator L plays an important role in the proof of the
De Giorgi conjecture (see section 4.2).

Second, homogeneity of H ensures that if f (x, y) = f (x), i.e. f is a simple 1D profile inde-
pendent with variable y, then there exists constant cL such that L f |(x,y) = cL((−∂xx)1/2 f )(x).

Lemma 2.2. Suppose that f ∈ Ḣ1(Ωd) satisfies f(x, y) = f(x). Then there exists a constant
cL > 0 such that

L f |(x, y) = cL((−∂xx)1/2 f )(x).

Proof. Consider g(x) which is defined as

g(x) =
∫
Rd−1

H(x, y)dy.

Then for any x 
= 0, a change of variable implies that

g(x) =
∫
Rd−1

H(x, y)dy =

∫
Rd−1

|x|−d−1H(1, y/x)dy

=

∫
Rd−1

|x|−2H(1, y)dy =
g(1)
|x|2 .

So g(x) = g(1)|x|−2 is the kernel of half Laplacian for one dimension. Therefore by Fubini’s
theorem, if f (x, y) = f (x), we have

L f |(x,y) = P.V.

∫
R

∫
Td−1

( f (x, y) − f (x′, y′))K(x − x′, y − y′)dy′ dx′

= P.V.

∫
R

( f (x) − f (x′))
∫
Td−1

K(x − x′, y − y′)dy′ dx′.

By (1.25), we have∫
Td−1

K(x − x′, y − y′)dy′ =
∫
Td−1

∑
j∈Zd−1

H(x − x′, y − y′ + j)dy′

=

∫
Rd−1

H(x − x′, y − y′)dy′.

Substituting this back to the formula of L f , we have

L f |(x,y) = P.V.

∫
R

( f (x) − f (x′))
∫
Rd−1

H(x − x′, y − y′)dy′ dx′

= g(1) · P.V.

∫
R

f (x) − f (x′)
|x − x′|2 dx′

= g(1) · ((−∂xx)1/2 f )(x).

So for any f that is 1D profile, L acting on f is just (−∂xx)1/2 acting on f up to a constant. �
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Third, assumption (A) (equation (1.29)) ensures the following equivalence of semi-norms:

Lemma 2.3. There exist positive constants c1, c2, C1, C2 such that

c1‖u‖Ḣ1(Ωd ) � ‖Lu‖L2(Ωd) � C1‖u‖Ḣ1(Ωd),

c2‖u‖2
Ḣ1/2(Ωd )

�
∫
Ωd

∫
Ωd

|u(w) − u(w′)|2K(w −w′)dw dw′ � C2‖u‖2
Ḣ1/2(Ωd)

.

(2.6)

Proof. By Plancherel’s theorem, we have

‖Lu‖L2(Ωd ) = ‖L̂u(ν)‖L2(Ω′
d) = ‖σL(ν)û(ν)‖L2(Ω′

d).

Then by (1.29), we know

‖L̂u(ν)‖L2(Ω′
d ) � C‖|ν|û(ν)‖L2(Ω′

d) = C‖u‖Ḣ1(Ω),

‖L̂u(ν)‖L2(Ω′
d) � c‖|ν|û(ν)‖L2(Ω′

d) = c‖u‖Ḣ1(Ω).

Here C and c are constants in (1.29). So ‖Lu‖L2(Ωd ) is equivalent to ‖u‖Ḣ1(Ωd ). Moreover, by
symmetry assumption of K, we have

〈u,Lu〉L2(Ωd) =

∫
Ωd

∫
Ωd

u(w)(u(w) − u(w′))K(w −w′)dw dw′

=
1
2

∫
Ωd

∫
Ωd

|u(w) − u(w′)|2K(w −w′)dw dw′.

By properties of the Fourier transform, we have

〈u,Lu〉L2(Ωd) = 〈û, L̂u〉L2(Ω′
d ) = 〈û, σL(ν)û〉L2(Ω′

d)

hence by (1.29),

〈u,Lu〉L2(Ωd) � C‖|ν|1/2û(ν)‖2
L2(Ω′

d ) = C‖u‖2
Ḣ1/2(Ω)

,

〈u,Lu〉L2(Ωd ) � c‖|ν|1/2û(ν)‖2
L2(Ω′

d ) = c‖u‖2
Ḣ1/2(Ω)

.

Thus (2.6) holds. �

3. Existence of minimizers

In this section, we will prove theorem 1. Recall the energy functional defined in (1.37), i.e.

F(u) =
1
2

∫
Ωd

∫
Ωd

| (u(x, y)− u(x′, y′)|2K(x − x′, y − y′)

− | (η(x, y)− η(x′, y′)|2K(x − x′, y − y′)dx dy dx′ dy′

+

∫
Ωd

γ(u(x, y))dx dy.
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We first rewrite this energy functional. In fact, by lemma 2.2, if we denote v = u − η, then we
can rewrite F as

F(u) =
1
2

∫
Ωd

∫
Ωd

|(η(x, y) + v(x, y) − η(x′, y′) − v(x′, y′))|2K(x − x′, y − y′)

− |
(
η(x, y) − η(x′, y′)|2K(x − x′, y − y′)dx dy dx′ dy′

+

∫
Ωd

γ(u(w))dw

=
1
2

∫
Ωd

∫
Ωd

|v(x, y) − v(x′, y′)
)
|2K(x − x′, y − y′)dx dy dx′dy′

+ 2cL

∫
Ωd

v(x, y)(−∂xx)1/2η(x)dx dy +
∫
Ωd

γ(u(w))dw. (3.1)

Here cL is the constant in lemma 2.2. From (3.1) we see that subtraction of η in the definition
(1.37) ensures that F is finite if u is bounded and satisfies u − η ∈ H1/2(Ω). For the sake of
convenience, we will switch between (1.37) and (3.1) when using functional F.

The main idea in the proof of theorem 1 is to first slightly modify the minimizing problem
on a subset of A denoted as AI . AI is defined as

AI := {u ∈ A : u = η on Ωd\ΩI
d}. (3.2)

Here ΩI
d = I × Td−1, I = (a, b) where a < −1 and b > 1 are real numbers. By definition of

minimizers, a minimizer uI ∈ AI solves the following Dirichlet problem in weak sense:⎧⎪⎪⎨⎪⎪⎩
Lu(x, y) + γ ′(u(x, y)) = 0, (x, y) ∈ ΩI

d

u(x, y) = 1, x ∈ [b,+∞),

u(x, y) = −1, x ∈ (−∞, a].

(3.3)

For a minimizer uI , result similar to theorem 1 can be proved, which is summarized in the
following proposition:

Proposition 1. Suppose that γ ∈ C2(R) is a double-well type potential satisfying condition
(1.8). Define function set A as in (1.35) and energy functional F as in (1.37). Then:

(a) (Existence). There exists uI ∈ AI such that F(uI) = min
u∈AI

F(u). In particular, uI is a weak

solution to (3.3).
(b) (Monotonicity). uI in (a) satisfies that for any τ 1 > 0, uI(x + τ 1, y) � uI(x, y) holds for

a.e. (x, y) ∈ ΩI
d, i.e. uI(x, y) is increasing in x direction.

(c) (Symmetry). uI in (a) satisfies that for any τ 2 ∈ Rd−1, uI(x, y+ τ 2) = uI(x, y) holds for
a.e. (x, y) ∈ ΩI

d, i.e. uI(x, y) = uI(x) is a 1D profile.

To prove monotonicity and symmetry, one needs to utilize a critical technique: the energy
decreasing rearrangement method in [32] which is based on the rearrangement inequality. After
constructing {uI} in proposition 1, a minimizer of F(u) on A will be constructed using these
minimizers on finite intervals and theorem 1 is ready to be proved.

Following this logic, we will first carefully introduce the energy decreasing rearrangement
method utilized in [32] in section 3.1. This tool is prepared for the proof of proposition 1
in section 3.3 which ensures existence of the minimizer on AI . Then in section 3.4, we will
introduce several technical lemmas before proving theorem 1 in section 3.5.
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3.1. Energy decreasing rearrangement

We denote a+ = max{a, 0} and a− = −min{a, 0}, i.e., a+ and a− represent the positive part
and the negative part of a respectively. In this section, we will introduce the energy decreas-
ing rearrangement method that is used in [32]. In fact, this method relies on the following
elementary equality:

Lemma 3.1 (Rearrangement). Suppose that a1, a2, b1, b2 are four real numbers. Denote
a = min{a1, a2}, A = max{a1, a2}, b = min{b1, b2} and B = max{b1, b2}. Then the follow-
ing inequality holds:

ab + AB − a1b1 − a2b2 = (a1 − a2)+(b1 − b2)− + (a1 − a2)−(b1 − b2)+ � 0.

(3.4)

In particular, ab + AB − a1b1 − a2b2 = 0 if and only if (a1 − a2)(b1 − b2) � 0.

Readers may refer to appendix B for proof of this inequality. Now we are ready to introduce
the energy decreasing rearrangement method.

Lemma 3.2 (Energy decreasing rearrangement in [32]). Suppose that u, v belong
to set A which is defined as in (1.35). Define m(w) = min{u(w), v(w)} and
M(w) = max{u(w), v(w)}. Then

[F(u(w)) + F(v(w))] − [F(m(w)) + F(M(w))]

=

∫
Ωd

∫
Ωd

K(w −w′)
[
(u − v)+(w)(u − v)−(w′)

+ (u − v)−(w)(u − v)+(w′)
]

dw dw′. (3.5)

In particular, F(u(w)) + F(v(w)) = F(M(w)) + F(m(w)) holds if and only if

(u(w) − v(w))(u(w′) − v(w′)) � 0 (3.6)

holds for almost every w,w′ in Ωd , i.e. either u(w) � v(w) or u(w) � v(w) holds a.e. in Ωd .

Proof. Recall energy functional defined in (1.37), i.e.

F(u) =
1
2

∫
Ωd

∫
Ωd

| (u(w)− u(w′)|2K(w −w′)

− | (η(w)− η(w′)|2K(w −w′)dw dw′ +

∫
Ωd

γ(u(w))dw.

since γ(u(w)) is a local term, we have∫
Ωd

γ(u(w)) + γ(v(w))dw =

∫
Ωd

γ(m(w)) + γ(M(w))dw.

So we only need to compare the convolution term. A straightforward calculation implies that

[F(u(w)) + F(v(w))] − [F(m(w)) + F(M(w))]

=
1
2

∫
Ωd

∫
Ωd

K(w −w′)
[
|u(w) − u(w′)|2 + |v(w) − v(w′)|2

− |m(w) − m(w′)|2 − |M(w) − M(w′)|2
]

dw dw′.
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By the definition of m and M, we know that

u(w)2 + v(w)2 = m(w)2 + M(w)2

holds for every w ∈ Ωd, thus

[F(u(w)) + F(v(w))] − [F(m(w)) + F(M(w))]

=

∫
Ωd

∫
Ωd

K(w −w′)
[
M(w)M(w′) + m(w)m(w′)

− u(w)u(w′) − v(w)v(w′)
]

dw dw′.

Let a1 = u(w), a2 = v(w), b1 = u(w′), b2 = v(w′), then in terms of lemma 3.1 we know that

m(w) = a, M(w) = A, m(w′) = b, M(w′) = B.

By lemma 3.1, we have

[F(u(w)) + F(v(w))] − [F(m(w)) + F(M(w))]

=

∫
Ωd

∫
Ωd

K(w −w′)
[
(u − v)+(w)(u − v)−(w′)

+ (u − v)−(w)(u − v)+(w′)
]

dw dw′.

