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Abstract. In this paper, we prove the convergence of the vortex blob method

for a family of nonlinear evolutionary partial differential equations (PDEs), the

so-called b-equation. This kind of PDEs, including the Camassa-Holm equation
and the Degasperis-Procesi equation, has many applications in diverse scientific

fields. Our convergence analysis also provides a proof for the existence of the

global weak solution to the b-equation when the initial data is a nonnegative
Radon measure with compact support.

1. Introduction. We consider the Cauchy problems of the following family of
nonlinear evolutionary PDEs (the so-called b-equation) in 1-dimensional case. The
b-equation is given by

∂tm+ ∂x(um) + (b− 1)m∂xu = 0, m = (1− α2∂xx)u, x ∈ R, t > 0, (1)

with b > 1 and subject to the initial condition

m(x, 0) = m0(x), x ∈ R. (2)

Here, functions m(x, t) and u(x, t) represent the momentum and velocity, respec-
tively. The parameter b expresses the stretching factor. The velocity function u(x, t)
can also be written as a convolution of m(x, t) with the kernel G

u(x, t) = G ∗m =

∫
R
G(x− y)m(y, t)dy. (3)

For the b-equation, the kernel is taken as G(x) = 1
2αe
−|x|/α with α representing

the length scale of the kernel. The kernel G(x) is the fundamental solution for
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Helmholtz operator 1−α2∂xx, i.e., (1−α2∂xx)G = δ with δ representing the Dirac
δ distribution.

This kind of evolutionary equations is established in diverse scientific fields based
on different choices of parameter b. When b = 2, the associated b-equation is the
so-called Camassa-Holm (C-H) equation, which was established by Camassa and
Holm to model the unidirectional propagation of waves at free surface of a shallow
layer of water (u(x, t) representing the water’s free surface above a flat bottom)
[4]. The C-H equation was also independently derived by Dai [17] to model the
nonlinear waves in cylindrical hyper-elastic rods with u(x, t) representing the radial
stretch relative to a pre-stressed state. In the case of b = 3, the associated equation
is named the Degasperis-Procesi (D-P) equation used to model the propagation
of nonlinear dispersive waves [18]. In higher dimensional cases, the corresponding
equation is called the Euler-Poincaré equation, which appears in the mathematical
model of fully nonlinear shallow water waves [6, 24]. Beyond these, this equation
has many further applications in computer vision [25] and computational anatomy
[26].

Mathematical analysis and numerical analysis of the Cauchy problems for both
the C-H equation and the D-P equation have been extensively studied in the litera-
ture. We refer [3, 9, 14, 32] for more details related to well-posedness results of the
C-H equation and the D-P equation. In terms of numerical methods, one can find in
[5, 10, 23, 30, 31, 33] of the traditional numerical methods, such as finite difference
methods, finite element methods and spectral methods, for the C-H equation or the
D-P equation.

It is well known that the b-equation (1)-(2) has solitary wave solutions of the
form u(x, t) = aG(x− ct) with speed c = −aG(0), proportional to the amplitude of
the solution. A remarkable characteristic of those solutions is the discontinuity in
their first derivative at peaks. This kind of solution is named as peakon [11, 12, 13,
15, 19, 20, 27, 29]. Those peakons are the leading driver of the time evolution of the
b-equation. Based on the N-peakon solution, the particle method was established
to solve the b-equation numerically [5, 7, 8, 19, 24].

The N-peakon solution to the b-equation (1)-(2) is given by

mN (x, t) =

N∑
i=1

pi(t)δ(x− xi(t)), (4)

uN (x, t) = G ∗mN (x, t) =

N∑
i=1

pi(t)G(x− xi(t)). (5)

The unknowns xi(t), pi(t) are determined by the following ODEs [8].

dxi(t)

dt
= uN (xi(t), t), (6)

dpi(t)

dt
= −(b− 1)pi(t)∂xu

N (xi(t), t), (7)

subject to some initial data xi(0), pi(0). Here, xi(t) represents the location of the
i− th particle and pi(t) represents the momentum of the i− th particle. N denotes
the total number of particles. This N-peakon solution is exactly the particle method
for the b-equation with initial data {xi(0)}Ni=1, {pi(0)}Ni=1 chosen to approximate
m0(x). We introduce a way to choose those initial data below. We assume that
supp {m0} ⊂ [−L,L], m0 ∈ M+(R) and denote its mass as M0 :=

∫
R dm0. The
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computational interval [−L,L] is divided into N non-overlapping sub-interval Ij by

using the uniform grid with size h = 2L
N . One possible way, as it was advised in [8],

to determine xi(0), pi(0), is that we choose xi(0) as

xi(0) = −L+ (i− 1

2
)h; pi(0) =

∫ xi(0)+
h
2

xi(0)−h
2

m0 ∗ σεdx, i = 1, 2, · · · , N. (8)

Here, the nonnegative mollifier σε(x) belongs to C∞0 (R) with scale ε. With these

choices, it was proved that m0 is approximated by mN (x, 0) =
∑N
j=1 pj(0)δ(x −

xj(0)) in the sense of measures [8]. Actually, for any test function φ(x) ∈ C∞0 (R),
the following estimate holds [8]

|
∫
R
φ(x)dm0 −

∫
R
φ(x)dmN (x, 0)| ≤ C 1

N
. (9)

