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MACROSCOPIC FLUID MODELS WITH LOCALIZED KINETIC
UPSCALING EFFECTS∗

PIERRE DEGOND† , JIAN-GUO LIU‡ , AND LUC MIEUSSENS†

Abstract. This paper presents a general methodology to design macroscopic fluid models that
take into account localized kinetic upscaling effects. The fluid models are solved in the whole domain
together with a localized kinetic upscaling that corrects the fluid model wherever it is necessary.
This upscaling is obtained by solving a kinetic equation on the nonequilibrium part of the distri-
bution function. This equation is solved only locally and is related to the fluid equation through
a downscaling effect. The method does not need to find an interface condition as do usual domain
decomposition methods to match fluid and kinetic representations. We show our approach applies
to problems that have a hydrodynamic time scale as well as to problems with diffusion time scale.
Simple numerical schemes are proposed to discretize our models, and several numerical examples are
used to validate the method.
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1. Introduction. The simulation of particle systems is a typical example of
multiscale problems. Indeed, an accurate description of such systems is given by the
kinetic theory. But when the system is close to an equilibrium state, it is much simpler
and often accurate enough to use macroscopic models like fluid mechanics or diffusion
theory. A rough indicator of the validity of a macroscopic approximation is often
called the Knudsen number, which can be defined as the ratio of the mean free path
of the particles to a typical macroscopic length. Among the very large spectrum of
problems of particle systems, we simply mention the classical rarefied gas dynamics,
neutron transport, and radiative transfer. Recently new fields have been investigated
as granular media or traffic theory.

Until a recent period, macroscopic approximations (that we call “fluid” in this
article) were used even for systems far from equilibrium, since microscopic theories
were too computationally expensive. Nowadays, modern supercomputers are able to
treat many problems at the kinetic level, but there are still very challenging problems,
like those involving different scales. For instance, we mention the simulation of reentry
problems in aerodynamics, where the particles are close to equilibrium far from the
reentry body, while nonequilibrium effects are very large close to the body. For
radiative transfer problems, this can occur when the material is composed of several
parts of very different opacities. The difficulty is that the computational effort is
generally increasing with the inverse of the Knudsen number. Then a large part of
the computational time is due to a part of the system (close to equilibrium) that could
be more efficiently described by a simpler macroscopic model.
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Consequently, it seems very natural to try to solve each model wherever it is
appropriate, the main problem being to correctly match the two descriptions at the
interfaces of the different domains. This is especially attractive when the particles
are in an equilibrium state in the major part of the domain. This idea has been
largely explored in the past few years. For problems involving diffusive fluid models
(like for neutron and radiative transfer problems) we mention, for instance, the works
of Bal and Maday [2], Degond and Schmeiser [16], Golse, Jin, and Levermore [19],
Klar [23], and Klar and Siedow [26]. For rarefied gas dynamics, we mention the works
of Bourgat, Le Tallec, and Tidriri [5], Qiu [35], Le Tallec and Mallinger [37], Klar,
Neunzert, and Struckmeier [24], Schneider [36], and Chen et al. [9]. The main common
feature of these approaches is that they are typical domain decomposition techniques
where the fluid and kinetic models are solved in different subdomains. The coupling
relations are defined through suitable boundary conditions at the interface between
the subdomains. More recently, different approaches using a local kinetic description
of the particles according to some physical criterion were proposed by Tiwari [38]
and Ohsawa and Ohwada [32]. We also mention the hybrid methods of Crouseilles,
Degond, and Lemou [11, 12] in which a domain decomposition technique is used in
velocity space.

The domain decomposition strategy has also been widely used in molecular dy-
namics problems. The computational domain is decomposed into two atomistic and
continuum regions on which the atomistic and continuum models are used, respec-
tively, and some matching condition is devised for the continuum-atomistic interface
(see, for instance, Cai et al. [6], E and Huang [18], Abraham et al. [1], Wagner,
Karpov, and Liu [39], Li and E [28], and E and Engquist [17]). However, these molec-
ular dynamics problems are quite different from kinetic models. In particular, the
equilibrium state is not well defined.