Thus (3.5) holds. So in terms of integrating w,w′, F(u(w)) + F(v(w)) = F(m(w)) +
F(M(w)) holds if and only if (u(w) − v(w))(u(w′) − v(w′)) � 0 holds a.e. in Ωd. This
concludes the proof. �

Lemma 3.2 ensures that if we are given two functions u, v defined on Ωd, we can construct
a pair m, M such that they have a total energy less than F(u) + F(v). Here comes the name of
this tool: the energy decreasing property of this construction m, M is realized by the precedent
rearrangement (lemma 3.1), so we name it as energy decreasing rearrangement method. Now
we are ready to prove proposition 1 using lemma 3.2.

3.2. Relationship with the increasing rearrangement

Clarification on this rearrangement technique is necessary to help readers distinguish it from
other similar tools. Another rearrangement skill broadly utilized in the calculus of variations is
the increasing rearrangement, which was first introduced in [33]. Given u : R→ R satisfying

lim
x→±∞

u(x) = ±1, the increasing rearrangement of u, denoted as u∗, is an increasing function

with sublevel sets which are of same volume as those of u, i.e.,

{x : t � u∗(x)} = {x : t � u(x)}∗ for every t ∈ (−1, 1). (3.7)

Here the rearrangement of a Borel set A ∈ R, i.e. A∗, is defined as

A∗ := [c,∞), c := b − |A ∩ [a, b]| for every A satisfying [b,∞) ⊂ A ⊂ [a,∞).

(3.8)

The machinery of the increasing rearrangement is exactly the same as that of the cumula-
tive density function matching approach. The measure-preserving property maintains local
functional energies (e.g., the double-well potential), while the monotonicity reduces the
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convolution-type non-local functional energy (e.g., the reduction of the elastic energy on the
slip plane).

Due to this energy reduction property, the increasing rearrangement is also employed to
minimize functional energies that share common structures with F in (1.37) [3]. Although
results derived in [3] are similar to ours, the context of [3] is much different in the sense that
the convolution kernel J(h) satisfies

J(h) ∈ L1(Rd), J(h)|h| ∈ L1(Rd), (3.9)

while in the current context we have

K(h) ∼ |h|−d−1 /∈ L1(Rd), K(h)|h| ∼ |h|−d /∈ L1(Rd). (3.10)

Therefore, the availability of the increasing rearrangement in our setting is indirect. Application
of the increasing rearrangement was also considered in [32] in which the authors commented
that it worked for (−Δ)α,α ∈ (1/2, 1) instead of the critical case (−Δ)1/2 which is exactly in
the PN model.

In contrast, originated in [32], lemma 3.2 is powerful in this critical case (also other non-
critical cases as discussed in [32]) with a much simpler and elementary proof compared to
the increasing rearrangement [2]. The main difference between lemma 3.2 and the increasing
rearrangement is that the former rearranges a pair of profiles u and v while the latter merely
works on a single candidate u. Therefore, the hidden mechanisms of these two methods are
totally different and readers should be aware of this discrepancy.

3.3. Minimizers on finite intervals

Before proving proposition 1, we introduce the translation-invariant property of the energy
functional F which is applied in the proof.

Lemma 3.3 (Translation invariant). Consider F in (1.37). Then for any (c1, c2) ∈ Ωd ,
we have

F(u(x + c1, y + c2)) = F(u(x, y)),

i.e. F is invariant under any translation.

The proof of this lemma only relies on some elementary computations of integrals using
lemma 2.2. Readers can refer to appendix B for detail. We will again use this invariant property
later to prove the lower boundedness of F on A.

Now we are ready to prove proposition 1 which addresses the minimizer of F on the set AI

defined in (3.2):

AI = {u ∈ A : u = η on Ωd\ΩI
d}.

We aim to prove that there exists a minimizer uI of F on set AI .

Proof of proposition 1. First we prove statement (a). Notice that for any u ∈ AI , F(u) is
uniformly bounded from below by a constant that depends on η(x), i.e.

F(u) =
1
2

∫
Ωd

∫
Ωd

(
|(u(x, y) − u(x′, y′)|2)K(x − x′, y − y′)

− | (η(x, y)− η(x′, y′)|2K(x − x′, y − y′)dx dx′ dy dy′
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+

∫
Ωd

γ(u(x, y))dx dy

� −1
2

∫
ΩI

d

∫
ΩI

d

| (η(x, y)− η(x′, y′)|2K(x − x′, y − y′)dx dx′dy dy′

−
∫

(ΩI
d )c

∫
ΩI

d

| (η(x, y)− η(x′, y′)|2K(x − x′, y − y′)dx dx′dy dy′

= −cL
2

∫
I

∫
I

(η(x) − η(x′))2

(x − x′)2
dx dx′

− cL

∫
I

∫
Ic

(η(x) − η(x′))2

(x − x′)2
dx′ dx > −∞.

The last equality is by lemma 2.2. cL > 0 is the constant in lemma 2.2. Therefore, there exists
a minimizing sequence {un} ⊂ AI such that

F(un) → CI := inf
u∈AI

F(u) as n →∞. (3.11)

For any u ∈ A, consider

ũ = max{min{u, 1},−1},

i.e. ũ is the cut-off of u from below by −1 and from above by 1. Then ũ ∈ A and satisfies

F(ũ) � F(u)

by definition of F. So we can assume |un| � 1 without loss of generality.
Denote vn = un − η. Then vn is supported on ΩI

d since un ∈ AI . This indicates that
‖vn‖2

L2(Ωd )
� 4(b − a), i.e. {vn} is uniformly bounded in L2(Ωd). Moreover, {vn} is also

uniformly bounded in H1/2(Ωd) since by lemma 2.3,

‖vn‖2
Ḣ1/2(Ωd )

� 1
c2

∫
Ω

∫
Ω

| (vn(x, y)− vn(x′, y′)|2K(x − x′, y − y′)dx dx′ dy dy′.

Meanwhile, using the definition of F in (3.1) and the Cauchy–Schwartz inequality, we have

1
c2

∫
Ω

∫
Ω

| (vn(x, y)− vn(x′, y′)|2K(x − x′, y − y′)dx dx′ dy dy

=
2
c2

F(un) − 4cL
c2

∫
Ωd

vn(x, y)(−∂xx)1/2η(x)dx dy − 2
c2

∫
Ωd

γ(u)dw

� 2
c2

F(un) +
2cL
c2

‖vn‖2
L2(Ωd) +

2cL
c2

‖(−∂xx)1/2η(x)‖2
L2(R).

� C′.

Here cL is the constant in lemma 2.2 and c2 is the constant in lemma 2.3. C′ is a constant that
only depends on a, b and η but independent with any certain minimizing sequence. Therefore,
{vn} is uniformly bounded in H1/2(Ωd).
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Now we are ready to prove that uI is indeed a minimizer. Uniform boundedness of {vn}
in H1/2(Ωd) implies that there exists vI ∈ H1/2(Ωd) supported on ΩI

d such that vn ⇀ vI in
H1/2(Ωd). Hence uI := vI + η ∈ AI and up to a subsequence,

un → uI , vn → vI a.e. in Ωd,

un → uI , vn → vI in L2(ΩI
d).

Therefore, by Fatou’s lemma, the strong L2 convergence and the definition of F in (3.1), we
know that

CI = lim inf
n→∞

F(un)

= lim inf
n→∞

1
2

∫
Ωd

∫
Ωd

| (vn(x, y)− vn(x′, y′)|2K(x − x′, y − y′)dx dx′ dy dy′

+ 2cL

∫
Ωd

vn(x, y)(−∂xx)1/2η(x)dx dy +
∫
Ωd

γ(un)dx dy

� 1
2

∫
Ωd

∫
Ωd

| (vI(x, y)− vI(x
′, y′)|2K(x − x′, y − y′)dx dx′ dy dy′

+ 2cL

∫
Ωd

vI(x, y)(−∂xx)1/2η(x)dx dy +
∫
Ωd

γ(uI)dx dy

= F(uI) � CI .

Thus uI ∈ AI is indeed a minimizer of F on set AI . In particular, it is a weak solution to (3.3)
by a simple calculation of the first variation of the energy functional F. This proves (a).

We will use the energy decreasing rearrangement method (lemma 3.2) to prove (b)
and (c). First we prove (b). For any given τ > 0, consider v(x, y) = uI(x + τ , y). Denote
m(x, y) = min{uI(x, y), v(x, y)} and M(x, y) = max{uI(x, y), v(x, y)}. Then by lemma 3.2, we
know that

F(m) + F(M) � F(uI) + F(v).

This inequality is in fact an equality. Notice that M(x, y) = 1 if x � b − τ and M(x, y) = −1
if x � a − τ , so M(x, y) ∈ A(a−τ ,b−τ ). By the translation invariant property (lemma 3.3), we
know that v(x, y) = uI(x + τ , y) is in fact a minimizer of F on A(a−τ ,b−τ ). Thus

F(M) � F(v).

Note that m(x, y) = 1 if x � b and m(x, y) = −1 if x � a, so m(x, y) ∈ A. Then by minimality
of uI we know that

F(m) � F(uI).

Therefore, we have

F(v) + F(uI) � F(m) + F(M) � F(uI) + F(v).

Thus

F(v) + F(uI) = F(m) + F(M).
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By lemma 3.2, this equality holds if and only if either uI(x, y) � v(x, y) or uI(x, y) � v(x, y)
holds almost surely in Ωd. By the boundary condition and that |uI | � 1, we know that the
former is true, i.e.

uI(x, y) � v(x, y) = uI(x + τ , y).

This inequality holds for a.e. (x, y) ∈ ΩI
d for arbitrary τ > 0. This proves (b).

Eventually, we prove (c). Again we will adopt lemma 3.2, i.e. the energy decreasing rear-
rangement method. Unlike the case in the proof of (b) where we only consider translation in x
direction, we consider translation in both x and y direction, but with x direction still positive.
For any given (τ 1, τ 2) such that τ1 > 0, τ 2 ∈ Td−1, consider w(x, y) = uI(x + τ 1, y+ τ 2). As
in the proof of (b), by considering the minimum and maximum of uI and w, we conclude that

uI(x + τ1, y + τ 2) � uI(x, y) (3.12)

holds for almost every (x, y) ∈ ΩI
d .

Now let τ 1 → 0. For any w ∈ Ωd , denote Sε(w) the square with length ε centered at w.
Then for any (x, y) ∈ ΩI (not almost every but every) and ε > 0, by inequality (3.12), we have

1
εd

∫
Sε(x,y)

uI(s, t + τ 2)ds dt = lim
τ1→0+

1
εd

∫
Sε(x,y)

uI(s + τ1, t + τ 2)ds dt

� 1
εd

∫
Sε(x,y)

uI(s, t)ds dt

Then let ε→ 0 and by Lebesgue’s differential theorem, we have

uI(x, y + τ 2) � u(x, y)

holds for a.e. (x, y) ∈ ΩI
d . This holds for arbitrary τ 2 ∈ T

d−1 without specific assignment
of sign of each component. Then taking both τ 2 and −τ 2 in the translation concludes that

uI(x, y + τ 2) = uI(x, y)

holds for a.e. (x, y) ∈ ΩI
d . This closes the whole proof of proposition 1. �

3.4. Technical lemmas

Before proving the existence theorem, i.e. theorem 1, we will first provide several technical
lemmas whose proofs are attached in appendix B. These lemmas finally lead to the fact that
F is lower bounded on A. This enables the application of the direct method in calculus of
variations in the proof of theorem 1.

