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SIMPLE FINITE ELEMENT METHOD
IN VORTICITY FORMULATION
FOR INCOMPRESSIBLE FLOWS

JIAN-GUO LIU AND WEINAN E

Abstract. A very simple and efficient finite element method is introduced
for two and three dimensional viscous incompressible flows using the vortic-
ity formulation. This method relies on recasting the traditional finite element
method in the spirit of the high order accurate finite difference methods intro-
duced by the authors in another work. Optimal accuracy of arbitrary order can
be achieved using standard finite element or spectral elements. The method
is convectively stable and is particularly suited for moderate to high Reynolds
number flows.

1. Introduction

In this paper, we present a very simple finite element method for the unsteady
incompressible Navier-Stokes equations (NSE) in vorticity-vector potential formu-
lation. Let us first present the idea for the 2D case, where the vector potential is
reduced to a stream function. The NSE read

∂tω + (u · ∇)ω = ν∆ω ,
∆ψ = ω ,

(1.1)

with no-slip boundary condition

ψ = 0 ,
∂ψ

∂n
= 0 ,(1.2)

and the velocity is given by

u = ∇⊥ψ , ∇⊥ = (−∂y, ∂x) .(1.3)

Adding inhomogeneous terms to the boundary condition only amounts to minor
changes in what follows. For simplicity we will only consider a simply connected
domain in this paper.

Finite difference approximations of (1.1)–(1.3) for large Reynolds numbers have
been studied in detail in [9, 10, 11], where the the convection and viscous terms are
both treated explicitly in the vorticity transport equation. The stream function, and
hence the velocity, is then evaluated from the vorticity via the kinematic equation
(the second equation in (1.1)). We developed a time-stepping procedure in which
the value of the vorticity on the boundary can be obtained explicitly from the
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stream function without any iteration, thus eliminating some traditional difficulties
associated with the vorticity formulation [21]. The classical fourth order explicit
Runge-Kutta time stepping method was used to overcome the cell Reynolds number
constraint [9]. The resulting scheme is stable under the standard convective CFL
condition. The method is very efficient. At each time step or Runge-Kutta stage,
a standard Poisson equation is solved [9]. In a fourth order compact difference
scheme an additional mass-like matrix needs to be inverted [10].

Using a variational formulation and a finite element approximation gives a very
general, natural, and clean way to implement the above methodology. It overcomes
the difficulty of finding an accurate local vorticity formula for a curved boundary,
especially in the 3D case. The NSE (1.1)–(1.3) can be formulated in a weak form
[13]: find ω ∈ H1(Ω) and ψ ∈ H1

0 (Ω) such that

〈ϕ , ∂tω〉 − 〈∇ϕ , ωu〉 = −ν〈∇ϕ , ∇ω〉 , ∀ϕ ∈ H1
0 ,

〈∇ϕ , ∇ψ〉 = −〈ϕ , ω〉 , ∀ϕ ∈ H1 .
(1.4)

The velocity is again given by (1.3). Here 〈 , 〉 is the notation for the standard inner
product between functions on Ω and ‖ · ‖ for the L2 norm.

In this form the first equation is taken as the evolution equation that updates
ω, and the second equation is then used to find ψ. However we can also put (1.4)
in a more symmetric form: find ψ ∈ H1

0 (Ω) and ω ∈ H1(Ω) such that

〈∇ϕ , ∇∂tψ〉+ 〈∇ϕ , ωu〉 = ν〈∇ϕ , ∇ω〉 , ∀ϕ ∈ H1
0 ,

〈ϕ , ω〉 = −〈∇ϕ , ∇ψ〉 , ∀ϕ ∈ H1 .
(1.4′)

In this form the first equation is viewed as an evolution equation for updating ψ
and the second equation is used as a definition of ω.

Let Xk
h be the standard continuous finite element space [6] with kth degree poly-

nomials on each element of a triangulation Th = {K}. Denote by h the maximum
size (diameter) of the elements. Let Xk

0,h be the subspace of Xk
h with zero boundary

values. The finite element approximation, treating time as continuous for now, is
given as follows. Find ωh ∈ Xk

h and ψh ∈ Xk
0,h such that

〈ϕ , ∂tωh〉 − 〈∇ϕ , ωhuh〉 = −ν〈∇ϕ , ∇ωh〉 , ∀ϕ ∈ Xk
0,h ,

〈∇ϕ , ∇ψh〉 = −〈ϕ , ωh〉 , ∀ϕ ∈ Xk
h ,

(1.5)

and the velocity field is obtained from the stream function via

uh = ∇⊥ ψh .(1.6)

Clearly the velocity uh satisfies the divergence free condition everywhere, and the
normal velocity uh · n is continuous across any element boundary. The treatment
of the convection term in (1.5) is legitimate even though the tangential velocity is
not continuous across the element boundaries.

