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Abstract. We give a complete study of the asymptotic behavior of a
simple model of alignment of unit vectors, both at the level of parti-
cles, which corresponds to a system of coupled differential equations,
and at the continuum level, under the form of an aggregation equation
on the sphere. We prove unconditional convergence towards an aligned
asymptotic state. In the cases of the differential system and of symmetric
initial data for the partial differential equation, we provide precise rates
of convergence.
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1 Introduction and Main Results

We are interested in a model of alignment of unit vectors. Our interest comes
from the mechanism of alignment of self-propelled particles presented by Degond
and Motsch in [9], which is a time-continuous model inspired from the Vicsek
model [17] (in which the alignment process is discrete in time). In these models,
the velocities of the particles, considered as unit vectors, try to align towards the
average orientation of their neighbors and are subject to some angular noise. We
want to study the simple case without spatial dependence and without noise.
More precisely, at the level of the particle dynamics, we consider the determin-
istic part of the spatially homogeneous model of [6], which corresponds to a
regularized version of [9]: the particles align with the average velocity of the
others (instead of dividing this average vector by its norm to get a averaged
orientation). It reads as

dvi

dt
= Pv⊥

i
J, with J =

1
N

N∑

j=1

vj , (1)

where (vi)1�i�N are N unit vectors belonging to S, the unit sphere of R
n,

and Pv⊥ is the projection on the orthogonal of a unit vector v ∈ S, given
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by Pv⊥u = u − (v · u)v for u ∈ R
n. This projection ensures that the veloci-

ties stay of norm one for all positive times. This system of equations can be seen
as alignment towards the unit vector pointing in the same direction as J (the
average of all velocities). Indeed the term Pv⊥J is equal to ∇v(J ·v), where ∇v is
the gradient operator on the unit sphere S. Therefore the dynamics of a particle
following the equation dv

dt = ∇v(v · J) corresponds to the maximization of this
quantity v · J , which is maximal when v is aligned in the same direction as J .

At the kinetic level, we are interested in the evolution of a probability mea-
sure f(t, ·) on S given by

∂tf + ∇v · (fPv⊥Jf ) = 0, with Jf =
∫

S

vfdv, (2)

where ∇v· is the divergence operator on the sphere S. The link between this
evolution equation and the system of ordinary differential equations (1), is that
if the measure f is the so-called empirical distribution of the particles (vi)1�i�N ,
given by f = 1

N

∑N
i=1 δvi

, then it is a weak solution of the kinetic equation (2) if
and only if the vectors (vi)1�i�N are solutions of the system (1) (see Remark 2).
This kinetic equation (2) corresponds to the spatially homogeneous version of
the mean-field limit of [6] in which the diffusion coefficient has been set to zero.
The case with a positive diffusion has been treated in detail in [12] by the
authors of the present paper, and it presents a phenomenon of phase transition:
when the diffusion coefficient is greater than a precise threshold, all the solutions
converge exponentially fast towards the uniform measure on the sphere S, and
when it is smaller, all solutions except those for which Jf is initially zero converge
exponentially fast to a non-isotropic steady-state (a von Mises distribution).
When the diffusion coefficient tends to zero, the von Mises distributions converge
to Dirac measures concentrated at one point of S. Therefore, we can expect that
the solutions of (2) converge to a Dirac measure. The main object of this paper
is to make this statement precise, in proving the following theorem:

Theorem 1. Let f0 be a probability measure on S of Rn, and f ∈ C(R+,P(S))
be the solution of (2) with initial condition f(0, v) = f0(v).

If Jf (0) �= 0, then t �→ |Jf (t)| is nondecreasing, so Ω(t) = Jf (t)
|Jf (t)| ∈ S is

well-defined for all times t � 0. Furthermore there exists Ω∞ ∈ S such that Ω(t)
converges to Ω∞ as t → +∞.

Finally, there exists a unique vback ∈ S such that the solution of the dif-
ferential equation dv

dt = Pv⊥Jf (t) with initial condition v(0) = vback is such
that v(t) → −Ω∞ as t → ∞. Then, if we denote by m the mass of the single-
ton {vback} with respect to the measure f0, we have m < 1

2 (which means that we
cannot have too much mass at the “back”) and f(t, ·) converges weakly as t → ∞
towards the measure (1 − m)δΩ∞ + mδ−Ω∞ .

In particular, this theorem shows that if the initial condition f0 has no atoms
(or only one atom of mass bigger than one half) and satisfies Jf0 �= 0, then the
measure f converges weakly to a Dirac mass at some Ω∞ ∈ S. Let us mention
that there is no rate of convergence in this theorem. In general, there is no
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hope to have such a rate for an arbitrary initial condition (see Proposition 6),
but under regularity assumptions, one can expect to have an exponential rate
of convergence (this is the case when the initial condition has some symmetries
implying that Ω(t) is constant, see Proposition 7).

We will also study in detail the system of ordinary differential equations (1).
Since this is a particular case of (2) in the case where f = 1

N

∑N
i=1 δvi

(see
Remark 2), we can apply the main theorem, but now the measure f has atoms,
and actually we will see that working directly with the differential equations
allows to have more precise results such as exponential rates of convergence. For
instance the quantity Ω(t) plays the role as a nearly conserved quantity, as it
converges to Ω∞ at a higher rate than the convergence of the (vi)1�i�n. More
precisely, we will prove the following theorem:

Theorem 2. Given N positive real numbers (mi)1�i�N with
∑N

i=1 mi = 1,
and N unit vectors v0

i ∈ S (for 1 � i � N) such that v0
i �= v0

j for all i �= j,
let (vi)1�i�N be the solution of the following system of ordinary differential equa-
tions:

dvi

dt
= Pv⊥

i
J, with J(t) =

N∑

i=1

mivi(t), (3)

with the initial conditions vi(0) = v0
i for 1 � i � N , and where Pv⊥

i
denotes the

projection on the orthogonal of vi.
If J(0) �= 0, then t �→ |J(t)| is nondecreasing, so Ω(t) = J(t)

|J(t)| ∈ S is well-
defined for all times t � 0. Furthermore there exists Ω∞ ∈ S such that Ω(t)
converges to Ω∞(t) as t → +∞, and there are only two types of possible asymp-
totic regimes, which are described below.

(i) All the vectors vi are converging to Ω∞. Then this convergence occurs at an
exponential rate 1, and Ω is converging to Ω∞ at an exponential rate 3.
More precisely, there exists ai ∈ {Ω∞}⊥ ⊂ R

n, for 1 � i � N such
that

∑N
i=1 miai = 0 and that, as t → +∞,

vi(t) = (1 − |ai|2e−2t)Ω∞ + e−tai + O(e−3t) for 1 � i � N,

Ω(t) = Ω∞ + O(e−3t).

(ii) There exists i0 such that vi0 converges to −Ω∞. Then mi0 < 1
2 (once

again, we cannot have too much mass on this “back” particle), and if we
denote λ = 1 − 2mi0 , the vector vi0 converges to −Ω∞ at an exponential
rate 3λ. Furthermore, all the other vectors vi for i �= i0 converge to Ω∞ at
a rate λ, and the vector Ω converges to Ω∞ at a rate 3λ. More precisely,
there exists ai ∈ {Ω∞}⊥ ⊂ R

n, for i �= i0 such that
∑

i�=i0
miai = 0 and

that, as t → +∞,

vi(t) = (1 − |ai|2e−2λt)Ω∞ + e−λtai + O(e−3λt) for i �= i0,

vi0(t) = −Ω∞ + O(e−3λt),

Ω(t) = Ω∞ + O(e−3λt).
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Notice that the original system (1) can be put as (3) with mi = 1
N , but the

assumption v0
i �= v0

j for i �= j may not be satisfied. Up to renumbering particles
and grouping those starting in the same position by setting mi = k

N where k
is the number of particles sharing the same initial condition, we can always fall
into the framework of (3) with distinct initial conditions. We can finally remark
that this system (3) is still a particular case of the kinetic equation (2) for a
measure given by f =

∑N
i=1 miδvi

(see once again Remark 2).
Let us conclude this introduction by saying that these models have also been

introduced and studied in different contexts from the one of self-propelled parti-
cles. Alignment on the sphere has been introduced as a model of opinion forma-
tion in [3,7]. Let us also mention some more evolved consensus mechanisms on
the sphere, such as with partial influence graphs [15]. The kinetic equation (2)
with a diffusion term corresponds to the evolution of rodlike polymers with dipo-
lar potential [10]. Finally the two-dimensional case, where S is the unit circle,
can correspond to the evolution of identical Kuramoto oscillators. The results we
present here were first exposed in detail (with the same proofs as in the present
paper) by the first author in the CIMPA Summer School “Mathematical Model-
ing in Biology and Medicine” in June 2016. They are somewhat similar to those
of [5] in dimension two, in the context of Kuramoto oscillators, a work that has
been raised to us during the presentation of Bastien Fernandez in the workshop
“Life Sciences” of the trimester “Stochastic Dynamics out of equilibrium” in
May 2017. Very recently, a work [13] on generalization of Kuramoto oscillators
in higher dimensions, the so-called Lohe oscillators, recovers the same kind of
results, although not using exactly the same techniques and not obtaining the
precise estimates of Theorem 2. The estimates given by Proposition 7 are also
new, as far as we know.

