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Abstract

In this paper� we review some recent progress made in ��� �� �� on �nite di�erence schemes
for viscous incompressible 	ows using vorticity formulation
 The main purpose of this series of
papers ��� �� �� is to resurrect the idea of using local vorticity boundary condition for unsteady
calculation
 The emphasis is on simplicity of the methods
 Three main issues will be discussed�
e�cient timestepping procedures and cell Reynolds number constraints� e�cient methods in
�D on nonstaggered grids and e�cient high order methods using compact di�erencing


� Introduction

In this paper� we review some recent progress made in ��� �� �� on �nite di�erence schemes for
viscous incompressible 	ows using vorticity formulation
 The main purpose of this series of papers
��� �� �� is to resurrect the idea of using local vorticity boundary condition for unsteady calculation

The emphasis is on simplicity of the methods
 It is very important in these methods to use
explicit treatment of the viscous term
 Therefore questions on stability and cell Reynolds number
constraints have to be addressed
 We do this in Section �
 Section � is about �D nonstaggered
grids� and in Section � we present stable and e�cient �th order schemes using compact di�erencing


� Basic issues� Local vorticity boundary condition� cell Reynolds
number and equivalent MAC formulation

The �D NavierStokes equation in vorticity streamfunction formulation reads� �u � �u� v��

�t� � �u�r�� � ��� �

�� � � �

u � ��y� � v � �x�

��
��

with the boundary condition

� � ��
��
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� � �
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��� Local vorticity boundary conditions

At the grid points� ��
�� is discretized using�

d�

dt
� �Dy� �Dx�� �Dx� �Dy� � ��h� �

�h� � � �
��
��

where �Dx� �Dy are the standard centered di�erences and �h is the standard �point Laplacian
 We
will use i and j to number the grid lines in the x and y directions respectively� with i � � at the
boundary �y and j � � at �x
 The no penetration boundary condition � � � is imposed on � in
the solution of the discrete Poisson equation
 The noslip condition is imposed �say on �x� via�

�i�� � �i���

��y
� � � ��
��

where �i���� refers to the �ghost� grid point outside of the computational domain
 Since �i�� �
�i���� � �i���� � �� ��
�� implies

�i�� � ��h��i�� �
�i���� � ��i�� � �i����

�x�
�
�i�� � ��i�� � �i���

�y�
�

�

�y�
�i�� ��
��

which is the wellknown Thom�s formula ����
 Many variants of Thom�s formula were summarized
in ���


Explicit time�stepping procedure� Here we use forward Euler as an illustration
 The fully
discrete scheme�

�n�� � �n

�t
� �un � rh��n � ��h�

n � for i� j � � �

�h �
n�� � �n�� � for i� j � � �

�n��j� � � �

Dn�
n��j� � �

��
��

can be realized by a simple threestep marching procedure� Given f�n
i�jg� f�

n��
i�j g is computed by�

Step �� Update vorticity at the interior grid points by

�n�� � �n

�t
� �Dy�

n �Dx�
n � �Dx�

n �Dy�
n � ��h�

n � ��
��

Step �� Solve

�h�
n�� � �n�� � ��
��

with the boundary condition� �n��j� � �


Step �� Update vorticity at the boundary using

�n��
i�� �

�

�y�
�n��
i�� � �n��

��j �
�

�x�
�n��
��j � ��
��
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The key here is that ��
�� can be solved without knowing the boundary value of �n��
 Hence there
is no need to iterate between �n�� and the boundary value of �n��
 At every time step� only one
standard Poisson solve is required


This is a very simple method
 It is spatially second order accurate� and higher order accuracy
in time can be achieved by replacing forward Euler with higher order RungeKutta ���
 A natural
question arises� Why isn�t this method more popular� In fact� methods like this were very popular
in the ���s and early ���s
 But many di�culties and controversies were encountered and were not
resolved even until recently
 The situation at that time was reviewed in ����
 Beginning at the early
���s� global vorticity boundary conditions were invented to overcome the problems encountered
earlier ���� ��
 Since then� global vorticity boundary conditions have dominated the �eld� and local
methods such as the one described above were largely abandoned
 This is very clearly re	ected in
the review articles of Gresho ��� �� and the recent book of Quartapelle ����


As we emphasized in ���� the di�culties mentioned earlier were largely due to the fact that the
viscous term is treated implicitly in almost all early applications of the local vorticity boundary
condition
 As a result� a coupled system involving both interior and boundary values of vorticity
and streamfunction has to be solved at each time step� and this is the source of most complications

The above timestepping procedure avoids this problem
 But since the viscous term was treated
explicitly� one naturally worries about the stability constraint on the time step size
 To see whether
this is a problem� let us compare

�t� �
�x

U
� �t� �

�

�

�x�

�
��
��

The �rst is the time step given by standard convective CFL condition and the second comes from
the viscous term� U is the maximum of velocity
 We have that if the cell Reynolds number

Rc �
U�x

�
� � ��
���

then

�t� � �t� ��
���

i
e
 the stability constraint coming from the viscous term is less severe than the one from the
convective term
 Remember that we do want to obey the convective stability constraint since we
are interested in accurately following the dynamics of the 	ow


Another cell Reynolds number restriction comes from the following consideration
 It is well
known that if we use second order centered di�erence in space and forward Euler in time for the
simple advection equation

ut � aux � � ��
���

the resulting scheme is unconditionally unstable
 This has the consequence that for the advection
di�usion equation

ut � aux � �uxx ��
���

this scheme is stable only under the constraint

�t

�
a�

��
�

��

�x�

�
� � ��
���
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Therefore we must have

�
�t

�x�
�

�

�
� and �t �

��

a�
��
���

The �rst condition in ��
��� is the standard di�usive constraint on time steps
 The second one
re	ects the fact that the scheme is unstable if � � �


From a slightly di�erent point of view� if we demand the second condition in ��
��� to be less
restrictive than the standard di�usive condition� we should take

��

a�
�

�x�

��
� i
e
 Rc �

a�x

�
� � ��
���

This cell Reynolds number constraint has often been used as an argument against using centered
di�erencing for the convection term at high Reynolds number


We remark that this cell Reynolds number problem is special to incompressible 	ows
 For
viscous compressible 	ows� the thickness of the shock layers is on the order of Re��
 Therefore
the cell Reynolds number is limisted by accuracy considerations
 In other words� resolving viscous
shock layer is intrinsically di�cult
 However for incompressible 	ows� the thickness of the shear
layers are on the order of Re���� for �D and Re���� for �D
 Therefore in principle at high enough
Reynolds number� accuracy considerations should not present a constraint for the cell Reynolds
number
 Any cell Reynolds number constraint can only be a consequence of the sti�ness of the
method


At a �rst sight� ��
��� and ��
��� contradict each other and the method seems doomed
 However�
what causes the cell Reynolds number constraint ��
��� is the fact that the stability region of the
forward Euler method does not contain any part of the imaginary axis
 Same is true for the standard
twostage second order explicit RungeKutta methods� but not for �rd and �th order ones
 The
Fourier symbol for the centered di�erence operator �a �Dx � �D�

x is C�	� � ia sin ��x � ��
�x�

sin� �
� 


Therefore if we use �th order RungeKutta in time� the two stability conditions are

a�t

�x
� C�� ��

�t

�x�
� C� ��
���

where C� and C� are some constants �for example� they can be taken as �
��
 There is no cell

Reynolds number constraint imposed by stability considerations
 Same conclusions can be drawn
for the �rd order RungeKutta method
 Indeed in the calculations presented in ��� ��� the cell
Reynolds number was as high as ��� and even ���


Remark �� Global vorticity boundary condition� Strictly speaking� incompressible 	ows are
nonlocal and vorticity boundary conditions cannot be truly local
 This is one reason why global
vorticity boundary conditions are preferred in the literature
 When we refer to local boundary
conditions� it is a purely a numerical object
 We call a vorticity boundary condition local if
boundary points are not coupled directly
 In other words� one does not have to solve a coupled
system in order to evaluate the boundary values of vorticity