Lemma 3.4 addresses an approximation property:

Lemma 3.4. For any u ∈ A such that |u| � 1, there exist a sequence {un} ⊂ A and positive
constants {Mn} such that

un − η ∈ C∞(Ωd), un = η on |x| > Mn,

and

F(un) → F(u) as n →∞.
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Proof. Given u ∈ A such that |u| � 1, because u − η ∈ H1/2(Ωd), so standard density argu-
ment (see [1, 38]) claims that there exists un and {Mn} such that un − η ∈ C∞(Ωd), un = η on
|x| > Mn and ‖(u − η) − (un − η)‖2

H1/2(Ωd)
→ 0 as n →∞. Therefore,

un − η → u − η in H1/2(Ωd),

un − η → u − η in L2(Ωd).

Denote v = u − η, vn = un − η. Then by (3.1), we have

F(u) =
1
2

∫
Ωd

∫
Ωd

|v(w) − v(w′)|2K(w −w′)dw dw′

+ cL

∫
Ωd

(u − η)(−∂xx)1/2η(x)dx dy +
∫
Ωd

γ(u)dx dy, (3.13)

here cL is the constant in lemma 2.2. Then by lemma 2.3 and convergence in H1/2(Ωd) and
L2(Ωd), we have∫

Ωd

∫
Ωd

|vn(w) − vn(w′)|2K(w −w′)dw dw′

→
∫
Ωd

∫
Ωd

|v(w) − v(w′)|2K(w −w′)dw dw′

∫
Ωd

(un − η)(−∂xx)1/2η(x)dx dy

→
∫
Ωd

(u − η)(−∂xx)1/2η(x)dx dy

as n →∞.
For the nonlinear potential term in (3.13), the mean value theorem ensures that there exist

θ(x, y) and θ̃(x, y) ∈ [0, 1] such that∣∣∣∣∫
Ωd

γ(un) − γ(u)dx dy

∣∣∣∣
�
∫
Ωd

|γ ′(θu + (1 − θ)un)‖u − un| dx dy

�
∫
Ωd

|γ ′(η + θ(u − η) + (1 − θ)(un − η))‖u − un| dx dy

�
∫
Ωd

|γ ′(η)‖u − un| dx dy

+

∫
Ωd

|γ ′′(η + θ̃θ(u − η) + θ̃(1 − θ)(un − η))‖θ(u − η)

+ (1 − θ)(un − η)‖u − un| dx dy.

Because |u| � 1, we can assume |un| � 1 without loss of generality. Thus

|γ ′′(η + θ̃θ(u − η) + θ̃(1 − θ)(un − η))|

7802



Nonlinearity 34 (2021) 7778 Y Gao et al

is uniformly bounded in Ωd. Also notice that γ ′(η) = 0 for |x| > 1, then by the
Cauchy–Schwartz inequality, there exists C > 0 that only depends on u, η such that∣∣∣∣∫

Ωd

γ(un) − γ(u)dx dy

∣∣∣∣ � ∫ 1

−1

∫
Td−1

|γ ′(η)‖u − un| dy dx

+ C(‖u − η‖L2(Ωd ) + ‖un − η‖L2(Ωd))‖u − un‖L2(Ωd)

� C′‖u − un‖L2(Ωd) → 0.

Here C′ is a constant that only depends on γ, η and u. This closes the proof. �

The following lemma claims that we can use the nonlinear potential to control L2 norm of
u − η.

Lemma 3.5. Suppose that u is a non-decreasing function on R such that u(x) = v(x) + η(x)
is non-decreasing, |u(x)| � 1 for all x ∈ R and u(0) = 0. γ ∈ C2(R) satisfies (1.8). Then there
exist constants C1 and C2 such that∫

R

γ(u(x))dx + C1 � C2‖v‖2
L2 .

Here C1 > 0 and C2 > 0 only depend on γ(x) and are independent with v.

Proof. According to (1.8), γ ′′(±1) > 0 and γ attains strict minimum at −1 and 1, so there
exists C1 > 0 such that

γ(x) � C1(x − 1)2, if x ∈ [0, 1],

γ(x) � C1(x + 1)2, if x ∈ [−1, 0].

Remember that u(x) is non-decreasing, u(0) = 0 and −1 � η(x) � 1, so

−1 � v(x) � 0, if x � 1,

0 � v(x) � 1, if x � −1.

Therefore, we have∫
R

γ(u(x))dx �
∫ −1

−∞
γ(v(x) − 1)dx +

∫ +∞

1
γ(v(x) + 1)dx

� C1

∫ −1

−∞
v(x)2dx + C1

∫ +∞

1
v(x)2dx

� C1‖v‖2
L2
− 2C1.

�

Using these technical lemmas, we are ready to prove theorem 1.

3.5. Proof of theorem 1: existence of the minimizers

As stated in previous sections, we will use the calculus of variations to prove theorem 1 by
minimizing F on set A. Proved in proposition 1, a key property of the minimizers uI is that for
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and τ1 > 0, τ 2 ∈ Td−1,

uI(x + τ1, y) � uI(x, y) a.e. in Ωd,

uI(x, y + τ 2) = uI(x, y) a.e. in Ωd.
(3.14)

To prove lower boundedness of F with the help of (3.14), we consider the following subset of
A which is much finer than A:

B := {u ∈ A : u satisfies (3.14), |u| � 1 and u(0) = 0} . (3.15)

This definition is inspired by proposition 1 and preceding technical lemmas: according to
proposition 1, we know that uI ∈ B if uI(0) = 0. Here uI is the minimizer of F on AI which is
constructed in proposition 1. Through the bridge of set B, we will prove that:

Lemma 3.6. Consider set A in (1.35), set B in (3.15), and functional energy F in (1.37).
Then:

(a) inf
u∈A

F(u) = inf
u∈B

F(u).

(b) There exist positive constants C3 and C4 that only depend on η and γ such that for any
u ∈ B,

F(u) � C3‖u − η‖2
H1/2(Ωd )

− C4.

Proof. We first prove (a). Because B ⊂ A, so we have inf
u∈A

F(u) � inf
u∈B

F(u). Hence we only

need to prove that inf
u∈A

F(u) � inf
u∈B

F(u).

Consider ũ = max{min{u, 1},−1}, i.e. the cut-off of u by 1 from above and by −1 from
below. Then ũ is also in A and satisfies that F(ũ) � F(u). So we only need to consider those
u ∈ A such that |u| � 1.

By lemma 3.4, for any ε > 0, there exists u1 ∈ C∞(Ω) and M > 0 such that u1 = η on
|x| > M and

F(u) > F(u1) − ε.

Then according to the definition of AI in (3.2), we know that u1 ∈ AI . By proposition 1, we
know that F(u1) � F(uM) where uM is a minimizer of F on AI satisfying that uM is a 1D profile
and increasing in x direction. Therefore

F(u) � F(u1) − ε � F(uM) − ε.

By the translation-invariant property (lemma 3.3), we have

F(uM) = F(u∗
M)

where u∗
M is a translation of uM that crosses (0, 0), i.e.

u∗
M(x) = uM(x + c), u∗

M(0) = 0.

By definition, we know that u∗
M ∈ B. Thus for any u ∈ A and ε > 0, there exists u∗

M ∈ B such
that

F(u) � F(u) − ε � F(u∗
M) − ε.

Thus inf
u∈A

F(u) � inf
u∈B

F(u) − ε. By arbitrariness of ε, we have inf
u∈A

F(u) � inf
u∈B

F(u).
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Now we prove (b). By lemma 3.5, for any u ∈ B, there exist C1 and C2 that only depend on
γ such that ∫

Ωd

γ(u)dx dy � C1‖v‖2
L2(Ωd) − C2

where v = u − η. Therefore, using the expression of F in (3.1), the Cauchy–Schwartz
inequality, lemmas 2.3 and 2.2, we have

F(u) =
1
2

∫
Ωd

∫
Ωd

|v(w) − v(w′)|2K(w −w′)dw dw′

+ 2cL

∫
Ωd

v(x, y)(−∂xx)1/2η(x)dx dy +
∫
Ωd

γ(u(x, y))dx dy

� c2

2
‖v‖2

Ḣ1/2(Ωd)
+ C1‖v‖2

L2 − C2 −
2c2

L
C1

‖(−∂xx)1/2η(x)‖2
L2(Ωd)

− C1

2
‖v‖2

L2

� C3‖v‖2
H1/2(Ωd)

− C4.

Here c2 is the constant in lemma 2.3, cL is the constant in lemma 2.2, and

C3 = min

{
c2

2
,

C1

2

}
, C4 = C2 +

2c2
L

C1
‖(−∂xx)1/2η(x)‖2

L2(Ωd)

are constants that only depend on η, γ and the operator L. This concludes the proof. �

Lemma 3.6 in fact provides insightful corollaries: first, we have

inf
u∈A

F(u) = inf
u∈B

F(u) � −C4.

Thus F is lower bounded in A. Moreover, according to (b), functional F(u) can be used to
bound H1/2(Ωd) norm of u − η for any u ∈ B. In the proof of theorem 1, this observation will
be used to find an a.e. limit of the minimizing sequence which is proved to be a minimizer of
F on A. Now we are ready to prove theorem 1.

Proof of theorem 1. We will first prove (a). By lemma 3.6, we know that

inf
u∈A

F(u) = inf
u∈B

F(u) � −C4 > −∞.

Denote c = inf
u∈A

F(u) = inf
u∈B

F(u). Then there exists {un} ⊂ B such that F(un) → c as n →∞.

Again by lemma 3.6 (b), we know that ‖un − η‖H1/2(Ωd) is uniformly bounded. Thus there exists
u∗ such that up to a subsequence,

un − η → u∗ − η a.e. in Ωd,

un − η ⇀ u∗ − η in H1/2(Ωd).

Denote vn = un − η and v∗ = u∗ − η. Then vn → v∗ a.e. in Ωd and vn ⇀ v∗ in H1/2(Ωd).
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In fact, u∗ is a minimizer of F on A. By Fatou’s lemma, we know that

lim inf
n→∞

1
2

∫
Ωd

∫
Ωd

| (vn(x, y)− vn(x′, y′)|2K(x − x′, y − y′)dx dy dx′ dy′

+

∫
Ωd

γ(un(x, y))dx dy

� 1
2

∫
Ωd

∫
Ωd

|
(
v∗(x, y)− v∗(x′, y′)|2K(x − x′, y − y′)dx dy dx′ dy′

+

∫
Ωd

γ(u∗(x, y))dx dy. (3.16)

Meanwhile, since vn → v∗ weakly in H1/2(Ωd), hence also converges weakly in L2(Ωd), thus

lim
n→∞

∫
Ωd

vn(x, y)(−∂xx)1/2η(x)dx dy =

∫
Ωd

v∗(x, y)(−∂xx)1/2η(x)dx dy. (3.17)

Substituting (3.16) and (3.17) into the following equality, we have

c = lim inf
n→∞

F(un)

= lim inf
n→∞

1
2

∫
Ωd

∫
Ωd

| (vn(x, y)− vn(x′, y′)|2K(x − x′, y − y′)dx dy dx′ dy′

+ 2cL

∫
Ωd

vn(x, y)(−∂xx)1/2η(x)dx dy +
∫
Ωd

γ(un(x, y))dx dy

� 1
2

∫
Ωd

∫
Ωd

|
(
v∗(x, y)− v∗(x′, y′)|2K(x − x′, y − y′)dx dy dx′ dy′

+ 2cL

∫
Ωd

v∗(x, y)(−∂xx)1/2η(x)dx dy +
∫
Ωd

γ(u∗(x, y))dx dy

= F(u∗).