This paper is divided in two main parts. After this introduction, Sect. 2 is
devoted to the kinetic equation (2). It is divided in two subsections, the first one
being dedicated to the proof of Theorem1, and the second one giving more
precise estimates of convergence in case of symmetries in the initial condi-
tion. Section 3 concerns the system of differential equations (3) and the proof
of Theorem 2. Even if some conclusions can be drawn using Theorem1 thanks
to Remark 2, we try to make the two parts independent and the proofs self-
contained, so the reader interested in Theorem 2 can directly jump to this last
section.

2 The Continuum Model

2.1 Proof of Theorem1

We start with a proposition about well-posedness of the kinetic equation (2).
We proceed for instance as in [16]. We denote by P(S) the set of probability
measures on S. In this set we consider the Wasserstein distance W1 (also called
bounded Lipschitz distance) given by W1(μ, ν) = infϕ∈Lip1(S)

| ∫
S
ϕ dμ − ∫

S
ϕ dν|

for μ and ν in P(S), where Lip1 is the set of functions ϕ such that for all u, v
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in S, we have |ϕ(u) − ϕ(v)| � |v − u|. This distance corresponds to the weak
convergence of probability measures: W1(μn, μ) → 0 if and only if for any con-
tinuous function ϕ : S → R, we have

∫
S
ϕ dμn → ∫

S
ϕ dμ. The well-posedness

result is stated in the space C(R+,P(S)) of family of probability measures weakly
continuous with respect to time:

Proposition 1. Given T > 0 and f0 ∈ P(S), there exists a unique weak solu-
tion f ∈ C([0, T ],P(S)) to the Eq. (2) with initial condition f0, in the sense that
for all t ∈ [0, T ], and for all ϕ ∈ C1(S), we have

d
dt

∫

S

ϕ(v)f(t, v) dv =
∫

S

Jf(t,·) · ∇vϕ(v)f(t, v) dv, (4)

were we use the notation f(t, v) dv even if f(t, ·) is not absolutely continuous
with respect to the Lebesgue measure on S, and Jf(t,·) =

∫
S
vf(t, v) dv.

Proof. Notice that the term Pv⊥Jf · ∇vϕ that we obtain when doing a formal
integration by parts of (2) against a test function ϕ is replaced by Jf · ∇vϕ
in the weak formulation (4), since the gradient on the sphere at a point v is
already orthogonal to v. The proof of this proposition relies on the fact that
the linear equation corresponding to (2) when replacing Jf by an external given
“alignment field” J ∈ C(R+,Rn) is also well-posed. Indeed the solution to this
linear equation, namely

∂tf + ∇v · (Pv⊥J (t)f) = 0 with f(0, ·) = f0, (5)

is given by the image measure of f0 by the flow Φt of the differential equa-
tion dv

dt = Pv⊥J (t). In detail, if Φt is the solution of
{

dΦt

dt = PΦ⊥
t
J (t),

Φ0(v) = v,
(6)

then the solution f(t, ·) = Φt#f0 is characterized by the fact that

∀ϕ ∈ C(S),
∫

S

ϕ(v)f(t, v) dv =
∫

S

ϕ(Φt(v))f0(v) dv. (7)

Since the differential equation (6) satisfies the assumptions for which the Cauchy-
Lipschitz theorem applies, it is well-known (see for instance [1]) that the solution
of (5) is unique and given by Φt#f0.

Therefore, if, given J ∈ C([0, T ],Rn), we denote by Ψ(J ) the solution of
the linear equation (5), solving the nonlinear kinetic equation (2) corresponds to
finding a fixed point of the map f ∈ C([0, T ],P(S)) �→ Ψ(Jf ), or equivalently of
the map J ∈ C([0, T ], B) �→ JΨ(J ), where B is the closed unit ball of Rn (recall
that if f ∈ P(S), then |Jf | � 1). The space E = C([0, T ], B) is a complete metric
space if the distance is given by dT (J , J̄ ) = supt∈[0,T ] |J (t) − J̄ (t)|e−βt, for an
arbitrary β > 0. Using the fact that |(Pv⊥ − Pv̄⊥)u| � 2|v − v̄| if |u| � 1, by a
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simple Grönwall estimate, if J , J̄ ∈ E and Φt, Φ̄t are the associated flow given
by (6), we obtain

|Φt − Φ̄t| �
∫ t

0

|J (s) − J̄ (s)|e2(t−s)ds.

Finally, we get (using the notation Jf (t) = Jf(t,·))

|JΨ(J )(t) − JΨ(J̄ )(t)| =
∣∣∣∣
∫

S

v Ψ(J )(t, v) dv −
∫

S

v Ψ(J̄ )(t, v) dv

∣∣∣∣

=
∣∣∣∣
∫

S

[Φt(v) − Φ̄t(v)]f0(v) dv

∣∣∣∣

�
∫ t

0

|J (s) − J̄ (s)|e2(t−s)ds � dt(J , J̄ )
∫ t

0

e2(t−s)+βsds.

Therefore when β > 2 we get |JΨ(J )(t) − JΨ(J̄ )(t)|e−βt � 1
β−2dt(J , J̄ ), so if we

take β > 3, we get that the map J �→ JΨ(J ) is indeed a contraction mapping
from E to E, which gives the existence and uniqueness of the fixed point. 
�
Remark 1. The well-posedness of the kinetic equation (2) can also be established
in Sobolev spaces, by means of harmonic analysis on the sphere and standard
Galerkin method (see [12]).

Remark 2. Using the weak formulation (4) and the definition of the pushforward
measure (7), it is possible to show that a convex combination of Dirac masses,
of the form f(t, ·) =

∑N
i=1 miδvi

(t) with mi � 0 for 1 � i � N and
∑N

i=1 mi = 1
is a weak solution of (2) if and only if the (vi)1�i�N are solutions of the system
of differential equations (3).

We are now ready to prove some qualitative properties of the solution to the
kinetic equation (2). Without further notice, we will denote by f this solution,
and by Φt the flow (6) associated to J = Jf . The first property is a simple
lemma related to the monotonicity of |Jf |.
Lemma 1. If f is a solution of (2), then |Jf | is nondecreasing in time. There-
fore if Jf0 �= 0, the “average orientation” Ω(t) = Jf (t)

|Jf (t)| is well defined and

smooth. Furthermore its time derivative Ω̇ tends to 0 as t → ∞.

