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We develop a model for the evolution of wealth in
a non-conservative economic environment, extending
a theory developed in Degond et al. (2014 J. Stat.
Phys. 154, 751–780 (doi:10.1007/s10955-013-0888-4)).
The model considers a system of rational agents
interacting in a game-theoretical framework. This
evolution drives the dynamics of the agents in both
wealth and economic configuration variables. The cost
function is chosen to represent a risk-averse strategy
of each agent. That is, the agent is more likely to
interact with the market, the more predictable the
market, and therefore the smaller its individual risk.
This yields a kinetic equation for an effective single
particle agent density with a Nash equilibrium serving
as the local thermodynamic equilibrium. We consider
a regime of scale separation where the large-scale
dynamics is given by a hydrodynamic closure with
this local equilibrium. A class of generalized collision
invariants is developed to overcome the difficulty of
the non-conservative property in the hydrodynamic
closure derivation of the large-scale dynamics for
the evolution of wealth distribution. The result is a
system of gas dynamics-type equations for the density
and average wealth of the agents on large scales.
We recover the inverse Gamma distribution, which
has been previously considered in the literature, as
a local equilibrium for particular choices of the cost
function.
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1. Introduction

(a) Framework
A theory on the evolution of wealth distribution driven by local Nash equilibria in a conservative
economy was developed by the authors in [1] in the framework set up by Degond et al. [2], which
is closely related to mean-field games [3,4]. By conservative, we meant that the total wealth is
preserved in the time evolution. This assumption enabled us to derive a large-scale dynamics for
the evolution of the wealth distribution by using a hydrodynamic closure with a Nash equilibrium
serving as the local thermodynamic equilibrium. This resulted in a system of gas dynamics-type
equations for the density and average wealth of the agents on large scales. The goal of this
paper was to extend this theory to some more realistic models in non-conservative economies,
where global wealth is gained or lost at a certain rate owing to either productivity or inflation. To
overcome the difficulty of the non-conservative property in the hydrodynamic closure, we adapt
and develop a concept of generalized collision invariant (GCI) developed by Degond & Motsch
in [5] for flocking dynamics.

We consider an economy modelled as a closed ensemble of agents. The state of each agent is
described by two variables. The variable, x, describes its location in the economic configuration
space X [6]. In addition, the state is described by the wealth y ≥ 0 of the agent. The dynamics of
these attributes is given by some motion mechanism in the economic configuration variable x and
by the exchange of wealth (trading) in the wealth variable y.

The subject of understanding the wealth distribution has a long history since Pareto in 1896 [7].
Amoroso in 1925 [8] developed a dynamic equilibrium theory and rewrote the Pareto distribution
in terms of inverse Gamma distribution. The wealth distribution results from the combination
of two important mechanisms: the first one is the geometric Brownian motion of finance which
was first proposed by Bachelier in 1900 [9] and the second one is the trading model, one of the
earlier ones being that of Edgeworth, dating back to 1881 [10]. These pioneering works have been
followed by numerous authors and have given rise to the field of econophysics. Recent references
on this problem can be found, for example, in [11–19]. The large-scale dynamics of spatially
heterogeneous social models is currently the subject of intense research (e.g. [20], where the
authors investigate a spatially heterogeneous version of the Deffuant–Weisbuch opinion model
of interacting agents that exhibits a transition between a socially cohesive phase and a socially
disconnected phase).

The basic equation considered in this paper is of the form

∂tf (x, y, t) + ∂x(fV(x, y)) = −∂y( fFf ) + d∂y(∂y(y2f )) ≡ Q( f ), (1.1)

where f (x, y, t) is the density of agents in economic configuration space x having wealth y at time t.
The second term on the right-hand side of (1.1) models the uncertainty and has the form of a
diffusion operator corresponding to the geometric Brownian motion of economy and finance,
with variance 2dy2 quadratic in y. The justification of this operator can be found in [21].

Here, Ff describes the control, action or strategy. In [1], the authors take the action as
the negative gradient of the cost function Φf , i.e. Ff = −∂yΦf . A quadratic cost function with
coefficients depending functionally on the density f was used to describe trading behaviour
between agents. We write this cost function in general form as

Φf (y) = 1
2 af y2 + bf y + cf , (1.2)

with coefficients af , bf and cf functionally dependent on the density f .
In the framework of a non-atomic, non-cooperative anonymous game with a continuum of

players [22–25], also known as a mean-field game [3,4], players interact with each other to
minimize their own cost function. In this paper, we consider a more realistic model, where each
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player interacts with the ensemble of players, i.e. the market. For each player, the equilibrium
reached under this interaction corresponds to the wealth difference between him/her and the
market average being at one of the minima of this cost function.

We note that this model considers only the exchange of money and does not keep track of the
goods and services traded. Therefore, this game does not mean that each player wishes to share
some of its wealth with the trading partner. Rather, the utility of the exchange is to maximize the
economic action resulting in the optimal exchange of goods and services. Within this framework,
the dynamics of agents following these strategies can be viewed as given by the following game:
each agent follows what is known as the best-reply strategy, that is, it tries to minimize the cost
function with respect to its wealth variable, assuming that the other agents do not change theirs.

This gives for the control action Ff in (1.1) Ff (y) = −∂yΦf = −af y − bf , and for the operator Q
in (1.1), including effects of uncertainty, given by the geometric Brownian motion,

Q( f ) = ∂y(d∂y(y2f ) + (af y + bf )f ).

We consider a closed system, where the number of agents in the market is conserved. So, equation
(1.1) is supplemented by the boundary condition d∂y(y2f ) + (af y + bf )f |y=0 = 0.