It is shown in ��� that Anderson�s global vorticity boundary conditions ��� can always be written
as local ones if interpreted slightly di�erently
 Global vorticity boundary conditions discussed in
���� are necessary only because the viscous term is treatly implicitly
 These methods su�er from
extreme complexity� both in implementation and in execution
 This is particularly true in �D
 As
we discussed earlier� if the cell Reynolds number is not too small� this complexity can be avoided
entirely by treating the viscous term explicitly
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Remark �� Low cell Reynolds number calculation� In situations when the cell Reynolds
number has to be small� such as nearly steady or Stokes 	ows� global vorticity boundary conditions
have to be used to avoid sti�ness
 From a computational point of view� this situation is more
di�cult than the case when the 	ow is very dynamic although the physical 	ow may very well be
simpler
 Better fast solvers will have to be developed to implement the global vorticity boundary
conditions


Remark �� Connection with MAC scheme� MAC scheme is the prototype in the primitive
variable formulation
 In �D it is shown in ��� that they are equivalent to the vorticity methods
��
���
��� There is a very natural way of de�ning discrete vorticity and streamfunction at the MAC
grid points which will yield the same values as the ones computed using ��
���
��
 This gives an
alternative way of understanding the numerical boundary conditions
 For example� under this�
Thom�s formula is translated to the re	ection boundary condition used in MAC scheme Orszag
Israeli�s formula is translated to the formula of Peyret and Taylor ����


� Finite di�erence methods on �D non�staggered grids

It is wellknown that unlike the primitive variable formulation� the various vorticity formulations
di�er drastically between �D and �D
 This has always been regarded as a disadvantage for the
vorticitybased numerical methods particularly since the �D situation is often far more complicated
than �D


Consider the incompressible NavierStokes equation in vorticity form�

��

�t
�r����iu� � ��� �

� � r�u � r�u � � �

u�x� �� �u��x� �

��
��

We introduce the vector potential � such that

u � r�� �

Unlike streamfunction in �D� vector potential in �D is far from being uniquely de�ned� If � satis�es
the above relation and 
 is a smooth scalar function� so does � � r

 This is a key di�erence
between �D and �D


Since � � r�u� we have

� � r��r��� � r�r��� ��� � ��
��

From a computational point of view� it is desirable to decouple the three components of ��
��
 This
essentially forces us to choose the gauge of � such that

r�� � � � ��
��

This does not seem to be a progress since now ��
�� couples the three components of � together

However if the numerical method guarantees

r�� � �

then it is enough to have

r��
���
�	

� � �

Esaim� Proceedings� August ����� Vol� �� ����� pp� ������	



W� E et al� � Finite Di�erence Schemes for Incompressible Flows in Vorticity Formulations ���

in order to ensure ��
��

This is the new di�culty that arises in �D for designing e�cient numerical methods in any ���

formulations�namely the enforcement of the three divergencefree conditions�

r�� � �� r�u � �� r�� � � ��
��

New vorticity�vector potential formulation� We review the vorticityvector potential formu
lation presented in ��� which is particularly suited to our purpose of constructing e�cient �nite
di�erence schemes
 For simplicity of presentation we will take the computational domain to be
! � fx� � �g with � � �! � fx� � �g
 Extension to more general domains is quite straightfor
ward
 We impose the boundary condition�

u��x�� x�� �� � � � u��x�� x�� �� � u�b�x�� x�� � u��x�� x�� �� � u�b�x�� x�� � ��
��

or in shorthand�

uj� � ub� ub �n � ��

where n � ��� �� ��
 Again we de�ne the vector potential � by�

u � r�� � ��
��

Proposition� ��
�����
�� is equivalent to

��

�t
�r�����r���� � ��� �

��� � � �
��
��

with boundary conditions

�� � �� � � �
���
�x�

� � � on �

�� �
�u�b
�x�

�
�u�b
�x�

�
���
�x�

�
���
�x�

� u�b �
���
�x�

�
���
�x�

� u�b � on � ��
��

and initial condition

���x� � r�u��x� � ��
��

The proof of this result is given in ���

For more general situations the boundary condition ��
�� should be replaced by a Dirichlet

boundary condition for the tangential components of � and Neumann boundary condition for the
normal component of �
 Similarly ��
�� should be replaced by the normal component of the ��u
relation and the tangential components of the ��u relation


