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A new class of implicit high-order non-oscillatory time integration schemes is intro-
duced in a method-of-lines framework. These schemes can be used in conjunction
with an appropriate spatial discretization scheme for the numerical solution of time
dependent conservation equations. The main concept behind these schemes is that the
order of accuracy in time is dropped locally in regions where the time evolution of the
solution is not smooth. By doing this, an attempt is made at locally satisfying mono-
tonicity conditions, while maintaining a high order of accuracy in most of the solu-
tion domain. When a linear high order time integration scheme is used along with a
high order spatial discretization, enforcement of monotonicity imposes severe time-
step restrictions. We propose to apply limiters to these time-integration schemes, thus
making them non-linear. When these new schemes are used with high order spatial
discretizations, solutions remain non-oscillatory for much larger time-steps as
compared to linear time integration schemes. Numerical results obtained on scalar
conservation equations and systems of conservation equations are highly promising.

KEY WORDS: High resolution schemes; non-linear time integration; time-limiting.

1. INTRODUCTION

In this paper, we consider high resolution numerical schemes for the solution
of hyperbolic conservation laws. Currently, the most common approach in the
numerical solution of time-dependent partial differential equations is the method-of-
lines. In this frame-work, spatial discretization is performed over a suitable domain
and the resulting system of ordinary differential equations (ODE) in time is solved
using standard time-integration schemes. Since this may result in a stiff set of ODE,
for many practical applications implicit time integration may be preferred.



It is well known that solutions of linear high order numerical schemes for con-
servation laws are necessarily non-monotone near regions of discontinuities and
high solution gradients. Research on high resolution finite difference and finite
volume schemes has mainly concentrated on controlling the spatial interpolant. For
example, Total Variation Diminishing (TVD) [4] schemes reduce the order of
accuracy of spatial interpolation near discontinuities and extrema, the Essentially
Non-Oscillatory (ENO) [11] type schemes use an adaptive stencil for spatial inter-
polation, etc. These approaches essentially make the spatial scheme non-linear, thus
transcending the restrictions imposed on linear high order schemes.

However, ensuring the non-oscillatory behavior of high order schemes imposes
a severe time step restriction. For explicit schemes, this restriction may not be much
more severe than the linear stability limit. Gottlieb, Shu, and Tadmor [2] have
shown that even implicit time integration schemes (in a method-of-lines framework)
become conditionally TVD when the order of accuracy in time is higher than one.
In the present work, we review some commonly used implicit schemes from the
TVD view-point in a method-of-lines framework. Then we propose concepts of
applying limiters to popular time integration schemes, thus making them non-linear.
The main objective is to enable the use of larger time-steps as compared to linear
time integration schemes. This is followed by a demonstration (using a very simple
case) of how these schemes exactly work. The final section of the paper presents
numerical results and conclusions.

2. MOTIVATION

Consider a scalar conservation law with initial conditions:

ut+f(u)x=0, u(x, 0)=uo(x) x ¥ I, t ¥ R+ (1)

For convenience of analysis, we assume uo(x) to be periodic in a finite interval I.
Assuming a spatial grid consisting of volumes [x i − 1

2
, x i+1

2
] and dividing time into

intervals [0, t1,..., tn, tn+1,...], a numerical scheme for Eq. (1) of the form: (Note:
ūn

i = 1
Dx >xi+1

2
xi − 1

2

u(x, tn) dx)

ūn+1
i =H(ūn

i − k, ūn
i − k+1,...., ūn

i+k) (2)

is said to be monotone if

“H
“uj

(ui − k, ui − k+1,...., ui+k) \ 0 -i − k [ j [ i+k (3)

Harten et al. [6] have shown that converged solutions to conservative mono-
tone schemes for Eq. (1) always correspond to physically acceptable states. But it is
also well known that monotone schemes for the solution of conservation laws are
only of first order of accuracy in space and time. Hence, less restrictive monotoni-
city conditions are usually used, the most common among which is the Total
Variation Diminishing (TVD) condition [4].
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The Total Variation of a numerical solution at a time level tn is defined by,

TV(u(., tn))= C
.

i=−.

|u(xi+1, tn) − u(xi, tn)|

A numerical scheme for the solution of Eq. (1) is said to be TVD if the Total
Variation does not increase in time. That is,

TV(u(., tn+1)) [ TV(u(., tn))

TVD schemes are based on the fact that oscillations always add to the total variation
and thus oscillations cannot grow indefinitely if the scheme is TVD [8]. The TVD
property is sufficient to guarantee the convergence of a conservative numerical
scheme to weak solutions of conservation laws. The TVD condition has the advan-
tage that it is simple to apply and it allows generic high order accuracy without
causing spurious oscillations.