In [1,26], a model resulting from pairwise interactions, proportional to the quadratic distance
between the wealth of the two agents is derived. The goal of this paper was to extend this
framework to general potentials, particularly to remove the conservation constraint for the total
wealth

∫∞
0 yf (y, t) dy. In [27,28], conservative models have been derived from approximations

of non-conservative Boltzmann models. In the following, we refer to this scenario as a ‘non-
conservative economy’. In addition, we consider an alternative, which is more realistic for some
applications such as financial markets, where players do not interact with each other in the form
of binary interactions, but with the whole ensemble of players. That is, we do not consider the
mean field limit of a binary interaction model, but start from an inherent mean field model.

Naturally, one takes moments of the wealth distribution function f with respect to the wealth
variable y. We define the density of agents ρ(x, t) and the density of higher-order moments of the
wealth variable ρΥk(x, t), by

ρ(x, t) =
∫

f (x, y, t) dy, ρΥk(x, t) =
∫

ykf (x, y, t) dy, k = 1, 2, . . . (1.3)

So, ρ(x, t) is the density of agents in the economic configuration space, ρΥ1(x, t) is the density of
the mean wealth, ρ(Υ2 − Υ 2

1 ) is the density of the variance of the wealth, and so on. We restrict
the dependence of af , bf , cf in the cost functional Φf to a dependence on the above-defined mean
densities Υ1,Υ2, . . ..

(b) Conservative versus non-conservative economies
Computing the first three moments of the operator Q in (1.1) gives, using integration by parts

∫ ⎛⎜⎝ 1
y
y2

⎞
⎟⎠Q( f )(x, y, t) dy =

⎛
⎜⎝ 0

−afΥ1 − bf
2(d − af )Υ2 − 2bfΥ1

⎞
⎟⎠ ρ(x, t).

Consequently, we obtain a hierarchy for the moments of the density function f (x, y, t) with respect
to the wealth variable y. The first three terms of the hierarchies are of the form

∂t

⎛
⎜⎜⎜⎝
ρ

ρΥ1
ρΥ2
. . .

⎞
⎟⎟⎟⎠+ ∂x

∫
V(x, y)f (x, y, t)

⎛
⎜⎜⎜⎝

1
y
y2

. . .

⎞
⎟⎟⎟⎠dy =

⎛
⎜⎜⎜⎝

0
−afΥ1 − bf

2(d − af )Υ2 − 2bfΥ1
. . .

⎞
⎟⎟⎟⎠ ρ(x, t). (1.4)

The system (1.4) is of course not closed, because the flux terms on the left-hand side of (1.4) are
in general unknown for an arbitrary density function f . The closure of the hierarchy (1.4) at a
certain level has to be performed by some asymptotic analysis and scaling arguments, which
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are the subject of this paper. We are faced with a conservative economy if the dependence of
the coefficients in the quadratic cost functional Φf on the density f are such that afΥ1 + bf = 0
holds for any density f . In this case, the total wealth ρΥ1 is preserved, when integrated over the
configuration variable x. So, we consider a conservative economy, for afΥ1 + bf = 0. In this case,
we would have, considering equation (1.1), (d/dt)

∫∫
yf (x, y, t) dx dy = 0, and the total wealth in

the economy would be conserved in time.
The case of a conservative economy (afΥ1 + bf = 0, ∀ f ), i.e. the cost functionalΦf in (1.2) being

a parabola, centred aroundΥ1, has been considered in [6] and, in a game-theoretical framework, in
[1]. In this paper, we consider a non-conservative economy (afΥ1 + bf �= 0, except in equilibrium)
where wealth is generated or lost owing to productivity of the agents or inflation.

(c) Frequent trading
In this paper, we consider an asymptotic regime, where the dynamics is dominated by the trading
interaction of the agents, i.e. where the operator Q is the dominant term in equation (1.1). In
the case of a conservative economy (preserving wealth with afΥ1 + bf = 0, ∀ f ), this leads to a
closed macroscopic system for the variables ρ and Υ1. This system has been treated in [1,6]. The
more general form of the collision operator, with a general potential Φf in (1.2), still preserves
the density of agents, so 1 is a collision invariant. (For the sake of simplicity, we disregard the
birth and death of the agents.) However, the total wealth in the system is no longer necessarily
conserved if afΥ1 + bf �= 0 holds, although wealth is conserved in each individual transaction. This
is indeed the main driving force behind the economy and results in a non-conservative economy.
The non-conservative case considerably complicates the derivation of a macroscopic evolution
equation for the density ρ(x, t), because it is not possible to use a local conservation law for the
mean wealth density ρΥ1 in the frequent trading limit, as done in [1,6]. We address this problem
by using the concept of a GCI, as introduced in [5]. This yields a macroscopic balance law (which
is not conservative) for the mean wealth density ρ(x, t)Υ1(x, t) in the limit of frequent trading.

The local equilibrium wealth distribution is also a Nash equilibrium for the non-conservative
economy. It is, in general, computed by solving an infinite dimensional fixed point problem.
However, the fixed point solution cannot be given explicitly for general coefficients af , bf and
cf , in contrast to the previous literature where they could be expressed in terms of an inverse
Gamma distribution [1]. Rather, they are found by solving a linear partial differential equation
together with a finite dimensional fixed point equation. If multiple solutions to this fixed point
equation exist, corresponding to multiple stable equilibria, this indicates that phase transitions
in the wealth distribution are possible. However, we leave the question of the existence and
enumeration of the solutions to the fixed point equation to future work.

In §4, we make a particular modelling choice for the coefficients af and bf in the cost
functional Φ. This choice corresponds to each player interacting with the market (‘trading’) with
a frequency which is inversely proportional to the uncertainty of the market, i.e. to the variation
coefficient of the probability distribution f in (1.1). We refer to this assumption as the ‘risk-
averse’ scenario, which means that traders are more likely to trade, the better they can predict
the development of the market. In addition, each player tries to achieve an acceptable risk level
(given by a constant κ which has to be matched to actual market data). These choices allow us
to express the macroscopic large time average equations of the distribution of players and their
wealth explicitly in equation (1.4).