Since the ODE (7) involves the singular kernel G
′

with discontinuity at x = 0,
the standard existence theorem can not be applied here. Fortunately, one cru-
cial property of the b-equation is that the momentum of the N-peakon solution is
positivity-preserving, i.e., if pi(0) ≥ 0, then pi(t) ≥ 0. For the case b = 2, m0 ≥ 0,
there is a Lax-pair for the N-peakon solution and the ODEs (6)-(7) is complete
integrable. As a result, there exists a global solution to this ODEs [5]. For the N-
peakon solution, the space-time BV estimate was established for uN , uNx by using
the positivity-preserving property in [8]. Then, by using compactness argument,
the authors proved that there exists a global weak solution to the b-equation (1)-
(2) under the initial condition m0 ≥ 0. The BV estimate also provided a slightly
improvement on the regularity results [8]. In their paper, the existence of a global
solution to (6)-(7) heavily depends on conservative quantities which ensure that the
trajectories cannot cross over at any finite time.

Those conservative quantities can be established for the b-equation [8]. For more
general problems, it is hard to find such conservative quantities. This difficulty
limits the applications of this method for more general problems. One way to
avoid using conservative quantities for the existence proof is to replace the particle
method by the vortex blob method. In the vortex blob method, the singular kernel
G

′
is regularized and hence the existence of a global solution to the resulted ODEs

is automatically obtained according to the standard ODEs theory. Therefore, this
method can be applied to more general problems. It is worthy being pointed out that
the particle methods, with or without regularization, are analogous to the vortex
blob method and the point vertex method for the incompressible Euler equations
[1, 16, 22, 28].

Beyond the theoretical benefit, the vortex blob method can also improve the sta-
bility and accuracy in computations. Compared with traditional numerical meth-
ods, the particle method has two main advantages: (i). It posses low numerical
diffusion which allows one to capture a variety of nonlinear waves with high res-
olution; (ii). It is easy and accurate to handle the peakon solutions. In the case
of classical solution under initial condition m0 ∈ C2

0 [−L,L], the optimal error es-
timates for both particle method and vortex blob method for the b-equation were
established in [21].

In Proposition 3.1, we obtain the consistency error of order O(ε) uniform in N
arising in the vortex blob method for the b-equation. Then, by combining the
space-time BV estimate and the consistency error, we prove that the approximated
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solution of the vortex blob method converges to a global weak solution to the b-
equation under the initial condition m0 ∈M+(R) with finite mass.

To state our main results, we begin with the definition of the mollifier.

Definition 1.1. (i) Define the mollifier 0 ≤ ρ(x) = f(|x|) ∈ Ck(R), k ≥ 2
satisfying ∫

R
ρ(x)dx = 1, supp{ρ} ⊂ {x ∈ R : |x| < 1}. (10)

(ii) For each ε > 0, set

ρε(x) :=
1

ε
ρ(
x

ε
).

Then, we use ρε to mollify the kernel G(x), G
′
(x) and denote

mN,ε(x, t) =

N∑
j=1

pεj(t)ρε(x− xεj(t)) (11)

uN,ε(x, t) =

N∑
j=1

pεj(t)G
ε(x− xεj(t)) (12)

with notation Gε = ρε ∗G. The undetermined xεi(t) and pεi(t) satisfy the following
ODEs

dxεi(t)

dt
= uN,ε(xεi(t), t) (13)

dpεi(t)

dt
= −(b− 1)pεi(t)∂xu

N,ε(xεi(t), t) (14)

subject to the same initial data with (8).
The existence and uniqueness of a global solution to this ODEs follows from the

standard ODEs theory.

Remark 1. In the same way as that of [5, 8], we know that pεi(t) ≥ 0 provided the
initial condition pεi(0) ≥ 0. It is clear that (13) implies that xεi(t) > xεi(s) if t > s
due to the fact that uN,ε > 0. These properties will be used in the space-time BV
estimates.

The following notations will be used in our analysis.

mN
ε (x, t) =

N∑
j=1

pεj(t)δ(x− xεj(t)) (15)

uNε (x, t) =

N∑
j=1

pεj(t)G(x− xεj(t)). (16)

We will use the concept of space-time BV estimate to establish the compactness
argument. Let us recall the space BV (R) [2].

Definition 1.2. A function f belongs to BV if for any {xi} ⊂ R, xi < xi+1, the
following statement holds:

sup
{xi}
{
∑
i

|f(xi)− f(xi−1)|} < +∞.
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If f(x) ∈ BV (R), we denote by

Tot.Var.{f} = sup
{xi}
{
∑
i

|f(xi)− f(xi−1)|}.

Then, we prove the following Proposition, which shows that the total variation with
respect to x for any t ≥ 0 and the maximum of uN,ε, uN,εx are uniformly bounded
and u ∈ Lip([0,+∞); W 1,1(R)).