So u∗ is in fact a minimizer of F on A. In particular, it is a weak solution to (1.23). This proves
(a).

Now we prove (b). Because un ∈ B, so |un| � 1 and they are all 1D functions and non-
decreasing in x direction, so the a.e. limit u∗ is also non-decreasing in x direction and is a
1D profile satisfying |u∗| � 1. Thus (3.14) holds for almost every (x, y) ∈ Ωd. To prove that
u∗ − η ∈ H1(Ωd), we first show that γ ′(u∗) ∈ L2(Ω). This is true by the mean value theorem
and (3.14): ∫

Ωd

|γ ′(u∗)|2 dx dy =

∫
R

|γ ′(η + u∗ − η)|2 dx

=

∫
R

|γ ′(η) + γ ′′(η + θ(u∗ − η))(u∗ − η)|2 dx

� 2
∫
R

|γ ′(η)|2 dx + 2
∫
R

|γ ′′(η + θ(u∗ − η))|2|u∗ − η|2 dx

� C′
1 + C′

2‖v∗‖L2 . (3.18)
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So γ ′(u∗) ∈ L2(Ωd). Remember that Lu∗ + γ ′(u∗) = 0, so by lemma 2.3, we have

c‖u∗‖Ḣ1(Ωd) � ‖Lu∗‖L2(Ωd) = ‖γ ′(u∗)‖L2(Ωd).

So u∗ ∈ Ḣ1(Ωd). Moreover, Lη ∈ L2(Ωd) by lemma 2.2, so u∗ − η ∈ H1(Ωd). In particular, u∗

solves equation (1.15) in L2 sense. By (3.14), we know that u∗ is a 1D profile, so u∗ − η ∈
H1(Ωd) implies that lim

x→±∞
u∗(x, y) = ±1 holds uniformly in y. So (b) holds.

Finally, we prove (c) and (d). Boundedness of u∗ implies that γ ′′(u∗)∇u∗ ∈ L2(Ωd). Thus
Lu∗ = −γ ′(u∗) ∈ H1(Ωd) and u∗ ∈ Ḣ2(Ωd). Remember that u∗ is a 1D profile, so by embed-
ding H2(R) ⊂ C1(R), we know that (3.14) implies that

∇yu∗(x, y) = 0,
∂u∗(x, y)

∂x
� 0

holds for any (x, y) ∈ Ωd . So (d) is proved and (c) is partially proved except the strict
monotonicity.

To prove the strict monotonicity, suppose that ∂u∗(x0,y0)
∂x = 0 for some (x0, y0) ∈ Ωd, taking

derivative on both sides of (1.23) yields

L∂u∗(x0, y0)
∂x

= −γ ′′(u∗)
∂u∗(x0, y0)

∂x
= 0.

Thus L ∂u∗
∂x = 0 at (x0, y0). However, since ∂u∗

∂x � 0, we know that ∂u∗
∂x attains minimum at

(x0, y0). Then by lemma 2.1, we know that ∂u∗
∂x = 0, i.e. u∗ is a constant. This contradicts with

the far field limit of u∗. So ∂u∗(x,y)
∂x > 0. This concludes the whole theorem. �

4. The De Giorgi conjecture and uniqueness of solutions

In theorem 1, we prove that there exists a minimizer u∗ of functional F on set A who satisfies
that u∗ − η ∈ H1(Ωd) and for any (x, y) ∈ Ωd , we have

∇yu(x, y) = 0,
∂u∗(x, y)

∂x
> 0.

In particular, we have lim
x→±∞

u∗(x, y) = ±1. As definition 2, we keep the same definition of layer

solutions for (1.23).

Definition 3. We call that u : Ωd → R is a layer solution to (1.23), i.e.

Lu + γ ′(u) = 0,

if for any (x, y) ∈ Ωd ,

∂u(x, y)
∂x

> 0, lim
x→±∞

u(x, y) = ±1. (4.1)

As far as we know, results parallel to the De Giorgi conjecture that address the vectorial
case, i.e. system (1.13) and (1.23) are still wanting and lack of exploration. In this section, we
will prove theorem 2 which fills in this blank: all layer solutions to (1.13) or (1.23) with H1

regularity are in fact 1D profiles if we further assume γ ∈ C∞(R).
In [9] and related literatures on the De Giorgi conjecture, the standard approach to prove

this type of symmetry result is to first derive some Schauder estimates for weak solutions and
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then using Liouville type theorems to prove 1D symmetry. For example, authors in [9] first
derived C2,α regularity for layer solutions by careful application of theories on elliptic PDEs.
Then they noticed the following lemma (see also lemma 2.6 in [9]), a Liouville type lemma:

Lemma 4.1 (A Liouville type theorem). Let ϕ ∈ L∞
loc(R

d
+) be a positive function, not

necessarily bounded on all of Rd
+. Suppose that σ ∈ H1

loc(R
d
+) satisfies⎧⎪⎨⎪⎩

−σ div(ϕ2∇σ) � 0 in R
d
+,

σ
∂σ

∂n
� 0 on ∂Rd

+

in the weak sense. Assume that, for every R > 1, we have∫
B+

R

(ϕσ)2 dx � CR2

for some constant C independent of R. Then σ is a constant.

Applying this lemma to function σ = uyi/ux, i = 1, 2, . . . , d − 1, where x direction is
the monotone direction for the layer solution u, they proved the following lemma (see also
lemma 4.2 in [9]):

Lemma 4.2. Suppose that γ ∈ C2,α(R) is a double-well potential satisfying (1.8). Assume
that d � 3 and that u is a bounded solution of⎧⎪⎨⎪⎩

Δu = 0 in R
d
+,

∂u
∂n

= γ ′(u) on ∂Rd
+.

Then there exists a functionϕ ∈ C1
loc(R

d
+)
⋂

C2(Rd
+) with ϕ > 0 in Rd

+ and such that for every
i = 1, 2, . . . , d − 1,

∂u
∂yi

= ciϕ inRd
+

for some constant ci.

As a straightforward corollary, the one-dimensional symmetry of solutions to (−Δ)1/2u +
γ ′(u) = 0 is also established.

Instead of adopting any Liouville type theorem to prove theorem 2, we will develop a new
approach that is first utilized in our previous work [18] to prove 1D symmetry of layer solu-
tions to (1.15). Although Liouville type theorem is not employed, we found that the insightful
observation provided by lemma 4.2 in [9] is significant: as long as one can prove that there
exist constants ci, i = 1, 2, . . .d − 1 such that

uyi = ciux

holds, then the profile u is a 1D profile. Remember the discussion in section 1, ux and uyi , i =
1, 2, . . . , d − 1 are eigenfunctions of eigenvalue 0 for the linear operator

L : H1(Ωd) ⊂ L2(Ωd) → L2(Ωd), Lφ = Lφ+ γ ′′(u)φ. (4.2)
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Therefore, as long as we can prove that 0 is a simple eigenvalue of L, i.e. the eigenspace of
0 is only 1 dimension, then we prove that ux and uyi , i = 1, 2, . . . , d − 1 are in fact linearly
dependent, which indicates 1D symmetry. This is the main idea and approach we will utilize to
prove theorem 2. Following this logic, we will first establish proper regularity results for layer
solutions u in section 4.1 and then prove theorem 2 in section 4.2.

4.1. Regularity results

In this section, we will derive some regularity results for layer solutions to equation (1.23) and
some properties of elements in the kernel of L. Two main results will be derived in this section
under assumption γ ∈ C∞(R). First, any layer solution of equation (1.23) is in Ḣn(Ωd) for any
n > 0 (see lemma 4.3) and in particular, u is smooth with bounded derivatives of any order.
Second, eigenfunctions of L with eigenvalue 0 are in Hn(Ωd) for any n > 0 and in particular,
they decay to 0 uniformly in y as |x| →∞ (see lemma 4.4).

As a reminder, we assume γ ∈ C∞(R) in this section. Even though this is stronger than C2

assumption which is generally considered, this setting indeed covers many important cases. For
instance, γ(u) = 1

π2 (cos(πu) + 1) in the PN model and γ(u) = (1 − u2)2 in the Allen–Cahn
equation [5].

Now we begin to prove these two lemmas. All these lemmas only require that u is bounded
which is ensured by being a layer solution. Using the Gagliardo–Nirenberg interpolation
inequality [31] and ideas in [29] (see proposition 3.9), we will prove that:

Lemma 4.3. Suppose that γ ∈ C∞(R) is a double-well potential satisfying (1.8) and L is the
linear operator defined in (1.24) satisfying assumptions (A)–(D). For any dimension d � 1, if
u ∈ Ḣ1(Ωd) satisfying u − η ∈ H1(Ωd ) is a bounded solution to equation (1.23), i.e.

Lu + γ ′(u) = 0,

then u − η ∈ Hn(Ωd ) for any n > 0. In particular, u is in Ḣn(Ω) for any n > 0 and smooth with
bounded derivatives of any order.

Proof. Taking derivative on both sides of the equation yields

Lux + γ ′′(u)ux = 0.

Remember that u is bounded, so is γ′′(u) by continuity of γ′′. Thus γ ′′(u)ux ∈ L2(Ωd) which
implies that Lux ∈ L2(Ωd). Thus by lemma 2.3, ux ∈ H1(Ωd). This also holds for ∇yu(x, y).
Thus u ∈ Ḣ2(Ωd) and u − η ∈ H2(Ωd).

Now we prove by induction that u − η ∈ Hn(Ωd) for any positive integer n � 3. Suppose
that u − η ∈ Hm(Ωd), then by the Gagliardo–Nirenberg interpolation inequality, we know that
for any 1 � j � m, we have

‖D j(u − η)‖Lp(Ω) � C‖(u − η)‖a
Hm(Ω)‖u − η‖1−a

L∞(Ω)

Here p and j/m � α � 1 satisfy

1
p
=

j
d
+ a

(
1
2
− m

d

)
.

Take α = j/m, then we have p = 2m/ j and

D j(u − η) ∈ L2m/ j(Ωd).
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Notice that Dη = 0 if |x| > 1 and η ∈ C∞(Ωd), so Djη ∈ L2m/ j(Ωd), hence

D ju ∈ L2m/ j(Ωd)

Chain rule implies that for any multi-index α that satisfies |α| = m, we have

Dαγ ′(u) =
∑

β1+···+βk=α

Cβu(β1)u(β2) . . . u(βk)γ(k+1)(u).

Here Cβ are constants depending on β = (β1, β2, . . . , βk). Boundedness of u and smoothness
of γ ensure that γ(k+1)(u) is also bounded. Remember that D ju ∈ L2m/ j(Ωd), so we have u(β j) ∈
L2m/|β j|(Ωd) for all j = 1, 2, . . . , k. Thus by Hölder’s inequality, we have

‖u(β1)u(β2) . . . u(βk)‖Lq(Ωd) �
k∏

j=1

‖u(β j)‖
L2m/|β j|(Ωd )

where q satisfies

1
q
=

k∑
j=1

|β j|
2m

=
|α|
2m

=
1
2
.

Thus q = 2 and u(β1)u(β2) . . . u(βk) ∈ L2(Ωd). Thus Dαγ ′(u) ∈ L2(Ωd) for any multi-indexα that
satisfies |α| = m, so Dmγ ′(u) ∈ L2(Ωd). Therefore,

‖Dm(Lu)‖L2(Ωd) = ‖Dmγ ′(u)‖L2(Ωd) < ∞.