Proof. Notice that if Jf0 = 0, then f(t, ·) = f0 for all t. To compute the evolution
of Jf , we use (4) with ϕ(v) = v · e for an arbitrary vector e in R

n. We obtain,
using the fact that ∇v(v · e) = Pv⊥e:

e · dJf

dt
= Jf ·

∫

S

Pv⊥ef(t, v) dv = e · MfJf ,

where Mf is the matrix given by
∫
S
Pv⊥f(t, v) dv (it is a symmetric matrix with

eigenvalues in [0, 1], as convex combination of orthogonal projections). Since Mf
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is continuous in time, then Jf is C1, and by the same procedure we can compute
the evolution of Mf , which will depend on higher moments of f , to get that Jf

is smooth. More precisely, since any moment is uniformly bounded (the sphere is
compact and f(t, ·) is a probability density for all t), we get that all derivatives
of Jf are uniformly bounded in time. Since

1
2

d|Jf |2
dt

= Jf · MfJf =
∫

S

[|Jf |2 − (v · Jf )2]f(t, v) dv � 0,

we get the first part of the proposition.
From now on we suppose that Jf0 �= 0, therefore Ω(t) is well defined. The

function 1
2
d|Jf |2

dt = |Jf |2Ω · MfΩ being nonnegative, smooth, integrable in R+

(since |Jf | is bounded by 1), and with bounded derivative, it is a classical exercise
to show that it must converge to 0 as t → ∞ (this is known as Barbălat’s Lemma,
see [4]). This gives us that Ω · MfΩ → 0 as t → ∞. Let us now compute the
evolution of Ω. We get

Ω̇ =
1

|Jf |
dJf

dt
− d|Jf |

dt

Jf

|Jf |2 = MfΩ − (Ω · MfΩ)Ω = PΩ⊥(MfΩ). (8)

Since Mf has eigenvalues in [0, 1], we get that |MfΩ|2 = Ω · M2
f Ω � Ω · MfΩ,

therefore MfΩ → 0 as t → 0. So we get that Ω̇ → 0 as t → ∞. 
�
Remark 3. The fact that |Jf | is nondecreasing can be enlightened by the the-
ory of gradient flow in probability spaces [2]. Indeed, the kinetic equation (2)
corresponds to the gradient flow of the functional − 1

2 |Jf |2 for the Wasserstein
distance W2. Therefore the evolution amounts to minimizing in time this quan-
tity. We also remark that since |Jf | is nondecreasing, by an appropriate change
of time, we can recover the equation ∂tf + ∇v · (fPv⊥Ω) which corresponds to
the spatial homogeneous version of [9] without noise. This equation can also be
interpreted as a gradient flow [11].

The fact that Ω̇ → 0 is not sufficient to prove that Ω converges to some Ω∞,
we would need Ω̇ ∈ L1(R+) and we only have up to now Ω̇ ∈ L2(R+) (since we
have seen in the proof of Lemma 1 that |Jf |2Ω · MfΩ is integrable in time). To
fill this gap, one solution is to compute the second derivative of Ω, and more
precisely, to obtain an estimate on |Ω̇| corresponding to the assumption of the
following lemma, which mainly says that if g is integrable, then any bounded
solution of the differential equation y′ = y + g has to be integrable.

Lemma 2. Let y : R+ → R be a nonnegative function such that y2 is C1 and
bounded. We suppose that there exists a function g ∈ L1(R+) such that for
all t ∈ R, we have

1
2

d
dt

y2 = y2 + y g. (9)

Then y ∈ L1(R+).
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Proof. Let t � 0 such that y(t) > 0. We set T = sup{s � t, y > 0 on [t, s]} (we
may have T = +∞).

We have that y is C1, positive and bounded on [t, T ), and satisfies the differ-
ential equation y′ = y+g, therefore by Duhamel’s formula we have, for s ∈ [t, T ):

y(s)e−s − y(t)e−t =
∫ s

t

g(u)e−udu.

Letting s = T (resp. s → +∞ if T = +∞), since y(T ) = 0 (resp. y is bounded),
we obtain

y(t) = −
∫ T

t

g(u)et−udu �
∫ ∞

t

|g(u)|et−udu.

This equality being true for any t ∈ R+ (even if y(t) = 0), we have by Fubini’s
theorem that

∫ ∞

0

y(t)dt �
∫ ∞

0

∫ ∞

t

|g(u)|et−udu dt =
∫ ∞

0

|g(u)|(1 − e−u)du,

which is finite by integrability of g. 
�
We are now ready to prove the convergence of Ω.

Proposition 2. If Jf0 �= 0, then Ω̇ ∈ L1(R+), and therefore there exists Ω∞ ∈ S

such that Ω → Ω∞ as t → ∞.

Proof. We first compute the derivative of Mf . For convenience, we use the nota-
tion 〈ϕ(v)〉f for

∫
S
ϕ(v)f(t, v) dv. Therefore we have Jf = 〈v〉f and Mf = 〈Pv⊥〉f ,

and the weak formulation (4) reads

d
dt

〈ϕ(v)〉f = Jf · 〈∇vϕ(v)〉f .

We have, for fixed e1, e2 ∈ R
n:

e1 · Mfe2 = 〈e1 · Pv⊥e2〉f = e1 · e2 − 〈(e1 · v)(e2 · v)〉f .

Therefore, since ∇v(e · v) = Pv⊥e, we obtain

d
dt

(e1 · Mfe2) = −Jf · 〈(e2 · v)Pv⊥e1 + (e1 · v)Pv⊥e2〉f

= e1 · [−〈(e2 · v)Pv⊥Jf 〉f + 〈Jf · Pv⊥e2 v〉f ],

so the term in between the brackets is the derivative of Mfe2. We then get

d
dt

(MfΩ) = Mf Ω̇ − |Jf |〈(Ω · v)Pv⊥Ω〉f − |Jf |〈Ω · Pv⊥Ω v〉f

= Mf Ω̇ + 2|Jf |〈(Ω · v)2v〉f − |Jf |[〈(Ω · v)Ω + v〉f ]

= Mf Ω̇ + 2|Jf |〈(Ω · v)2v〉f − 2|Jf |2Ω. (10)
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Thanks to (8), we finally have

d
dt

Ω̇ =
d
dt

(MfΩ) − (Ω · MfΩ)Ω̇ − (Ω̇ · MfΩ)Ω − Ω · d
dt

(MfΩ)Ω

= PΩ⊥
d
dt

(MfΩ) − (Ω · MfΩ)Ω̇ − (Ω̇ · MfΩ)Ω.

Since Ω and Ω̇ are orthogonal, we have some simplifications by taking the dot
product with Ω̇ and using (10):

Ω̇ · d
dt

Ω̇ = Ω̇ · d
dt

(MfΩ) − (Ω · MfΩ)|Ω̇|2.
= Ω̇ · Mf Ω̇ − 2|Jf |[〈(Ω · v)2 Ω̇ · v〉f ] − (Ω · MfΩ)|Ω̇|2
= |Ω̇|2 − 〈(Ω̇ · v)2〉f − (Ω · MfΩ)|Ω̇|2 − 2|Jf |[〈(Ω · v)2 Ω̇ · v〉f ]. (11)

If we define u to be the unit vector Ω̇
|Ω̇| when |Ω̇| �= 0 and to be zero if |Ω̇| = 0,

and we set

g(t) = −|Ω̇|[〈(u · v)2〉f + (Ω · MfΩ)] − 2|Jf |〈(Ω · v)2)u · v〉f , (12)

we get that the formula (11) is written under the following form, corresponding
to (9) with y = |Ω̇|:

1
2

d
dt

|Ω̇|2 = |Ω̇|2 + |Ω̇|g(t).

Our goal is to show that g ∈ L1(R+) in order to apply Lemma 2. Indeed, thanks
to (8), we have that |Ω̇| � 1 (recall that Mf is a symmetric matrix with eigen-
values in [0, 1]), and |Ω̇|2 is C1.

As was remarked before in the proof of Lemma 1, the quantity |Jf |2Ω · MfΩ
is integrable in time, which gives that Ω · MfΩ = 〈1 − (Ω · v)2〉f is integrable.
Since u is colinear to Ω̇, which is orthogonal to Ω, we have that PΩ⊥u = u, and
therefore we get (using the fact that |u| � 1, since |u| is 1 or 0)

〈(u · v)2〉f = 〈(u · PΩ⊥v)2〉f � 〈|PΩ⊥v|2〉f = 〈1 − (Ω · v)2〉f .