The last decade has seen a lot of research in the development of non-oscillatory
schemes. Very high order accurate (in space and time) non-oscillatory numerical
schemes have been designed and satisfactorily applied in the solution of hyperbolic
problems. (For example, the UNO schemes of Harten et al. [5], the ENO and
WENO [11] schemes, the MP [12] schemes, etc.) But a severe penalty results from
the fact that these schemes are non-oscillatory only under severe time-step restric-
tions. (For example, the 3rd order WENO scheme even for the linear advection
equation has to be used with a CFL number less than 0.4 when used with explicit
time integration). One way of overcoming this would be to use implicit time inte-
gration. But, Gottlieb, Shu, and Tadmor [2] have shown that (in a method-of-lines
approach) implicit time integration schemes also become conditionally TVD when
the order of accuracy in time is higher than one. Hence the original objective
in choosing implicit time integration schemes is lost because of these time-step
restrictions.

2.1. TVD Limits for Implicit Schemes

We now review implicit time integration schemes in a method-of-lines frame-
work. This approach is similar to the one due to Shu et al. [1], where the analysis is
performed for explicit Runge Kutta schemes.

Spatial discretization of Eq. (1) would yield a system of ODEs in time, which,
we represent by,

ut=L(u) (4)

As mentioned earlier, a large number of highly accurate non-oscillatory spatial
discretizations are available in literature. These schemes become conditionally TVD
when used with an Euler explicit scheme (which is used as a basis for comparison).
Let Dt [ Dtee be the allowable time step for which the explicit Euler scheme is TVD.
I.e.,

||un|| \ ||un+Dt L(un)|| for Dt [ Dtee (5)

Note: The norm in question is the Total Variation semi-norm.
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Table I. TVD Limits for Some Existing Implicit Schemes

Methoda State update formula k

Imp. Euler un+1=un+Dt L(un+1) .

Imp. Trap un+1=un+Dt
2 [L(un)+L(un+1)] 2.0

Imp. BDF2 un+1=2Dt L(un+1)+4un − un − 1

3 0.5
SDIRK-2 u (1)=un+DtcL(u(1))

(c=
2 − `2

2 ) un+1=un+Dt[(1 − c) L(u(1))+cL(un+1)] 1
1 − 2c % 2.4142

a Imp. BDF2: Implicit Second Order Backward Difference Method, SDIRK-2:
2-Stage Singly Diagonally Implicit Runge Kutta Method.

This provides a good basis for evaluating other time integration schemes for
Eq. (4). Hence, any time integration scheme for Eq. (4) would yield a discrete
numerical scheme which will be conditionally TVD under a new time step restric-
tion, which we denote by Dt [ k Dtee. Shu et al. [1, 2] have carried out an analysis
for explicit Runge Kutta (RK) schemes. Shu’s results show that k [ 1 for high order
explicit RK schemes. We extend the same analysis to a few well known implicit
schemes. Further, Gottlieb, Shu, and Tadmor have also shown in [2] that implicit
RK and implicit multi-step methods of order higher than 1 have finite values of k
(or in other words, the resulting numerical schemes are conditionally TVD).

We have derived the value of k for some existing implicit schemes (Table I).
The details are given in the appendix. It is seen that only the implicit Euler method
(which is first order accurate) is unconditionally TVD. The Trapezoidal method
becomes non-monotone for a time-step twice that of the explicit Euler method and
the implicit BDF2 becomes non-monotone for half the time-step of the explicit
Euler method. The SDIRK-2 which is a 2 stage implicit method performs margi-
nally better than the Trapezoidal method. Hence, it becomes obvious that when
these schemes (though they are implicit) are used in the numerical solution of con-
servation equations, they still have severe time-step restrictions.

3. A NEW CLASS OF IMPLICIT TIME-LIMITED SCHEMES

In this section, 2 new schemes—the Limited-Trapezoidal (L-TRAP) and the
Limited-2 Stage Diagonally Implicit Runge–Kutta (L-DIRK2) will be presented.

3.1. The L-TRAP Scheme

Before presenting the details of our new scheme, it is useful to consider the h

method, which is a time-space decoupled method. Consider conservative and con-
sistent numerical flux functions (of any spatial order) corresponding to a non-
oscillatory scheme:

fn
j+1

2
=f(ūn

j − l1
, ūn

j − l1+1,..., ūn
j − l2 − 1, ūn

j − l2
), and

fn+1

j+1
2
=f(ūn+1

j − l1
, ūn+1

j − l1+1,..., ūn+1
j − l2 − 1, ūn+1

j − l2
).
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Table II. Family of Schemes for Fixed Value of h

Condition Method Accuracy TVD limit (k)

h=1.0 Imp. Euler 1st order .

h=0.5 Imp. Trap 2nd order 2.0
h=0.0 Exp. Euler 1st order 1.0

The well-known h method for the solution of Eq. (1) is given by:

ūn+1
j =ūn

j − y[(1 − h)(fn
j+1

2
− fn

j − 1
2
)+h(fn+1

j+1
2

− fn+1

j − 1
2
)] (6)

On immediate observation, we find that if we fix a constant value of h over the
whole domain, we get the schemes as shown in Table II, and the TVD limit is given
by k= 1

1 − h
.