Thus Dm(Lu) ∈ L2(Ωd). Then by lemma 2.3 and assumption (A), we have u − η ∈ Hm+1(Ωd)
and u ∈ Ḣm+1(Ωd). Thus by induction, u − η ∈ Hn(Ωd) for any n > 0. In particular, this
indicates that u is smooth with bounded derivatives of any order. �

Remember that γ is smooth, so lemma 4.3 also ensures that γ ′′(u) is smooth and bounded
with bounded derivatives of any order. Recall that ux is a 0 eigenfunction of operator L defined
in (1.38), so by ellipticity of L and regularity of γ ′′(u), we can prove that ux , or more generally,
any 0 eigenfunction of L should attain Hk(Ωd) regularity for any k > 0. As a direct corollary
of lemma 4.3, we have

Lemma 4.4. Suppose that γ ∈ C∞(R) is a double-well potential satisfying (1.8) and L is
the linear operator defined in (1.24) satisfying assumption (1.3). For any dimension d � 1, if
g ∈ H1(Ωd ) satisfies

Lg + γ ′′(u)g = 0,

where u is a bounded solution of (1.23) as in lemma 4.3. Then g ∈ Hn(Ωd ) for any n > 0. In
particular, g is smooth and

lim
|x|→∞

g(x, y) = 0

holds uniformly in y.

Proof. By lemma 4.3, we know that γ ′′(u) is smooth with bounded derivatives of any order.
Suppose that g ∈ Hk(Ωd) for some k � 1, then

‖Dk(Lg)‖L2(Ωd) = ‖Dk(γ ′′(u)g)‖L2(Ωd ) � Ck‖Dkg‖L2(Ωd) < ∞.
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Here Ck is a constant that only depends on k, u and γ. Thus Dk(Lg) ∈ L2(Ωd), hence by lemma
2.3 and assumption (A), we know g ∈ Hk+1(Ωd). So by induction, g ∈ Hn(Ωd) for any n > 0.
In particular, g is smooth and satisfies that lim

|x|→∞
g(x, y) = 0 holds uniformly in y. �

Remark 2. Although we assume γ ∈ C∞(Ωd), for a given dimension d, γ ∈ Cd+3(Ωd) is
sufficient to ensure that layer solutions u and 0 eigenfunctions g of operator L are continuous
and lim

|x|→∞
g(x, y) = 0, lim

x→±∞
u(x, y) = ±1 hold uniformly in y. These are the properties we need

to prove theorem 2.

Finishing proving these two lemmas, we are ready to prove theorem 2.

4.2. Proof of theorem 2: the De Giorgi conjecture

As discussed in the beginning of this section, we will prove theorem 2 by proving that the
Ker(L) is only 1 dimension. Here L is the operator defined in (1.38). Similar to the proof in
[18], lemma 2.1, i.e. the maximal property plays a critical role in concluding linear dependence
of ux and any other function g in the Ker(L).

Proof of theorem 2. We will prove that if a non-trivial g ∈ H1(Ωd) satisfiesLg + γ ′′(u)g =
0, then there exists a constant c such that g = cux(x, y).

According to lemma 4.3, u ∈ Ḣn(Ωd) for any n > 0, so u is continuous. By definition of
layer solution (see definition 3), we know that lim

x→±∞
u(x, y) = ±1.

This limit actually holds uniformly in y by continuity of u. To prove uniformness, by strict
monotonicity of u, for any a ∈ (−1, 1) and y ∈ Td−1, there exists a unique x ∈ R such that
u(x, y) = a. Therefore, for any a ∈ (−1, 1), we consider function

f a(y) : Td−1 → R, f a(y) = {x : u(x, y) = a}.

We prove that fa(y) is continuous. Given y ∈ Td−1 and ε > 0 sufficiently small, since
u( fa(y), y) = a, by strict monotonicity of u w.r.t. x, we know that

a1 := u( f a(y) + ε, y) > a > a2 := u( f a(y) − ε, y).

Then there exists δ > 0 such that

u(x, y) > a if (x, y) ∈ Sδ( f a(y) + ε, y),

u(x, y) < a if (x, y) ∈ Sδ( f a(y) − ε, y).

Here Sδ(w) is the square centered at w with width δ. Then by definition of fa and monotonicity
of u, we know that for any y1 ∈ Td−1 such that |y1 − y| < δ

2 , we have | fa(y1) − fa(y)| < ε. Thus
f a(y) : Td−1 → R is a continuous function for any a ∈ (−1, 1). So by compactness of Td−1,
there exist real numbers xa and Xa such that

xa < f a(y) < Xa.

So by monotonicity, we know that for any y∈ Ωd ,

u(x, y) � a if x � Xa,

u(x, y) � a if x � xa.

Thus limit lim
x→±∞

u(x, y) = ±1 holds uniformly in y.

7811



Nonlinearity 34 (2021) 7778 Y Gao et al

By lemma 4.4, we know that

lim
x→±∞

ux(x, y) = 0, lim
x→±∞

g(x, y) = 0

hold uniformly in y. Consider φβ = ux + βg and define set

D1 := {β < 0 : φβ(ξ) < 0 for some ξ ∈ Ωd}. (4.3)

Because g is non-trivial, we assume that g(x0, y0) > 0 for some (x0, y0) ∈ Ωd without loss of
generality. Then D1 is non-empty because

β1 := − 2ux(x0, y0)/g(x0, y0) ∈ D1.

Here we use the positivity of ux in the definition of layer solutions. Therefore,

β := sup D1

is well-defined and satisfies β ∈ [β1, 0].
We can also prove that for any β ∈ D1, there exists ξβ ∈ Ωd such that φβ(ξβ) attains a

negative minimum. By construction of D1 and lemma 4.4, we know that

lim
|x|→∞

φβ(x, y) = 0

holds uniformly in y. Meanwhile, φβ attains a negative minimum. Therefore, there exists ξβ =
(xβ , yβ) such that φβ attains minimum at ξβ by continuity of g and ux , which is ensured by
lemmas 4.4 and 4.3.

Moreover, there exists X0 ∈ R that only depends on γ and u such that |xβ| � X0 for any
β ∈ D1. Notice that φβ satisfies Lφβ + γ ′′(u)φβ = 0 since both g and ux are so, thus

γ ′′(u(xβ, yβ))φβ(xβ , yβ) = −Lφβ |(xβ ,yβ ) > 0

holds by minimality of φβ and lemma 2.1. Because φβ(xβ , yβ) < 0, so γ′′(u(xβ , yβ)) < 0. How-
ever, since lim

x→±∞
u(x, y) = ±1 uniformly in yand γ ′′(±1) > 0, so there exists a constant X0 > 0

such that if |x| � X0, then γ′′(u(x, y)) � 0. Because γ′′(u(xβ , yβ)) < 0, so |xβ| < X0.
Therefore, we know that {ξβ}β∈D1 is a compact set in Ωd. So there exists a subsequence of

β in D1 such that β → β, i.e. the supremum of set D1, and

ξβ → ξβ

for some ξβ ∈ Ωd . Because φβ(ξβ) < 0, so

φβ(ξβ) � 0

by passing the limit β → β and continuity of g and ux . However, by the definition of β, we have
φβ(ξ) � 0 for any ξ ∈ Ωd otherwise β should not be the supremum of D1. Thus φβ(ξβ) = 0.

This ensures φβ ≡ 0. Because φβ � 0, so φβ attains minimum at ξβ . However, since φβ is
also in the kernel of L, we have

Lφβ |ξβ = −γ ′′(u(ξβ))φβ(ξβ) = 0.
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Then by lemma 2.1 and minimality of ξβ , we have φβ ≡ 0. Thus

ux + βg = 0,

i.e. g and ux are linearly dependent. Thus the kernel of L is only 1 dimension. Notice that every
partial derivative of u belongs to kernel of L, so there exist constants ci(i = 1, 2, . . . , d − 1)
such that

uyi + ciux = 0, i = 1, 2, . . . , d − 1

for any yi ∈ Td−1.
To close the proof, we prove that in fact ci = 0, i = 1, 2, . . . , d − 1. Otherwise, we assume

ci > 0 without loss of generality. For any given (x, y) ∈ Ωd , by periodicity and the far end limit
assumption (1.9), we have

u(x, y) = lim
n→+∞

u(x + cin, y − nei) = lim
n→+∞

u(x + cin, y) = 1,

u(x, y) = lim
n→+∞

u(x − cin, y + nei) = lim
n→+∞

u(x − cin, y) = −1.

Here n are positive integers and ei = (0, . . . , 0, 1, 0, . . .0), i = 1, 2, . . . , d − 1 form the canon-
ical orthogonal basis in R

d−1 with 1 only at the ith component, and 0 for others. This yields
contradiction. So ci = 0, i = 1, 2, . . . , d − 1, i.e. ∇yu(x, y) = 0 and u is a 1D profile that only
depends on x. �

4.3. Proof of theorem 3: uniqueness up to translations

To completely understand all layer solutions to (1.23) and minimizers of functional F on set
A, we prove the following lemma:

Lemma 4.5 (Minimizers are layer solutions). For any dimension d � 1, suppose that
γ ∈ C∞(R) is a double-well type potential satisfying (1.8). Consider functional energy F in
(1.37), set A in (1.35), and set A�, Am in (1.39). Then

Am ⊂ A�.

Proof. Let u∗ ∈ Am. First of all, u∗ is a weak solution to equation (1.23). Then as in the
proof of theorem 1, we know that it solves (1.23) L2 sense, i.e. Lu∗ = −γ ′(u∗) ∈ L2(Ωd) (see
calculation (3.18)). Then by lemma 2.3, we know that u∗ − η ∈ H1(Ωd).

Because u∗ is a minimizer, so |u∗| � 1. Otherwise

ũ = max{1, min{−1, u∗}} (4.4)

is also in A and satisfies F(ũ) < F(u∗) by definition of F in (1.37). This contradicts with the
minimality of u∗. So u∗ is bounded. Then by lemma 4.3, u∗ − η ∈ Hn(Ωd) for any n > 0.
Therefore, we have

lim
x→±∞

u∗(x, y) = ±1. (4.5)

Now it is left to prove the strict monotonicity of u∗. Again, this is realized by the energy
decreasing rearrangement method (lemma 3.2). For any τ > 0, consider the translation of u∗,
i.e.

uτ (x, y) = u∗(x + τ , y).
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Define

m(w) := min{uτ (w), u∗(w)}, M(w) := max{uτ (w), u∗(w)}.

Then by lemma 3.2, we know that

F(m) + F(M) � F(uτ ) + F(u∗).

By translation-invariance (lemma 3.3), we know F(uτ ) = F(u∗). Thus both u∗ and uτ are
minimizers. So by minimality of u∗ and uτ , we have

F(m) + F(M) = F(uτ ) + F(u∗).

Again, by lemma 3.2, this equality holds if and only if either uτ (w) � u∗(w) or uτ (w) � u∗(w).
Then by the limit condition (4.5), we know uτ (w) � u∗(w). Thus u∗ is non-decreasing.

Finally, as in the proof of theorem 1, the fact that u is non-decreasing implies strict mono-
tonicity. Suppose that ∂u∗(x0,y0)

∂x = 0 for some (x0, y0) ∈ Ωd, then taking derivative on both sides
of (1.23) yields

L∂u∗(x0, y0)
∂x

= −γ ′′(u∗)
∂u∗(x0, y0)

∂x
= 0.