This paper is organized as follows. In §2, we present the multi-agent model for the dynamics
of N agents, each interacting with the market (the ensemble of all agents). This gives the Fokker–
Planck equation (1.1) for the effective single agent density f (x, y, t). In §3, the equations are put
in dimensionless form and the Gibbs measure in the frequent trading limit is introduced. We
show that the Gibbs measure expresses a Nash equilibrium, i.e. no player can improve on the
cost function by choosing a different direction in y. In §4, we consider the inhomogeneous case.
We introduce the GCI concept in a general setting and then specify a simplified yet economically
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relevant setting where the GCI concept leads to explicit calculations. This leads to an explicit
closure of the moments of the kinetic equation (1.1). The final macroscopic model is summarized
in §5. Finally, we conclude by drawing some perspectives in §6.

2. Game-theoretical framework
We consider a set of N market agents. Each agent, labelled j, is endowed with two variables: its
wealth Yj ∈ R+ and a variable Xj ∈X , where X is an interval of R. The variable Xj characterizes
the agent’s economic configuration, i.e. the category of agents it usually interacts with. We
ignore the possibility of debts, so that we take Yj ≥ 0. We use notations X(t) = (X1, . . . , XN),
Y(t) = (Y1, . . . , YN) to describes the ensemble of all agents. To single out the market environment
for the jth agent, we denote X̂j = (X1, . . . , Xj−1, Xj+1, . . . , XN) and Ŷj = (Y1, . . . , Yj−1, Yj+1, . . . , YN)
for the ensemble of all agents other than his/her self (note that in game theory, Ŷj is often denoted
Y−j). We also write X = (Xj, X̂j) and Y = (Yj, Ŷj) to represent the agent j in the market environment
(Xj, X̂j, Yj, Ŷj). We denote the cost function for the jth agent in this market environment as
ΦN(Xj, X̂j, Yj, Ŷj, t) or ΦN(X, Yj, Ŷj, t). The best-reply strategy is mostly used in economy. Each
agent tries to minimize the cost function with respect to its wealth variable, assuming that the
other agents do not change theirs. The agents choose the steepest descent direction of their cost
function Yj →ΦN(X, Yj, Ŷj) as their action in wealth space, i.e.

FN(X, Yj, Ŷj, t) = −∂YjΦ
N(X, Yj, Ŷj, t).

This action is supplemented with a geometric Brownian noise which models volatility. The
resulting dynamics of the jth agent is described as

Ẋj = V(Xj(t), Yj(t)) (2.1)

and

dYj =FN(X, Yj, Ŷj, t) dt +
√

2dYjdBj
t. (2.2)

The stochastic geometric Brownian noise is understood in the Itò sense and the quantity
√

2d is

the volatility, whereas the notation Bj
t denotes independent Brownian motions. The first equation

above describes how fast the agent evolves in the economic configuration space as a function of
its current wealth and current economic configuration and V(x, y) is a measure of the speed of this
motion. We assume that the function V decays to zero at far field if the domain is unbounded, and
that V = 0 holds on the boundary ∂X if the domain is bounded, i.e.

V → 0 as x → ∂X (2.3)

holds.
In this dynamics, the agents would eventually, at large times, reach a point of minimum of

their cost function. This minimum would then be written

YN
j (X, Ŷj, t) = arg min

Yj∈R+
ΦN(X, Yj, Ŷj, t), ∀ j ∈ {1, . . . , N} (2.4)

and corresponds to a Nash equilibrium of the agents. Therefore, the dynamics correspond to a
non-cooperative non-atomic anonymous game [22–25], also known as a mean-field game [3,4],
where the equilibrium assumption is replaced by a time dynamics describing the march towards
a Nash equilibrium. A game-theoretical framework for this general setting was developed by the
authors in [2] and applied to study conservative economies in [1].

In this paper, we consider a modified, and in some sense, more realistic, model where the
cost functional Φ does not depend on the individual values Ŷj of the other agents, but depends
instead on average quantities of the ensemble. This means that agents are not trading with each
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other individually, but trade with a market (i.e. the ensemble of all other agents), still trying to
optimize their individual costs. So, we consider a cost functional of the form

ΦN =ΦN(X, Yj,Υ ), FN = −∂YjΦ
n

with Υ given by the averaged properties of the ensemble of all agents (the market). (In this paper,
we take Υ to be the given by the first two moments, corresponding to the mean and the variance,
of the wealth in the whole market. So, Υ = (Υ1,Υ2) = (

∑
k Yk,

∑
k Y2

k ) holds.) In the limit N → ∞,
the one-particle distribution function f is then a solution of the Fokker–Planck equation

∂tf + ∂x(V(x, y)f ) + ∂y(Ff f ) = d∂2
y (y2f ), (2.5)

where Ff = Ff (x, y, t) is given by

Ff (x, y, t) = −∂yΦf (t)(x, y), (2.6)

andΦf depends on the density f only through Υ ( f ). Equation (2.6) is posed for (x, y) ∈X × [0, ∞[.
We supplement this equation with the no flux boundary condition at y = 0:

d∂y(y2f ) − Ff f |y=0 = 0, ∀ x ∈X , ∀ t ∈ R+. (2.7)

With the assumption (2.3) on V, there is no need for any boundary condition on f on ∂X .
These conditions imply that the number of agents is conserved in time for the kinetic system,
i.e.

∫
x∈X

∫
y∈[0,∞) f (x, y, t) dx dy = constant. We also provide an initial condition f (x, y, 0) = f0(x, y).