This scheme can be written in the conservation form,

ūn+1
j =ūn

j − y(f̂j+1
2
− f̂j − 1

2
), (7)

where,

f̂j ± 1
2
=(1 − h) fn

j ± 1
2
+hfn+1

j ± 1
2

We propose a new numerical method, for which:

f̂j ± 1
2
=(1 − hj ± 1

2
) fn

j ± 1
2
+hj ± 1

2
fn+1

j ± 1
2
, with

hj ± 1
2
=0.5(hj ± 1+hj), hj, hj ± 1 ¥ [0.5, 1]

Here, hj is a real number between 0.5 and 1.0 and is defined for each cell j (the
definition of hj is given in the following subsections). Now, since f̂j ± 1

2
is a convex

combination of conservative and consistent numerical fluxes fn
j ± 1

2
and fn+1

j ± 1
2
, it is

itself conservative and consistent.
The idea then, is to define a hj, such that in regions where the solution is

smooth, we would use hj % 0.5, thus attaining second order accuracy in time locally.
In regions of high gradients, we would like a hj % 1.0, thus locally dropping the
time accuracy to first order. By doing this, an attempt is made at locally satisfying
the TVD condition. The definition of hj is based on the time evolution of the solution
at j, hence this method is no longer fully space-time decoupled. We term this method
the Limited-Trapezoidal method or the L-TRAP.

3.2. The L-DIRK2 Scheme

We propose a new 2-stage implicit scheme for the solution of Eq. (1). The
scheme is given by,

ū (1)
j =ūn

j − yc(f (1)
j+1

2
− f (1)

j − 1
2
)

ūn+1
j =ūn

j − y[(a21j+1
2
f (1)

j+1
2
− a21j − 1

2
f (1)

j − 1
2
)+(a22j+1

2
fn+1

j+1
2

− a22j − 1
2
fn+1

j − 1
2
)]
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where,

a21j ± 1
2
=c+hj ± 1

2
(1 − 2c),

a22j ± 1
2
=(1 − c)+hj ± 1

2
(2c − 1), hj ± 1

2
=0.5(hj+hj ± 1), hj ¥ [0, 1], c=

2 − `2

2

If we keep hj=h a constant at all points in the domain, the TVD limit is given by,
k= 1

h(1 − 2c) . It is seen that this scheme reduces to the second order (in time) SDIRK
[3] for h=1.0 giving a k=2.4142 and to a 2-stage first order unconditionally TVD
method if h=0. (Refer Appendix for details). Note that both these schemes are in a
method-of-lines framework.

Again, the basic idea is to locally drop the order of accuracy in regions of high
gradients and maintain second order accuracy in smooth regions. Hence, the local
hj is defined accordingly.

3.3. Definition of hj

The L-TRAP and L-DIRK2 schemes as defined in the previous sections are
general and this section presents just one of the ways by which a limiter could be
designed.

The definition for hj is inspired by the following lemma by Hyunh [7] for
quadratic interpolation: Given the data f(q1), f(q2) and the derivative f −(q1) or
f −(q2) at points q1 and q2, the resulting quadratic interpolant is monotone in [q1, q2]
if f −(q1), f −(q2) ¥ [0, 2s], where s=

f(q2) − f(q1)
q2 − q1 .

Hence, we check whether this monotonicity condition is satisfied (with respect
to the time derivative) at all points in the domain. For those points at which this
condition is satisfied, we assign hj % 0.5 for L-TRAP and hj % 1.0 for L-DIRK2,
thus allowing the local time accuracy to be second order. For points at which this
condition is not satisfied, a value of hj ranging from 0.5 to 1.0 for L-TRAP and hj

ranging from 1.0 to 0.0 for the L-DIRK2 is assigned. The procedure is as follows:
Let

sn+1
2j =

un+1
j − un

j

Dt

L(un
j )=1“u

“t
2n

j
=−

1
Dx

(fn
j+1

2
− fn

j − 1
2
)

L(un+1
j )=1“u

“t
2n+1

j
=−

1
Dx

(fn+1

j+1
2

− fn+1

j − 1
2
)

Define a parameter rj for each of the domain points with hj=1.0 − 0.5rj for the
L-TRAP scheme and hj=rj for the L-DIRK2 scheme. Hence, rj=1 for second
order accuracy and rj=0 for first order accuracy.
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For monotone quadratic interpolation L(un
j ) and L(un+1

j ) should lie in the
interval [0, 2sn+1

2j ]. This is true if,

L(un+1
j )* (L(un+1

j ) − 2sn+1
2j ) [ E and L(un

j )* (L(un
j ) − 2sn+1

2j ) [ E. (8)

E=0 would strictly be equivalent to the conditions of Hyunh’s lemma. An arbi-
trarily small and positive E (in this case E=1 × 10−10) is used to ensure that the
limiter does not turn on and off spuriously for small changes in the solution. Hence,
if Eq. (8) is satisfied, rj=1.0 is assigned and local second order accuracy is
approached.