Very recently, a different approach has been proposed by Degond and Jin [14] for
matching kinetic and diffusion problems. In this work the idea was still to use a domain
decomposition method but in which the coupling is through the equations rather than
the boundary conditions. This is done by using a buffer zone around the interface,
and an artificial transition function that smoothly passes from 1 in the kinetic domain
to 0 in the diffusion zone. The solution of the original transport equation is recovered
as the sum of the solutions of the two models. This is different from the usual domain
decomposition methods in which each of the models represents the full solution. The
transition function makes the equation on each domain degenerate at the end of the
buffer zone; thus no boundary condition is needed at this interface. This idea results in
a very easy-to-use method that works very well in the linear case. This has been suc-
cessfully extended by Degond, Jin, and Mieussens [15] to nonlinear kinetic models that
have hydrodynamic fluid approximations. However, an important property has been
noted in [15]: namely, the equilibrium distribution must be a homogeneous function of
the macroscopic quantities to ensure that uniform flows are preserved by the matching
model. This property is satisfied for the important problems of rarefied gas dynamics
but not for particles as in nonlinear radiative transfer problems. It has been shown
in [15] that this nonpreservation of uniform flows generates oscillations in the results.

While we use several ideas from the previous methods, our idea is rather different.
We solve the fluid model in the whole domain together with a localized kinetic upscal-
ing that corrects the fluid model wherever it is necessary. The perturbative kinetic
equation is solved only locally and is related to the macroscopic equation through a
downscaling effect. Indeed, we separate the distribution function into an equilibrium
leading part (that can be described by the macroscopic fluid variables) plus a pertur-
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bative nonequilibrium distribution. This perturbative part is localized by using the
idea of buffer zones and transition functions as proposed in [14] and [15]. We point
out that here the transition function is applied to the perturbative nonequilibrium
part of the distribution.

We show that a robust matching can be achieved by putting the buffer zone in
the fluid zone and using asymptotic preserving schemes. We obtain a method that
shares many advantages of the method of [14] and [15]: namely, it is easy to use and
to implement, and it is computationally economic.

In addition, this new method turns to be very general, since it does not require any
homogeneity property of the equilibrium distribution, as opposed to the method of
[14] and [15]. It can be applied to very different physical problems, and in particular,
we show that it works fairly well for the nonlinear radiative heat transfer problem
that was not tractable with the previous method.

We also point out other differences with the method proposed in [15]. Essentially
the method in [15] is a domain decomposition approach, since the fluid and the kinetic
models are defined in almost different domains. Namely, the fluid density is zero in the
kinetic zone. Even with the Boltzmann equation for which [15] applies quite well, this
can lead to serious numerical problems, since this produces an artificial cavitation
phenomenon. This is difficult to solve with classical numerical techniques, such as
particle methods or hyperbolic schemes that are not very efficient in case of vacuum
(Roe scheme for instance). On the contrary in our work, the method we propose is
based on a fluid model defined everywhere in which the density is never artificially set
to zero. It is only locally corrected by a kinetic upscaling, which seems physically more
natural. At the numerical level, these new models are slightly more complicated than
the models of [15], but we show with several tests that in practice this does not really
give any difficulties. One can also wonder whether our method is not computationally
more expensive than in [15], in particular for the kinetic zones where we solve a kinetic
equation and a moment system instead of a single kinetic equation. But in practice,
since the computational cost for solving the kinetic equation is far larger than the one
of the moment system—by several orders of magnitude—then the total cost of our
method is comparable to [15].

We now give the outline of the article. In section 2, we present a very general
kinetic model, with a few important properties, and its associated decomposition into
microscopic upscaling and macroscopic downscaling. Most of the usual kinetic models
can be written in this form. We show that the microscopic upscaling can be split by
using a buffer zone and a transition function. From this model we deduce in section 3 a
macroscopic fluid model with localized kinetic upscaling effects, and we study some of
its properties. Two simple examples of applications are also given. We apply the same
strategy for the diffusion scaling in section 4, with again two different examples. The
numerical methods are given in section 5. In section 6, we present several numerical
tests to illustrate the potential of our approach. Finally, a short conclusion is given
in section 7.

2. Basic strategy.

2.1. Kinetic model. We present the method on a general kinetic equation in
one space dimension. Let f(t, x, v) represent the density of particles that at time t
have position x ∈ (0, 1) and velocity v ∈ R or any bounded or discrete subset of R.
The kinetic equation is

∂tf + v∂xf = Q(f),(2.1)



MACROSCOPIC MODELS WITH KINETIC UPSCALINGS 943

with initial data

f |t=0 = finit.

The left-hand side of (2.1) describes the motion of the particles along the x-axis with
velocity v, while the operator Q takes into account the collisions between particles.
This operator acts on f only through the velocity locally at each (t, x).

The integral of any scalar or vector valued function f = f(v) over the velocity set
is denoted by 〈f〉 =

∫
f(v) dv.