In this paper, we consider a specific trading model with the market and take the following
quadratic cost function with coefficients depending functionally on the ensemble of agents:

Φf (x, y) = 1
2

af

(
y + bf

af

)2

+ cf − 1
2

b2
f

af
= 1

2
af y2 + bf y + cf , (2.8)

where af represents the trading frequency with the market and y = −bf /af represents the optimum
the agent tries to achieve. Note that constant cf plays no role in strategy Ff and we can set it
as b2

f /(2af ). The cost function (2.8) resembles the structure of the cost function used in [1], but
contains now arbitrary coefficients af and bf . The trading frequency now is taken to be uniform
and depends on the market environment. The coefficient af will be given an interpretation in
the example of the risk-adverse strategy below. The flexibility in the choice of af and bf in the
functional enables us to model market strategies. Specifically, in §4, a risk-averse strategy is taken
for af

af = dΥ2

Υ2 − Υ 2
1

,

where Υ1 and Υ2 are the first and second moments of the agent ensemble defined as above.
af /d represents the ratio between strategy action and the volatility and is given by Υ2/(Υ2 − Υ 2

1 ),
the reciprocal of the variation coefficient of the Y. In a completely deterministic market, with
no variation, the trading frequency of the agent would be infinite. On the other hand, in an
extremely uncertain market, with an infinite variance, trading frequency would be given just by
the uncertainty introduced by the Brownian motion, and af = d holds.

3. Dimensionless formulation and the frequent trading limit

(a) Dimensionless formulation
One of the main characterizations in the evolution of wealth distribution is spatio-temporal scale
separation. The economic interaction (the dynamic in the y-direction) is fast compared with the
spatio-temporal scale of the motion in the economic configuration space (i.e. the x variable). In
order to manage the various scales in a proper way, we change the variables to dimensionless
ones. Following the procedure developed in [2], we introduce the macroscopic scale. We assume
that the changes in economic configuration x are slow compared with the exchanges of wealth
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between agents. We introduce t0 and x0 = v0t0 as the time and economic configuration space units,
with v0 the typical magnitude of V. We scale the wealth variable y by a monetary unit y0. Defining
xs = x/x0, ys = y/y0, ts = t/t0 and fs(xs, ys, ts) = x0y0f (x, y, t). Correspondingly, we scale the mean
wealth density Υ1 and the velocity V(x, t) by Υ1(x, t) = y0Υ1s(xs, ts) and V(x, t) = (x0/t0)Vs(xs, ts).
We scale the trading frequency parameters af and bf in (1.2) by af = (1/εt0)afs and bf = (y0/εt0)bfs
and the variance d in the geometric Brownian motion by d = (1/εt0)ds, with ε
 1 a small
dimensionless parameter. This means that we consider the frequency of the trading activity given
by the parameters d, af , bf to be large compared with the frequency of movement in the economic
configuration space, given by the average size v0 of V. This gives the dimensionless formulation
of equation (1.1) as (dropping the subscript s for notational convenience):

∂tf ε + ∂x( f εV(x, y)) = 1
ε

Q( f ε) (3.1)

and
Q( f ) = ∂y[d∂y(y2f ) + (af y + bf )f ]. (3.2)

In the dimensionless formulation, the moment hierarchy (1.4) is still given by

∂t

⎛
⎜⎜⎜⎝

ρε

ρεΥ ε1
ρεΥ ε2
. . .

⎞
⎟⎟⎟⎠+ ∂x

∫
V(x, y)f ε(x, y, t)

⎛
⎜⎜⎜⎝

1
y
y2

. . .

⎞
⎟⎟⎟⎠dy = 1

ε

⎛
⎜⎜⎜⎝

0
−(af εΥ

ε
1 + bf ε )

2(d − af ε )Υ ε2 − 2bf εΥ
ε
1

. . .

⎞
⎟⎟⎟⎠ ρε(x, t). (3.3)

The left-hand side of (3.3) describes the slow dynamics of the moments of distribution in the
economy configuration variable x and time t. This evolution is driven by the fast, local evolution
of this distribution as a function of the individual decision variables y described by the right-hand
side. The parameter ε at the denominator highlights that fact that the internal decision variables
evolve on a faster time scale than the external economy configuration variables. According to
Degond et al. [1], the fast evolution of the internal decision variables drives agents performing a
‘rapid march’, i.e. on a O(1/ε) time scale, towards a Nash equilibrium, defined by the game of
minimizing the functional Φf in (1.2), up to a diffusion.

(b) The frequent trading limit and the Gibbs measure
In the limit of frequent trading interaction (when ε in the previous section is small compared
with 1), the macroscopic dynamics are given by the shape of the solution of Q( f ) = 0. In the
following, we restrict the form of the nonlinear operator Q such that the coefficients af and bf
in (3.1) depend only on the means of the first two moments of the wealth variable. We define
the vector valued functional Υ ( f ) acting from the space of distribution functions into R

2 via the
definition

Υ ( f ) = (Υ 1( f ),Υ 2( f )), Υ k( f ) =
∫

ykf (y) dy∫
f (y) dy

, k = 1, 2.

So, the scaled trading operator Q in (3.1) takes the form Q( f ) = C[f ,Υ ( f )], with the operator C
given by

Q( f ) = C[f ,Υ ( f )] = ∂y[d∂y(y2f ) + (aΥ ( f )y + bΥ ( f ))f ]. (3.4)

We note that, although Q is a nonlinear operator, the nonlinearity is restricted to the dependence
of Q on the mean moments Υ ( f ). In other words, for a given vector Υ the operator C[f ,Υ ] is linear
in f . This allows for the definition of a normalized Gibbs measure GΥ (y) satisfying ( for a given
vector Υ ) the linear problem

C[GΥ ,Υ ] = ∂y[d∂y(y2GΥ ) + (aΥ y + bΥ )GΥ ] = 0,
∫∞

0
GΥ (y) dy = 1. (3.5)

We reformulate the solution of Q( f ) = 0 as the combination of a linear infinite dimensional
problem (solving the linear PDE (3.5) for a given vector Υ ), and a two-dimensional fixed point
problem. The computation of the local thermodynamic equilibrium, the solution of Q( f ) = 0,
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∫

f dy = 1, is then given by the solution GΥ of (3.5) where the two-dimensional vector Υ is a
solution of the fixed point problem

Υ (GΥ ) =Υ . (3.6)

The shape of the probability distribution f (x, y, t) in the frequent trading limit ε→ 0 is then
given by f equ(x, y, t) = ρ(x, t)GΥ (y), with GΥ satisfying (3.5) and Υ satisfying the fixed point
problem (3.6), because multiplying GΥ by a y-independent density ρ(x, t) does not change the
mean moments Υ .