If,

L(un+1
j )

(sn+1
2j +E)

[ − E1 or
L(un

j )

(sn+1
2j +E)

[ − E1 (9)

then, either or both of the quantities L(un
j ) and L(un+1

j ) are of the opposite sign as
sn+1

2j and hence the interpolant can become non-monotone. Hence, if Eq. (9) is
satisfied, rj=0 is assigned and hence the local accuracy is dropped to first order.
E1 is again arbitrarily small and positive. A value of 1 × 10−5 is used.

If Eqs. (8) and (9) are not satisfied, then we have a case which is analogous to
a situation where f −(q1) and f −(q2) are of the same sign as s, but either or both are
too steep. In such a case, an appropriate rj ¥ [0, 1] is assigned as follows:

rj=min 5 2sn+1
2j

L(un
j )+E

,
2sn+1

2j

L(un+1
j )+E

, 16 (10)

It becomes clear that rj % 0 at discontinuities and at extrema, since these would
be indistinguishable by the above procedure. This could introduce undesirable
clipping even at smooth extrema. This can be corrected by checking the spatial
interpolant. For example, if a MUSCL [13] spatial interpolation is used, we use the
strategy developed by Suresh et al. in [12] to preserve accuracy near extrema.
Given a highly accurate interpolated value at xj+1

2
, this method determines whether

spatial-limiting is required at xj+1
2

based on a 4 point spatial stencil. Hence if spatial-
limiting is not required for the current solution at xj+1

2
at time levels n and n+1, rj

is reset to 1.0. Note that if one uses the monotonicity preserving scheme of Suresh
et al. [12] for spatial discretization, the extra work required to reset the time-limiter
is minimal.

4. LINEAR AND NON-LINEAR STABILITY ANALYSIS

We present a linear stability and monotonicity analysis for a simple case. The
L-TRAP method is compared with the implicit Euler and Trapezoidal schemes for
the linear advection equation ut+ux=0 with a first order upwind discretization in
periodic space. This discretization is chosen because it is simple, linear and mono-
tone (in a semi-discretized sense). Let the CFL number be represented by s=Dt

Dx and
let the number of spatial points be N. Then, the L-TRAP (and related families of
schemes) would be given by:

un+1
j =un

j − s[(1 − hj+1
2
) un

j +hj+1
2
un+1

j − (1 − hj − 1
2
) un

j − 1 − hj − 1
2
un+1

j − 1 ]

Concepts and Application of Time-Limiters to High Resolution Schemes 145



This can be represented in matrix form (D[a, b] is a N × N periodic bi-diagonal
matrix with lower-diagonal elements aj and diagonal elements bj):

A[ − shj − 1
2
, 1+shj+1

2
] Un+1=B[s(1 − hj − 1

2
), 1 − s(1 − hj+1

2
)] Un

This can be represented as:

Un+1=MUn, where, M=A−1B (11)

Because of the linearity of the problem, one can completely determine the proper-
ties of these schemes based on the structure of the matrix M.

4.1. Linear Stability

Since the system is periodic, linear stability is equivalent to the spectral radius
of M being less than 1. For an initial condition consisting of a hat function,
(N=60, s=3.0, t=Dt) Fig. 1 shows the eigen-values of M. Note that M is a con-
stant matrix for all time-steps for implicit Euler and Trapezoidal methods, whereas,
for the L-TRAP case, it changes with time because the limiter is a function of time.
It is evident that all 3 schemes are linearly stable. In fact, it is easy to show that all

 –1.5 –1 –0.5 0 0.5 1 1.5

–1

–0.5

0

0.5

1

Real σ

Im
ag

 σ

Implicit Euler
Trapezoidal
L-TRAP
Stability Limit

Fig. 1. Eigen-value plot: s=3.0, N=60, t=Dt.
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1
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1.4

1.6

1.8

x

u

Implicit Euler
Trapezoidal
L-TRAP
Exact

Fig. 2. Numerical Solution: s=3.0, N=60, t=Dt.