Proposition 1. Assuming that the initial data m0 ∈M+(R) has bounded mass M0

and compact support and uN,ε is given by (12), then, there exist constants C, M, L
independent of N, ε such that

Tot.Var.{uN,ε(·, t)}, Tot.Var.{uN,εx (·, t)} ≤ C, t ∈ [0,+∞), (17)

|uN,ε(x, t)|, |uN,εx (x, t)| ≤M, (x, t) ∈ R× [0,+∞) (18)

and the following inequalities hold for all t, s ∈ [0,+∞)∫
R
|uN,ε(x, t)− uN,ε(x, s)|dx ≤ L|t− s|;

∫
R
|uN,εx (x, t)− uN,εx (x, s)|dx ≤ L|t− s|.

(19)

Consequently, by standard compactness argument (Theorem 2.4 [2]), there exist
subsequences of uN,ε and uN,εx converging to some function u, ux in L1

loc(R×[0,+∞))
as ε → 0+, N → ∞. The limit functions u, ux also satisfy (17)-(19). Finally, we
obtain our main result.

Theorem 1.3. Assume that the initial data m0 ∈M+(R) has compact support and
bounded mass M0 and the numerical solution (mN,ε, uN,ε) of the vortex blob method
is given by (11)-(12) with initial approximation

mN,ε(x, 0) =

N∑
j=1

pεj(0)ρε(x− xεj(0))

where pεj(0), xεj(0) are given by (8). Then, there exists subsequence of uN,ε converg-

ing to a function u in L1
loc(R × [0,+∞)) as ε → 0+, N → ∞. This limit function

u is the unique global weak solution of the b-equation (1)-(2) with the regularity

u(x, t) ∈ C( 1
p ) ([0,+∞); W 1,p(R)), for any p ≥ 1.

Furthermore, for any T > 0, we have

u(x, t) ∈ BV (R× [0, T )); ux ∈ BV (R× [0, T )),

m(x, t) = (1− α2∂xx)u(x, t) ∈ M+(R× [0, T ))

and there exists subsequence of mN,ε (also labelled as mN,ε) such that

mN,ε(x, t)
∗
⇀ m(x, t) in M+(R× [0, T )) (as ε→ 0+, N →∞).

2. Uniform space-time BV estimates for uN,ε, uN,εx . For further analysis,
we need more properties about the kernel G. It is easy to verify that the kernel
G(x) = 1

2αe
−|x|/α satisfies

• G(x) is even function and G′(x) is odd function,

• ‖G‖L∞ = 1
2α , ‖G‖L1 = 1

α2 , ‖G
′‖L∞ = 1

2α2 , ‖G
′‖L1 = 1

α3 ,

• Tot.Var.{G} = 1
α , Tot.Var.{G′} = 2

α2 .

For Gε = ρε ∗ G, it can be verified directly that the following Lemma holds. We
omit the proof here.
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Lemma 2.1. The following statements about ρε ∗G hold:
(1) ρε ∗G is even function and ∂x(ρε ∗G) is odd function,

(2) ρε∗G, ∂x(ρε∗G) ∈ BV (R); Tot.Var.{ρε∗G} ≤ 1
α , Tot.Var.{∂x(ρε∗G)} ≤ 2

α2 ,

(3) There exist constants K1, K2 independent of ε, such that

|Gε(a)−Gε(b)| ≤ K1|a− b|, ∀ a, b; (20)

|Gεx(a)−Gεx(b)| ≤ K2|a− b|, a · b > 0, 0 < ε < min{|a|, |b|}. (21)

For simplicity in notations, we omit the superscript N and denote uN,ε(x, t),
mN,ε(x, t),mN

ε (x, t), uNε (x, t) as uε(x, t), mε(x, t), mε(x, t), uε(x, t), respectively.
The following Lemma provides an important invariant in our analysis.

Lemma 2.2. Let pεi(t), x
ε
i(t) be the solution to (13)-(14). Then,

∑N
i=1 p

ε
i(t) is

independent of time variable t, i.e. d
dt

∑N
i=1 p

ε
i(t) = 0.

Proof. since Gεx is odd function, a direct computation yields

d

dt

N∑
i=1

pεi(t) = −
N∑
i=1

(b− 1)uεx(xεi(t), t)p
ε
i(t)

= −(b− 1)

N∑
i=1

N∑
j=1

pεi(t)p
ε
j(t)(G

ε
x(xεi(t)− xεj(t)))

= −(b− 1)

N∑
i=1

(pεi(t))
2Gεx(0) = 0.

This finishes the proof of this Lemma.
Without any confusion, we simplify the notations pεi(t), x

ε
i(t) as pi(t), xi(t),

respectively. Then, it is clear that

N∑
i=1

pi(t) =

N∑
i=1

pi(0) =

∫
R
dm0 = M0.

Now, we prove Proposition 1.
Proof of Proposition 1. (1) In terms of space variable, it is easy to prove that the
following estimates hold for any t ≥ 0, x ∈ R.

Tot.Var.{uε(·.t)} ≤
N∑
j=1

pj(t) Tot.Var.{Gε(x)} ≤
N∑
j=1

pj(0) Tot.Var.{G(x)} =
1

α
M0,

Tot.Var.{uεx(·.t)} ≤
N∑
j=1

pj(t) Tot.Var.{Gεx(x)} ≤
N∑
j=1

pj(0) Tot.Var.{Gx(x)} =
2

α2
M0,

‖uε(·, t)‖L1 ≤M0‖G‖L1 , ‖uεx(·, t)‖L1 ≤M0‖G
′
‖L1 ,

|uε(x, t)| ≤
N∑
i=1

pi(t)‖Gε‖L∞ ≤M0‖G‖L∞ ;

|uεx(x, t)| ≤
N∑
i=1

pi(t)‖Gεx‖L∞ ≤M0‖G
′
‖L∞ .