Finite element approximations of the form (1.5) have been studied for the case of
steady state flow. However, the computation of the vorticity and stream function
are fully coupled, cf. [14]. See [7, 12] for the case of the biharmonic equation and
[2, 1, 5, 18, 25] for the steady Navier-Stokes equation. The main contribution of
this paper is an efficient time stepping procedure of (1.5) which will be described
in Section 2. All the nice features mentioned before in the finite difference setting
will be maintained for the finite element method. At the same time the method
is generalized in an extremely simple and clean way for the general domains in
both 2D and 3D, with arbitrary order of accuracy. The high order spectral element
method can be easily adapted into our scheme. More complicated physics, such as
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stratified flow, gravitation and centrifugal forces, turbulence models, etc., can be
incorporated into the scheme.

There is also a simple and natural generalization of the above methodology to 3D,
which will be discussed in Section 3. It is well known that there is a major difference
between two and three dimensions for vorticity-based numerical methods. Most
apparent of all is the fact that both the vorticity and stream function become vector
(instead of scalar) fields in 3D. At the same time, the stream function changes its
name to vector potential. Along with this is the necessity to enforce the solenoidal
conditions for the vorticity and vector potential. This turns out to be a major
problem in designing efficient numerical methods in 3D based on this formulation.

In Section 4, we will present an error analysis for both 2D and 3D. A near
optimal estimate of hk−1/2 in L2-norm for velocity and vorticity will be proved for
the standard kth order finite element method. Systemic numerical experiments of
the methods proposed in this paper will be reported in [20] for the standard finite
element method, in [19] for discontinuous Galerkin method.

2. Explicit time-stepping procedure

Since finite element methods amount to centered schemes, a high order time
discretization method must be used in order to avoid cell Reynolds number con-
straints. This is discussed in detail in [9]. In practice we use the classical fourth
order Runge-Kutta method, which can essentially be written as four forward Eu-
ler type steps [9]. For example, the intermediate stage u∗∗ in RK4 for the ODE
u′ = f(u) can be formulated as

u∗∗ = un +
1
2

∆tf(u∗) .

Therefore, we will illustrate the time discretization of (1.5) using forward Euler.
Suppose we know the values of ωn, ψn and un at tn. We first compute an

auxiliary term 〈ϕ , ωn+1〉 for any ϕ ∈ Xk
0,h from

〈ϕ , ωn+1〉 = 〈ϕ , ωn〉+ ∆t〈∇ϕ , ωnun〉 − ν∆t〈∇ϕ , ∇ωn〉 .(I)

Using this auxiliary term, we can solve for stream function ψn+1 ∈ Xk
0,h from

〈∇ϕ , ∇ψn+1〉 = −〈ϕ , ωn+1〉 , ∀ϕ ∈ Xk
0,h .(II)

From ψn+1, we can obtain the vorticity ωn+1 by inverting a mass matrix from

〈ϕ , ωn+1〉 = 〈∇ϕ , ∇ψn+1〉 , ∀ϕ ∈ Xk
h .(III)

The right hand side of the above equation does not have to be computed again for
each test function ϕ ∈ Xk

0,h since it is equal to the auxiliary term from (II), which
has already been computed in (I). Finally we compute the velocity

un+1 = ∇⊥ ψn+1 .(2.1)

We should emphasize that in the above time stepping procedure, the momentum
equation (I) is completely decoupled from the kinematic equation (II). There is
no iteration required between the vorticity and stream function to recover the
boundary values for the vorticity. Many existing methods require this, for example
[21, 2, 1, 22, 16, 14].

At first sight, this procedure seems circular since (II) and (III) seem to use the
same equation, but are used to compute different things. So some comments are in
order:
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1. Step (I) only computes (ϕ, ωn+1) for ϕ ∈ Xk
0,h. To completely determine ωn+1

we need to compute (ϕ, ωn+1) for all ϕ ∈ Xk
h . The computation of (ϕ, ωn+1)

for the degrees of freedom associated with the boundary nodes is split into two
steps. First in Step (II) we compute the stream-function ψn+1. Fortunately,
and this is very important for the success of this procedure, knowing (ϕ, ωn+1)
for ϕ ∈ Xk

0,h is enough to compute ψn+1. This is the same reason why the
explicit methods work so well in the finite difference setting. Having ψn+1,
we then compute (ϕ, ωn+1) for ϕ ∈ Xk

h \Xk
0,h using step (III). However, (III)

is also valid for ϕ ∈ Xk
0,h because of (II).

2. The equation (ϕ, ωn+1) = (∇ϕ,∇ψn+1) for ϕ ∈ Xk
h \ Xk

0,h can be thought
of as the vorticity boundary condition. This is a natural generalization of
Thom’s formula.