This gives that the first term in the definition (12) of g is integrable in time.
Finally, since u · Ω = 0, we have that 〈u · v〉f = 0, and we get

|〈(Ω · v)2 u · v〉f | = |〈(1 − (Ω · v)2)u · v〉f | � 〈1 − (Ω · v)2〉f ,

since 1 − (Ω · v)2 � 0 and |u · v| � 1 for all v ∈ S. This gives that the last term
in the definition (12) of g is also integrable in time. In virtue of Lemma2, we
then get that |Ω̇| is integrable. Therefore Ω(t) = Ω(0) +

∫ t

0
Ω̇(s)ds converges

as t → +∞. 
�
In order to control the distance between f and δΩ∞ , we now need to under-

stand the properties of the flow of the differential equation dv
dt = Pv⊥Jf .
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Proposition 3. Let J be a continuous function R+ → R
n such that t �→ |J (t)|

is positive, bounded and nondecreasing, and Ω(t) = J (t)
|J (t)| converges to Ω∞ ∈ S

as t → ∞.
Then there exists a unique vback ∈ S such that the solution of the differential

equation dv
dt = Pv⊥J with initial condition v(0) = vback satisfies v(t) → −Ω∞

as t → +∞. Furthermore, for all v0 �= vback, the solution of this differential
equation with initial condition v(0) = v0 converges to Ω∞ as t → +∞.

Proof. The outline of the proof is the following: we first show that any solution
satisfies either v(t) → −Ω∞ or v(t) → Ω∞, then we construct vback, and finally
we prove that it is unique. We still denote by Φt the flow of the differential
equation (6).

We first notice that |J (t)| converges to some λ > 0, therefore J (t) converges
to λΩ∞ as t → ∞. Therefore the solution of the equation dv

dt = Pv⊥J with
initial condition v(0) = v0 is also the solution of a differential equation of the
form

dv

dt
= λPv⊥Ω∞ + rv0(t), (13)

where the remainder term rv0(t) converges to 0 as t → ∞, uniformly in v0 ∈ S.
Let us suppose that v(t) does not converge to −Ω∞ (that is to say v(t) · Ω∞
does not converge to −1), and let us prove that in this case v(t) → Ω∞. Taking
the dot product with Ω∞ in (13), we obtain

d
dt

(v · Ω∞) = λ[1 − (v · Ω∞)2] + Ω∞ · rv0(t), (14)

so we can use a comparison principle with the one-dimensional differential equa-
tion y′ = λ(1 − y2) − ε. Since λ(1 − y2) − ε is positive for |y| <

√
1 − ε

λ and
negative for |y| >

√
1 − ε

λ , any solution starting with y(t0) > −√
1 − ε

λ con-
verges to

√
1 − ε

λ as t → +∞. Since v(t) · Ω∞ does not converge to −1, there
exists δ > 0 such that v(t) · Ω∞ > −1 + δ for arbitrarily large times t. For
any ε > 0 sufficiently small (such that −√

1 − ε
λ < −1 + δ), there exists t0 � 0

such that v(t0) ·Ω∞ > −1+ δ and |Ω∞ · rv0(t)| � ε for all t � t0. By comparison
principle, we then get that lim inft→+∞ v(t) · Ω∞ �

√
1 − ε

λ . Since this is true
for any ε > 0 sufficiently small, we then get that v(t) · Ω∞ converges to 1, that
is to say v(t) → Ω∞ as t → +∞.

Let us now prove that if v(t) converges to Ω∞, then there exists a neigh-
borhood of v0 such that the convergence to Ω∞ of solutions starting in this
neighborhood is uniform in time. This is done thanks to the same comparison
principle. We fix δ > 0 and ε > 0 such that −1 + δ > −√

1 − ε
λ . We take t0 � 0

such that v(t0) · Ω∞ > −1 + δ and |Ω∞ · rṽ0(t)| � ε for any ṽ0 ∈ S and t � t0.
By continuity of the flow of the equation dv

dt = Pv⊥J , there exists a neighbor-
hood B of v0 in S such that for any ṽ0 ∈ B, the solution ṽ(t) = Φt(ṽ0) of this
equation with initial condition ṽ0 satisfies ṽ(t0) · Ω∞ > −1 + δ. We now look at
the equation y′ = λ(1 − y2) − ε starting with y(t0) = −1 + δ, which converges
to

√
1 − ε

λ > 1−δ. There exists T such that y(t) � 1−δ for all t � T . Therefore,
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by comparison principle with (14) (where v0 is replaced by ṽ0), we get that for
all ṽ0 ∈ B, the solution ṽ satisfies ṽ(t) · Ω∞ � 1 − δ for all t � T .

We are now ready to construct vback. We take (tn) a sequence of increas-
ing times such that tn → +∞ and define vn

back as the solution at time t = 0
of the backwards in time differential equation dvn

dt = P(vn)⊥J with terminal
condition vn(tn) = −Ω∞, that is to say vn

back = Φ−1
tn

(−Ω∞). Up to extracting
a subsequence, we can assume that vn

back converges to some vback ∈ S and we
set v(t) = Φt(vback). By the first part of the proof, we have that either v(t) → Ω∞
or v(t) → −Ω∞ as t → +∞. The first case is incompatible with the uniform
convergence in time. Indeed, in that case, we would have a neighborhood B
of vback and a time T such that for all t � T and all ṽ ∈ B, Φt(ṽ) · Ω∞ � 0 (by
taking δ = 1 in the previous paragraph). Since we can take n such that tn � T
and vn

back ∈ B, this is in contradiction with the fact that Φtn
(vn

back) = −Ω∞.
It remains to prove that vback is unique (which implies that Φ−1

t (−Ω∞) actu-
ally converges to vback as t → +∞, thanks to the previous paragraph). This is
due to a phenomenon of repulsion of two solutions v(t) and ṽ(t) when they are
close to −Ω(t). Indeed, they satisfy

d
dt

v · ṽ = v · Pṽ⊥J + ṽ · Pv⊥J = J · (v + ṽ)(1 − v · ṽ),

which can be written, since ‖v − ṽ‖2 = 2 (1 − v · ṽ) as

d
dt

‖v − ṽ‖2 = γ(t)‖v − ṽ‖2, (15)

where γ(t) = −J (t) · (v(t) + ṽ(t)). Let us suppose that both v(t) = Φt(v0)
and ṽ(t) = Φt(ṽ0) converge to −Ω∞ as t → +∞. Since J (t) → λΩ∞ as t → +∞,
we have γ(t) → 2λ > 0 as t → +∞. Therefore the only bounded solution of the
linear differential equation (15) is the constant 0, therefore we have v = ṽ, and
thus v0 = ṽ0. 
�

We are now ready to prove the last part of Theorem1.

Proposition 4. Let vback be given by Proposition 3 with J = Jf (we sup-
pose Jf0 �= 0). We denote by m =

∫
S
1v=vbackf0(v)dv the initial mass of {vback}.

Then m < 1
2 and W1(f(t, ·), (1 − m)δΩ∞ + mδ−Ω∞) → 0 as t → +∞.

Proof. We write f∞ = (1 − m)δΩ∞ + mδ−Ω∞ . Let ϕ ∈ Lip1(S). We have
∫

S

ϕ(v)f∞(v) dv = mϕ(−Ω∞) + (1 − m)ϕ(Ω∞)

= mϕ(−Ω∞) +
∫

S

1v �=vbackϕ(Ω∞)f0(v) dv,

and
∫
S
ϕ(v)f(t, v) dv =

∫
S
ϕ(Φt(v))f0(v) dv (recall that f(t, ·) = Φt#f0 is char-

acterized by (7), where Φt, defined in (6) is the flow of the differential equa-
tion dv

dt = Pv⊥J ). Therefore we get
∫

S

ϕ(v)f(t, v)dv = mϕ(Φt(vback)) +
∫

S

1v �=vbackϕ(Φt(v))f0(v) dv. (16)
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We then obtain
∣∣∣
∫

S

ϕ(v)f(t, v) dv −
∫

S

ϕ(v)f∞(v) dv
∣∣∣

� m|ϕ(Φt(vback)) − ϕ(−Ω∞)| +
∫

S

1v �=vback |ϕ(Φt(v)) − ϕ(Ω∞)|f0(v) dv

� m|Φt(vback) + Ω∞| +
∫

S

1v �=vback |Φt(v) − Ω∞|f0(v) dv,

since ϕ ∈ Lip1(S). We finally get

W1(f(t, ·), f∞) � m|Φt(vback) + Ω∞| +
∫

S

1v �=vback |Φt(v) − Ω∞|f0(v) dv. (17)

Now, by Proposition 3, as t → +∞ we have Φt(v) → Ω∞ for all v �= vback,
and Φt(vback) → −Ω∞. Therefore by the dominated convergence theorem, the
estimate (17) gives that W1(f(t, ·), f∞) → 0 as t → +∞. It remains to prove
that m > 1

2 , which comes from Proposition 2, which gives that Jf

|Jf | → Ω∞
as t → +∞. Indeed, applying (16) with ϕ(v) = v, we get

Jf (t) = mΦt(vback) +
∫

S

1v �=vbackΦt(v)f0(v) dv,

which gives by dominated convergence that, as t → +∞, we have

Jf (t) → −mΩ∞ +
∫

S

1v �=vbackΩ∞f0(v) dv = (1 − 2m)Ω∞.