The collision operator Q is assumed to satisfy the local conservation property

〈mQ(f)〉 = 0 for every f,

where m(v) = (mi(v))
d
i=1 are locally conserved quantities. Consequently, multiplying

(2.1) by m and integrating over the velocity set gives the local conservation laws

∂t〈mf〉 + ∂x〈vmf〉 = 0.(2.2)

Finally, we assume that the local equilibria of Q (i.e., the solutions of Q(f) = 0)
are equilibrium distributions E[ρ], uniquely specified by their moments ρ through the
relation

ρ = 〈mE[ρ]〉.(2.3)

We do not specify boundary conditions for the moment.

2.2. Asymptotic fluid models: Hydrodynamic versus diffusion scalings.
When the mean free path of the particles is very small compared with the size of the
domain, i.e., when Q is “large,” the numerical resolution of (2.1) can be very expensive,
and it is worth using the asymptotic model obtained when Q “tends to infinity.” Then
an adapted scaling of the time and space variables must be chosen. Indeed, we have
to use a new set of macroscopic variables x′ and t′ according to

x′ = εx, t′ = εt (hydrodynamic scaling),

or

x′ = εx, t′ = ε2t (diffusion scaling).

This choice is mainly guided by the structure of the collision operator. Roughly
speaking, if the flux vector

∫
vE[ρ] of particles in the associated equilibrium state is

zero, then this means that the macroscopic flow is slow, and that a large macroscopic
time scale must be chosen, hence the diffusion scaling. On the contrary, if this flux is
nonzero, then the hydrodynamic scaling gives the correct result.

Although these ideas will be explained in detail in sections 3 and 4, we briefly
review the two kinds of fluid models that can be obtained with these two scalings.

Typically, when the hydrodynamic scaling is adapted to the structure of the
kinetic model, one obtains a hyperbolic fluid model for ρ of type

∂tρ + ∂xF (ρ) = 0.

When the diffusion scaling has to be used, one obtains a parabolic fluid model for ρ,
that is to say a diffusion equation, of type

∂tρ− ∂x(D∂xΦ(ρ)) = 0.
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2.3. Microscopic upscaling and macroscopic downscaling. The micro-
macro decomposition of f consists in separating f into two equilibrium and non-
equilibrium parts. We define the function g such that

f = E[ρ] + g,(2.4)

where ρ := 〈mf〉 are the d first moments of f . This means that g represents the
nonequilibrium part of the distribution f . First, note that since the equilibrium has
the same moments as f (see (2.3)), then the corresponding moments of g are zero:

〈mg〉 = 0.(2.5)

Consequently, we can easily derive the formal result.

Proposition 2.1. If ρ = 〈mf〉 and g = f −E[ρ], then they satisfy the following
coupled equations:

∂tρ + ∂xF (ρ) + ∂x〈vmg〉 = 0,(2.6)

∂tg + v∂xg = Q(E[ρ] + g) − (∂t + v∂x)E[ρ],(2.7)

where F (ρ) = 〈vmE[ρ]〉 is the equilibrium flux vector. The associated initial data are

ρ|t=0 = ρinit = 〈mfinit〉 and g|t=0 = finit − E[ρinit].

Reciprocally, if ρ and g satisfy this system, then f = E[ρ] + g satisfies the kinetic
equation (2.1), and we have ρ = 〈mf〉 and 〈mg〉 = 0.

The upscaling term in (2.6) is ∂x〈vmg〉, while the downscaling term in (2.7) is
−(∂t + v∂x)E[ρ].

Proof. First, we inject relation (2.4) into the local conservation laws (2.2) to find

∂t (〈mE[ρ]〉 + 〈mg〉) + ∂x (〈vmE[ρ]〉 + 〈vmg〉) = 0.

Then we use the definition of the equilibrium flux vector F (ρ) given in the proposition
and relation (2.3) and (2.5) to find (2.6). Relation (2.7) is directly derived from (2.4)
and (2.1).

Reciprocally, assume that ρ and g satisfy system (2.6)–(2.7). Then if we set
f = E[ρ]+g, it is clear from (2.7) that f satisfies (2.1). Moreover, taking the moments
of (2.7) and using (2.6) gives ∂t〈mg〉 = 0. Since these moments are zero at t = 0 due
to the initial data, then 〈mg〉 = 0 anytime, and hence 〈mf〉 = 〈mE[ρ]〉 = ρ.

Note that this decomposition is very classical. For instance, it is often used to
derive Navier–Stokes equations from the Boltzmann equation in rarefied gas dynam-
ics by the Chapman–Enskog procedure (see [7]). We take the name “micro-macro”
decomposition from the paper by Liu and Yu [29].