The above procedure can be described more clearly with matrix notation. Let
φi, i = 1, 2, · · · , N0, be a basis corresponding to the interior nodes, and φj , j =
N0 + 1, N0 + 2, · · · , N0 +Nb, a basis corresponding to the boundary nodes. Denote
ωn = (ωi) and ψn = (ψi), vectors of size (N0 + Nb) and N0, representing the
vorticity and stream function

ωnh =
N0+Nb∑
i=1

ωiφi , ψnh =
N0∑
i=1

ψiφi,(2.2)

respectively. For the Lagrangian finite element space, the number of nodes is equal
to the dimension of the finite element space, i.e.,

N0 = dimension of Xk
0,h , N0 +Nb = dimension of Xk

h .(2.3)

Denote by M = (〈φi , φj〉) the standard (N0 + Nb) × (N0 + Nb) mass matrix and
by A = (〈∇φi , ∇φj〉) the (N0 + Nb) × (N0 + Nb) stiffness matrix, partitioned,
according to the dimensions N0 and Nb, as

A =
(
A0,0 A0,b

Ab,0 Ab,b

)
.(2.4)

The auxiliary term in (I) is denoted by ωn+1 = (ωi), a vector of size N0 and having
values

ω` =
N0+Nb∑
i=1

〈φ` , φi〉ωi , ` = 1, 2, · · · , N0.(2.5)

We denote the nonlinear term by N (un, ωn) = (Ni), a vector of size N0 and having
values

N` = −
N0+Nb∑
i=1

N0∑
j=1

〈∇φ` , φi∇⊥φj〉ωiψj , ` = 1, 2, · · · , N0 .(2.6)

Then the momentum equation (I) can be written as

ωn+1 − ωn
∆t

+N (un, ωn) = ν(A0,0, A0,b)ωn .(I′)

We can use the auxiliary variable ωn+1 to solve for the stream function ψn+1 from

A0,0ψ
n+1 = ωn+1 .(II′)
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We can solve for ωn+1 by inverting the mass matrix M from

Mωn+1 =
(

ωn+1

Ab,0ψ
n+1

)
.(III′)

The velocity is again given by (2.1).
The above time stepping procedure is very similar to the one used in an essen-

tially compact fourth order finite difference scheme (EC4 for short) proposed in
[10]. The vorticity boundary value on the left side of (III′) is related to the stream
function ψn+1 through the local kinematic relation on the right hand side of (III′).
The boundary values of ωn+1 are obtained along with the interior values in (III′)
by inverting a mass matrix. This is quite general and natural and does not result
in any iteration between the vorticity and stream function. The simplicity and
efficiency of the above scheme is obvious. The main computation involves solving a
standard Poisson equation (II′) and inverting a standard mass matrix (III′). Stan-
dard FEM packages with a Poisson solver can easily be modified to compute the
unsteady viscous incompressible flow.

Alternatively, the finite element discretization of (1.4′) results in a symmetric
Galerkin form: find ψh ∈ Xk

0,h and ωh ∈ Xk
h such that

〈∇ϕ , ∇∂tψh〉+ 〈∇ϕ , ωhuh〉 = ν〈∇ϕ , ∇ωh〉 , ∀ϕ ∈ Xk
0,h ,

〈ϕ , ωh〉 = −〈∇ϕ , ∇ψh〉 , ∀ϕ ∈ Xk
h .

(1.5′)

In a matrix notation as defined before, (1.5′) becomes

A0,0∂tψh +N (uh, ωh) = ν(A0,0, A0,b)ωh,

Mωh = −
(
A0,0

Ab,0

)
ψh.

(1.5′′)

Explicit time discretization of above equation is equivalent to the time-stepping (I)–
(III′). Equation (1.5′′) can be viewed as an ODE system for ψh after eliminating
ωh.

3. Finite element method

in the 3D vorticity-vector potential formulation

Now we present the finite element method in the 3D vorticity-vector potential
formulation. A corresponding finite difference version was studied in [11]. We
will use the following 3D Navier-Stokes equation in the vorticity-vector potential
formulation:

∂t ω +∇×(ω×u) = ν∆ω ,
∆ψ = −ω ,(3.1)

with six boundary conditions

n×ψ = 0 , ∇·ψ = 0 ,
∇·ω = 0 , n×(∇×ψ) = n×ub .