Since Jf (t)
|Jf (t)| → Ω∞ as t → +∞, we get 1 − 2m > 0. 
�

2.2 Symmetries and Rates of Convergence

This subsection is dedicated to the study of rates of convergence, based on
somewhat explicit solutions in the case where Ω is constant in time, which is
the case when the initial condition has some symmetries.

Proposition 5. Let G be a group of orthogonal transformations under which f0
is invariant (that is to say f0 ◦g = f0 and all g ∈ G) and such that the only fixed
points on S of every element of G are two opposite unit vectors that we call ±en.
Then the solution f(t, ·) of the partial differential equation (2) is also invariant
under all elements of g. Furthermore if Jf0 �= 0, then Jf (t) = α(t)en with α
positive (up to exchanging en and −en), and Ω(t) is constantly equal to en.

Proof. The first part of the proposition comes from the fact that t �→ f(t, ·)◦g is
also a solution of (2) (which is well-posed) with the same initial condition. Then,
we have by invariance that gJf(t,·) =

∫
S
gvf0(v) dv =

∫
S
gvf0(gv) dv = Jf(t,·), for

all g ∈ G, and therefore Ω(t) is a fixed point of every element of g and must be
equal to ±en. 
�
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Let us mention two simple examples of these kind of symmetries: when f0(v)
only depends on v · en (G is then the set of isometries having en as fixed point),
or when f(sin θw + cos θen) = f(− sin θw + cos θen) (G is reduced to identity
and to v �→ 2en · v en − v).

Let us now do some preliminary computations in the case where Ω is constant
in time. We work in an orthogonal base (e1, . . . , en) of Rn for which Ω = en is
the last vector, and we write write Jf (t) = α(t)en, with t �→ α(t) positive and
nondecreasing. We will use the stereographic projection

s :
S \ {−en} → R

n−1

v �→ s(v) = 1
1+v·en

Pe⊥
n
v,

(18)

where we identify Pe⊥
n
v with its first n−1 coordinates. This is a diffeomorphism

between S \ {−en} and R
n−1, and its inverse is given by

p :
R

n−1 → S \ {−en} ⊂ R
n−1 × R

z �→ p(z) = ( 2
1+|z|2 z, 1−|z|2

1+|z|2 ).
(19)

If ϕ is an integrable function on S, the change of variable for this diffeomorphism
reads ∫

S

ϕ(v) dv = c−1
n

∫

Rn−1

ϕ(p(z))
(1 + |z|2)n−1

dz, (20)

where the normalization constant is cn =
∫
Rn−1

dz
(1+|z|2)n−1 . If v is a solution to

the differential equation dv
dt = α(t)Pv⊥en with v �= −en, a simple computation

shows that z = s(v) satisfies the differential equation dz
dt = −α(t)z. Therefore, if

we write λ(t) =
∫ t

0
α(τ) dτ , we have an explicit expression for the solution f of

the aggregation equation (5): the pushforward formula (7) is given, when f0 has
no atom at −en, by

∀ϕ ∈ C(S),
∫

S

ϕ(v)f(t, v) dv = c−1
n

∫

Rn−1

ϕ(p(ze−λ(t)))f0(p(z))
(1 + |z|2)n−1

dz. (21)

In particular, we have

1 − α(t) = 1 − Jf (t) · en =
∫

S

(1 − v · en)f(t, v) dv

= c−1
n

∫

Rn−1

2|z|2e−2λ(t)f0(p(z))
(1 + |z|2e−2λ(t))(1 + |z|2)n−1

dz. (22)

We are now ready to state the first proposition regarding the rate of conver-
gence towards Ω∞: in the framework of Theorem1, there is no hope to have a rate
of convergence of f(t, ·) with respect to the W1 distance without further assump-
tion on the regularity of f0, even if it has no atoms (in this case f(t, ·) → δΩ∞
as t → +∞). More precisely the following proposition gives the construction of a
solution decaying arbitrarily slowly to δΩ∞ , in contrast with results of local sta-
bility of Dirac masses for other models of alignment on the sphere [8], for which
as long as the initial condition is close enough to δΩ∞ , the solution converges
exponentially fast in Wasserstein distance.
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Proposition 6. Given a smooth decreasing function t �→ g(t) converging to 0
(slowly) as t �→ +∞, and such that g(0) < 1

2 , there exists a probability density
function f0 such that the solution f(t, ·) of (2) converges weakly to δΩ∞ , but
such that W1(f(t, ·), δΩ∞) � g(t) for all t � 0.

Proof. We will construct f0 as a function of the form f0(v) = h(|s(v)|), where
the stereographic projection s is defined in (18). Let us prove that the following
choice of h works, for ε > 0 sufficiently small:

h(r) = bn
(1+r2)n−1

rn−2

[
1−g(0)

ε 10<r<ε − g′(ln r)
r 1r�1

]
,

where the normalization constant is bn =
∫
R+

rn−2 dr
(1+r2)n−1 . First of all, f0 is a

probability density, since we have, thanks to (20)

∫

S

f0(v)dv =

∫
Rn−1

h(|z|) dz
(1+|z|2)n−1

∫
Rn−1

dz
(1+|z|2)n−1

=

∫ +∞
0

h(r)rn−2 dr
(1+r2)n−1

∫ +∞
0

rn−2 dr
(1+r2)n−1

= b−1
n

∫ +∞

0

h(r)rn−2 dr

(1 + r2)n−1

=
∫ ε

0

1−g(0)
ε dr −

∫ +∞

1

g′(ln r)
r dr = 1 − g(0) − [g(ln r)]+∞

1 = 1.

By symmetry, we have that Jf (t) = α(t)en. Let us check that α(0) > 0. We do
as in formula (22):

1 − α(t) = b−1
n

∫ +∞

0

2r2e−2λ(t)h(r)rn−2 dr

(1 + r2e−2λ(t))(1 + r2)n−1
.

We therefore get

1 − α(0) =
∫ ε

0

2(1 − g(0))r2dr

(1 + r2)ε
−

∫ +∞

1

g′(ln r)
2r

1 + r2
dr

� 2ε2

3
(1 − g(0)) − 2

∫ ∞

1

g′(ln r)
dr

r
= 2g(0) +

2ε2

3
(1 − g(0)),

which is strictly less than 1 as long as g(0) < 1
2 and ε is sufficiently small.

Therefore in this case we have α(0) > 0 (this shows that the restriction g(0) < 1
2

is somehow optimal, we cannot have W1(f(0, ·), δΩ∞) � 1
2 and f(t, ·) weakly

converging to δΩ∞ for this class of functions). This means that Ω(t) = en = Ω∞
for all time t, and thanks to Theorem 1, since f0 has no atoms, the solution f(t, ·)
converges weakly to δΩ∞ as t → +∞.