Therefore, the assertion (17) and (18) hold.
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(2) For the estimate (19), we first prove that∫
R
|uε(x, t)− uε(x, s)|dx ≤ L|t− s|

holds for some constant L. Without any loss of generality, we assume that s < t.
Then, a direct estimate yields∫

R
|uε(x, t)− uε(x, s)|dx ≤

∫
R

N∑
j=1

|pj(t)Gε(x− xj(t))− pj(s)Gε(x− xj(s))|dx

≤
∫
R

N∑
j=1

pj(t)|Gε(x− xj(t))−Gε(x− xj(s))|dx

+

∫
R

N∑
j=1

|pj(t)− pj(s)|Gε(x− xj(s))dx.

Then, by using the results from (Lemma 2.3 [2]) and the fact that Gε ∈ BV (R) and
xj(t)− xj(s) > 0 (see Remark 1), one has∫

R
|uε(x, t)− uε(x, s)|dx ≤

Tot.Var.{Gε(x)}
N∑
j=1

pj(t)(xj(t)− xj(s)) + ‖Gε‖L1

N∑
j=1

|pj(t)− pj(s)|. (22)

It is clear that

‖Gε‖L1 =

∫
R

∫
R
ρε(x− y)G(y)dydx =

∫
R
G(y)dy

∫
R
ρε(x− y)dx

=

∫
R
G(y)dy = ‖G‖L1 .

Now, we estimate xj(t)− xj(s) and pj(t)− pj(s). According to (13), one has

xj(t)− xj(s) =

∫ t

s

dxj(τ)

dτ
dτ =

∫ t

s

uε(xj(τ), τ)dτ (23)

≤ ‖Gε‖L∞

∫ t

s

N∑
j=1

pj(τ)dτ ≤M0‖G‖L∞(t− s).

Similarly, according to (14), we also have

|pj(t)− pj(s)| = |
∫ t

s

dpj(τ)

dτ
dτ | ≤ (b− 1)M2

0 ‖G
′
‖L∞(t− s). (24)

Substituting (23) and (24) into (22) , we have∫
R
|uε(x, t)− uε(x, s)|dx

≤
{

Tot.Var.{Gε(x)}‖G‖L∞ + (b− 1)‖G
′
‖L∞‖Gε‖L1

}
M2

0 (t− s)

≤
{

1

2α2
+ (b− 1)

1

2α2
‖G‖L1

}
M2

0 (t− s).
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Similarly, for uεx, by noticing that Gεx ∈ BV (R), we also have∫
R
|uεx(x, t)−uεx(x, s)| ≤

∫
R

N∑
j=1

pj(t)|Gεx(x, t)−Gεx(x, s)|+ |Gεx(x, s)||pj(t)−pj(s)|dx

≤ {Tot.Var.{Gεx(x)}‖Gεx‖L∞ + (b− 1)‖Gεx‖L∞‖Gεx‖L1}M2
0 |t− s|

≤
{

1

α4
+ (b− 1)

1

2α2
‖G

′
‖L1

}
M2

0 |t− s|.

This proves the assertion (19). The proof of Theorem 1 is finished.

Remark 2. Based on this theorem, we can assert that there exist subsequences of
uε, uεx (also denoted as uε, uεx) converging to some function u, ux in L1

loc(R×[0,+∞))
(Theorem 2.4, [2]). The limit functions u(x, t), ux(x, t) also satisfy (17) -(19). In
other words, according to (Theorem 2.6 [2]), for any T > 0, we have

u(x, t) ∈ BV (R× [0, T )), ux(x, t) ∈ BV (R× [0, T ))

and as ε→ 0+, N →∞

uε → u, uεx → ux in L1
loc(R× [0,+∞)). (25)

3. Weak consistency. In this section, we show that uε defined by (12) is weak
consistent with the b-equation (1)-(2). We first introduce the definition of weak
solution of the b-equation in terms of u. To this end, for u ∈ C((0, T );H1(R)) and
φ(x, t) ∈ C∞0 (R× [0, T )), we denote the functional

L(u, φ) :=

∫ T

0

∫
R
u(x, t)[φt(x, t)− α2φtxx(x, t)]dxdt

+

∫ T

0

∫
R
u2(x, t)[

b+ 1

2
φx(x, t)− α2

2
φxxx(x, t)]dxdt

−
∫ T

0

∫
R

α2(b− 3)

2
u2x(x, t)φx(x, t)dxdt.

Then, the definition of the weak solution to the b-equation in terms of u(x, t) is
given as follows.

Definition 3.1. A function u ∈ C([0, T );H1(R)),m(x, t) = u(x, t)− α2uxx(x, t) is
said to be a weak solution of the b-equation (1)-(2) if

L(u, φ) = −
∫
R
m(x, 0)φ(x, 0)dx

holds for all φ(x, t) ∈ C∞0 (R× [0, T )). If T = +∞, we call u(x, t) as a global weak
solution of the b-equation.