The form (3.5) of the trading operator C[GΥ ,Υ ] allows for the computation of the mean
moment vector Υ (GΥ ) via a recursion formula which is obtained by a simple integration by parts
argument. Integrating equation (3.5) against yk gives, using the zero flux boundary condition at
y = 0 ∫∞

0
[(aΥ − d(k − 1))yk + bΥ yk−1]GΥ dy = 0,

∫∞

0
GΥ (y) dy = 1,

and, in particular, for the first two moments Υ (GΥ ) with k = 1, 2:

aΥ Υ 1(GΥ ) + bΥ = 0, (aΥ − d)Υ 2(GΥ ) + bΥ Υ 1(GΥ ) = 0. (3.7)

The fixed point equations (3.6) take then the form

aΥ Υ1 + bΥ = 0, (aΥ − d)Υ2 + bΥ Υ1 = 0. (3.8)

— So, the equilibrium solution is computed by first finding all solutions to the fixed point
equation (3.8), i.e. (3.8) plays the role of a constitutive relation for the moments in local
equilibrium.

— For any vector Υ = (Υ1,Υ2) satisfying the constitutive relations (3.8), there exists a local
equilibrium f equ(x, y, t) given by f equ(x, y, t) = ρ(x, t)GΥ (y) with a local agent density ρ(x, t)
and GΥ the solution of problem (3.5).

— The shape of the local equilibrium solution f equ = ρGΥ determines of course the large
time average of the solution, and in turn, this shape depends on modelling the coefficients
aΥ and bΥ . So, modelling aΥ and bΥ determines the form of the macroscopic equations
given in §4. To obtain macroscopic balance laws, in addition to the trivial conservation
law for the number of agents, the coefficients aY, bY have to be such that the constitutive
relations (3.8) have multiple solutions.

— In [1,6], the special case, when aΥ and bΥ depend only on the first moment Υ1, has been
treated. In this case, finding the Gibbs measure by solving (3.5) and (3.6) reduces to a
linear problem and solutions can be computed explicitly in terms of inverse Gamma
distributions, recovering well-known results given, for example, in [8].

— Unfortunately, it turns out that this makes the macroscopic equations trivial, except in the
case of a conservative economy when the coefficients aΥ and bΥ satisfy aΥ Υ1 + bΥ = 0.

— In this paper, we therefore consider a more refined model, where the coefficients aΥ and
bΥ depend on Υ1 and Υ2, i.e. on the mean and the variance of the wealth of the market,
which allows for the consideration of non-conservative economies with aΥ Υ1 + bΥ �= 0.

4. Large time averages and hydrodynamic hierarchy closures using the
Gibbs measure

The goal of this section is to close the hierarchy (3.3) in §3 by a local equilibrium, i.e. by a
probability density function f of the form f (x, y, t) = ρ(x, t)GΥ (x,t)(y) with the Gibbs measure GΥ (y)
computed from the results in §4b. For a conservative economy, where the coefficients aΥ , bΥ are
such that aΥ Υ1 + bΥ = 0 holds ∀ f in equation (1.4), this is rather straightforward, because we
immediately obtain two conservation laws for the density of agents and the mean wealth on large
O(1/ε) time scales. These can be closed by replacing f (x, y, t) by the local equilibrium density

 on October 6, 2014rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


9

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A372:20130394

.........................................................

ρ(x, t)GΥ (x,t)(y) in (3.3). This has been done in [6] and, in a game-theoretical framework, in [1].
In the case of a non-conservative economy aΥ Υ1 + bΥ �= 0, just taking the first moment of the transport
equation (3.1) with respect to y does not yield a macroscopic conservation law on large time scales, i.e.
an equation which is independent of ε. We therefore need to integrate the transport equation (3.1)
against a more sophisticated test function, called a GCI, proposed in [5].

(a) The generalized collision invariant concept
We consider a kinetic equation of the form

∂tf ε + ∂x(Vf ε) = 1
ε

Q( f ε) (4.1)

with Q( f ) a nonlinear operator of the form Q( f ) = C[f ,Υ ( f )]. The mean moment operator Υ ( f ) =
(Υ 1( f ), . . . ,Υ K( f )) is defined as in §1 by

∫
ykf dy =Υ k

∫
f dy, k = 1, . . . , K. The operator f �→ C[f ,Υ ]

is linear for a given vector Υ ∈ R
K+. So, the nonlinear dependence of Q( f ) on f is restricted to the

nonlinear dependence of C[f ,Υ ( f )] on Υ ( f ). Integrating (4.1) against any test function z(x, y) w.r.t.
y gives ∫

z{∂tf ε + ∂x(Vf ε)} dy = 1
ε

∫
zQ( f ε) dy. (4.2)

A macroscopic balance law results if
∫

zQ( f ) dy = 0. One obvious choice is z = 1, giving the
conservation of the number of agents. In the case of a conservative economy, with

∫
yQ( f ) dy =

0, ∀ f , treated in [1,6], the other choice is z = y, giving a set of hydrodynamic-type equations on the
macroscopic level. The basic idea of a GCI, developed in [5], is to make the function z dependent
on the moments Υ ( f ) of the kinetic solution f , such that the right-hand side in (4.2) vanishes. This
yields a macroscopic balance law of the form

∫
χΥ ( f ε){∂tf ε + ∂x(V f ε)} dy = 0, (4.3)

if, for any Υ ∈ R
K+, we can find z = χΥ such that

∫
χΥ C[f ,Υ ] dy = 0, ∀ f such that Υ ( f ) =Υ holds. (4.4)

Using the special structure of Q( f ) = C[f ,Υ ( f )], this can be achieved by using the L2-adjoint of the
operator f �→ C[f ,Υ ]. Let Cadj[g,Υ ] be defined by

∫
gC[f ,Υ ] dy =

∫
fCadj[g,Υ ] dy.