Remark 2.1. This decomposition considerably simplifies (2.1) if Q is a relaxation
operator towards E[ρ], as, for instance, with the BGK operator of rarefied gas dy-
namics [3] Q(f) = ν(E[ρ]− f). In that case, the collision term in the right-hand side
of (2.7) is nothing but −νg, that is, a linear term.

Remark 2.2. It is well known that the time derivative ∂tE[ρ] can be eliminated
in (2.7) (see the classical Chapman–Enskog expansion in [7]). But we do not find this
technique very convenient for numerical reasons: this makes some nonconservative
products appear in the equations that are difficult to approximate numerically.
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2.4. Splitting of the perturbative nonequilibrium effects by using a
transition function. Now we apply the strategy of [14] and [15] to the nonequilib-
rium part g of model (2.6)–(2.7).

As a simple example, we define a buffer interval [a, b]. We introduce a smooth
function h(x) such that ⎧⎨

⎩
h(x) = 1 for x ≤ a,
h(x) = 0 for x ≥ b,
h(x) ∈ [0, 1] for a ≤ x ≤ b.

If we define the two distributions gK = hg and gF = (1−h)g, then it is easy to check
that they satisfy the following coupled system:

∂tρ + ∂xF (ρ) + ∂x〈vmgK〉 + ∂x〈vmgF 〉 = 0,(2.8)

∂tgK + hv∂xgK + hv∂xgF = hQ(E[ρ] + gK + gF ) − h(∂t + v∂x)E[ρ],(2.9)

∂tgF + (1 − h)v∂xgF + (1 − h)v∂xgK

= (1 − h)Q(E[ρ] + gK + gF ) − (1 − h)(∂t + v∂x)E[ρ],(2.10)

with initial data

ρ|t=0 = ρinit, gK |t=0 = h(finit − E[ρinit]), gF |t=0 = (1 − h)(finit − E[ρinit]).
(2.11)

Indeed, we note the following.

Proposition 2.2. If (ρ, gK , gF ) is the solution of problem (2.8)–(2.10) with
initial data (2.11), then (ρ, g = gK + gF ) is the solution of problem (2.6)–(2.7) with
initial condition (ρinit, finit − E[ρinit]). Moreover, the moments of gK and gF are
zero: 〈mgK〉 = 〈mgF 〉 = 0.

Reciprocally, if (ρ, g) is the solution of (2.6)–(2.7), then (ρ, gK , gF ) = (ρ, hg,
(1 − h)g) is the solution of (2.8)–(2.10) with the same initial condition.

Proof. Just add (2.9) and (2.10). For the converse statement, note that

∂tgK = h∂tg = −hv∂xg + hQ(E[ρ] + g) − h(∂t + v∂x)E[ρ]

= −hv∂x(gK + gF ) + hQ(E[ρ] + gK + gF ) − h(∂t + v∂x)E[ρ],

which gives (2.9). Equation (2.10) is also obtained in this way.

Note that due to their definition, gK(t, ., .) = 0 for t ≥ 0 and x ≥ b, and recipro-
cally gF (t, ., .) = 0 for t ≥ 0 and x ≤ a.

Now the idea is to note that if the flow is close to equilibrium in the right part
x ≥ b, then the asymptotic procedure mentioned in section 2.2 can be used in this
zone to obtain a coupled model between ρ and gK only. This is what we explain in
detail for both the hydrodynamic and the diffusion scalings in the following sections.

3. Localization of the perturbative nonequilibrium effects: The hydro-
dynamic scaling. First, we detail how one can pass from the kinetic equation (2.1)
to a hydrodynamic model. With the hydrodynamic scaling x′ = εx, t′ = εt, (2.1)
reads

∂tf
ε + v∂xf

ε =
1

ε
Q(fε).(3.1)
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Therefore, if we assume that fε goes to f (0) as ε tends to 0, then passing to the limit
in (3.1) gives Q(f0), and hence f (0) is an equilibrium distribution E[ρ(0)]. Since the
conservation laws are

∂tρ
ε + ∂x〈vmfε〉 = 0,

we can also pass to the limit in these relations to obtain

∂tρ
(0) + ∂xF (ρ(0)) = 0(3.2)

with the equilibrium flux vector F (ρ(0)) = 〈vmE[ρ(0)]〉. This is the asymptotic hy-
drodynamic model for (3.1).