According to this definition, we will prove the weak consistency of (uε,mε) with
(1)-(2). For simplicity in notations, we denote

〈f(x, t), g(x, t)〉 :=

∫ T

0

∫
R
f(x, t)g(x, t)dxdt

throughout the rest of this paper. With this notation, we find that the following
statement holds for the pair (uε,mε).
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Lemma 3.2. Let uε, mε be defined by (12), (15), respectively. Then, the pair
(uε,mε) satisfies

〈mε, φt〉+ 〈uεmε, φx〉 − (b− 1)〈uεxmε, φ〉 = −
N∑
j=1

pj(0)φ(xj(0), 0).

Proof. For any test function φ(x, t) ∈ C∞0 (R × [0, T )), according to (4) and (12),
one has

〈mε, φt〉+ 〈uεmε, φx〉 − (b− 1)〈uεxmε, φ〉

=

N∑
j=1

∫ T

0

pj(t)∂tφ(x, t)|x=xj(t)dt+

N∑
j=1

∫ T

0

pj(t)u
ε(xj(t), t)φx(xj(t), t)dt

−
N∑
j=1

(b− 1)

∫ T

0

pj(t)u
ε
x(xj(t), t)φ(xj(t), t)dt

=

N∑
j=1

∫ T

0

pj(t)

[
dφ(xj(t), t)

dt
− φx(xj(t), t)

dxj(t)

dt

]
dt

+

N∑
j=1

∫ T

0

pj(t)u
ε(xj(t), t)φx(xj(t), t)dt

−
N∑
j=1

(b− 1)

∫ T

0

pj(t)u
ε
x(xj(t), t)φ(xj(t), t)dt.

Then, using integration by parts and the initial condition (9), we have

〈mε, φt〉+ 〈uεmε, φx〉 − (b− 1)〈uεxmε, φ〉

= −
N∑
j=1

pj(0)φ(xj(0), 0)−
N∑
j=1

∫ T

0

pj(t)φx(xj(t), t)

[
dxj(t)

dt
− uε(xj(t), t)

]
dt

−
N∑
j=1

∫ T

0

φ(xj(t), t)

[
dpj(t)

dt
+ (b− 1)pj(t)u

ε
x(xj(t), t)

]
dt.

According to (13)-(14), the assertion holds.
To estimate L(uε, φ), we change its form into the representation in terms of uε

and mε. To this end, we compute

L(uε, φ) = 〈uε, φt − α2φtxx〉+ 〈(uε)2, φx〉+ α2〈(uεx)2, φx〉 −
α2

2
〈(uε)2, φxxx〉

+
b− 1

2
〈(uε)2, φx〉 −

b− 1

2
α2〈(uεx)2, φx〉.

Using integration by parts, one has

L(uε, φ) = 〈uε, φt〉+ 〈uε,−α2φtxx〉+ 〈(uε)2, φx〉 − α2〈∂xxuε, uεφx〉

−b− 1

2
〈∂x(uε)2, φ〉+

b− 1

2
α2〈∂x(uεx)2, φ〉.

= 〈uε, φt〉 − α2〈uεxx, φt〉+ 〈(uε)2, φx〉 − α2〈∂xxuε, uεφx〉

−b− 1

2
〈∂x(uε)2, φ〉+

b− 1

2
α2〈∂x(uεx)2, φ〉. (26)
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Substituting mε = (I − α2∂xx)uε into (26), one has

L(uε, φ) = 〈mε, φt〉+ 〈uεmε, φx〉 − (b− 1)〈uεxmε, φ〉. (27)

Therefore, we arrive at

L(uε, φ) +

∫
R
mε(x, 0)φ(x, 0)dx =

∫
R
mε(x, 0)φ(x, 0)dx−

N∑
j=1

pj(0)φ(xj(0), 0)(28)

+〈mε −mε, φt〉+ 〈uε(mε −mε), φx〉 − (b− 1)〈uεx(mε −mε), φ〉.

We denote the RHS of (28) as Eφ.

Proposition 2. Assuming that the mollifier satisfies the momentum condition∫
R
ρ(x)xαdx = 0, 1 ≤ α ≤ k, k ≥ 1, then we have

|Eφ| ≤ Cε. (29)

The constant C is a generic constant independent of N, ε.

Proof. The first term
∫
Rm

ε(x, 0)φ(x, 0)dx−
∑N
j=1 pj(0)φ(xj(0), 0) can be estimated

directly as follows.

|
∫
R
mε(x, 0)φ(x, 0)dx−

N∑
j=1

pj(0)φ(xj(0), 0)| = |
∫

(mε(x, 0)−mε(x, 0))φ(x, 0)dx|

≤
N∑
j=1

pj(0)|
∫
ρε(x−xj(0))φ(x, 0)dx−φ(xj(0), 0)|.

On the other hand, for any y, it is clear that the following estimate holds.

|
∫
ρε(x− y)φ(x, 0)dx− φ(y, 0)| ≤ Cεk+1. (30)

Hence, we have

|
∫
R
mε(x, 0)φ(x, 0)dx−

N∑
j=1

pj(0)φ(xj(0), 0)| ≤ CM0ε
k+1. (31)

We now turn to estimating

〈mε −mε, φt〉+ 〈uεmε − uεmε, φx〉 − (b− 1)〈uεxmε − uεxmε, φ〉 =: I1 + I2 + I3.