(3.2)

The velocity is given by

u = ∇×ψ .(3.3)

It is easy to verify that (3.1)–(3.3) imply

∇·ω = 0, ∇·u = 0, ∇·ψ = 0 .(3.4)

As a consequence of (3.4), (3.1)–(3.3) are equivalent to the Navier-Stokes equation
in primitive variables. See [23, Theorem 3.1] for a more detailed discussion. For
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simplicity we assume ub = 0. General inhomogeneous boundary conditions can be
treated similarly. The difficulty in designing an efficient numerical method for (3.1)–
(3.3) arises from the need to enforce the solenoidal conditions (3.4) numerically.
We will use a div-curl type stiffness matrix (see (3.6) below) in our finite element
approximation to overcome this difficulty. Define the space Y = (H1)3 and the
subspace

Yτ = {ψ ∈ Y : n×ψ = 0 on Γ} .(3.5)

It was proved in [8] that the ‖ · ‖H1 norm in Yτ is equivalent to the div-curl norm

bφe ≡
√

[φ , φ] , [φ,ψ] ≡ 〈∇·φ,∇·ψ〉+ 〈∇×φ,∇×ψ〉 ,(3.6)

and that the following Poincaré inequality holds:

‖φ‖ ≤ Cbφe , ∀φ ∈ Yτ .(3.7)

Indeed, it was shown in [8] that for any φ, ψ in Yτ ,

〈∇φ , ∇ψ〉 = [φ , ψ] +
∫

Γ

2
R
φ·ψ dγ,(3.8)

where R is the mean radius of the curvature of Γ. R > 0 when Ω is convex. A
variational form for (3.1) and (3.2) is given as follows. Find ω ∈ Y and ψ ∈ Yτ
such that

〈φ, ∂t ω〉+ 〈∇×φ,ω×u〉 = −ν[φ , ω] , ∀φ ∈ Yτ ,
[φ , ψ] = 〈φ , ω〉 , ∀φ ∈ Y ,(3.9)

or alternatively in a more symmetric way, find ψ ∈ Yτ and ω ∈ Y such that

[φ , ∂tψ] + 〈∇×φ,ω×u〉 = −ν[φ , ω] , ∀φ ∈ Yτ ,
〈φ , ω〉 = [φ , ψ] , ∀φ ∈ Y .(3.9′)

Again, the velocity is given by (3.3). It is easy to verify that (3.9) is equivalent to
(3.1)–(3.2). See [3] for discussions on the variational formulation in multiconnected
domains.

Let Y kh = (Xk
h)3 be the standard continuous finite element space with degree k

and

Y kτ,h = {ψ ∈ Y kh : n×ψ = 0 on Γ} .(3.10)

In general, the boundary condition in (3.10) is understood to be valid for all the
boundary nodes. The finite element approximation of (3.9) is given as follows. Find
ωh ∈ Y kh and ψh ∈ Y kτ,h such that

〈φ, ∂t ωh〉+ 〈∇×φ,ωh×uh〉 = −ν[φ,ωh] , ∀φ ∈ Y kτ,h ,
[φ,ψh] = 〈φ,ωh〉 , ∀φ ∈ Y kh ,

(3.11)

or, written in a symmetric Galerkin form, find ψh ∈ Y kτ,h and ωh ∈ Y kh such that

[φ, ∂tψh] + 〈∇×φ,ωh×uh〉 = −ν[φ,ωh] , ∀φ ∈ Y kτ,h ,
〈φ,ωh〉 = [φ,ψh] , ∀φ ∈ Y kh ,

(3.11′)

and the velocity is given by

uh = ∇×ψh .(3.12)
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Explicit time-stepping procedure. As in 2D, we now present an efficient time
stepping scheme for (3.11)–(3.12). Again, we use forward Euler as an illustration.

Suppose we know the values of ωn, ψn and un at tn. We first compute an
auxiliary term 〈φ , ωn+1〉 for any φ ∈ Y kτ,h from

〈φ , ωn+1〉 = 〈φ , ωn〉 −∆t〈∇×φ , ωn×un〉 − ν∆t[φ , ωn] .(A)

Using this auxiliary term we can solve for the vector potential ψn+1 ∈ Y Kτ,h from

[φ , ψn+1] = 〈φ , ωn+1〉 , ∀φ ∈ Y kτ,h .(B)

From ψn+1, we can obtain the vorticity ωn+1 by inverting a mass matrix from

〈φ , ωn+1〉 = [φ , ψn+1] , ∀φ ∈ Y kh .(C)

The right hand side of the above equation does not have to be computed again for
each test function φ ∈ Y kτ,h since it is equal to the auxiliary term from (B), which
has already been computed in (A). Finally we compute the velocity

un+1 = ∇×ψn+1 .(3.13)

Remark 1. When the boundary of the domain consists of flat surfaces, i.e., a poly-
gon, then the mean radius of curvature R =∞. From (3.8), we know that for any
φ,ψ ∈ Yτ ,

〈∇φ , ∇ψ〉 = [φ , ψ].

The stiffness matrix in (B) can be replaced by the standard stiffness matrix for the
vector Poisson equation. In the case when the boundary surfaces are parallel to the
coordinate planes, the three components of the vector potential decouple, and the
boundary conditions in (B) become homogeneous Dirichlet boundary conditions
for the tangential components of the vector potential, and Neumann boundary
condition for the normal component. This special geometric property has been
explored before in a finite difference approximation [11].