E�cient di�erence schemes and local vorticity boundary condition in �D
 The numerical
grid is de�ned by !h � f�xi� yj� zk�� xi � i�x� yj � j�y� zk � k�z� i� j � Z� k � Z�g
 For boundary
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conditions� we need to de�ne the �ghost� points� f�xi� yj � z���� i� j � Z� z�� � ��zg
 We will use
the di�erence operators�

eDxg�x� y� z� �
g�x � �x� y� z� � g�x��x� y� z�

��x

D�
xg�x� y� z� �

g�x � �x� y� z� � �g�x� y� z� � g�x��x� y� z�

�x�
�

Similarly we de�ne eDyg� D�
yg� etc


We �rst describe the semidiscrete version of the method
 In the interior of !h �i
e
� k � ��� we
use

��

�t
� �rh�����r���� � ��h� �

��h� � � �

u � �rh�� �

��
���

The di�erence operators appeared here are de�ned by

�h � D�
x � D�

y � D�
z � �rh � � eDx� eDy� eDz� �

The �rst set of boundary conditions� to be supplemented to the Poisson equations for �� is

���xi� yj � �� � ���xi� yj � �� � � �
���xi� yj � z��� ���xi� yj � z���

��z
� � � i� j�� Z � ��
���

Given f��xi� yj� zk�� i� j � Z� k � �g� we can solve ��� � � together with ��
��� to obtain
f��xi� yj � zk�� i� j � Z� k � �g
 In order to update �� we need its numerical boundary conditions

These are to be obtained from the velocity boundary condition


First of all ��j� can be readily evaluated�

���x�� x�� �� �

�
�u�
�x�

�
�u�
�x�

�
�x�� x�� �� �

�
�u�b
�x�

�
�u�b
�x�

�
�x�� x�� � ��
���

Next we notice that ��
��� implies already that

u� �
���
�x�

�
���
�x�

� � on � �

so only two velocity boundary conditions are left �the two tangential ones��

���
�x�

�
���
�x�

� u�b �
���
�x�

�
���
�x�

� u�b ��
���

They should give the boundary condition for the tangential components of �

Approximate ��
��� by

� eDx�����xi� yj� z�� �
���xi� yj� z�� � ���xi� yj� z���

��z
� u�b�xi� yj� ��
���

and

���xi� yj � z��� ���xi� yj � z���

��z
� � eDx�����xi� yj� z�� � u�b�xi� yj� ��
���
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These formulas de�ne f���xi� yj� z���� i� j � Zg and f���xi� yj � z���� i� j � Zg�

���xi� yj� z��� � ���xi� yj� z��� ��z
�
� eDx�����xi� yj� z�� � u�b�xi� yj�

�
��
���

���xi� yj� z��� � ���xi� yj� z��� ��z
�
� eDx�����xi� yj� z�� � u�b�xi� yj�

�
��
���

Now we can evaluate ��� �� at ��

���xi� yj� z�� � ��D�
x � D�

y � D�
z����xi� yj � z��

� �D�
z���xi� yj � z�� � �

���xi� yj � z�� � ���xi� yj � z���

�z�

� �
�

�z�
���xi� yj � z�� �

�

�z

� eDx����xi� yj� z�� � u�b�xi� yj�
� ��
���

���xi� yj � z�� � ��D�
x � D�

y � D�
z����xi� yj� z��

� �D�
z���xi� yj � z�� � �

���xi� yj � z�� � ���xi� yj� z���

�z�

� �
�

�z�
���xi� yj � z�� �

�

�z

� eDx����xi� yj� z�� � u�b�xi� yj�
�
�

��
���

These are the analog of Thom�s formula for �D problems
 This completes the description of the
semidiscrete scheme


For the fully discrete scheme� it is important to treat the viscous terms explicitly
 This point
was discussed at length in ���


This is clearly a very e�cient method
 At every step or RungeKutta stage� only three separate
scalar Poisson equations are solved
 Moreover� standard fast Poisson solvers can be used


Remark �� Discretization of the convective terms� It turns out the discretization of the
convective term near the boundary becomes much more of an issue in �D
 This is due to the special
structure of the error when local vorticity boundary conditions are used
 This is discussed carefully
in ���


Remark �� Importance of the divergence�free condition for vorticity
 A variant of this
method was introduced in ��� in which the divergence free condition for vorticity was enforced
directly through boundary conditions
 It was found that this drastically improved the accuracy of
the divergence of vorticity� but not the overall results
 An explanation was given in ���


� Essentially compact �th order schemes 	EC�


In this section we present a very e�cient �th order accurate compact scheme in the vorticity
formulation
 For simplicity of presentation we will restrict ourselves to �D
 Extension to �D can
be found in ���


We �rst discuss the treatment of the Stokes part� treating the nonlinear convection terms as if
they were some known forcing functions
 We will use the notation� f � �x�u�� � �y�v�� and write
the vorticity transport equation as

��

�t
� ��� � f ��
��
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The most obvious and wellknown compact discretization of ��
�� is�
� �

h�

��
�h

�
��

�t
� �

�
�h �

h�

�
D�

xD
�
y

�
� �

�
� �

h�

��
�h

�
f� ��
��

We have assumed� without loss of generality� that �x � �y � h

��
�� is an O�h�� approximation to ��
��
 Similarly we discretize the kinematic equation relating

vorticity to streamfunction � using�
�h �

h�

�
D�

xD
�
y

�
� �

�
� �

h�

��
�h

�
� ��
��

So far it has been completely standard
 We now come to the boundary conditions
 Assume
that the mesh is as depicted in Fig
 �
 The no normal 	ow condition translates to

�j� � �

In order to obtain the numerical values at the �ghost points� outside the physical domain !� we
use the noslip condition ��

�n j� � � twice at the physical boundary � � �x � �y� once using a �th
order onesided approximation� once using a �th order centered approximation
 For example� at
the boundary �y we have�

��

�x

�
��j

	
������j � �����j � �����j � ����j � ���j

��h
��
��

�
��

�x

�
��j

	
����j � �����j � ����j � ���j

��h
��
��

Consequently� we have

����j � ����j � ����j �
�

�
���j � �h

�
��

�x

�
��j

��
��

����j � �����j � �����j �
�

�
���j � ��h

�
��

�x

�
��j

��
��

To evaluate the vorticity at the boundary� we use a �th order approximation of � � �� � �xx�

���j �
�

��h�

�
�������j � ���j� � �����j � ���j�

�
��
��

Using ��
��
��� we obtain

���j �
������j � �����j � ����j

��h�
�

��

�h

�
��

�x

�
��j

��
��

This is known as Briley�s formula ���

Now the velocity u � �u� v� can be evaluated readily at all interior grid points by using the

standard �th order accurate formulas�

u � � eDy

�
� �

h�

�
D�

y

�
� v � eDx

�
� �

h�

�
D�

x

�
�� ��
���
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or some standard compact di�erence operators
 On the boundary �� we use naturally

u � �� v � �� ��
���

To treat the convection terms� we note that�
� �

h�

��
�h

� eDx

�
��

h�

�
D�

x

�
� eDx

�
� �

h�

�
D�

y

�
�
h�

��
�h

eDx � O�h�� � ��
���

Hence we can approximate
�

� � h�

���h

�
f to �th order using

�
��

h�

��
�h

�
f

�
�

� �
h�

��
�h

�� eDx

�
� �

h�

�
D�

x

�
�u�� � eDy

�
� �

h�

�
D�

y

�
�v��

	
� O�h��

� eDx

�
� �

h�

�
D�

y

�
�u�� � eDy
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The operator appearing in the �rst term of the right hand side of ��
��� has a �point compact
stencil� and so does the operator in the second term
 The third term� however� is not compact

Nevertheless this does not present any problem computationally for two reasons� In the interior of
the domain �for i� j � ��� this term can be evaluated very e�ciently since the convection terms will
be treated explicitly in the fully discrete scheme
 Near the boundary �i� or j � ��� we need the
boundary value of u eDx� � v eDy� on �
 In the present case� we can set

u eDx� � v eDy�j� � � ��
���

and still preserve �th order accuracy
 More general situations� including the treatment of in and
out	ow boundary conditions� are discussed in ���


Finally� we discuss the temporal discretization procedure
 Again we will use forward Euler as an
illustration
 The computations reported in ��� were done using the classical �th order RungeKutta