For the term I1, a direct computation shows that

|I1| ≤
∫ T

0

N∑
j=1

pj(t)|
∫
φt(x, t)ρε(x− xj)dx− φt(xj , t)|dt.

Then, using the estimate (30), one has

|I1| ≤ C
∫ T

0

N∑
j=1

pj(t)ε
k+1dt = CTM0ε

k+1. (32)
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For the second term I2, we have

I2 =

∫ T

0

N∑
j=1

pj(t)

{∫
uε(x)ρε(x− xj)φx(x)dx− uε(xj)φx(xj)

}
dt

=

∫ T

0

N∑
j=1

pj(t)

{∫
[uε(x)φx(x)− uε(xj)φx(xj)] ρε(x− xj)dx

}
dt

=

∫ T

0

N∑
j=1

pj(t)

{∫
[uε(x)(φx(x)− φx(xj))] ρε(x− xj)dx

}
dt

+

∫ T

0

N∑
j=1

pj(t)

{∫
[(uε(x)− uε(xj))φx(xj)] ρε(x− xj)dx

}
dt =: J1 + J2.

For J1, one has

|J1| ≤ CM0T‖uε‖L∞ε ≤ CM2
0T‖G‖L∞ε.

For J2, we first estimate uε(x)− uε(xj). Using the property (20) and noticing that
|x− xj | ≤ ε, one has

|uε(x)− uε(xj)| ≤
N∑
k=1

pk(t)|Gε(x− xk)−Gε(xj − xk)| ≤ K1M0ε.

Therefore, we have

|J2| ≤ CTM2
0 ε

and

|I2| ≤ CTM2
0 ε. (33)

Finally, we estimate I3. In the same way with that of the estimate of I2, we split
I3 as follows (we omit the constant −(b− 1)).

I3 =

∫ T

0

N∑
j=1

pj(t)

{∫
[uεx(x)(φ(x)− φ(xj))] ρε(x− xj)dx

}
dt

+

∫ T

0

N∑
j=1

pj(t)

{∫
[(uεx(x)− uεx(xj))φ(xj)] ρε(x− xj)dx

}
dt =: J3 + J4.

It is easy to prove that

|J3| ≤ CM0T‖uεx‖L∞ε ≤ CM2
0T‖G

′
‖L∞ε. (34)
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For J4, we use (12) and split it as the following two parts in order to use the property
(21).

J4 =

∫ T

0

N∑
j,k=1

pj(t)pk(t)

∫
[Gεx(x− xk)−Gεx(xj − xk)]φ(xj)ρε(x− xj)dxdt

=

∫ T

0

N∑
j,k=1

pj(t)pk(t)

∫
[Gεx(x+ xj − xk)−Gεx(xj − xk)]φ(xj)ρε(x)dxdt

=

∫ T

0

∑
|xj−xk|>2ε

pj(t)pk(t)

∫
[Gεx(x+ xj − xk)−Gεx(xj − xk)]φ(xj)ρε(x)dxdt

+

∫ T

0

∑
|xj−xk|≤2ε

pj(t)pk(t)

∫
[Gεx(x+ xj − xk)−Gεx(xj − xk)]φ(xj)ρε(x)dxdt

=: J5 + J6.

For the estimate of J5, since |xj − xk| > 2ε and |x| < ε, we have ε < min{|x+ xj −
xk|, |xj − xk|} and (x + xj − xk) · (xj − xk) > 0. According to the property (21),
one has

|J5| ≤ CM2
0TK2ε. (35)

For J6, it is obvious that if xj = xk, then∫
[Gεx(x+ xj − xk)−Gεx(xj − xk)]φ(xj)ρε(x)dx = 0

because that Gεx is odd function. On the other hand, a direct computation shows
that ∑

0<|xj−xk|≤2ε

pj(t)pk(t)

∫
[Gεx(x+ xj − xk)−Gεx(xj − xk)]φ(xj)ρε(x)dx

=
1

2

∑
0<|xj−xk|≤2ε

pj(t)pk(t)
{∫

[Gεx(x+ xj − xk)−Gεx(xj − xk)]φ(xj)ρε(x)dx

+

∫
[Gεx(x+ xk − xj)−Gεx(xk − xj)]φ(xk)ρε(x)dx

}
.

We denote xj−xk = a and assume that a > 0 without any loss of generality. Then,
for the above integral, we have∫

[Gεx(x+ a)−Gεx(a)]φ(xj)ρε(x)dx+

∫
[Gεx(x− a)−Gεx(−a)]φ(xk)ρε(x)dx

=

∫
[Gεx(x+ a)−Gεx(a)] (φ(xj)− φ(xk))ρε(x)dx

+

∫
[Gεx(x− a) +Gεx(x+ a)]φ(xk)ρε(x)dx

where we have used the fact that Gεx is odd function. It is obvious that the first

term of the RHS of the above identity is bounded C‖G′‖L∞ε. To estimate the second
term, by using the fact that Gεx is odd function again, a direct computation shows
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that ∫
[Gεx(x− a) +Gεx(x+ a)] ρε(x)dx

=

∫ ε

0

[Gεx(−x− a) +Gεx(−x+ a) +Gεx(x− a) +Gεx(x+ a)] ρε(x)dx = 0.