Designing simple and efficient finite difference schemes for 3D in vorticity-vector
potential formulations have been attacked in [11] with the same strategy: treat the
viscous term explicitly and use a local vorticity boundary formula. A second order
and fourth order compact difference scheme on a nonstaggered grid was proposed
in [11], and a local vorticity boundary condition, analogous to Thom’s formula in
2D, is derived.

4. Stability and error estimates for the semi-discrete case

The stability analysis and error estimates for the finite element approx
-imations (1.5)–(1.6) in 2D and (3.11)–(3.12) in 3D are rather standard. For com-
pleteness, we give a detailed account here. For the stability analysis, we have the
following conservation of energy:

Theorem 1. Let uh and ωh be the solution of the finite approximation (1.5)–(1.6)
for the 2D Navier Stokes equation (1.1)–(1.3). Then we have

‖uh(·, t)‖2L2 + 2ν
∫ t

0

‖ωh(·, s)‖2L2 ds = ‖uh(·, 0)‖2L2 .(4.1)



8 JIAN-GUO LIU AND WEINAN E

Let uh, ωh and ψh be the solution of the finite element approximation (3.11)–(3.12)
for 3D Navier Stokes equation (4.1)–(4.3). Then we have

‖uh(·, t)‖2L2 + ‖∇·ψh(·, t)‖2L2 + 2ν
∫ t

0

‖ωh(·, s)‖2L2 ds

= ‖uh(·, 0)‖2L2 + ‖∇·ψh(·, 0)‖2L2 .

(4.2)

Proof. We first prove (4.1). Take ϕ = ψh in the first equation of (1.5) to obtain

〈ψh , ∂tωh〉 − 〈∇ψh , ωhuh〉+ ν〈∇ψh , ∇ωh〉 = 0 .(4.3)

The second term is zero since uh · ∇ψh = 0. Taking ϕ = ωh in the second equation
of (1.5), we have

〈∇ψh , ∇ωh〉+ 〈ωh , ωh〉 = 0 .(4.4)

Take the time derivative of the second equation of (1.5), and replace ϕ by ψh to
obtain

〈ψh , ∂tωh〉 = −〈∇ψh , ∂t∇ψh〉 = − d

dt

1
2
‖∇ψh‖2 = − d

dt

1
2
‖uh‖2 .(4.5)

We obtain from (4.3) and (4.4) the conservation of energy
d

dt
‖uh‖2 + 2ν‖ωh‖2 = 0 .(4.6)

Integration in time gives (4.1). The proof for the 3D problem is similar. We take
φ = ψh in the first equation of (3.11) to obtain

〈ψh , ∂tωh〉+ 〈∇×ψh , ωh×uh〉+ ν[ψh , ωh] = 0 .(4.7)

The second term is zero since (∇×ψh) ·ωh×uh = 0. Taking φ = ωh in the second
equation of (3.11), we have

[ψh , ωh] = 〈ωh , ωh〉 .(4.8)

As in (4.6), we have from the second equation of (3.11) that

〈∂tωh , ψh〉 =
d

dt

1
2
bψhe2 .

We obtain from (4.7) and (4.8) the conservation of energy
d

dt
bψhe2 + 2ν‖ωh‖2 = 0 .(4.9)

Integrating in time and using the fact that uh = ∇×ψ, we obtain (4.2). This
completes the proof of Theorem 1.

Ladyzhenskaya-Babuska-Brezzi (LBB) condition. The finite element approx-
imations (1.5) and (3.11) can be viewed as a mixed approximation of the Navier-
Stokes equations (1.1)–(1.2) and (3.1)–(3.2), respectively. The LBB condition plays
an important role in the error analysis of mixed type problems [4, 13, 16]. We should
emphasize that in the fully discrete scheme (1.7)–(1.10), the momentum equation
(1.7) is completely decoupled from the kinematic equation (1.8). Nevertheless the
LBB condition is still important when choosing the discrete spatial spaces. The
same is true for the 3D problem.

The LBB condition for (1.5) is

inf
ψh∈Xk0,h

sup
ϕh∈Xkh

〈∇ϕh , ∇ψh〉
‖ϕh‖ ‖∇ψh‖

≥ C > 0,(4.10)
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and the LBB condition for (3.11) is

inf
ψh∈Y kτ,h

sup
φh∈Y kh

[φh , ψh]
‖φh‖ bψhe

≥ C > 0 .(4.11)

Using the Poincaré inequality for ψh we can obtain (4.10) directly from

sup
ϕh∈Xkh

〈∇ϕh , ∇ψh〉
‖ϕh‖

≥ 〈∇ψh , ∇ψh〉‖ψh‖
≥ C‖∇ψh‖ .

Using the Poincaré inequality (3.7), estimation of (4.11) is similar. Directly using
the LBB condition will give an hk−1 estimate for ω and u for the biharmonic
equation or the steady Stokes equation, cf. [4]. A more careful analysis using an
L∞-estimate or duality argument will give an hk−1/2 accuracy cf. [24, 12]. The
time dependence and the nonlinear term will contribute some more complications.
We will give a detailed account of the error estimates for the full time dependent
NSE in both 2D and 3D below.