That χΥ satisfies (4.4) is equivalent to saying that

∃(λ1, . . . , λK) ∈ R
K such that Cadj[χΥ ,Υ ] =

K∑
k=1

λk(Υk − yk). (4.5)

Then, we have ∫
χΥ ( f )Q( f ) dy =

∫
χΥ ( f )C[f ,Υ ( f )] dy

=
∫

fCadj[χΥ ( f ),Υ ( f )] dy

=
K∑

k=1

λk

∫
f (Υ k( f ) − yk) dy = 0,

by the definition of Υ k( f ). So, the problem of finding the macroscopic balance laws for equation
(4.1) reduces to finding all the GCIs, i.e. all the solutions of (4.5). For any given vector Υ , the set of
associated GCIs forms a linear manifold of dimension M + 1, with M ≤ K: indeed, the constants
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are solutions and form a linear space of dimension 1 and the non-constant GCIs form a linear
vector space of dimension M. We can have M<K, because some compatibility conditions between
the λk may be required. From now on, χΥ denotes a vector of M independent non-constant GCIs.

If we can prove that the solution of the kinetic equation (4.1) is really given up to order O(ε)
by the equilibrium solution, i.e. if f ε = ρGΥ + εf1 holds, then

∂t(ρGΥ ) + ∂x(VρGΥ ) = 1
ε
ρC[GΥ (GΥ+εf1), Υ (GΥ + εf1)] + O(ε) (4.6)

holds. Letting ε→ 0 gives an indefinite limit of the form 0/0 on the right-hand side of
equation (4.6), because Υ satisfies the constitutive equations Υ (GΥ ) =Υ , and C[GΥ ,Υ ] = 0 holds.
Integrating (4.6) against χΥ (ρGΥ+εf1) gives

∫
χΥ (ρGΥ +εf1)[∂t(ρGΥ ) + ∂x(VρGΥ )] dy = O(ε),

and, in the limit ε→ 0 the closed macroscopic equations

∂tρ + ∂x

(
ρ

∫
V(x, y)GΥ dy

)
= 0,

∫
χΥ [∂t(ρGΥ ) + ∂x(VρGΥ )] dy = 0, (4.7)

with Υ satisfying the constitutive relations Υ (GΥ ) =Υ .
This leads to the following recipe for computing macroscopic balance laws for a kinetic

equation of the form (4.1) with a collision operator Q( f ), only conserving the number of agents,
i.e. only satisfying

∫
Q( f ) dy = 0, ∀ f , but not conserving any additional moments.

— For a general vector Υ , find the solution of (4.5). Unfortunately, this will have to be done,
in practice, numerically for non-trivial operators Cadj.

— As pointed out earlier, the Lagrange multipliers λk, k = 1, . . . , K may not be chosen
arbitrarily. Indeed, they have to satisfy certain conditions, depending on the structure
of the operator Cadj, such that the GCI equation (4.5) is solvable. We also repeat that
the GCIs form a linear vector space and that we denote by χΥ a vector of independent
non-constant GCI spanning the space of non-constant GCI.

— This gives in the limit ε→ 0 the macroscopic equations, which are independent of the
microscopic variable y and the parameter ε:

∂tρ + ∂x

(∫
fV(x, y) dy

)
= 0,

∫
χΥ ( f ){∂tf + ∂x( fV(x, y))} dy = 0, (4.8)

with ρ defined as ρ(x, t) = ∫
f (x, y, t) dy. The system (4.8) still has to be closed by choosing

an approximate solution f for the kinetic equation (4.1).
— The system (4.8) is closed by choosing f = f equ = ρGΥ , with GΥ being the Gibbs measure

from §4b in our case, this choice being justified by the formal limit ε→ 0 in (4.1).
— To compute the Gibbs measure GΥ in §4b, we have to solve the infinite dimensional

problem C[GΥ ,Υ ] = 0,
∫

GΥ dy = 1, for a general vector Υ , and then solve the finite
dimensional, fixed point problem Υ (GΥ ) =Υ for the vector Υ .

— The final macroscopic equations (4.8) will be of the form

∂tρ + ∂x

(∫
ρGΥ V(x, y) dy

)
= 0,

∫
χΥ {∂t(ρGΥ ) + ∂x(ρGΥ V)} dy = 0, (4.9)

with Υ satisfying the constitutive relation Υ (GΥ ) =Υ .
— For the system (4.9) to be closed, the fixed point equation Υ (GΥ ) =Υ should have a

manifold structure, parametrized by as many independent parameters as independent
non-constant GCI. The free parameters in the fixed point equation Υ (GΥ ) =Υ are
essentially the other dependent variable (besides ρ) in the system (4.9), although it
might never be explicitly expressed, but given implicitly by the constitutive equations.
In the example of the risk-adverse strategy below, the variables are the density and the
mean wealth (meaning that the constitutive relation has only a one-parameter family
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of solutions, parametrized by the mean wealth) and the macroscopic system consists
of the density conservation equation and a non-conservative balance equation for the
mean wealth.

(b) Non-conservative economies with risk-averse trading strategies
In the model considered in this paper, individual agents try to minimize the cost functional
ΦΥ ( f )(y) with

ΦΥ (y) = 1
2

aΥ y2 + bΥ y + cΥ = 1
2

aΥ

(
y + bΥ

aΥ

)2
+ cΥ − 1

2
b2
Υ

aΥ
,

given market conditions represented by the density f . So, aΥ represents (in dimensionless
variables) the frequency of the trades with the market, i.e. the strategy of an agent to trade or
not to trade, and y = −bΥ /aΥ represents the (market-dependent) optimum that the agent tries to
achieve. We consider a risk-averse strategy of the form

aΥ = dΥ2

Υ2 − Υ 2
1

, (4.10)

and refer to the end of §2 for its interpretation. The constant in the potential does not influence
the dynamics, and we can take cΥ − 1

2 (b2
Υ /aΥ ) = 0. We choose the coefficient bΥ such that

bΥ = −(1 + κ)dΥ1, (4.11)

with a fixed constant κ > 0. This choice is motivated by the consideration of the Nash
equilibrium below.