Now we explain how the same procedure can be done with the system (2.8)–(2.10)
if the flow is close to the equilibrium in one part of the domain only. The scaled system
(2.8)–(2.10) reads

∂tρ
ε + ∂xF (ρε) + ∂x〈vmgεK〉 + ∂x〈vmgεF 〉 = 0,(3.3)

∂tg
ε
K + hv∂xg

ε
K + hv∂xg

ε
F =

1

ε
hQ(E[ρε] + gεK + gεF ) − h(∂t + v∂x)E[ρε],(3.4)

∂tg
ε
F + (1 − h)v∂xg

ε
F + (1 − h)v∂xg

ε
K

=
1

ε
(1 − h)Q(E[ρε] + gεK + gεF ) − (1 − h)(∂t + v∂x)E[ρε].(3.5)

Assume that Q is of order ε in the interval (−∞, a) and of order 1 in (a,+∞). In
other words, we consider that the left region must be treated by a kinetic model, while
the right region can be approximated by the hydrodynamic equations. Therefore, we
shall be allowed only to perform the hydrodynamic approximation on (3.5), while
(3.4) will have to stay untouched. To this end, the collision term of (3.5) is rewritten
as Q(E[ρε] + gεK + gεF ) = Q(E[ρε] + gεF ) + [Q(E[ρε] + gεK + gεF )−Q(E[ρε] + gεF )], and
we assume that Q(E[ρε] + gεF ) is O(1), whereas [Q(E[ρε] + gεK + gεF )−Q(E[ρε] + gεF )]
is an O(ε). Then (3.5) is rewritten as follows:

ε∂tg
ε
F + ε(1 − h)v∂xg

ε
F − (1 − h)Q(E[ρε] + gεF )

= −ε(1 − h)v∂xg
ε
K − ε(1 − h)(∂t + v∂x)E[ρε]

+ (1 − h)[Q(E[ρε] + gεK + gεF ) −Q(E[ρε] + gεF )],

(3.6)

where the right-hand side is considered to be O(ε).
The following proposition states the limit ε → 0 of gεF .
Proposition 3.1. Consider (3.6), where the right-hand side is treated as an

O(ε) term. Then as ε → 0, gεF → 0.
Proof. We first note that 〈mgεF 〉 = 0 for every ε from Proposition 2.2. Conse-

quently, this is also true in the limit ε = 0, that is,

〈mg
(0)
F 〉 = 0.(3.7)

Now we let ε go to 0 in (3.6) to find Q(E[ρ(0)] + g
(0)
F ) = 0, and hence E[ρ(0)] + g

(0)
F =

E[ρ∗]. Then using (3.7) and relation (2.3) gives ρ∗ = ρ(0), and hence g
(0)
F = 0.

Consequently, the last equation (3.5) of our system can be eliminated. Moreover,
we can replace gεF by 0 in the first two equations (3.3) and (3.4), and we obtain the
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following coupled model:

∂tρ
ε + ∂xF (ρε) + ∂x〈vmgεK〉 = 0,(3.8)

∂tg
ε
K + hv∂xg

ε
K =

h

ε
Q(E[ρε] + gεK) − h(∂t + v∂x)E[ρε],(3.9)

with initial data

ρ|t=0 = ρεinit, gεK |t=0 = h(finit − E[ρinit]).

Therefore this coupled model will be used to approximate by E[ρε] + gεK , the
solution fε of model (3.1). More precisely, fε is supposed to be approximated by
E[ρε]+gεK in (−∞, a) and (a, b), and by E[ρε] in (b,+∞). Remark that in the kinetic
zone (where h = 1), the coupled model gives the original equation in its micro-macro
decomposition form (2.6)–(2.7). In the fluid zone (where h = 0) gK = 0 and (3.8)
gives the hydrodynamic model (3.2). The transition function plays only a role in the
buffer zone where 0 < h < 1.

Note that this system is very similar to the microscopic upscaling/macroscopic
downscaling system (2.6)–(2.7). However, both upscaling and downscaling terms now
are localized. We thus call this system a macroscopic fluid model with localized kinetic
upscalings. It will be shortly named “micro-Macro fluid model” in the remaining
sections.

In the following sections, we give some interesting properties of this model, and
we give two simple examples of application.

To simplify the notation in the remainder of the paper, the superscript ε will be
omitted when no confusion is caused.

3.1. Properties of the micro-Macro model.

3.1.1. Preservation of uniform flows. Uniform flows for model (2.1) are con-
stant equilibrium distributions f = E[ρ]. Because of the function h, f is approximated
in the micro-Macro model (3.8)–(3.9) by nonuniform distributions E[ρ] + gK . Then
it is not clear whether this approximation is still a uniform distribution. However,
this preservation property is desirable to prevent oscillations in zones where the flow
should be uniform (a similar phenomenon is known in computational fluid dynam-
ics when one wants to discretize conservation laws written in curvilinear coordinates;
see [40]). As it is shown in the following proposition, the preservation of uniform flows
is well satisfied by our model.