Therefore, we have

|J6| ≤ CTM2
0 ε. (36)

Collecting the estimates (34)(35)(36), one has

|I3| ≤ CTM2
0 ε. (37)

Combining (31)(32)(33)(37), we arrive at

|L(uε, φ)| ≤ Cε.
This completes the proof of the weak consistency of (uε,mε) with the b-equation
(1)-(2).

4. Convergence analysis and proof of the main Theorem 1.3. With the
weak consistency and compactness at hand, we now prove the convergence result in
Theorem 1.3.
Proof of Theorem 1.3. We omit the superscript N of uN,ε, mN,ε in the proof. As
it is shown in Proposition 1, there exists u which is the limit of some subsequence
of uε in L1

loc(R × (0,+∞))(still denoted as uε for simplicity in notations). Then,
the associated sequence uεx also has a subsequence (also labelled as uεx) converging
to some function ux in L1

loc(R × (0,+∞)). For these subsequences, according to
(Theorem 2.4 [2]), one has

(i) As ε→ 0+, N →∞,

uε → u, uεx → ux in L1
loc(R× [0,+∞)). (38)

(ii) For any T > 0, the limit functions u, ux satisfy (Theorem 2.6 [2])

u(x, t) ∈ BV (R× [0, T )), ux(x, t) ∈ BV (R× [0, T )).

(iii) ux is the derivative of u with respect to x in the sense of distribution and
mε = (1− α2∂xx)uε is also a subsequence of the original mε.

We split the proof as three parts and first prove that u is the unique global
weak solution of the b-equation (1)-(2) in Step 1. Then, Step 2 is devoted to the

proof of u ∈ C( 1
p ) ([0,+∞);W 1,p(R)), p ≥ 1. In the final Step, we prove that

mε(x, t)
∗
⇀m(x, t) in M+(R× [0, T )) for any T > 0.

Step 1. We prove that u is the unique global weak solution of (1)-(2). For any
given test function φ ∈ C∞0 (R× [0,+∞)), we assume that supp{φ(x, t)} ⊂ R× [0, T )
for some T > 0. We recall that

L(uε, φ) +

∫
R
mε(x, 0)φ(x, 0)dx → 0 (ε→ 0+, N →∞)

holds for any function φ ∈ C∞0 (R× [0, T )) and

L(uε, φ) =

∫ T

0

∫
R
uε(x, t)[φt(x, t)−α2φtxx(x, t)]dxdt

+

∫ T

0

∫
R

(uε)2(x, t)[
b+ 1

2
φx(x, t)− α2

2
φxxx(x, t)]dxdt
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−
∫ T

0

∫
R

α2(b− 3)

2
(uεx)2(x, t)φx(x, t)dxdt.

By using the fact that uε, u ∈ BV (R× [0, T )) and (38), we have

|
∫ T

0

∫
R

((uε(x, t))2 − u2(x, t))φ(x, t)dxdt|

= |
∫ T

0

∫
R
(uε(x, t)− u(x, t))(uε(x, t) + u(x, t))φ(x, t)dxdt|

≤ ‖φ‖L∞(‖uε‖L∞+‖u‖L∞)

∫ ∫
(x,t) ∈ supp{φ}

|uε(x, t)−u(x, t)|dxdt

→ 0 (ε→ 0+, N →∞).

Similarly, we also have∫ T

0

∫
R

((uεx(x, t))2 − u2x(x, t))φ(x, t)dxdt→ 0 (ε→ 0+, N →∞).

Therefore, as ε→ 0+, N →∞, we obtain∫ T

0

∫
R
uε(x, t)[φt(x, t)− α2φtxx(x, t)]dxdt

→
∫ T

0

∫
R
u(x, t)[φt(x, t)− α2φtxx(x, t)]dxdt,∫ T

0

∫
R

(uε)2(x, t)[
b+ 1

2
φx(x, t)− α2

2
φxxx(x, t)]dxdt

→
∫ T

0

∫
R
u2(x, t)[

b+ 1

2
φx(x, t)− α2

2
φxxx(x, t)]dxdt,∫ T

0

∫
R

α2(b− 3)

2
(uεx)2(x, t)φx(x, t)dxdt→

∫ T

0

∫
R

α2(b− 3)

2
u2x(x, t)φx(x, t)dxdt.

Finally we prove∫
R

(mε(x, 0)−m0(x))φ(x, 0)dx→ 0 (ε→ 0+, N →∞).

By using (9) and (29), we have

|
∫
R
φ(x)dm0 −

∫
R
φ(x)dmε

0|

≤ |
∫
R
φ(x)dm0 −

∫
R
φ(x)dmN

0 |+ |
∫
R
φ(x)dmN

0 −
∫
R
φ(x)dmε

0| ≤ C(
1

N
+ ε).

The generic constants C is independent of ε, N. Therefore, one has∫
R
φ(x, 0)mε(x, 0)dx→

∫
R
φ(x, 0)m(x, 0)dx (as ε→ 0+, N → +∞).

Collecting the limits above, we arrive at, for any test function φ ∈ C∞0 (R×[0,+∞)),∫
R
m(x, 0)φ(x, 0)dx+

∫ +∞

0

∫
R
u(x, t)[φt(x, t)− α2φtxx(x, t)]dxdt

+

∫ +∞

0

∫
R
u2(x, t)[

b+ 1

2
φx(x, t)− α2

2
φxxx(x, t)]dxdt
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−
∫ +∞

0

∫
R

α2(b− 3)

2
u2x(x, t)φx(x, t)dxdt = 0.