Some estimates for projection operators. We first define two projection op-
erators for the 2D finite element spaces. P is the standard L2 projection into the
space Xk

h

〈ϕ , ω − Pω〉 = 0, ∀ϕ ∈ Xk
h ;(4.12)

and Π is the standard projection into Xk
0,h

〈∇ϕ , ∇(ψ −Πψ)〉 = 0, ∀ϕ ∈ Xk
0,h.(4.13)

We have the standard estimates for P and Π [6]

‖∇(φ− Pφ)‖+ ‖∇(φ−Πφ)‖ ≤ Chk‖φ‖Hk+1 ,(4.14)

and a maximum estimate [6]

‖ψ −Πψ‖1,∞ ≤ Chk| lnh|α‖ψ‖Wk+1,∞ ,(4.15)

where α = 1 if k = 1; otherwise α = 0.
Similarly, we define the two projection operators for the 3D finite element spaces.

P is the standard L2 projection into the space Y kh

〈φ , ω − Pω〉 = 0, ∀φ ∈ Y kh ;(4.16)

and we have the standard estimates [6]

‖∇(φ− Pφ)‖ ≤ Chk‖φ‖Hk+1 ,(4.17)

and Π is the projection into Y kτ,h

[φ , ψ −Πψ] = 0, ∀φ ∈ Y kτ,h.(4.18)

It was proved in [8] that

bφ−Πφe ≤ Chk‖φ‖Hk+1(4.19)

for any φ ∈ Y ∩ (Hk+1)3 and ∇·φ = 0.
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Error estimate for 2D case. We now proceed to estimate the error for the finite
element approximation (1.5) for the Navier-Stokes equation (1.4). Let ω and ψ be
the exact solution of (1.4). We denote the error functions by

ε = ω − ωh, δ = ψ − ψh .(4.20)

Since both the numerical solution and the exact solution satisfy (1.5), one has after
subtracting one from another,

〈ϕ , ∂tε〉 − 〈∇ϕ , (ωu− ωhuh)〉+ ν〈∇ϕ , ∇ε〉 = 0 ∀ϕ ∈ Xk
0,h ,

〈∇ϕ , ∇δ〉+ 〈ϕ , ε〉 = 0 ∀ϕ ∈ Xk
h .

(4.21)

Following the standard strategy for estimating the error in a finite element approx-
imation for the evolution type equation [17], we will first estimate the following
projections of the error terms in (4.20):

εh = P ε = P ω − ωh, δh = Π δ = Πψ − ψh.(4.22)

Using (4.12) we obtain from (4.21)

〈ϕ , ∂tεh〉 − 〈∇ϕ , (ωu− ωhuh)〉+ ν〈∇ϕ , ∇ε〉 = 0 ∀ϕ ∈ Xk
0,h ,

〈∇ϕ , ∇δ〉+ 〈ϕ , εh〉 = 0 ∀ϕ ∈ Xk
h .

(4.23)

Take ϕ = δh in the first equation of (4.23). The first term can be estimated in a
manner similar to that used to estimate (4.6)

〈δh , ∂tεh〉 = − d

dt

1
2
‖∇δh‖2 .(4.24)

The second term becomes

〈∇δh , (ωu− ωhuh)〉 = 〈∇δh , ω(u− uh)〉+ 〈∇δh , εuh〉
= 〈∇δh , ω∇⊥(δ − δh)〉+ 〈∇δh , εuh〉
= 〈∇δh , ω∇⊥(ψ −Πψ)〉+ 〈∇δh , εuh〉 .

In the second equality above we have used the fact that δh · ∇⊥δh = 0. Assuming
for the moment that ∥∥uh∥∥∞ ≤ C̃ ,(4.25)

the second order term can be estimated as

〈∇δh , (ωu− ωhuh)〉 ≤ C1‖∇δh‖
(
‖∇(ψ −Πψ)‖+ ‖ε‖

)
,

where

C1 = C

(
C̃ + ‖ω‖L∞

)
.(4.26)

Together with (4.23) and (4.24) we have

d

dt
‖∇δh‖2 ≤ 2ν〈∇δh , ∇ε〉+ C1‖∇δh‖

(
‖∇(ψ −Πψ)‖+ ‖ε‖

)
.(4.27)

To estimate the first term on the right hand side of (4.27), we take ϕ = εh in the
second equation of (4.23). Direct computation leads to

〈∇δh , ∇ε〉 = −〈εh , εh〉+ 〈∇δh , ∇(ε− εh)〉 − 〈∇εh , ∇(δ − δh)〉
= −〈εh , εh〉+ 〈∇δh , ∇(ω − Pω)〉 − 〈∇εh , ∇(ψ −Πψ)〉 .
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Plugging back into (4.27), we obtain

d
dt ‖∇δh‖

2 + 2ν‖εh‖2 ≤ C1‖∇δh‖
(
‖∇(ψ −Πψ)‖+ ‖∇(ω − Pω)‖+ ‖εh‖

)
− 2ν〈∇εh , ∇(ψ −Πψ)〉

≤ C1‖∇δh‖
(
‖εh‖+ hk(‖ψ‖Hk+1 + ‖ω‖Hk+1)

)
− 2ν〈∇εh , ∇(ψ −Πψ)〉 .