Proposition 3.2. If the initial condition finit is a constant equilibrium E[ρinit],
then ρ = ρinit and gK = h(finit − E[ρinit]) = 0 are solutions of the micro-Macro
model (3.8)–(3.9), and E[ρ] + gK = E[ρinit]; that is, the kinetic/fluid solution of the
micro-Macro model is exactly the solution of the original kinetic model.

Proof. We put ρ = ρinit and gK = 0 in the left- and right-hand sides of (3.8) and
(3.9) and easily observe that these equations are satisfied.

Remark 3.1. We recall that in the previous method of [15], this property was
true only in the particular case where the equilibrium distribution is a homogeneous
function of degree one with respect to its moments. As a consequence, the coupled
model of [15] is not designed for particles governed by Fermi–Dirac or Bose–Einstein
statistics, while it works well with Maxwell–Boltzmann statistics. This restriction does
not occur here, since the transition function h operates only on the nonequilibrium
part of the distribution. This will be clearly illustrated with the examples of sections
3.4 and 4.2.



948 PIERRE DEGOND, JIAN-GUO LIU, AND LUC MIEUSSENS

3.1.2. Full hydrodynamic limit. Here we prove that if both regions are hy-
drodynamic, we recover the global hydrodynamic equation (3.2) for ρ.

Proposition 3.3. As ε → 0, the moments ρε of the micro-Macro model (3.8)–
(3.9) converge to ρ(0), a solution of the hydrodynamic equation

∂tρ
(0) + ∂xF (ρ(0)) = 0,(3.10)

with initial data

ρ(0)|t=0 = ρinit.

Proof. The proof is similar to what we did to derive the micro-Macro model. We
first note that we can prove in the same manner as we did in the proof of Proposi-
tion 2.1 that 〈mgεK〉 = 0 for every ε. Consequently, this is also true at the limit ε = 0,
that is,

〈mg
(0)
K 〉 = 0.(3.11)

Now we let ε go to 0 in (3.9) to find Q(E[ρ(0)] + g
(0)
K ) = 0, and hence E[ρ(0)] + g

(0)
K =

E[ρ∗]. Then using (3.11) gives ρ∗ = ρ(0), and hence g
(0)
K = 0. Finally, we can pass to

the limit in (3.8) to obtain the hydrodynamic equation (3.10).

3.2. Correct placement of the buffer zone. Here we briefly describe how
the derivation of the micro-Macro model (3.8)–(3.9) can be made more rigorously. In
particular, our aim is to justify the assumption on the size of Q, and how ε can tend
to zero in one zone and not in the other one.

If we consider a relaxation collision operator Q(f) = (E[ρ] − f), like the BGK
operator of rarefied gas dynamics, (2.9)–(2.10) simply read

∂tgK + hv∂xgK + hv∂xgF = −1

τ
gK − h(∂t + v∂x)E[ρ],(3.12)

∂tgF + (1 − h)v∂xgF + (1 − h)v∂xgK = −1

τ
gF − (1 − h)(∂t + v∂x)E[ρ],(3.13)

where ε has been replaced by a function τ . Now we assume that τ is a nondecreasing
function of x such that τ = δ 	 1 in (−∞, b) and τ tends to 1 as x goes to +∞. Then
for every x, as δ → 0, τ(x) tends to a function τ0 which is 0 in (−∞, b) and grows to 1
as x is large. Thus with (3.13) we see that gF is an O(δ) in (−∞, b). Moreover, if the
transition function h is defined as in section 2.4, then (3.13) gives gF = 0 for x ≥ b.
Consequently, gF globally tends to 0 as δ → 0, and we recover the micro-Macro model
(3.8)–(3.9) with τ0 instead of ε.

Note that in this derivation, we see the importance to place the buffer zone [a, b]
inside the fluid zone (that is, where τ is small). Indeed, it is fundamental that τ goes
to zero inside the buffer zone to obtain that gF is small everywhere.

3.3. Example 1: The BGK equation of rarefied gas dynamics. Here we
apply our method to the BGK equation written in one dimension of space and one
dimension of velocity

∂tf + v∂xf = Q(f) =
1

ε
(E[ρ] − f),(3.14)
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where ρ = (n, nu, 1
2nu

2 + 1
2nθ) and

E[ρ] =
n

(2πθ)1/2
exp

(
− (v − u)2

2θ

)

is the Maxwellian equilibrium distribution. This equation is clearly in the same form
as (2.1) with d = 3 locally conserved quantities m(v) = (1, v, 1

2v
2).