3 schemes are unconditionally linearly stable. This figure gives evidence of the dis-
persion of the Trapezoidal method and the excessive damping of the implicit Euler
method. The L-TRAP method stays close to the Trapezoidal method, except for a
pair of eigen-values, which show damping. This is because the limiter (refer Sec.
3.3) senses the sharp discontinuities in time. Figure 2 shows the solution after 1 time
step. Since the TVD limit of the Trapezoidal method (with 1st order upwind in
space) is s=2.0, it exhibits oscillations in the numerical solution. The L-TRAP
scheme stays close to the Trapezoidal method in smooth regions and is thus less
dissipative than the implicit Euler method.

4.2. Monotonicity Analysis

Consider Eq. (11). It is then possible to write:

un+1
i = C

N

j=1
mi, ju

n
j

Now, monotonicity (refer Eq. (3)) is equivalent to ensuring that mi, j \ 0,
j={1,..., N}. It is known that:

Concepts and Application of Time-Limiters to High Resolution Schemes 147



• ;N
j=1 mi, j=1 from consistency, and

• Therefore, in a global sense, monotonicity is implied by L.(M)=1. If this
condition is satisfied, the scheme is rigorously monotone (since along with
consistency, this guarantees that mi, j \ 0 -i, j). Hence the numerical solu-
tion will be monotone for any initial condition.

However, this is a sufficient condition and not a necessary one for the monotone
behavior of numerical solutions. For example, if the initial data is smooth the Trap-
ezoidal method would give a smooth solution even if the time-step exceeds the
monotonicity limit. Hence, global monotonicity is not necessary in this case. The
focal point of the above argument is that we can afford to have a non-monotone
scheme (but linear stability is still required) in parts of the domain where the solu-
tion is smooth and enforce monotonicity in non-smooth regions. In terms of co-
efficients, this means that ;N

j=1 |mi, j | can be > 1 for some i.
On explicit construction of M, it is found that mi, j \ 0 for i ] j for all three

methods with 1st order upwinding in space. Also, the Determinant of A=|A| is
positive. Hence, we need to look at the positivity of only the diagonal elements mi, i.
We find that these are given by:

mi, i=
1

|A|
31 − s(1 − hi+1

2
)

1+shi+1
2

5D
N

k=1
(1+shk+1

2
)6+

s(1 − hi+1
2
)

shi+1
2

5D
N

k=1
(shk+1

2
)64

=
1 − s(1 − hi+1

2
)

1+shi+1
2

P1+
s(1 − hi+1

2
)

shi+1
2

P2, (clearly, 0 < P2 < P1)

=s(1 − hi+1
2
)5 P2

shi+1
2

−
P1

1+shi+1
2

6+
P1

1+shi+1
2

From this, we can make the following inferences:

• For the implicit Euler method, hi+1
2
=1 -i. Therefore, mi, j \ 0 -i, j. Hence,

L.(M)=1 and this method is unconditionally monotone.

• For the L-TRAP method, the limiter can ensure that in regions of large
gradients, hi+1

2
Q 1 and hence, mi, i \ 0 can be maintained. Since mi, j \ 0,

i ] j, un+1
i becomes a convex combination of un

j , j=1,..., N and we achieve
local monotonicity.

• For the Trapezoidal method, we find that

mi, i=
(1+s

2 )N − 1 (1 − s
2 )+(s

2 )N

(1+s
2 )N − (s

2 )N

therefore, when s > 2+E, (E Q 0 for large N), mi, i < 0 -i and the numerical
solution becomes non-monotone.

5. NUMERICAL RESULTS

We present numerical results for the linear advection equation, the Burgers’
equation and the one dimensional Euler equations. For all the results presented,
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LU-SGS [15] with Newton-type sub-iterations [9] is used to solve the implicit set
of equations at each time step. Before the start of each sub-iteration, hj is deter-
mined for all points in the domain and hj ± 1

2
is updated.

5.1. Linear Advection Equation

The first test case is the linear advection equation ut+ux=0, with periodic
boundary conditions and a smooth initial condition uo(x)=sin4(x

2 ) over a domain
[0, 2p]. This initial profile is convected one revolution over the uniform domain.
The number of spatial points is represented by N. This test case is chosen to dem-
onstrate the fact that smooth extrema are preserved and uniform second order
accuracy in time is achieved. A 5th order monotonicity preserving scheme (MP5)
[12] is used for spatial discretization. Figure 3 shows the solution after one period
of revolution for a domain with N=16 at a CFL number (represented by s=Dt

Dx ) of
0.5 using the L-DIRK2 scheme. It is observed that reasonable accuracy is achieved
even with this coarse spatial discretization. The extremum is clearly preserved and it
is found that the time-limiter sets itself to second order accuracy at all points at all
times. Figure 4 shows the L1, L2, and L. error norms for the L-TRAP and
L-DIRK2 schemes for s=0.5 for different levels of spatial discretizations. It is seen
that the errors are within range of (Dt)2 and (Dx)5. The main observation of this
exercise is that the schemes are uniformly second order accurate in time for all
evaluated cases and no spurious limiting is present at the smooth extremum.