Let us also remark that W1(f(t, ·), δen
) =

∫
S
|v − en|f(t, v)dv (see the proof

of the forthcoming Proposition 7), and since we have 1 − v · en � |v − en|, we
obtain 1 − α(t) � W1(f(t, ·), δen

). Therefore, to prove that the convergence of f
towards δΩ∞ is as slow as g(t), it only remains to prove that 1 − α(t) � g(t).
We have λ(t) � t, and so when r � et, we get re−λ(t) � 1. Since x �→ 2x

1+x is

increasing, we get 2r2e−2λ(t)

1+r2e−2λ(t) � 1. We therefore get

1 − α(t) � −
∫ +∞

et

g′(ln r)
2re−2λ(t)

(1 + r2e−2λ(t))
dr � −

∫ +∞

et

g′(ln r)dr

r
= g(t),

which ends the proof. 
�



Long-Time Dynamics for a Simple Aggregation Equation on the Sphere 471

We conclude this subsection by more precise estimates of the rate of con-
vergence in various Wasserstein distances when Ω is constant in time and when
the initial condition has a density with respect to the Lebesgue measure which
is bounded above and below. We write a(t) � b(t) whenever there exists two
positive constants c1, c2 such that c1b(t) � a(t) � c2b(t) for all t � 0. We recall
the definition of the Wasserstein distance W2, for two probability measures μ
and ν on S:

W 2
2 (μ, ν) = inf

π

∫

S×S

|v − w|2dπ(v, w),

where the infimum is taken over the probability measures π on S × S with first
and second marginals respectively equal to μ and ν.

Proposition 7. Suppose that f0 has a density with respect to the Lebesgue mea-
sure satisfying m � f0(v) � M for all v (for some 0 < m < M), with Jf0 �= 0
and such that Ω(t) = en is constant in time. Then we have

W1(f(t, ·), δen
) �

{
(1 + t)e−t if n = 2,

e−t if n � 3,

W2(f(t, ·), δen
) �

⎧
⎪⎨

⎪⎩

e− 1
2 t if n = 2,√

1 + t e−t if n = 3,

e−t if n � 4.

Proof. Let us first give explicit formulas for W1(f(t, ·), δen
) and W2(f(t, ·), δen

).
If ϕ ∈ Lip1(S), we have
∣∣∣∣
∫

S

ϕ(v)f(t, v) dv − ϕ(en)
∣∣∣∣ �

∫

S

|ϕ(v) − ϕ(en)|f(t, v) dv �
∫

S

|v − en|f(t, v) dv.

Therefore, by taking the supremum, we get W1(f(t, ·), δen
) �

∫
S
|v−en|f(t, v) dv.

Furthermore, by taking ϕ(v) = |v − en|, we get that this inequality is an equal-
ity. The explicit expression of W2(f(t, ·), δen

) comes from the fact that the only
probability measure on S× S with marginals f(t, ·) and δen

is the product mea-
sure μ ⊗ δv0 , and therefore we have W 2

2 (f(t, ·), δen
) =

∫
S
|v − en|2f(t, v) dv.

Using the fact that |v − en|2 = 2 − 2v · en and the definition (19) of p, we
get |p(z) − en| = 2|z|√

1+|z|2 . Finally, using (21), we obtain

W1(f(t, ·), δen
) = c−1

n

∫

Rn−1

2|z|e−λ(t)f0(p(z))√
1 + |z|2e−2λ(t)(1 + |z|2)n−1

dz, (23)

and, as in (22):

W 2
2 (f(t, ·), δen

) = 2(1 − α(t)) = c−1
n

∫

Rn−1

4|z|2e−2λ(t)f0(p(z)) dz

(1 + |z|2e−2λ(t))(1 + |z|2)n−1
. (24)



472 A. Frouvelle and J.-G. Liu

Thanks to the assumptions on f0, from (23) we immediately get

W1(f(t, ·), δen
) �

∫ +∞

0

rn−1e−λ(t) dr√
1 + r2e−2λ(t)(1 + r2)n−1

,

and for n � 3, since λ(t) � 0, we get

0 <

∫ +∞

0

rn−1 dr√
1 + r2(1 + r2)n−1

�
∫ +∞

0

rn−1 dr√
1 + r2e−2λ(t)(1 + r2)n−1

�
∫ +∞

0

rn−1 dr

(1 + r2)n−1
< +∞,

which gives W1(f(t, ·), δen
) � e−λ(t). For n = 2, we have

∫ +∞

0

re−λ(t) dr√
1 + r2e−2λ(t)(1 + r2)

=
[

e−λ(t)

2
√

1−e−2λ(t)
ln

(√
1+r2e−2λ(t)−

√
1−e−2λ(t)√

1+r2e−2λ(t)+
√

1−e−2λ(t)

)]+∞

0

=
e−λ(t)

2
√

1 − e−2λ(t)
ln

(1 +
√

1 − e−2λ(t)

1 −
√

1 − e−2λ(t)

)
.

Since this last expression is equivalent to λ(t)e−λ(t) as λ(t) → +∞ and converges
to 1 as λ(t) → 0, we then get W1(f(t, ·), δen

) � (1 + λ(t))e−λ(t).
We proceed similarly for the distance W2. From the assumptions on f0

and (24) we get

W 2
2 (f(t, ·), δen

) � 1 − α(t) �
∫ +∞

0

rne−2λ(t) dr

(1 + r2e−2λ(t))(1 + r2)n−1
.

By the same argument of integrability, when n � 4, since
∫ +∞
0

rn dr
(1+r2)n−1 < +∞,

we obtain 1 − α(t) � e−2λ(t). For n = 2 we have

∫ +∞

0

r2e−2λ(t) dr

(1 + r2e−2λ(t))(1 + r2)
=

[
e−λ(t) tan−1(e−λ(t)r)−e−2λ(t) tan−1(r)

1−e−2λ(t)

]+∞

0

=
π e−λ(t)

2(1 + e−λ(t))
,

which gives 1 − α(t) � e−λ(t). For n = 3 we have

∫ +∞

0

r2e−2λ(t) dr

(1 + r2e−2λ(t))(1 + r2)2
= e−2λ(t)

2(1−e−2λ(t))2

[
ln

(
1+r2

1+r2e−2λ(t)

)
+ 1−e−2λ(t)

1+r2

]+∞

0

=
e−2λ(t)

2(1 − e−2λ(t))2
(2λ(t) − 1 + e−2λ(t)).

Since this last expression is equivalent to λ(t)e−2λ(t) as λ(t) → +∞ and con-
verges to 1

4 as λ(t) → 0, we then get 1 − α(t) � (1 + λ(t))e−2λ(t).
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In all dimensions, we have, since λ(t) =
∫ t

0
α(τ)dτ � α(0)t, that there

exists C > 0 such that 1 − α(t) � Ce−α(0)t. Therefore, integrating in time,
we obtain t − λ(t) � C̃e−α(0)t. This gives, since λ(t) � t, that e−λ(t) ∼ e−t

and 1+λ(t) � 1+ t. Combining this with all the estimates we obtain so far (and
reminding that W2(f(t, ·), δen

) � √
1 − α(t) ends the proof. 
�

Interestingly, the estimates given by Proposition 7 depend on the dimension
and on the chosen distance. We expect that these estimates still hold when Ω
depends on time, and, as in the result of Theorem2, we expect to have an even
better rate of convergence of Ω towards Ω∞.

3 The Particle Model

The object of this section is to prove Theorem 2, and we divide it into several
propositions. We take N positive real numbers (mi)1�i�N with

∑N
i=1 mi = 1,

and N unit vectors v0
i ∈ S (for 1 � i � N) such that v0

i �= v0
j for all i �= j. We

denote by (vi)1�i�N the solution of the system of differential equation (3):

dvi

dt
= Pv⊥

i
J, with J(t) =

N∑

i=1

mivi(t),

with the initial conditions vi(0) = v0
i for 1 � i � N .

Proposition 8. If J(0) �= 0, then |J | is nondecreasing, so Ω(t) = J(t)
|J(t)| ∈ S is

well-defined for all times t � 0. We have one of the two following possibilities:

– For all 1 � i � N , vi(t) · Ω(t) → 1 as t → +∞,
– There exists i0 such that vi(t) · Ω(t) → −1 as t → +∞, and for all i �= i0, we

have vi(t) · Ω(t) → 1 as t → +∞.