As noted in Remark 2.1, this relaxation form of the collision operator considerably
simplifies the micro-Macro model (3.8)–(3.9) that reads

∂tρ + ∂xF (ρ) + ∂x〈vmgK〉 = 0,

∂tgK + hv∂xgK = −1

ε
νgK − h(∂t + v∂x)E[ρ],

(3.15)

where F (ρ) = (nu, nu2 + nθ, u( 1
2nu

2 + 3
2nθ)). The corresponding full hydrodynamic

model (3.10) in this case is the Euler equations of gas dynamics with γ = 3.

3.4. Example 2: The Jin–Xin relaxation model of the Burgers equa-
tion. This model (introduced in [22]) can be obtained from the following discrete-
velocity kinetic model where the particles can have only velocities +1 and −1. It
reads in the hydrodynamic scaling

∂tf1 + ∂xf1 =
1

ε
(M1[ρ] − f1), ∂tf2 − ∂xf2 =

1

ε
(M2[ρ] − f2).(3.16)

The collision operator is a relaxation operator towards the equilibrium

(M1[ρ],M2[ρ]) =
1

2
(ρ + F (ρ), ρ− F (ρ)),

where ρ = f1 + f2 is the only conserved quantity, and F (ρ) = 1
2ρ

2. As explained
in [15], this model cannot be correctly treated with the coupling developed in this
reference, since the equilibrium is not a homogeneous function of ρ.

Defining j = f1 − f2, we can derive a system for ρ and j equivalent to (3.16)

∂tρ + ∂xj = 0, ∂tj + ∂xρ =
1

ε
(F (ρ) − j),(3.17)

which is the so-called Jin–Xin relaxation model of the Burgers equation. When ε goes
to zero, it is clear that j → F (ρ) and then the first equation gives

∂tρ + ∂xF (ρ) = 0,

which is the inviscid Burgers equation.
Equation (3.16) has the same form as (2.1), and the micro-Macro model (3.8)–

(3.9) reads in this case

∂tρ + ∂xF (ρ) + ∂x(g1
K − g2

K) = 0,

∂t

(
g1
K

g2
K

)
+ h∂x

(
g1
K

−g2
K

)
= −1

ε

(
g1
K

g2
K

)
− h

(
∂t

(
M1

M2

)
+ ∂x

(
M1

−M2

))
,

(3.18)

which is very similar to the micro-Macro model (3.15) for the BGK model of sec-
tion 3.3. However, it can be further simplified, since we can prove that the moment of
(g1

K , g2
K) is zero (the proof is the same as in the proof of Proposition 2.2). Actually, this
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means in this case that g2
K = −g1

K . Then by defining the flux JK = g1
K − g2

K = 2g1
K

and substracting the two last equations of (3.18), we obtain the simplified micro-Macro
model

∂tρ + ∂xF (ρ) + ∂xJK = 0,

∂tJK = −1

ε
JK − h(∂tF (ρ) + ∂xρ).

(3.19)

Note that the last equation is just a simple ordinary differential equation with a source
term for JK .

Finally, note that this system could directly be derived from the Jin–Xin form
(3.17) of the discrete-velocity model (3.16) by applying the same strategy on the
unknowns (ρ, j) instead of using (f1, f2). Namely, j is separated into j = F (ρ) + J
(this is the micro-macro decomposition), while ρ is untouched. Then J is written as
J = JK + JF with JK = hJ and JF = (1 − h)J . Finally, JF is eliminated by passing
to the limit ε = 0 in its evolution equation, and we find (3.19).

4. Localization of the perturbative nonequilibrium effects: The dif-
fusion scaling. Contrary to the hydrodynamic scaling, it is difficult to treat the
diffusion scaling in a very general case. Consequently, we prefer directly developing
our strategy with two different examples. The first example treated in section 4.1 is
linear, while the other one treated in section 4.2 is nonlinear.

4.1. An example from linear transport theory.

4.1.1. The linear transport equation and its diffusion limit. We consider
the one group transport equation in slab geometry already used in [14]. This equation
reads as (2.1), where

Q(f) = σ([f ] − f),

with [f ] = 1
2

∫ 1

−1
f(v) dv the average value of f on the velocity set V = [−1, 1].