0 1 2 3 4 5 6 7
–0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

u

Exact
Computed

Fig. 3. Linear advection, s=0.5, MP5 in space, N=16, periodic bc, 1 period of rev.
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Fig. 4. Error norms for linear advection s=0.5, MP5 in space, periodic bc, 1 period of rev.

The second case is a domain that comprises of a half-sine wave, a step function
and a sin4(x) distribution over a domain [0, 2p], comprising of 360 equally spaced
points. This initial condition is convected one revolution over the uniform domain.
Spatial discretization is done with the MP5 scheme. The L-TRAP (Fig. 5b) and
L-DIRK2 schemes (Fig. 5c) are compared with first and second order implicit
schemes. s=2.0 is used because it is high enough to demonstrate the large dissipa-
tion exhibited by the first order implicit Euler method and the non-linear instabili-
ties of the second order Trapezoidal and Backward difference methods (Fig. 5a).
Note that the CFL number corresponding to the TVD limit k=1 is s % 0.4 and
hence the TVD limit of the Trapezoidal scheme is s % 0.8 and the limit for the
BDF2 is even lower. It is seen that the limited schemes are less dissipative than the
first order method and less oscillatory when compared to the linear second order
methods.

5.2. Burgers’ Equation

The third test case is the inviscid Burgers’ equation ut+( u2

2 )x=0, with periodic
boundary conditions and a domain [0, 2p] of 100 equally spaced points. The initial
condition comprises of an expansion wave and a compression wave. This profile is
convected till t=2.0, before which the compression wave becomes a shock. The
MP5 spatial discretization scheme is used with s={u}max

Dt
Dx . Again, the implicit

Euler (Fig. 6a) method shows large dissipation and the linear second order time
integration schemes develop oscillations in the vicinity of the shock. It is seen that
the limited schemes resolve the expansion wave and the shock well.
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Fig. 5. Linear advection, s=2.0, MP5 in space, N=360, periodic bc, 1 period of rev.
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Fig. 6. Burgers’ equation, s=2.0, MP5 in space, N=100, periodic bc, t=2.0.

5.3. Euler Equations

The one dimensional Euler equations of gas dynamics are given by:

“U
“t

+
“F
“x

=0 (12)

where U, the vector of conserved variables and F, the flux vector are defined by,

U=˛ r

ru

e

ˇ , F=˛ ru

p+ru2

(e+p) u

ˇ
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r, u, p are density, velocity, and pressure respectively. e is the total energy per unit
volume given by,

e=
p

c − 1
+

ru2

2

The concepts of monotonicity as introduced in the earlier sections of the paper
cannot be rigorously defined for a non-linear system of equations like the Euler
equations. At best, one can extend the concepts of scalar equations and hope to
obtain non-oscillatory numerical solutions.

The limiter rj in Eqs. (8), (9), and (10) can be defined in many arbitrary ways
for a system of equations. For example, in the present work, we have used a density-
based limiter, for which,

sn+1
2j =

rn+1
j − rn

j

Dt

L(rn
j )=1“r

“t
2n

j
=−

1
Dx

[(ru)n
j+1

2
− (ru)n

j − 1
2
]

L(rn+1
j )=1“r

“t
2n+1

j
=−

1
Dx

[(ru)n+1
j+1

2
− (ru)n+1

j − 1
2
]

Since, in a Finite volume framework, these quantities are computed as part of the
solution process, these values, when substituted in Eqs. (8), (9), and (10) yield the
required limiter. Correction at smooth extrema can also be done using the mono-
tonicity preserving strategy as presented in the previous sections. Note that the time
derivative of density is computed using the conservation of mass. Another limiter,
for instance, can be defined by using a similar procedure on each of the three con-
served variables and choosing the one which is closest to first order.

5.3.1. Implementation

In this section, the implementation of the L-TRAP method in the solution of
the one dimensional Euler equations will be presented. Consider a discretization of
Eq. (12) with an appropriate high order method for computing the interfacial fluxes
Fj ± 1

2
.