Using the choice (4.10) for aΥ , we compute the Gibbs measure introduced in §3b from
C[GΥ ,Υ ] = 0,

∫
GΥ dy = 1, i.e. from equation (3.5). It yields the constitutive relations for the vector

Υ = (Υ1,Υ2) from the recursion formula (3.7) as

dΥ2

Υ2 − Υ 2
1
Υ1 + bΥ = 0,

(
dΥ2

Υ2 − Υ 2
1

− d

)
Υ2 + bΥ Υ1 =Υ1

(
dΥ1Υ2

Υ2 − Υ 2
1

+ bΥ

)
= 0. (4.12)

Because the two equations involved in (4.12) are the same, up to a multiplicative factor Υ1, the
first equation (4.12) yields the constitutive relation. For any choice of bΥ (and in particular, for
the choice given by (4.11)), this equation is one equation in two unknowns Υ1,Υ2 and has a one
parameter family of solutions.

Now, using the first equation (4.12) together with (4.11), we obtain

Υ2

Υ2 − Υ 2
1

= − bΥ
dΥ1

= 1 + κ , or equivalently Υ2 − Υ 2
1 = 1

κ
Υ 2

1 . (4.13)

This means that, at the Nash equilibrium when every player has optimized its cost functional,
there exists a finite amount of risk in the market, measured by the fraction 1/κ of the squared
mean wealth Υ 2

1 . So, the choice (4.11) is equivalent to choosing some desired global risk, i.e. a
global variation coefficient 1/κ in the equilibrium market. The first equation (4.13) leads to the
following relation between Υ1 and Υ2 at equilibrium:

Υ2 = 1 + κ

κ
Υ 2

1 , (4.14)

which is the form taken by the constitutive relation (3.8) in the present example.
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To arrive at the closed macroscopic system (4.9), we still have to compute the Gibbs measure
GΥ and the GCI χΥ for a general vector Υ = (Υ1,Υ2), satisfying the constitutive relations (4.14).
The Gibbs measure is given, according to equation (3.5), by the solution of

∂y

[
d∂y(y2GΥ ) +

(
dΥ2

Υ2 − Υ 2
1

y − dΥ1(1 + κ)

)
GΥ

]
= 0,

∫∞

0
GΥ (y) dy = 1, (4.15)

with Υ satisfying (4.14). Using the constitutive relations (4.14), this gives

∂y[d∂y(y2GΥ ) + d(1 + κ)(y − Υ1)GΥ ] = 0,
∫∞

0
GΥ (y) dy = 1, (4.16)

together with the zero flux boundary condition d∂y(y2GΥ ) + d(1 + κ)(y − Υ1)GΥ |y=0 = 0, which
guarantees the conservation of the number of agents in the system. The solution of (4.16) is
given by

GΥ (y) = 1
cΥ

y−κ−3 e−((1+κ)Υ1)/y, cΥ =
∫∞

0
y−κ−3 e−((1+κ)Υ1)/y dy. (4.17)

GΥ is therefore given by an inverse Gamma distribution, i.e.

GΥ (y) = gκ+2,(1+κ)Υ1 (y),

where the inverse Gamma distribution gα,β is defined as gα,β = (βα/Γ (α))y−1−αe−β/y with shape
parameter α and scale parameter β and Γ (α) denoting the Euler Gamma function evaluated at
α. It is related to the usual Gamma function Γ by: γα,β (z) = (βα/Γ (α))zα−1e−βz by the change
of variables z = 1/y. This distribution has been previously found in [26]. When y is large, the
distribution becomes the Pareto power-law distribution, which has a very strong agreement
with economic data (see [19]). GΥ (y) = gκ+2,(1+κ)Υ1 (y) represent the large time average (i.e. the
Nash equilibrium) of a game of players, where each player tries to play the market to achieve a
desired risk, given by the constitutive relation (4.14), which is a dimensionless measure of the
uncertainty of the market. The parameter κ in (4.17) is related to the Pareto index ω̄, which
gives the proportion of agents having wealth larger than y. Here, the Pareto index is equal to
ω̄= κ + 2. In view of the constitutive relation (4.14), κ is inversely proportional to the uncertainty
of the market. Consequently, the Pareto index decreases with increasing uncertainty, meaning
that the proportion of agents with large wealth increases. On the other hand, in a totally risk-free
economy, κ is infinite, and hence so is the Pareto index. In this circumstance, the distribution of
wealth decays faster than any power law, meaning that the amount of agents with large wealth
is infinitesimal.

We note that, in order for the local equilibrium distribution GΥ to have a finite variance,
i.e.

∫∞
0 y2GΥ dy<∞, the value of κ in (4.17) must be positive (κ > 0). We also note that, in view of

(4.15), the Fokker–Planck operator (3.4) can be written

Q( f ) = C[f , Ῡf ] = d∂y

(
y2GῩf

(
f

GῩf

))
. (4.18)

(c) The generalized collision invariant for risk-adverse trading strategies
Let Υ = (Υ1,Υ2) be given, not necessarily related by the constitutive relation (4.14). With the
choices (4.10), (4.11) and with the help of (4.18), equation (4.5) is written

∂y(y2GΥ ∂yψ) = λ1(y − Υ1)GΥ + λ2(y2 − Υ2)GΥ . (4.19)