(4.28)

In the last inequality, we have used the estimate (4.14). To estimate the last term
on the right hand side of (4.28), we denote by εh,0 ∈ Xk

o,h the interior components
of εh and by εh,b the boundary components of εh, i.e.,

εh = εh,0 + εh,b .

Using the projection (4.13), we have

〈∇εh , ∇(ψ −Πψ)〉 = 〈∇εh,b , ∇(ψ −Πψ)〉 .
Direct estimation gives

〈∇εh,b , ∇(ψ −Πψ)〉 ≤ Ch‖ψ −Πψ‖1,∞
∑′ |εh,b|

≤ Chk+1‖ψ‖Wk+1,∞
∑′ |εh,b|(4.29)

with a | lnh| factor on the right hand side of (4.29) if k = 1. Here the summation∑′ is over the boundary nodes. The boundary nodes on the right hand side of
(4.29) can be directly estimated as follows:∑′ |εh,b| ≤ Ch−1/2

√∑′ |εh,b|2 ≤ Ch−3/2‖εh,b‖ ≤ Ch−3/2‖εh‖ .

Together with (4.28) we have

d
dt ‖∇δh‖2 + 2ν‖εh‖2 ≤ C1h

k‖∇δh‖
(
‖ψ‖Hk+1 + ‖ω‖Hk+1

)
+‖εh‖

(
C1‖∇δh‖+ Chk−1/2‖ψ‖Wk+1,∞

)
.

Using Hölder’s inequality, we have

d

dt
‖∇δh‖2 + ν‖εh‖2 ≤

C2
1

ν
‖∇δh‖2 +

Ch2k−1

ν

(
‖ψ‖2Wk+1,∞ + ‖ω‖2Hk+1

)
.(4.30)

The Grownwall inequality gives

‖∇δh(·, t)‖L∞((0,T ];L2) + ‖εh(·, t)‖L2((0,T ];L2) ≤ C2h
k−1/2

where

C2 = (‖ψ‖L∞((0,T ];Wk+1,∞) + ‖ω‖L∞((0,T ];Hk+1))e
C2

1T/ν/C1 .

Therefore

‖u− uh‖ = ‖∇⊥(ψ − ψh)‖ = ‖∇(ψ − ψh)‖
≤ ‖∇(ψ −Πψ)‖+ ‖∇δh‖ ≤ C2h

k−1/2 .
(4.31)

Using an inverse inequality, we have

‖u− uh‖∞ ≤ C2h
k−3/2 .(4.32)
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This justifies the a priori assumption (4.25) when k ≥ 2 by taking

C̃ = ‖u‖∞ + C2h
k−3/2 .

Therefore we have proved the the following theorem.

Theorem 2. Let (ψ, ω,u) be an exact solution to the Navier-Stokes equation (1.4)
and (ψh, ωh,uh) be the numerical solution of the finite element approximation (1.5)–
(1.6) with standard kth order finite element space Xk

h , k ≥ 2. Then we have

‖u− uh‖L∞((0,T ];L2) + ‖ω − ωh‖L2((0,T ];L2)

≤ Chk−1/2

(
‖ψ‖L∞((0,T ];Wk+1,∞) + ‖ω‖L∞((0,T ];Hk+1)

)
× exp CT (‖ω‖2∞+‖u‖2∞)

ν ,

(4.33)

where C is a constant that does not depend on h or the solution.

Error estimate for 3D case. As in 2D, we let ω and ψ be the exact solution to
(3.9) and define the error functions by

ε = ω − ωh, δ = ψ −ψh,(4.34)

and their projections by

εh = P ε = P ω − ωh, δh = Π δ = Πψ −ψh.(4.35)

Since both the numerical solution and the exact solution satisfy (3.11), we have

〈φ , ∂tεh〉+ 〈∇×φ , (ω×u− ωh×uh)〉+ ν[φ , ε] = 0 ∀φ ∈ Y kτ,h ,
[φh , δ] + 〈φh , εh〉 = 0 ∀φ ∈ Y kh .