Initialization� Given f��
ijg� compute

�
� �

h�

��
�h

�
�� � "��

Time�stepping� Given f�n
ijg� we compute f�n��

ij g via the following steps


Step �� Update f"�n��
i�j gi��� j�� using

"�n�� � "�n

�t
� eDx

�
� �

h�

�
D�

y

�
�un�n� � eDy

�
� �

h�

�
D�

x

�
�vn�n�

�
h�

��
�h�un eDx�

n � vn eDy�
n� � �

�
�h �

h�

�
D�

xD
�
y

�
�n ��
���
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Step �� Solve for
n
�n��
i�j

o
i���j��

using

�
�h �

h�

�
D�

xD
�
y

�
�n�� � "�n�� ��
���

with the boundary condition
�n��j� � ��

Compute �n�� at the �ghost points� using ��
��


Step �� Solve for
n
�n��
i�j

o
i���j��

using

�
� �

h�

��
�h

�
�n�� � "�n�� ��
���

with the boundary condition ��
��


Step �� Update the velocity using

un�� � � eDy

�
� �

h�

�
D�

y

�
�n�� � vn�� � eDx

�
� �

h�

�
D�

x

�
�n�� ��
���

or some compact �th order di�erencing ��� for i� j � �� and un��j� � �� vn��j� � �

The e�ciency of this method is obvious
 Only two Poissonlike equations� namely ��
��� and

��
���� are solved at each step or each stage of the RungeKutta method
 Both can be solved using
the standard fast Poisson solvers developed for the second order schemes
 We have seen consistently
that this scheme costs slightly more than twice the cost of the second order scheme for each time
step


This scheme is named essentially compact �EC� for short� since the only noncompact part
occurs in the treatment of the convection terms� and the noncompact di�erencing does not increase
the need for numerically supplemented boundary conditions
 So the most attractive features of the
compact schemes are retained
 Numerical results presented in ��� demonstrate that this scheme is
substantially better than the second order scheme discussed in ��� in the ability to resolve boundary
layers� small scales and even gross features


Proof of 	th order convergence� For any � � �� let �e � L����� T � C
���"!�� be the solution of
the NavierStokes equation ��
����
�� and uh be the approximate solution of EC�� then we have

sup
��t�T

ku��� t� � uh��� t�kL� � Ch� sup
��t�T

k�e��� t�k
�
C�����	

The proof of this result for very smooth solutions �i
e
 right hand side replaced by higher norms�
can be found in ���
 The proof under weaker regularity assumptions as stated above can be obtained
directly from the authors


� Numerical results

We present some numerical results using the second order schemes presented here for the standard
test problem� the driven cavity 	ow
 We refer to ��� for numerical results on EC�
 The setup of the
problem is standard� velocities vanish everywhere at the boundary except at the upper boundary
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where the xcomponent of the velocity is � for �D problem and ��x��� � x�� for �D
 The initial
data is take as zeros �impulsive start� for �D and ���x� y� � ��x��� � x���y� � y�� for �D ��� ��


The set of results are reported� one for �D and one for �D
 Figure � is the contour plot of
vorticity in �D at Reynolds number ���� t � �
 Figure � is the contour plot of streamwise vorticity
at the center plane x � ��
 Here Reynolds number is ����� t���
 In ���� we used two other
di�erent methods to compute this problem and obtained very similar results


� Conclusions

We discussed three basic issues for �nite di�erence methods in vorticity formulation using local
vorticity boundary condition� what makes them work# how to make them work in �D and how
to make simple �th order schemes
 These discussions are not limited to �nite di�erence schemes

They apply equally well to �nite element and �nite volume methods which are more suited for
complex geometries
 We will leave these extensions to future publications
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Figure �� Contour plot of vorticity at Reynolds number ��� computed using second order scheme

Other parameters� n � ���� t � �
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CONTOUR FROM  -5.0000     TO   4.7500     CONTOUR INTERVAL OF  0.25000     PT( 3,3)= -0.74933    

Figure �� Contour plot of �� at the center plane fx � �
�g computed using second order �D scheme


Parameters� Re � ����� t � ��� CFL � �t
�x � �����x � �
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