Thus L ∂u∗
∂x = 0 at (x0, y0). However, since ∂u∗

∂x � 0, we know that ∂u∗
∂x attains minimum at

(x0, y0). Then by lemma 2.1, we know that ∂u∗
∂x = 0, i.e. u∗ is a constant. This contradicts with

the far field limit of u∗. So ∂u∗(x,y)
∂x > 0 holds for any (x, y) ∈ Ωd. Thus u∗ is a layer solution. �

Therefore, all minimizers of F on set A are layer solutions. Recall that theorem 2 claims
that all layer solutions with H1 regularity have one-dimensional symmetry if the double-well
potential γ is smooth, so all these minimizers are also exactly 1D profiles.

Moreover, these 1D profiles are unique up to translations. According to [9], if γ ∈ C2,α(R)
is a double-well potential, then layer solutions to

(−∂xx)1/2u(x) + γ ′(u(x)) = 0, x ∈ R. (4.6)

is unique up to translations (see theorem 1.2 in [9]). Remember that lemma 2.2 ensures
that L f = cL(−∂xx)1/2 f if f (x, y) = f (x) is a 1D profile, therefore, both layer solutions and
minimizers are unique up to translations.

Proof of theorem 3. By theorem 2, we know that for any u ∈ A�, u is a 1D profile to
solution (1.23), i.e.

Lu(x, y) + γ ′(u(x, y)) = 0.

By lemma 2.2, for any (x, y) ∈ Ωd, we have

Lu(x, y) = cL(−∂xx)1/2u(x).

Thus viewed as a 1D profile u(x), a layer solution u(x, y) satisfies

cL(−∂xx)1/2u(x) + γ ′(u(x)) = 0. (4.7)

Then by theorem 1.2 in [9], we know

A� = {u : u(x, y) = u∗(x + x0) for some x0 ∈ R}. (4.8)
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Here u∗ is the unique solution to (1.41).
By theorem 1 and lemma 4.5, we know that Am is non-empty and Am ⊂ A�. Moreover,

by lemma 3.3, i.e. the translation-invariant property, we know that u(x) ∈ Am if and only if
u(x + x0) ∈ Am. Notice that A� itself is also unique up to translations, so we have (1.40), i.e.

Am = A� = {u : u(x, y) = u∗(x + x0) for some x0 ∈ R}.

This concludes the uniqueness (up to translations) of layer solutions to equation (1.23) and
minimizers of F on set A. �

4.4. Proof of theorem 4: implication on the PN model

As a direct application of previous results on the existence and rigidity, now we can prove
theorem 4.

Proof of theorem 4. As a minimizer of Ẽ in (1.42) in the perturbed sense, we know that u
is a weak solution to (1.13) by lemma 1.1. A calculation (see [10]) involving the Dirichlet and
Neumann map implies that if u satisfies (1.13), the elastic energy in the bulk can be expressed
by u+

1 (x, z) which is defined on the slip plane:

Eels(u) =
∫
Γ′
Lu+

1 (w)u+
1 (w)dw

=
1
2

∫
Ω2

∫
Ω2

|u+
1 (w) − u+

1 (w′)|2K(w −w′)dw dw′. (4.9)

Here L is the linear operator defined in (1.15) and K is the corresponding convolution kernel
which satisfies assumptions (A)–(D). Therefore, u+

1 is the minimizer of F defined in (1.37).
Then by theorems 2 and 3, we know that statement (b) hold. Therefore, u1, u2 only depend on
x and y, satisfying the following reduced system of (1.13) in two dimensions:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Δu +
1

1 − 2ν
∇(∇ · u) = 0, in R

2\Γ1,

σ+
12 + σ−

12 =
∂γ

∂u1
(u+

1 ), on Γ1,

σ+
22 = σ−

22, on Γ1.

(4.10)

Here Γ1 = {(x, y) ∈ R2 : y = 0}. Thus smoothness of u+
1 implies that u is smooth in R2 ×

T\Γ′, so (a) holds. Finally, by lemma 2.3 in [19], we know that (c)–(e) are true and hold
point-wisely in R2 × T\Γ′ by smoothness. �

5. Spectral analysis of L

In theorem 2, we prove that if u is a layer solution to (1.23), then the operator in (1.38), i.e.

L : H1(Ω) ⊂ L2(Ω) → L2(Ω), Lφ = Lφ+ γ ′′(u)φ

has one dimensional kernel which is exactly span{ux}. In this section, we proceed to prove
that L is positively semi-definite and 0 is an isolated point spectrum. Denote the spectrum, the
point spectrum, the residual spectrum and the continuous spectrum of a linear operator L as
σ(L), σp(L), σr(L) and σc(L) respectively.
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First of all, according to [41], since L is self-adjoint (see lemma A.2), we know σr(L) = ∅.
Meanwhile, since

lim
x→±∞

u(x, y) = ±1

holds uniformly in the y direction and γ ′′(±1) > 0, we know that γ ′′(u) is lower bounded and
can only be negative on a compact set in Ωd. Therefore, there exists a finite lower bound of the
spectrum of L, i.e.

Lemma 5.1. σ(L) = σp(L) ∪ σc(L) ⊂ [−λ1,∞). Here λ1 > 0 is a constant.

Employing the perturbation theory of self-adjoint operators [25], we can characterize the
essential spectrum of L by viewing L as a self-adjoint perturbation of L. Remember that the
continuous spectrum is a subset of the essential spectrum, we have the following lemma:

Lemma 5.2. σc(L) ⊂ [λ2,∞). Here λ2 > 0 is a constant.

Therefore, the spectrum of L that belongs to (−λ1,λ2) is a subset of σp(L) with finite dimen-
sional eigenspaces. Moreover, they are isolated points in σ(L). To finish the spectral analysis
of L2, we finally prove the positive semi-definiteness of L.

Lemma 5.3. σp(L) ⊂ [0,∞).

We will only prove lemma 5.3 in this section and the proof of the fact that L is self-adjoint,
lemmas 5.1 and 5.2 is attached in appendix A. Similar to the proof of theorem 2, the proof
of lemma 5.3 adopts an argument of contradiction and relies on the maximal principle of L in
lemma 2.1.

Proof of lemma 5.3. We will prove σp(L) ⊂ [0,∞) by contradiction. Suppose that there
exist λ < 0 and non-zero g ∈ H1(Ωd) s.t.

Lg = λg.

similar to the proof of lemma 4.4, we can prove that g ∈ Hn(Ωd) for any n > 0 and

lim
|x|→+∞

g(x, y) = 0

holds uniformly in y direction.
Consider L|g|. By assumption (B), i.e. positivity of kernel K, and the fact that for any

w,w′ ∈ Ωd,

|g(w′)| � sgn(g)(w)g(w′),

we have

L|g|(x, y) = L|g|(x, y) + γ ′′(u)|g|(x, y)

=

∫
Ωd

(|g(x, y)| − |g(x′, y′)|)K(x − x, y − y′)dx′ dy′

+ γ ′′(u)|g|(x, y)

=

∫
Ωd

(sgn(g)g(x, y) − |g(x′, y′)|)K(x − x, y − y′)dx′ dy′

+ sgn(g)(x, y)γ ′′(u)g(x, y)
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� sgn(g)(x, y)

[∫
Ωd

(g(x, y) − g(x′, y′))K(x − x, y − y′)dx′ dy′

+ γ ′′(u)g(x, y)

]
� sgn(g)(x, y) · Lg(x, y)

= λ|g|(x, y) � 0.

Thus |g| satisfies

L|g| � λ|g| � 0. (5.1)

Define φβ = ux + β|g| for real number β. Consider the following set of β:

D := {β < 0 | φβ(ξ) < 0 for some ξ ∈ Ωd}.

D is nonempty because

β1 =
−2ux(x0, y0)
|g|(x0, y0)

∈ D

for (x0, y0) satisfying |g|(x0, y0) > 0. Therefore

β := sup D

is a well-defined finite number that lies in [β1, 0].
Now for any β ∈ D, we will prove that there exists (xβ , yβ) ∈ Ωd such that φβ(xβ , yβ) attains

a negative minimum at ξβ = (xβ , yβ). First of all, by the definition of D, we know that φβ is
non-zero and attains a negative infimum. Remember that

lim
|x|→∞

g(x, y) = 0, lim
|x|→∞

ux(x, y) = 0

holds uniformly in y, so

lim
|x|→∞

φβ(x, y) = 0

holds uniformly in y. Recall that φβ attains a negative infimum, so continuity of φβ implies
that this infimum is indeed a minimum that is attained for some (xβ , yβ).

Moreover, {ξβ}β is bounded in Ωd . Notice that by (5.1) and β < 0,

Lφβ = Lux + βL|g| � βλ|g| � 0.

Thus Lφβ |(x,y)=ξβ � 0. By maximal principle (lemma 2.1), we know that

Lφβ |(x,y)=ξβ � 0

since φβ attains minimum at ξβ . Therefore, we have

γ ′′(u(xβ, yβ))φβ(xβ , yβ) = Lφβ |(x,y)=ξβ − Lφβ |(x,y)=ξβ � 0.

Because φβ(xβ , yβ) � 0 by definition of (xβ , yβ), so γ′′(u(xβ , yβ)) � 0. So there exists X > 0
that only depends on u and γ such that |xβ| � X. Since g is periodic in y, we know that {ξβ}β
is bounded in Ωd.
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Given the boundedness of sequence {ξβ}β , we can now take a subsequence of β (still
denoted as β) such that β → β, the supremum of D, and ξβ → ξ∗ as β → β. As the supre-
mum of D, β satisfies that φβ(x, y) � 0. However, since φβ(ξβ) � 0, passing the limit in β
gives that

φβ(ξ∗) = lim
β→β

φβ(ξβ) � 0.

So φβ(ξ∗) = 0, which means that φβ attains minimum 0 at ξ∗.
This in fact ensures that φβ ≡ 0. By lemma 2.1, we know

Lφβ |(x,y)=ξ∗ � 0.

However, we also have

Lφβ = βL|g| � βλ|g| � 0.

Remember φβ(ξ∗) = 0, so

0 � Lφβ (ξ∗)

= Lφβ |(x,y)=ξ∗ + γ ′′(u(x, y))φβ(x, y)|(x,y)=ξ∗

= Lφβ |(x,y)=ξ∗

� 0.

So all these inequalities are in fact equalities, i.e.Lφβ |(x,y)=ξ∗ = 0. By lemma 2.1, we know that
φβ ≡ 0, which gives L|g| = 0 and 0 � L|g| � λ|g| � 0, hence |g| = 0, contradiction! Thus L
has no negative point spectrum. �
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Appendix A. Review of functional analysis

For the sake of completeness, we prove the fact that operator L defined in (1.38) andL in (1.24)
are both self-adjoint in lemmas 5.1 and 5.2 which address the spectrum of L. Let us recall that
linear operator L is given by

L : H1(Ω) ⊂ L2(Ω) → L2(Ω), Lφ = Lφ+ γ ′′(u)φ.

Here u is a layer solution to equation (1.15). For theorems and definitions in functional analysis,
one can refer to [41]. For perturbation theory of self-adjoint operators, one can refer to [25].
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In fact, the fact that L is self-adjoint is a corollary of Kato–Rellich’s theorem (see [25]). We
still repeat the proof for readers’ convenience. The proof here needs an equivalent criterion for
self-adjoint operators:

Lemma A.1. Suppose that H is a complex Hilbert space with inner product 〈·, ·〉H and A :
H → H is a symmetry operator on H. Then A is self-adjoint if and only if

Ran(A ± i) = H. (A.1)

Proof. =⇒: Suppose that A is self-adjoint, we prove that Ran(A ± i) = H. To prove this,
notice that for any w ∈ H, we have

‖(A ± i)w‖2 = ‖Aw‖2 + ‖w‖2 � ‖w‖2,

so by the closed image theorem, we know that Ran(A ± i) is closed and Ker(A ± i) = {0}.
Also notice that

Ran(A ± i)⊥ = Ker(A ∓ i) = {0},

so Ran(A ± i) are dense in H by the Hahn–Banach theorem. Remember that they are also
closed, so Ran(A ± i) = H.