(4.36)

Above we have used the property of the projection (4.16).
Take φ = δh in the first equation of (4.36). The first term becomes

d

dt

1
2
bδhe2 = 〈δh , ∂tωh〉 ,(4.37)

and the second term becomes
〈∇×δh , (ω×u− ωh×uh)〉 = 〈∇×δh , ω×(u− uh)〉+ 〈∇×δh , ε×uh〉

= 〈∇×δh , ω×∇×(δ − δh)〉+ 〈∇×δh , ε×uh〉 .
Assuming for the moment that ∥∥uh∥∥∞ ≤ C ,(4.38)

we have

〈∇×δh , (ω×u− ωh×uh)〉 ≤ C‖∇×δh‖
(
‖∇×(ψ −Πψ)‖ + ‖ε‖

)
.(4.39)

From (4.36), (4.37) and (4.39) we have

d

dt
bδhe2 ≤ 2ν[δh , ε] + Cbδhe

(
bψ −Πψe+ ‖ε‖

)
.(4.40)

To estimate the first term on the right hand side of (4.40), we take φ = δh in the
second equation of (4.36). Direct computation leads to

[δh , ε] = 〈εh , εh〉+ [δh , (ω −Πωh)]− [εh , (ψ −Πψ)] .(4.41)

The last term can be estimated by the inverse inequality,

[εh , (ψ −Πψ)] ≤ C

h
‖εh‖bψ −Πψe .(4.42)
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Plugging (4.42) and (4.41) back to (4.40), we have

d
dt bδhe2 + 2ν‖εh‖2 ≤ Cbδhe

(
bψ −Πψe+ ‖∇(ω − Pω)‖+ ‖εh‖

)
+ν Ch ‖εh‖bψ −Πψe .

(4.43)

Using the estimates (4.17) and (4.19) for the first two terms on the right hand side
of (4.43) we have

d

dt
bδhe2 + ν‖εh‖2 ≤ Cbδhe2 + Ch2k−2 .(4.44)

This gives

bδhe ≤ Chk−1 .(4.45)

Using an inverse inequality, we are able to justify the a priori assumption (4.38)
when k ≥ 2. We now summarize the above arguments in the following theorem.

Theorem 3. Let (ψ,ω,u) be an exact solution to the Navier-Stokes equation (3.9)
and (ψh,ωh,uh) be the numerical solution of the finite element approximation
(3.11)–(3.12) with standard kth order finite element space Xk

h , k ≥ 3. Then we
have

‖u− uh‖L∞((0,T ];L2) + ‖ω − ωh‖L2((0,T ];L2) + ‖∇·ψh‖L∞(0,T,L2)

≤ Chk−1

(
‖ψ‖L∞((0,T ];Hk+1) + ‖ω‖L∞((0,T ];Hk+1)

)
× exp

CT (‖ω‖2∞ + ‖u‖2∞)
ν

.

(4.46)

Here C is a constant that does not depend on h or the solution.

We remark that an h1/2 order shaper estimate can be improved in (4.46), pro-
vided the following maximum norm estimate for the projection of Π in (4.18) is
true:

bψ −Πψe∞ ≤ Chk| lnh|α‖ψ‖Wk+1,∞ ,

where

bψe∞ = ‖∇ · ψ‖∞ + ‖∇×ψ‖∞ ,
α = 1 if k = 1; otherwise α = 0.

5. Concluding remarks

We presented a very simple, efficient and accurate finite element method for the
unsteady incompressible Navier-Stokes equation (NSE) in vorticity-vector potential
(stream function in 2D) formulation. The standard continuous finite element space
with kth degree polynomials is used for both the vorticity and vector potential. A
near optimal error estimate of hk−1/2 is obtained for both velocity and vorticity.

The efficiency of the method results from the explicit time stepping procedure
that we described in Section 1 for 2D and in Section 2 for 3D. The viscous term
is treated explicitly and the boundary vorticity is determined by a local explicit
formula from the vector potential (stream function) via the kinematic relation at
no additional cost. The resulting momentum equation is completely decoupled from
the kinematic equation. There is no iteration between the vorticity and the vector
potential (stream function). At each time step or Runge-Kutta stage the main
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computation involves solving a standard Poisson equation and inverting a standard
mass matrix. In the 3D case, the stiffness matrix is of div-curl form and is used
to achieve the solenoidal conditions for the vorticity and vector-potential. This is
a key difficulty in designing efficient numerical methods for NSE for 3D. In the
case when the domain is a polygon, the div-curl form stiffness matrix is reduced
to the standard stiffness matrix for the vector Poisson equation. Standard FEM
packages with a Poisson solver can be easily modified to compute the unsteady
viscous incompressible flow.

A finite difference version of the above scheme has been studied in detail and
successfully used in many applications [9, 10, 11]. The time stepping follows exactly
the same steps in the essentially compact fourth difference scheme [10]. A varia-
tional formulation and finite element approximation give a very general, natural,
and clean way to implement the above methodology. It overcomes the difficulty of
finding an accurate local vorticity formula for a curved boundary, especially in the
3D case.
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