The weak formulation of this equation is
∫∞

0
y2GΥ ∂yψ∂yσ = −

∫∞

0
λ1(y − Υ1)GΥ σ dy −

∫∞

0
λ2(y2 − Υ2)GΥ σ dy, (4.20)
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for all σ . We note that the formalism of [1] and particularly of its lemma 3.5 applies. It uses an
appropriate functional setting, and we refer the reader to [1] for the details. In [1], it is shown
that a solution to (4.20) exists if and only if the following solvability condition (whose necessity is
easily found by taking σ = 1) is satisfied:

∫∞

0
λ1(y − Υ1)GΥ dy +

∫∞

0
λ2(y2 − Υ2)GΥ dy = 0,

or in other words
λ1(Υ 1(GΥ ) − Υ1) + λ2(Υ 2(GΥ ) − Υ2) = 0. (4.21)

Now, we define

χΥ = y2

2
− Υ1y. (4.22)

Using (4.15) (and not (4.16), because we do not suppose the constitutive relation (4.14) to be
satisfied), we obtain

∂y(y2GΥ ∂yχΥ ) = Υ1

Υ2 − Υ 2
1

{
−Υ1(y2 − Υ2) + Υ2

(
1 + (1 + κ)

(
1 − Υ 2

1
Υ2

))
(y − Υ1)

}
GΥ . (4.23)

Equation (4.23) is of the form (4.19) with

λ1 = Υ1

Υ2 − Υ 2
1
Υ2

(
1 + (1 + κ)

(
1 − Υ 2

1
Υ2

))
, λ2 = − Υ1

Υ2 − Υ 2
1
Υ1.

With the help of (3.7) to compute Υ k(GΥ ), k = 1, 2, we immediately verify that the constraint (4.21)
is satisfied. From (4.21), it follows that the space of non-constant GCI is of dimension 1, and
because χΥ is a non-constant GCI, all non-constant GCIs are proportional to χΥ .

(d) The equation for the mean wealth
Thanks to (4.22), the second equation (4.9) is given by

∫∞

0

(
y2

2
− Υ1(x, t)y

)
∂t(ρGΥ ) dy +

∫∞

0

(
y2

2
− Υ1(x, t)y

)
∂x(V(x, y)ρGΥ ) dy = 0. (4.24)

This gives

∂t

∫∞

0

(
y2

2
− Υ1y

)
ρGΥ dy + ∂tΥ1

∫∞

0
yρGΥ dy

+ ∂x

∫∞

0

(
y2

2
− Υ1y

)
VρGΥ dy + ∂xΥ1

∫∞

0
yVρGΥ dy = 0. (4.25)

We also recall the mass conservation equation (the first equation (4.9)). We define

Uk(x;Υ1) =
(∫∞

0
V(x, y)GΥ (y)yk dy

)∣∣∣∣
Υ2=((1+κ)/κ)Υ 2

1

, k ∈ N, (4.26)

and we obtain
∂tρ + ∂x(ρU0) = 0. (4.27)

Now, we have, thanks to (4.14),

∂t

∫∞

0

(
y2

2
− Υ1y

)
ρGΥ dy + ∂tΥ1

∫∞

0
yρGΥ dy = −1 − κ

2κ
Υ 2

1 ∂x(ρU0) + 1
κ
ρΥ1∂tΥ1 (4.28)

and

∂x

∫∞

0

(
y2

2
− Υ1y

)
VρGΥ dy + ∂xΥ1

∫∞

0
yVρGΥ dy = ∂x

(
ρ

U2

2

)
− Υ1∂x(ρU1). (4.29)
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Inserting (4.28), (4.29) into (4.25), we finally obtain the equation for the mean wealth Υ1:

ρ∂tΥ1 + κ

2Υ1
∂x(ρU2) −

[
κ∂x(ρU1) + 1 − κ

2
Υ1∂x(ρU0)

]
= 0. (4.30)

5. The macroscopic model
To summarize, the macroscopic model is the following system for the agent density ρ(x, t) and the
local mean wealth Υ1(x, t):

∂tρ + ∂x(ρU0) = 0 (5.1)

and

ρ∂tΥ1 + κ

2Υ1
∂x(ρU2) −

[
κ∂x(ρU1) + 1 − κ

2
Υ1∂x(ρU0)

]
= 0, (5.2)

with

Uk = Uk(x;Υ1) =
(∫∞

0
V(x, y)GΥ (y)yk dy

)∣∣∣∣
Υ2=((1+κ)/κ)Υ 2

1

, k = 0, 1, 2. (5.3)

It could be further simplified by assuming specific values of V(x, y). We leave this to future work.
We note that this hydrodynamic model critically depends on the function V(x, y). Here, we just

give a simple example of how this quantity can be related to some practical phenomena. Suppose
that the variable x stands for the geographical location. Then, the flux of agents having wealth
y through x during an interval of time dt is f (x, y, t)V(x, y) dt. Therefore, the quantity V(x, y) is a
model for the migratory exchanges between various geographical places, and these exchanges
depend on the agents’ wealth. Indeed, agents with low wealth are more likely to migrate towards
location with larger values of the mean wealth Υ1.

6. Conclusions
We have derived a model for the large time averages of a set of agents, interacting with each other
through a market, and moving around in an abstract configuration space. Each player interacts
with the market (‘trades’) with a frequency which is inversely proportional to the uncertainty
of the market, and tries to achieve an acceptable risk (given by a constant κ which has to be
matched to actual market data). The model does not rely on the assumption of conservation
of the total wealth in the system, but instead uses the concept of GCI to derive macroscopic
equations for the large time averages. In this sense, this paper is a generalization, as well as an
alternative, to previously considered models in [2,6,26], where only binary trading interactions
between individual agents have been considered under the assumption of conservation of the
total wealth in the system. The final macroscopic model consists of a conservation law for the
number of agents in the system and a balance law for the mean and the variance of the total
wealth, supplemented by a constitutive relation for mean and variance. So, in the large time limit,
agents move in configuration space (which is assumed to be one-dimensional in this paper for the
sake of notational simplicity) according to two partial differential equations (5.1) and (5.2) in time
and one spatial variable.
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