Furthermore, if we denote by λ > 0 the limit of |J(t)| as t → +∞, we have
for all i, j in the first possibility (resp. for all i �= i0, j �= i0 in the second
possibility), ‖vi(t) − vj(t)‖ = O(e−(λ−ε)t) (for any ε > 0).

Proof. Let us see the differential system as a kind of gradient flow of the following
interaction energy (this is reminiscent of the gradient flow structure of the kinetic
equation (2), see Remark 3):

E =
1
2

N∑

i,j=1

mimj‖vi − vj‖2 =
N∑

i,j=1

mimj(1 − vi · vj) = 1 − |J |2 � 0

Indeed, we then get ∇vi
E = −2

∑N
j=1 mimjPv⊥

i
vj = −2miPv⊥

i
J (using the

formula ∇v(u · v) = Pv⊥u). We therefore have dvi

dt = − 1
2mi

∇vi
E , and we obtain

d|J |2
dt

= −dE
dt

= −
N∑

i=1

∇vi
E · dvi

dt
= 2

N∑

i=1

mi

∣∣∣∣
dvi

dt

∣∣∣∣
2

� 0. (25)
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This gives that |J | is nondecreasing in time. So we can define Ω(t) = J(t)
|J(t)| and

rewrite (25) as

d|J |2
dt

= 2
N∑

i=1

mi|Pv⊥
i

J |2 = 2|J |2
N∑

i=1

mi(1 − (vi · Ω)2). (26)

We can compute the time derivative of this quantity and observe that all terms
are uniformly bounded in time. Therefore, since it is an integrable function of
time (since |J |2 � 1) with bounded derivative, it must converge to 0 as t → +∞.
Therefore we obtain that (vi(t) · Ω(t))2 → 1 for all 1 � i � N . Let us now
take 1 � i, j � N and estimate ‖vi − vj‖. We have

1
2

d
dt

‖vi − vj‖2 = − d
dt

(vi · vj) = −|J |(vj · Pv⊥
i

Ω + vi · Pv⊥
j
Ω)

= −|J | (Ω · vi + Ω · vj)(1 − vi · vj)

= −|J |Ω · vi + vj

2
‖vi − vj‖2. (27)

Therefore if vi ·Ω → 1 and vj ·Ω → 1, we get 1
2

d
dt‖vi −vj‖2 � −(λ−ε)‖vi −vj‖2

for t sufficiently large, and therefore we obtain ‖vi − vj‖2 = O(e−2(λ−ε)t).
Finally if vi · Ω → −1 and vj · Ω → −1, for t sufficiently large (say t � t0)

we obtain 1
2

d
dt‖vi − vj‖2 � (λ − ε)‖vi − vj‖2. This is the same phenomenon

of repulsion as (15) in the previous part, and the only bounded solution to
this differential inequality is when vi(t0) = vj(t0), which means, by uniqueness
that v0

i = v0
j and therefore i = j. This means that if there is an index i0 such

that vi0(t) · Ω(t) → −1, then for all i �= i0, we have vi(t) · Ω(t) → 1 as t → ∞,
and this ends the proof. 
�
Let us now study the first possibility more precisely.

Proposition 9. Suppose that vi(t) · Ω(t) → 1 as t → ∞ for all 1 � i � N .
Then there exists Ω∞ ∈ S and ai ∈ {Ω∞}⊥ ⊂ R

n, for 1 � i � N such
that

∑N
i=1 miai = 0 and that, as t → +∞,

vi(t) = (1 − |ai|2e−2t)Ω∞ + e−tai + O(e−3t) for 1 � i � N,

Ω(t) = Ω∞ + O(e−3t).

Proof. We first have |J(t)| = J(t) · Ω(t) =
∑

i mivi(t) · Ω(t) → 1 as t → ∞.
Therefore λ = 1, and thanks to the estimates of Proposition 8 (first possibility),
for all i, j we have 1 − vi · vj = 1

2‖vi − vj‖2 = O(e−2(1−ε)t). Summing with
weights mj , we obtain 1− vi ·J = O(e−2(1−ε)t). Plugging back this into (27), we
obtain

1
2

d
dt

‖vi − vj‖2 = −(
1 + O(e−2(1−ε)t)

)‖vi − vj‖2.

We therefore obtain ‖vi − vj‖2 = ‖v0
i − v0

j ‖2e− ∫ t
0 (1+O(e−2(1−ε)τ ))dτ = O(e−2t).

This is the same estimate as previously without the ε. Therefore, similarly, we
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get 1 − vi · J = O(e−2t), which gives 1 − |J |2 = O(e−2t) by summing with
weights mi. We finally obtain 1 − vi · Ω = 1 − vi · J + (|J | − 1)vi · Ω = O(e−2t),
therefore |Pv⊥

i
Ω|2 = |PΩ⊥vi|2 = 1 − (vi · Ω)2 = O(e−2t).

Let us now compute the evolution of Ω, as in (8). Since dJ
dt =

∑
i miPv⊥

i
J ,

we use (26) to get d|J|
dt = |J |∑i mi|Pv⊥

i
Ω|2 = O(e−2t), and we obtain

dΩ

dt
=

1
|J |

dJ

dt
− d|J |

dt

J

|J |2 =
∑

i

miPv⊥
i
Ω −

∑

i

mi|Pv⊥
i

Ω|2Ω

= −
∑

i

mi(vi · Ω)(vi − (vi · Ω)Ω) = −
∑

i

mi(vi · Ω)PΩ⊥vi.

Since
∑

i miPΩ⊥vi = PΩ⊥J = 0, we can then add this quantity to the previous
identity to get

dΩ

dt
=

∑

i

mi(1 − vi · Ω)PΩ⊥vi. (28)

We therefore get |dΩ
dt | �

∑
i mi(1 − vi · Ω)|PΩ⊥vi| = O(e−3t). Therefore Ω

converges towards Ω∞ ∈ S and we have Ω = Ω∞ + O(e−3t).
Finally, to get the precise estimates for the vi, we compute their second

derivative.

d2vi

dt2
=

d
dt

Pv⊥
i
J = Pv⊥

i

dJ

dt
− dvi

dt
· J vi − vi · J

dvi

dt
. (29)

We have Pv⊥
i

dJ
dt = d|J|

dt Pv⊥
i
Ω + |J |Pv⊥

i

dΩ
dt = O(e−3t), since Pv⊥

i
Ω = O(e−t)

and d|J|
dt = O(e−2t) thanks to (26). Then we notice that dvi

dt ·J = J ·Pv⊥
i
J = |dvi

dt |2
and that vi ·J dvi

dt = dvi

dt −(1−vi ·J)Pv⊥
i

J = dvi

dt +O(e−3t). At the end we obtain

d2vi

dt2
= −dvi

dt
−

∣∣∣
dvi

dt

∣∣∣
2

vi + O(e−3t). (30)

Considering first that |dvi

dt |2 = O(e−2t), the resolution of this differential equation
gives dvi

dt = −aie
−t + O(e−2t) with ai ∈ R

n. Integrating in time, we therefore
obtain vi(t) = Ω∞+aie

−t+O(e−2t), (we already know that vi(t) converges to Ω∞
since v(t) · Ω(t) → 1). The fact that |vi(t)| = 1 gives us ai · Ω∞e−t = O(e−2t)
and therefore ai ∈ {Ω∞}⊥. Summing all these estimations with weights mi and
using the fact that J − Ω∞ = O(e−2t), we obtain

∑
i miai = 0.

Finally, the more precise estimate for vi(t) up to order O(e−3t) given in
the proposition is obtained by plugging back |dvi

dt |2vi = |ai|2e−2tΩ∞ + O(e−3t)
into (30) and solving it again. 
�
Let us finally study the second possibility.

Proposition 10. Suppose there exists i0 such that vi0(t) ·Ω(t) → −1 as t → ∞.
Then we have λ = 1 − 2mi0 (which gives mi0 < 1

2), and there exists Ω∞ ∈ S
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and ai ∈ {Ω∞}⊥ ⊂ R
n for i �= i0 such that

∑
i�=i0

miai = 0 and that, as t → +∞,

vi(t) = (1 − |ai|2e−2λt)Ω∞ + e−λtai + O(e−3λt) for i �= i0,

vi0(t) = −Ω∞ + O(e−3λt),

Ω(t) = Ω∞ + O(e−3λt).