Un+1
j − Un

j =−y[((1 − hj+1
2
) Fn

j+1
2
− (1 − hj − 1

2
) Fn

j − 1
2
)+(hj+1

2
Fn+1

j+1
2

− hj − 1
2
Fn+1

j − 1
2
)] (13)

The required implicit term F(Un+1) can replaced by the upwind-split linear approx-
imation:

F(Un+1)=F+(Un+1)+F−(Un+1)

% [F+(Un)+A+(Un) DUn]+[F−(Un)+A−(Un) DUn]
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where, A ± are approximations to the split-flux Jacobians “F ±

“U . In order to remove
linearization errors, one can introduce Newton sub-iterations [9] in the variable p
and the set of algebraic equations can be reduced to the form given by:

DUp
j − 1[ − yhj − 1

2
A+(Un

j − 1)]+DUp
j [I+yhj − 1

2
A+(Up

j ) − yhj+1
2
A−(Up

j )]

+DUp
j+1[yhj+1

2
A−(Un

j+1)]

=−(Up
j − Un

j ) − y[((1 − hj+1
2
) Fn

j+1
2
− (1 − hj − 1

2
) Fn

j − 1
2
)+(hj+1

2
Fp

j+1
2
− hj − 1

2
Fp

j − 1
2
)]

with DUp=Up+1 − Up. Hence a block tridiagonal inversion is required at each sub-
iteration p and Up+1 is updated for every sub-iteration as Up+1=Up+DUp. The sub-
iterations are continued till ||DUp|| Q 0 in a suitable norm, at which point, the RHS
is identical to Eq. (13) (with p=n+1). Before the start of each sub-iteration, hj is
determined for all points in the domain. LU-SGS method [15] has been used in the
solution of the implicit system of equations. The L-DIRK2 can also be imple-
mented in a similar manner.

5.3.2. Numerical Results

The application of the schemes to the 1-D Euler equations is demonstrated in
this section. Both test cases are Riemann problems in a constant area tube. The left
and right states are represented by the subscripts L and R. The domain is [0, 1]
and the interface is at x=0.5. The number of points in the domain is represented
by N. Both these solutions do not involve application of boundary conditions since
the final time is chosen such that none of the waves cross the computational
domain. A second order upwind MUSCL [13] extrapolation is used (with Super-
bee limiter [10]) for spatial discretization and interfacial fluxes are computed using
the AUSMDV [14] flux differencing scheme. The Euler-explicit TVD limit with a
Super-bee limiter corresponds to s={|u|+a}max

Dt
Dx < 0.5, where u is the local veloc-

ity and a is the local sonic velocity.

Sod’s Problem. Sod’s problem is given by {pL, rL, uL}={1.0, 1.0, 0.0} and
{pR, rR, uR}={0.1, 0.125, 0.0}. For this case, N=200 and s=3.0. Figure 7 shows
the density evolution. It is seen that both time-limited methods resolve the expan-
sion wave well and the shock and contact discontinuity are captured without
smearing even at this high CFL number. Figure 8 shows the evolution of pressure
and reinforces the observations from the density plot.

Lax’s Problem. Lax’s problem is given by {pL, rL, uL}={3.528, 0.445, 0.698}
and {pR, rR, uR}={0.571, 0.5, 0.0}. Figures 9 and 10 demonstrate the results for
N=200, s=3.0.

From these results, it is seen that the L-TRAP and L-DIRK2 methods of time
integration are beneficial in the sense that they generate non-oscillatory numerical
solutions. Some portions of the solution exhibit very small amplitude oscillations.
These can be removed by making improvements on the limiter. We have derived
analytical expressions for the TVD limits of the L-TRAP scheme assuming a second
order MUSCL spatial discretization. The local time-step restriction appears to be a
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Fig. 7. Sod’s problem (Density), s=3.0, 2nd order MUSCL, N=200, t=0.2.
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function of the ratio of successive hj. Hence, a better limiter would correspond to a
smoother distribution of hj over the domain.

6. CONCLUSION

A new class of time-limited non-oscillatory implicit schemes have been intro-
duced. The main concept behind these schemes is that the order of accuracy in time
is dropped locally in regions where the time evolution of the solution is not smooth.
Hence, these schemes are essentially non-linear in time and can thus circumvent the
limits imposed on linear time integration schemes. Numerical results obtained from
the solution of scalar and systems of conservation laws have demonstrated that
such a concept can work and that it is a promising area of research.

There is a lot to learn from monotonicity concepts that are used in spatial
discretization in the sense that these concepts can be extended to time integration.
A number of improvements can be made to the present schemes. The L-TRAP and
L-DIRK2 schemes are general and there are many ways by which one could
improve the design hj (a monotone time interpolation approach is used in this
work) and hj+1

2
(a simple average has been used).

Overall, we have demonstrated that these schemes, when used with high order
spatial discretizations yield non-oscillatory solutions for much larger time-steps as
compared to linear time integration schemes. It has to be mentioned that further
research is required before these schemes can be successfully applied to actual
applications in computational physics. This paper serves just an introduction to the
concepts of applying limiters to linear high order time integration schemes.