This proves that u is a global weak solution to the b-equation. It is clear that the
uniqueness holds by rewriting (1) as the conservative form [8, 14]

ut + uux +G
′
∗
[
b

2
u2 +

3− b
2

u2x

]
= 0.

Step 2. We prove that u ∈ C( 1
p ) ([0,+∞);W 1,p(R)), p ≥ 1. According to Propo-

sition 1 and (Theorem 2.4 [2]), u, ux satisfy∫
R
|u(x, t)−u(x, s)|dx ≤ L|t−s|,

∫
R
|ux(x, t)−ux(x, s)|dx ≤ L|t−s|, t, s ∈ [0,+∞).

Moreover, for any s, t ∈ [0,+∞), we have∣∣‖u(·, t)‖pW 1,p(R) − ‖u(·, s)‖pW 1,p(R)
∣∣

≤
∫
R
|up(x, t)− up(x, s)|+ |upx(x, t)− upx(x, s)|dx

≤ C(p, ‖u‖L∞)‖u(·, t)− u(·, s)‖L1(R) + C1(p, ‖ux‖L∞)‖ux(·, t)− ux(·, s)‖L1(R)

≤ C|t− s|. (39)

Therefore, by using the inequality

|am − bm| ≤ |a− b|m, 0 < m ≤ 1,

we have∣∣‖u(·, t)‖W 1,p(R) − ‖u(·, s)‖W 1,p(R)
∣∣ =

∣∣‖u(·, t)‖p·
1
p

W 1,p(R) − ‖u(·, s)‖p·
1
p

W 1,p(R)
∣∣

≤
∣∣‖u(·, t)‖pW 1,p(R) − ‖u(·, s)‖pW 1,p(R)

∣∣ 1p .
Then, by using (39), we arrive at∣∣‖u(·, t)‖W 1,p(R) − ‖u(·, s)‖W 1,p(R)

∣∣ ≤ C|t− s| 1p .
Thus, u ∈ C( 1

p ) ([0,+∞);W 1,p(R)).

Step 3. To prove that mε(x, t)
∗
⇀ m(x, t) in M+(R × [0, T )), according to the

definition of the BV functions with two variables (Chapter 5, [34] or the proof of
Theorem 2.6 [2]), we know that

m(x, t) = (1− α2∂xx)u(x, t) ∈M(R× [0, T )).

Furthermore, for any test function φ(x, t) ∈ C1
0 (R × [0, T )) satisfying φ(x, t) ≥ 0,

we have ∫ T

0

∫
R
φ(x, t)dmε =

N∑
j=1

∫ T

0

∫
R
pj(t)ρε(x− xj(t))φ(x, t)dxdt ≥ 0.

This shows that mε ∈M+(R× [0, T )).

Now we prove mε(x, t)
∗
⇀ m(x, t) in M+(R × [0, T )). For any test function

φ(x, t) ∈ C1
0 (R × [0, T )), integrating by parts and using the relationship mε =

(1− α2∂xx)uε, one has∫ T

0

∫
R
φ(x, t)dmε(x, t) =

∫ T

0

∫
R
uε(x, t)φ(x, t)dxdt− α2

∫ T

0

∫
R
uεxx(x, t)φ(x, t)dxdt
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=

∫ T

0

∫
R
uε(x, t)φ(x, t)dxdt+α2

∫ T

0

∫
R
uεx(x, t)φx(x, t)dxdt.

Taking ε→ 0+, N →∞, the RHS of the above equality converges to∫ T

0

∫
R
u(x, t)φ(x, t)dxdt+ α2

∫ T

0

∫
R
ux(x, t)φx(x, t)dxdt =

∫ T

0

∫
R
φ(x, t)dm(x, t).

Hence, mε(x, t)
∗
⇀ m(x, t) in M+(R× [0, T )). This ends the proof.

Remark 3. If we fix N and let ε → 0+, a limit can also be obtained to converge
to the solution of the point vortex method. Combining the convergence result
of this numerical solution [8], the convergence of the vortex blob method is also
constructed.

Remark 4. If we fix ε and let N →∞, a limit can be obtained to converge to the
original problem with mollified initial condition. The convergence result can also
be established by comparing with A. Constantin’s work [14].

5. Conclusions. In this paper, we proved the convergence of the vortex blob
method for the b-equation. The motivation of using the vortex blob method is
to overcome some drawbacks of the point vortex method applied to the b-equation,
which needs to find some conservative quantities to ensure the existence of the
global solution to the associated ODEs. In the vortex blob method, the resulted
ODEs is regularized and hence has global solution by standard ODEs theory. Then,
with weak consistency and BV estimates, we obtained the convergence result of the
vortex blob method for the b-equation. Our analysis also provides a way to prove
the existence of global weak solution for more general problems. To this extent,
we have only provided a theoretical study of the convergence of the vortex method
applied to the b-equation. In some future work, we will concentrate on numerical
experiments to illustrate the performance of the vortex blob method applied to the
b-equation and its application to the two-component C-H equation.
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