⇐=: Suppose that Ran(A ± i) = H. We prove that A is self-adjoint. Because A is symme-
try, so we only need to prove that dom(A∗) ⊂ dom(A) since dom(A) ⊂ dom(A∗) holds for any
symmetry operator. Notice that

Ker(A∗ ∓ i) = Ran(A ± i)⊥ = {0},

so Ker(A∗ ∓ i) = {0}. Remember that Ran(A ± i) = H, so for any x ∈ dom(A∗), there exists
z ∈ dom(A) such that

(A∗ ± i)x = (A ± i)z.

So (A∗ ± i)(x − z) = 0. Here we used that for z ∈ dom(A), Az = A∗z. Thus x − z ∈ Ker(A∗ ±
i) = {0}. So x = z and A = A∗. So A is self-adjoint. �

Lemma A.2. Operator L defined in (1.38) and operatorL defined in (1.24) are self-adjoint.

Proof. First of all, both L and L are symmetric by assumption (A). For any w, v ∈ H1(Ωd),
we have

〈w,Lv〉L2(Ωd) = 〈ŵ, σL(ν)v̂〉L2(Ω′
d) = 〈σL(ν)ŵ, v̂〉L2(Ω′

d ) = 〈Lw, v〉L2(Ωd)

〈w, Lv〉L2(Ωd) = 〈w,Lv + γ ′′(u)v〉L2(Ωd) = 〈Lw + γ ′′(u)w, v〉L2(Ωd) = 〈Lw, v〉L2(Ωd).

So they are all symmetric.
Then we prove that L in (1.24) is self-adjoint. By lemma A.1, we only need to prove that

Ran(L± i) = L2(Ωd). We prove for only L+ i, the other side direction is just the same.
To prove this, we only need to prove that for any v ∈ L2(Ωd), there exists u ∈ H1(Ωd) such

that

(L+ i)u = v.

One can rewrite this equality on the Fourier side as

(σL(ν) + i)û(ν) = v̂(ν).
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Thus

û(ν) =
v̂(ν)

σL(ν) + i
. (A.2)

So we only need to prove that for any v ∈ L2(Ωd), u in (A.2) is in H1(Ωd). This is true by
assumption (A) which assumes that σ(ν) is real and with same order as |ν|:

‖u‖2
H1(Ωd) = 〈û(ν), û(ν)〉L2(Ω′

d) + 〈|ν|û(ν), |ν|û(ν)〉L2(Ω′
d)

=

〈
v̂(ν),

|ν|2 + 1
σ2

L(ν) + 1
v̂(ν)

〉
L2(Ω′

d)

� 1
c2
‖v‖2

L2(Ω).

Here c > 0 is the constant in assumption (A). So by lemma A.1, we know that L is self-adjoint.
Finally, we prove that L in (1.38) is self-adjoint. Denote A = L and B = γ′′(u) who is

understood as a multiplier, then L = A + B. First, because A is self-adjoint, so by lemma A.1,
Ran(A ± μi) = L2(Ωd) for any real number μ > 0.

Moreover, there also exists μ > 0 such that Ran(A + B ± μi) = L2(Ωd). To prove this,
notice that for any y ∈ H1(Ωd), we have

‖(A ± μi)y‖2 = ‖Ay‖2 + μ2‖y‖2. (A.3)

Then take y = (A ± μi)−1x for any x ∈ L2(Ωd), we have

‖A(A ± μi)−1x‖2 = ‖(A ± μi)(A ± μi)−1x‖2 − μ2‖(A ± μi)−1x‖2 � ‖x‖2,

μ2‖(A ± μi)−1x‖2 = ‖(A ± μi)(A ± μi)−1x‖2 − ‖A(A ± μi)−1x‖2 � ‖x‖2.

so ‖A(A ± i)−1‖ � 1 and ‖(A ± μi)−1‖ � 1
μ

. Notice that for sufficiently large μ, we have

‖B(A ± μi)−1‖ < 1 since B is a bounded linear operator and

‖B(A ± μi)−1x‖ � b‖(A ± μi)−1x‖ � b
μ
‖x‖.

So by choosing sufficiently largeμ, we have ‖B(A ± μi)−1‖ < 1. This gives that B(A ± μi)−1 +
I are invertible. Notice that

A + B ± μi = [B(A ± μi)−1 + I](A ± μi)

so Ran(A + B ± μi) = L2(Ωd) since Ran(A ± μi) = L2(Ωd) and B(A ± μi)−1 + I is invertible.
Then by lemma A.1, L = A + B is self-adjoint. �

Now we prove lemma 5.1.

Lemma 5.1. σ(L) = σp(L) ∪ σc(L) ⊂ [−λ1,∞). Here λ1 > 0 is a constant.

Proof. Notice that L is self-adjoint, so σ(L) = σp(L) ∪ σc(L). Because lim
x→±∞

u(x, y) = ±1

holds uniformly in yand γ′′(±1) > 0, so there exists λ1 > 0 such that γ ′′(u(x, y)) > −λ1 holds
by continuity of u and γ. Now we prove that for any λ ∈ C\[−λ1,+∞), λI − L has a bounded
inverse. This directly shows σ(L) ⊂ [−λ1,+∞).
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First, Ran(λI − L) is closed. Let λ = a + bi. For any w ∈ H1(Ωd), if b 
= 0, we have

‖(λI − L)w‖2 = (a2 + b2)‖w‖2 + ‖Lw‖2 − 2a〈w, Lw〉 � b2‖w‖2.

If b = 0 but a < −λ1, we have

‖(λI − L)w‖2 = (a + λ1)2‖w‖2 + ‖(L + λ1)w‖2 − 2(a + λ1)〈w, (L + λ1)w〉

� (a + λ1)2‖w‖2.

This is because

〈w, (L + λ1)w〉 � 0

since γ′′(u) > −λ1 and L is positively semi-definite. Thus for any λ ∈ C\[−λ1,+∞), there
exists c > 0 such that ‖(λI − L)w‖ � c‖w‖ for any w ∈ H1(Ωd).

Therefore, by the closed image theorem, Ran(λI − L) is closed and Ker(λI − L) = {0}. So
λI − L is injective. Moreover, we have

Ran(λI − L)⊥ = Ker(λ∗I − L) = {0}

since λ∗ also belongs to C\[−λ1,+∞). So by the Hahn–Banach theorem, Ran(λI − L) =
L2(Ωd). Remember that Ran(λI − L) is closed, so Ran(λI − L) = L2(Ωd). Thus λI − L is a
bijection. Because L is self-adjoint, so λI − L is closed, so is (λI − L)−1. Thus by the closed
graph theorem, (λI − L)−1 is bounded. Therefore, λ is not in the spectrum of L. �

Finally, we prove lemma 5.2. To prove this lemma, we need to employ Weyl’s theorem on
perturbation of self-adjoint operators.

Lemma A.3 (Weyl’s theorem [25]). Suppose that H is a Hilbert space, A is a self-
adjoint operator on H and B is a symmetric operator on H. Then if B is relatively compact
with respect to A, then σess(A + B) = σess(A).

Lemma 5.2. σc(L) ⊂ [λ2,∞). Here λ2 > 0 is a constant.

Proof. Define function f : Ωd → R as

f (x, y) =

{
γ ′′(1), if x > 0,

γ ′′(−1), if x � 0.

Notice that γ′′(±1) > 0 and u(x, y) →± as x →∞ holds uniformly in y, so there exists c > 0
such that f > c and

lim
|x|→∞

γ ′′(u(x, y)) − f (x, y) = 0

holds uniformly in y direction. Now we rewrite operator L as

L = A + B, A = L+ f (x, y), B = γ ′′(u) − f (x, y).

B is understood as a multiplier. We will prove that B is relatively compact with respect to
A. Suppose that {uj} ⊂ L2(Ωd) is bounded. We only need to prove that {B(A + i)−1u j} j is
compact in L2(Ωd).
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Denote w j = (A + i)−1uj. We only need to prove that for any ε > 0, there exists a subse-
quence of {w j} such that ‖Bwj,n − Bwj,m‖ � ε. First of all, because w j = (A + i)−1u j, thus by
lemma 2.2, we have

|〈w j, u j〉| = |〈w j, (A + i)w j〉|

� |〈w,Lw〉 + 〈w j, f (x, y)w j〉+ i‖w j‖2|

� c‖w j‖2
H1/2(Ωd)

.

Here c > 0 is a constant that only depends on L. Then by the Cauchy–Schwartz inequality, we
know that

1
2c

‖u j‖2 +
c
2
‖w j‖2 � |〈w j, u j〉| � c‖w j‖2

H1/2(Ωd )
.

Thus there exists c′ > 0 such that ‖w j‖2
H1/2(Ωd)

� c′‖u j‖2, thus {w j} is bounded in H1/2(Ωd).
Moreover, for any ε1 sufficiently small, there exists R > 0 such that

|γ ′′(u(x, y)) − f (x, y)| � ε1

for (x, y) ∈ [−R, R]c × Td−1. Therefore,

‖Bw j − Bwk‖2
L2([−R,R]c×Td−1) =

∫
[−R,R]c×Td−1

|Bw j − Bwk|2 dx dy

� ε2
1‖w j − wk‖2

L2(Ωd) <
ε

2

by selecting ε1 sufficiently small. Then by compact embedding of H1/2([−R, R] × Td−1) ⊂
L2([−R, R] × T

d−1) and boundedness of B, we know that there exists a subsequent of w j (still
denoted as w j) such that ‖Bw j − Bwk‖2

L2([−R,R]×Td−1)
� ε

2 . Then for this subsequence, we have

‖Bw j − Bwk‖2
L2(Ωd) = ‖Bw j − Bwk‖2

L2([−R,R]×Td−1)

+ ‖Bw j − Bwk‖2
L2([−R,R]c×Td−1) � ε.