APPENDIX A. TVD LIMITS OF SOME IMPLICIT SCHEMES

We consider expressing TVD limits for implicit schemes as a ratio of the
explicit Euler TVD limit. This closely follows the approach in [1]. Consider an
s-stage implicit Runge–Kutta (RK) scheme for Eq. (4):

u (i)=un+Dt C
i

j=1
aijL(u(j)) i=1 · · · s

un+1=un+ C
s

i=1
biL(u(i))

This is represented in the Butcher array form as:

c1 a11 0 0 . . 0

c2 a21 a22 0 . . 0

. . . . . . .

. . . . . . .

cs as1 as2 as3 . . ass

b1 b2 b3 . . bs
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Table III. Implicit Euler, Trapezoidal and SDIRK-2 (c=
2 − `2

2 )

0 0 0 0 0 0 c c

1 0 1 1 1
2

1
2 1 1 − c c

1 0 1 1 1
2

1
2 1 − c c

with, ci=; j aij. For example, the implicit Euler, Trapezoidal and the 2-stage
Singly Diagonally Implicit Runge–Kutta (SDIRK-2) methods are given in Table III.

For convenience of analysis, we write the above equation in the form,

u (0)=un (14)

u (i)= C
i − 1

j=0
a i, ju (j)+Dt C

i

j=1
bi, jL(u(j)), i=1 · · · s+1 (15)

un+1=u (s+1) (16)

Theorem. If a spatial discretization is TVD for Dt [ Dtee if used with an
explicit Euler time discretization, then it will be TVD if used with the RK method
(Eqs. (14)–(16)) under the new time step restriction,

Dt [ k Dtee, k=min
i, j

a i, j

bi, j
, i=1 · · · s+1, j=0 · · · i − 1.

Proof. Consider any stage in Eq. (16), and for the moment, assume a i, j \ 0
and bi, j \ 0

u (i)= C
i − 1

j=0
a i, ju (j)+Dt C

i

j=1
bi, jL(u(j)), i=1 · · · s+1

u (i)+bi, iu (i)= C
i − 1

j=0
a i, j

5u (j)+Dt
bi, j

a i, j
L(u(j))6+bi, i[u (i)+Dt L(u(i))]

||u (i)+bi, iu (i)||=> C
i − 1

j=0
a i, j

5u (j)+Dt
bi, j

a i, j
L(u(j))6+bi, i[u (i)+Dt L(u(i))]>

(1+bi, i) ||u (i)|| [ C
i − 1

j=0
a i, j

>5u (j)+Dt
bi, j

a i, j
L(u(j))6>+bi, i ||[u (i)+Dt L(u(i))]||

||u (i)||+bi, i ||u (i)|| [ C
i − 1

j=0
a i, j ||u (j)||+bi, i ||u (i)|| if Dt [ k Dtee

Therefore, ||u (i)|| [ C
i − 1

j=0
a i, j ||u (j)||
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If this is applied recursively from i=0 to s+1, we get

||u (i)|| [ C
i − 1

j=0
a i, j ||u (n)||, i=0 · · · s+1

but, by consistency, ; i − 1
j=0 a i, j=1. Therefore, we have,

||un+1|| [ ||un||

It can also be shown that the assumption that bi, j \ 0 can be relaxed under
certain conditions, but the positivity of the a ’s cannot be relaxed [1]. Hence,
Implicit RK schemes should try to maximize mini, j

ai, j

bi, j
. Gottlieb, Shu, and Tadmor

[2] have shown that unconditionally TVD implicit schemes of order higher than
one do not exist.

A.1. h Schemes

The implicit Euler and Trapezoidal schemes are given by the one-parameter
family of schemes given by,

un+1=un+Dt[(1 − h) L(un)+hL(un+1)]

Hence, the TVD limit is given by,

k=
1

1 − h
, or Dt [ Dtee

1
1 − h

Hence, the implicit Euler scheme (h=1), is unconditionally TVD (k=.) and the
Trapezoidal scheme (h=1

2 ) is conditionally TVD (k=2).

A.2. L-DIRK2 with Constant h

Consider the L-DIRK2 scheme with a constant value of h over the domain.
Then, this scheme can be written in the Butcher array format given by,

c c

1 c+h(1 − 2c) (1 − c)+h(2c − 1)

c+h(1 − 2c) (1 − c)+h(2c − 1)

In this case,

a10=1

b11=c

a20=1 − a21

b21=c(1 − a21)+h(1 − 2c)

b22=(1 − c)+h(2c − 1)
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Hence, a21 is a parameter that can be varied, giving a TVD limit of:

Dt [
a21

b21
Dtee

=
a21

c(1 − a21)+h(1 − 2c)
Dtee

=k Dtee

Where,

k=
1

h(1 − 2c)
(a21=1)

The 2-stage SDIRK scheme corresponds to h=1 and is thus conditionally TVD
with k= 1

1 − 2c % 2.4142.
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