Proof. First of all we have |J(t)| = Ω(t)·J(t) =
∑

i mivi(t)·Ω(t) which converges
as t → ∞ towards λ =

∑
i�=i0

mi−mi0 = 1−2mi0 . The proof then follows closely
the one of Proposition 9, except for the case of vi0 . Indeed, Proposition 8 only
gives estimates on ‖vi − vj‖ (and therefore on vi · vj) when i �= i0 and j �= i0. To
estimate more precisely the quantity vi0 ·vi, let us prove that −vi0 must be in the
convex cone spanned by 0 and all the vi, i �= i0. The idea is that a configuration
which is in a convex cone stays in it for all time.

Let us suppose that all the vi (including i = i0) satisfy e · vi(t0) � c for
some c > 0, t0 � 0 and e ∈ S (the direction of the cone). We want to prove
that e · vi(t) � c for all i and for all t � t0. If not, we denote by t1 > t0 a time
such that e · vi(t) � 0 for all i on [t0, t1], but with e · vj(t1) < c for some j.
On [t0, t1], we have

d(e · vi)
dt

= e · J − (e · vi)(vi · J) � e · J − (e · vi), (31)

since vi · J � |J | � 1 and e · vi � 0 on [t0, t1]. Summing with weights mi, we
obtain d(e·J)

dt � 0. Therefore, since e · J(t0) � c, we obtain e · J(t) � c on [t0, t1],
and the estimation (31) becomes d(e·vi)

dt � c − (e · vi). By comparison principle,
this tells us that e · vi � c on [t0, t1] for all i, which is a contradiction.

Let us now fix t0 � 0. We want to prove that there exists αi � 0 for i �= i0
such that −vi0 =

∑
i�=i0

αivi (this means that −vi0 is in the convex cone spanned
by all other vi’s). This is the typical case where we will apply Farkas’ Lemma (see
for instance [14]): its precise conclusion is that it is equivalent to prove that this
is not possible to find e ∈ S such that e ·vi(t0) � 0 for all i �= i0 and e ·(−vi0) < 0
(which means separating the generators of the cone and the vector −vi0 by a
linear hyperplane).

By contradiction, if such a e exists, we would have e·J(t0) � mi0e·vi0 > 0 and
for i �= i0, as in (31), if e · vi(t0) = 0 we get d(e·vi)

dt |t=t0 = e · J(t0) > 0. Therefore
for δ > 0 sufficiently small, we have e · vi(t0 + δ) > 0 for all i (including i0,
and those for which e · vi(t0) > 0). Therefore there exists c > 0 such that for
all i, e ·vi(t0 +δ) � c, and by the previous paragraph, we get that e ·vi(t) � c for
all t � t0 + δ. We therefore get e · Ω(t) � 1

|J(t)|e · J(t) � c
|J(0)| for all t � t0 + δ.

Finally, since ‖vi0(t) + Ω(t)‖2 = 2(1 + vi0(t) · Ω(t)) → 0 as t → ∞, this is in
contradiction with the fact that e·(vi0 +Ω(t)) � (1+ 1

|J|(0) )c > 0 for all t � t0+δ.
In conclusion we have that for all t � 0, there exists αi(t) � 0 for i �= i0 such

that −vi0(t) =
∑

i�=i0
αi(t)vi(t). We thus obtain, for i �= i0

vi(t) · vi0(t) = −
∑

i�=i0

αi +
∑

j �=i0

αi(1 − vj(t) · vi(t)) � −1 + O(e−2(λ−ε)t), (32)
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since 1 = ‖vi0(t)‖ �
∑

i�=i0
αi‖vi(t)‖ =

∑
i�=i0

αi, and thanks to Proposition 8.
Since vi(t) · vi0(t) � −1, this gives vi(t) · vi0(t) = −1+O(e−2(λ−ε)t). From there,
we have, if i �= i0,

vi · J =
∑

i�=i0

mj vi · vj − mi0vi · vi0

=
∑

i�=i0

(mj + O(e−2(λ−ε)t) − mi0 + O(e−2(λ−ε)t) = λ + O(e−2(λ−ε)t).

Plugging this into (27), for i �= i0 and j �= i0, we obtain

1
2

d
dt

‖vi − vj‖2 = −(
λ + O(e−2(λ−ε)t)

)‖vi − vj‖2.

We therefore obtain, as in the proof of Proposition 9, 1 − vi · vj = O(e−2λt).
As in (32), we now get vi · vi0 = −1 + O(e−2λt). Finally, by summing with
weights mj , we obtain vi ·J = λ+O(e−2λt) for i �= i0 and vi0 ·J = −λ+O(e−2λt).
Therefore, by summing once again with weights mi, we get |J |2 = λ2+O(e−2λt).
This allows to get 1 − vi · Ω = O(e−2λt) and |Pv⊥

i
Ω| = O(e−λt) when i �= i0,

and 1+vi0 ·Ω = O(e−2λt). Unfortunately this is not enough to use (28) to obtain
a decay at rate 3λ: we obtain

∣∣∣
dΩ

dt

∣∣∣ � O(e−3λt) + mi0(1 − vi0 · Ω)|Pv⊥
i0

Ω|. (33)

However, since |Pv⊥
i0

Ω|2 = 1 − (vi0 · Ω)2 = (1 − vi0 · Ω)(1 + vi0 · Ω) = O(e−2λt),

we obtain at least |dΩ
dt

∣∣ � O(e−λt), which gives the existence of Ω∞ ∈ S such
that Ω(t) = Ω∞ + O(e−λt). To get the rate 3λ, we have to be a little bit more
careful, and use the same kind of trick as in Lemma 2 of the first part: if we have
a differential equation of the form y′ = y + O(e−βt), and furthermore that y is
bounded, then we must have y = O(e−βt). Indeed, by Duhamel’s formula, we
get y = y0e

t + O(e−βt) and the only bounded solution corresponds to y0 = 0.
We apply this to y = dvi0

dt . We have, as in (29)

d2vi0

dt2
= Pv⊥

i0

dJ

dt
− dvi0

dt
· J vi0 − vi0 · J

dvi0

dt

= Pv⊥
i0

dJ

dt
−

∣∣∣∣
dvi0

dt

∣∣∣∣
2

vi0 + λ
dvi0

dt
+ O(e−3λt). (34)

We have

Pv⊥
i0

dJ

dt
= Pv⊥

i0

[
J −

N∑

i=1

mi(vi · J)vi

]
= (1 − λ)Pv⊥

i0
J +

N∑

i=1

mi(λ − vi · J)Pv⊥
i0

vi.

The term for i = i0 in this last sum vanishes and we have λ − vi · J = O(e−2λt)
for i �= i0, as well as |Pv⊥

i0
vi|2 = 1 − (vi0 · vi)2 = O(e−2λt). We therefore
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obtain Pv⊥
i0

dJ
dt = (1 − λ)Pv⊥

i0
J + O(e−3λt), and writing y = Pv⊥

i0
J = dvi0

dt , the

formula (34) becomes y′ = y − |y|2 vi0 + O(e−3λt). We of course have that y
is bounded, and we even know that y = 1

|J|Pv⊥
i0

Ω = O(e−λt). We can then

apply the result once by replacing |y|2 with O(e−2λt) to get y = O(e−2λt),
and then apply it a second time to obtain y = O(e−3λt). This already pro-
vides the result vi0(t) = −Ω∞ + O(e−3λt), and looking back at (33), we get
that dΩ

dt = O(e−3λt) and therefore Ω(t) = −Ω∞ + O(e−3λt).
It remains to prove the more precise estimates for vi when i �= i0, and this

is done exactly as in the proof of Proposition 9, from formula (29) to the end of
the proof, now we know that dΩ

dt = O(e−3λt). The only difference is that vi · J
converges to λ instead of 1, together with the fact that all rates are multiplied
by λ. For instance, the main estimate (30) becomes

d2vi

dt2
= −λ

dvi

dt
−

∣∣∣
dvi

dt

∣∣∣
2

vi + O(e−3λt),

and the rest of the proof does not change. 
�
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