This proves that σess(L) = σess(A). However, since f (x, y) > c > 0 is uniformly bounded from
below, so A = L+ f (x, y) is positively definite and σ(A) ⊂ [c,+∞). Thus σc(L) ⊂ σess(L) ⊂
[c,+∞). Taking λ2 = c closes the proof. �

Appendix B. Proof of lemmas

Proof of lemma 1.1. From definition 1 of minimizers, we calculate the variation of energy
in terms of a perturbation with compact support in an arbitrary ball B(R) ⊂ R3 which is centered
at 0 with radius R. For any v ∈ C∞(B(R)\Γ) such that v has compact support in B(R) and
satisfies (1.11), we consider the perturbation δv where δ is a small real number. We denote
ε := ε(u), σ :=σ(u) and ε1 := ε(v), σ1 := σ(v). Then we have that

lim
δ→0

1
δ

(E(u + δv) − E(u))

=

∫
B(R)\Γ

1
2

(σ1 : ε+ σ : ε1) dx dy dz
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+

∫
B(R)∩Γ

∂u1γ(u+
1 , u+

3 )v+1 + ∂u3γ(u+
1 , u+

3 )v+3 dx dz

=

∫
B(R)\Γ

σ : ε1 dx dy dz

+

∫
B(R)∩Γ

∂u1γ(u+
1 , u+

3 )v+1 + ∂u3γ(u+
1 , u+

3 )v+3 dx dz

=

∫
B(R)\Γ

σ : ∇v dx dy dz

+

∫
B(R)∩Γ

∂u1γ(u+
1 , u+

3 )v+1 + ∂u3γ(u+
1 , u+

3 )v+3 dx dz

= −
∫

B(R)\Γ
∂ jσi jvi dx dy dz +

∫
B(R)∩{y=0+}

σ+
i j n+

j v
+
i dx dz

+

∫
B(R)∩{y=0−}

σ−
i j n

−
j v

−
i dx dz

+

∫
B(R)∩Γ

∂u1γ(u+
1 , u+

3 )v+1 + ∂u3γ(u+
1 , u+

3 )v+3 dx dz � 0 (B.1)

where we used the property that σ and ∇ · σ are locally integrable in {y > 0} ∪ {y < 0} when
carrying out the integration by parts, and the outer normal vector of the boundaryΓ is n+ (resp.
the n−) for the upper half-plane (resp. lower half-plane). Similarly, taking perturbation as −v
and notice that n+ = (0,−1, 0) and n− = (0, 1, 0), we have∫

{y=0+}
σ+

i j n+
j v

+
i dx dz +

∫
{y=0−}

σ−
i j n

−
j v

−
i dx dz

=

∫
{y=0+}

− σ+
22v

+
2 dx dz +

∫
{y=0−}

σ−
22v

−
2 dx dz

+

∫
{y=0+}

− σ+
12v

+
1 dx dz +

∫
{y=0−}

σ−
12v

−
1 dx dz

+

∫
{y=0+}

− σ+
32v

+
3 dx dz +

∫
{y=0−}

σ−
32v

−
3 dx dz (B.2)

Since v+1 (x, z) = −v−1 (x, z), v+3 (x, z) = −v−3 (x, z) and v+2 (x, z) = v−2 (x, z). Hence due to the
arbitrariness of R, we conclude that the minimizer u must satisfy∫

Γ

[
σ+

12 + σ−
12 − ∂u1γ(u+

1 , u+
3 )
]
v+1 dx dz = 0,∫

Γ

[
σ+

32 + σ−
32 − ∂u3γ(u+

1 , u+
3 )
]
v+3 dx dz = 0,∫

Γ

(
σ+

22 − σ−
22

)
v+2 dx dz = 0,∫

R3\Γ
(∇ · σ) · v dx dy dz = 0

(B.3)
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for any v ∈ C∞(B(R)\Γ) and v has compact support in B(R), which leads to the
Euler–Lagrange equation (1.13). Here we have written the equation ∇ · σ = 0 in R3\Γ as
the first equation of (1.13) in terms of the displacement u. �

Proof of lemma 3.1. If a1 = a2 or b1 = b2 holds, then the equality holds. So we will
focus on cases where a1 
= a2 and b1 
= b2. By enumeration of all possible orders, we
have:

(a) If a1 > a2 and b1 > b2, then a = a2, A = a1, b = b2 and B = b1. So

ab + AB − a1b1 − a2b2 = ab + AB − AB − ab = 0.

The equality in (3.4) holds.
(b) If a1 > a2 and b1 < b2, then a = a2, A = a1, b = b1 and B = b2. So

ab + AB − a1b1 − a2b2 = ab + AB − Ab − aB = (a − A)(b − B) > 0.

The ‘ >’ in (3.4) holds.
(c) If a1 < a2 and b1 > b2, then a = a1, A = a2, b = b2 and B = b1. So

ab + AB − a1b1 − a2b2 = ab + AB − aB − Ab = (a − A)(b − B) > 0.

The ‘>’ in (3.4) holds.
(d) If a1 < a2 and b1 < b2, then a = a1, A = a2, b = b1 and B = b2. So

ab + AB − a1b1 − a2b2 = ab + AB − ab − AB = 0.

The equality in (3.4) holds.
Therefore, the inequality holds. The equality is attained if and only if a1 = a2 or b1 =

b2 or the order is preserved, i.e. a1 < a2, b1 < b2 or a1 > a2, b1 > b2. These conditions
are equivalent to the following clear inequality: (a1 − a2)(b1 − b2) � 0. This concludes
the proof. �

Proof of lemma 3.3. In fact, by change of variables, we have

F(u(x + c1, y + c2))

=
1
2

∫
Ωd

∫
Ωd

| (u(x + c1, y + c2)− u(x′ + c1, y′ + c2)|2K(x − x′, y − y′)

− | (η(x, y)− η(x′, y′)|2K(x − x′, y − y′)dx dx′ dy dy′

+

∫
Ωd

γ(u(x + c1, y + c2))dx dy

=
1
2

∫
Ωd

∫
Ωd

| (u(x, y)− u(x′, y′)|2K(x − x′, y − y′)

− | (η(x − c1, y − c2)− η(x′ − c1, y′ − c2)|2K(x − x′, y − y′)dx dx′ dy dy′

+

∫
Ωd

γ(u(x, y))dx dy.
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Thus by lemma 2.2, we have

F(u(x, y)) − F(u(x + c1, y + c2))

=
1
2

∫
Ω

∫
Ω

|η(x + c1, y + c2) − η(x′ + c1, y′ + c2)|2K(x − x′, y − y′)

− | (η(x, y)− η(x′, y′)|2K(x − x′, y − y′) dx dx′ dy dy′

=
A
2

∫
R

(η(x + c1) − η(x′ + c1))2

(x − x′)2
− (η(x) − η(x′))2

(x − x′)2
dx dx′.

Here A is the constant in lemma 2.2. So we only need to prove that∫
R

∫
R

(η(x + c) − η(x′ + c))2

(x − x′)2
− (η(x) − η(x′))2

(x − x′)2
dx′ dx = 0

for any c ∈ R. Without loss of generality, we assume that c > 0. Then for x � 1, we know
that η(x) = η(x + c) = 1 and for x � −1 − c, we have η(x) = η(x + c) = −1. Denote J =
[−1 − c, 1], and we separate the integral into 3 different parts, i.e. integral on J × J (denoted
as I1), J × Jc (denoted as I2) and Jc × Jc (denoted as I3). Since η(x) = η(x + c) on Jc, we
know that

I3 =

∫
Jc

∫
Jc

(η(x + c) − η(x′ + c))2

(x − x′)2
− (η(x) − η(x′))2

(x − x′)2
dx′ dx = 0.

On J × J, we have

I1 =

∫ 1

−1−c

∫ 1

−1−c

(η(x + c) − η(x′ + c))2

(x − x′)2
− (η(x) − η(x′))2

(x − x′)2
dx′ dx

=

∫ 1+c

−1

∫ 1+c

−1

(η(x) − η(x′))2

(x − x′)2
dx′ dx −

∫ 1

−1−c

∫ 1

−1−c

(η(x) − η(x′))2

(x − x′)2
dx′ dx

=

∫ 1+c

1

∫ 1+c

1

(η(x) − η(x′))2

(x − x′)2
dx′ dx + 2

∫ 1

−1

∫ 1+c

1

(η(x) − η(x′))2

(x − x′)2
dx′ dx

−
∫ −1

−1−c

∫ −1

−1−c

(η(x) − η(x′))2

(x − x′)2
dx′ dx − 2

∫ 1

−1

∫ −1

−1−c

(η(x) − η(x′))2

(x − x′)2
dx′ dx.

Because η(x) = η(x′) if x, x′ � 1 or x, x′ � −1, so integral vanishes on [1, 1 + c] ×
[1, 1 + c] or [−1 − c,−1] × [−1 − c,−1]. Thus

I1 = 2
∫ 1

−1

∫ 1+c

1

(η(x) − η(x′))2

(x − x′)2
dx′ dx − 2

∫ 1

−1

∫ −1

−1−c

(η(x) − η(x′))2

(x − x′)2
dx′ dx

= 2
∫ 1

−1

∫ 1+c

1

(η(x) − 1)2

(x − x′)2
dx′ dx − 2

∫ 1

−1

∫ −1

−1−c

(η(x) + 1)2

(x − x′)2
dx′ dx

= 2
∫ 1

−1

(η(x) − 1)2

x − 1 − c
− (η(x) − 1)2

x − 1
dx − 2

∫ 1

−1

(η(x) + 1)2

x + 1
− (η(x) + 1)2

x + 1 + c
dx.

(B.4)
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On J × Jc, we have

I2 =

∫ 1

−1−c

∫ +∞

1

(η(x + c) − η(x′ + c))2

(x − x′)2
− (η(x) − η(x′))2

(x − x′)2
dx′ dx

+

∫ 1

−1−c

∫ −1−c

−∞

(η(x + c) − η(x′ + c))2

(x − x′)2
− (η(x) − η(x′))2

(x − x′)2
dx′ dx

=

∫ 1

−1−c

∫ +∞

1

(η(x + c) − 1)2

(x − x′)2
− (η(x) − 1)2

(x − x′)2
dx′ dx

+

∫ 1

−1−c

∫ −1−c

−∞

(η(x + c) + 1)2

(x − x′)2
− (η(x) + 1)2

(x − x′)2
dx′ dx

=

∫ 1

−1−c

(η(x + c) − 1)2 − (η(x) − 1)2

1 − x
dx

+

∫ 1

−1−c

(η(x + c) + 1)2 − (η(x) + 1)2

x + 1 + c
dx

Notice that η(x + c) = 1 for x ∈ [1 − c, 1] and η(x) = −1 for x ∈ [−1 − c,−1], so we have

∫ 1

−1−c

(η(x + c) − 1)2 − (η(x) − 1)2

1 − x
dx

=

∫ 1−c

−1−c

(η(x + c) − 1)2

1 − x
dx −

∫ 1

−1

(η(x) − 1)2

1 − x
dx −

∫ −1

−1−c

4
1 − x

dx

=

∫ 1

−1

(η(x) − 1)2

1 + c − x
− (η(x) − 1)2

1 − x
dx + 4 ln 2 − 4 ln(2 + c)

and ∫ 1

−1−c

(η(x + c) + 1)2 − (η(x) + 1)2

x + 1 + c
dx

=

∫ 1

−1

(η(x) + 1)2

x + 1
− (η(x) + 1)2

x + 1 + c
dx + 4 ln(2 + c) − 4 ln 2.

Then substituting these two formulas into I2, we have

I2 =

∫ 1

−1−c

(η(x + c) − 1)2 − (η(x) − 1)2

1 − x
dx

+

∫ 1

−1−c

(η(x + c) + 1)2 − (η(x) + 1)2

x + 1 + c
dx

=

∫ 1

−1

(η(x) − 1)2

1 + c − x
− (η(x) − 1)2

1 − x
dx + 4 ln 2 − 4 ln(2 + c)

+

∫ 1

−1

(η(x) + 1)2

x + 1
− (η(x) + 1)2

x + 1 + c
dx + 4 ln(2 + c) − 4 ln 2
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=

∫ 1

−1

(η(x) − 1)2

1 + c − x
− (η(x) − 1)2

1 − x
dx +

∫ 1

−1

(η(x) + 1)2

x + 1
− (η(x) + 1)2

x + 1 + c
dx

(B.5)

A careful comparison of equations (B.4) and (B.5) shows that I1 + 2I2 = 0. Thus∫
R

∫
R

(η(x + c) − η(x′ + c))2

(x − x′)2
− (η(x) − η(x′))2

(x − x′)2
dx′ dx = I1 + 2I2 + I3 = 0.

�
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