The collision operator has only one collision invariant m(v) = 1, and its equilibrium
functions E[ρ] are simply the distributions that do not depend on v, namely E[ρ] = 1

2ρ.
In the diffusion scaling x′ = εx, t′ = ε2t, (2.1) reads

ε2∂tf
ε + εv∂xf

ε = Q(fε).(4.1)

The diffusion approximation of this equation is classically obtained by using a
Hilbert expansion of fε (see [14] for details or [8] for a complete classical reference).
However, in view of developing our method, we find it more instructive to work on the
nonequilibrium part gε = fε − E[ρε] = fε − 1

2ρ
ε of the micro-macro decomposition

(2.6)–(2.7) rewritten here with rescaled variables

ε∂tρ
ε + ∂x〈vgε〉 = 0,(4.2)

ε2∂tg
ε + εv∂xg

ε = −σgε − 1

2
(ε2∂t + εv∂x)ρε,(4.3)

with initial conditions

ρε|t=0 = ρinit = 〈finit〉 and gε|t=0 = finit −
1

2
ρinit.

We insert the Hilbert expansions

gε = g(0) + εg(1) + O(ε2) and ρε = ρ(0) + ερ(1) + O(ε2)
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into (4.2)–(4.3) and identify the terms of equal power of ε. This leads to the sequence
of equations

O(1) terms: ∂x〈vg(0)〉 = 0 and g(0) = 0,

O(ε) terms: ∂tρ
(0) + ∂x〈vg(1)〉 = 0 and g(1) = − 1

2σ
v∂xρ

(0).

These relations give the following diffusion equation satisfied by the limit ρ(0) of ρε

as ε goes to 0:

∂tρ
(0) − ∂x

(
1

3σ
∂xρ

(0)

)
= 0.(4.4)

Note that due to the micro-macro decomposition, the Hilbert expansion procedure
is slightly different from the usual one. For instance, we do not need the third order
term of the development.

4.1.2. The micro-Macro model. For the rescaled linear transport model (4.1),
the system (2.8)–(2.10) reads

ε∂tρ
ε + ∂x〈vgεK〉 + ∂x〈vgεF 〉 = 0,(4.5)

ε2∂tg
ε
K + εhv∂xg

ε
K + εhv∂xg

ε
F = −σgεK − 1

2h(ε2∂t + εv∂x)ρε,(4.6)

ε2∂tg
ε
F + ε(1 − h)v∂xg

ε
F + ε(1 − h)v∂xg

ε
K = −σgεF − 1

2 (1 − h)(ε2∂t + εv∂x)ρε,(4.7)

with initial data

ρε|t=0 = ρinit, gεK |t=0 = h

(
finit −

1

2
ρinit

)
, gεF |t=0 = (1 − h)

(
finit −

1

2
ρinit

)
.

Now we assume that σ is of order ε2 in the interval (−∞, a), while it is of order 1 in
(a,+∞). Therefore, we shall be allowed only to perform the diffusion approximation
on gεF , while gεK will have to stay untouched. For this purpose, we rewrite (4.5) and
(4.7) according to

∂x〈vgεF 〉 = −ε∂tρ
ε − ∂x〈vgεK〉,(4.8)

ε2∂tg
ε
F + ε(1 − h)v∂xg

ε
F + σgεF = −ε(1 − h)v∂xg

ε
K − 1

2 (1 − h)(ε2∂t + εv∂x)ρε,(4.9)

where in the right-hand side of (4.8) and (4.9) the terms involving gεK are assumed to
be, respectively, of order ε and ε2.

Following the procedure described in section 4.1.1, we insert the Hilbert expan-

sions gεF = g
(0)
F + εg

(1)
F +O(ε2) and ρε = ρ(0) + ερ(1) +O(ε2) into (4.8)–(4.9). We find

the relations

O(1) terms: ∂x〈vg(0)
F 〉 = 0 and g

(0)
F = 0,

O(ε) terms: ∂x〈vg(1)
F 〉 = −∂tρ

(0) − ∂x
1

ε
〈vgεK〉 and g

(1)
F = − 1

2σ
(1 − h)v∂xρ

(0).

We note that the term involving gεK is of order 1 by our hypothesis, despite its apparent
dependence on ε. Using the last two relations, we find our micro-Macro model, which
is the following diffusion equation for ρ(0) coupled with the kinetic equation (4.6):

∂tρ
ε − ∂x

(
1

3σ
(1 − h)∂xρ

ε

)
+ ∂x

1

ε
〈vgεK〉 = 0,(4.10)

ε2∂tg
ε
K + εhv∂xg

ε
K + εhv∂xg

ε
F = −σgεK − 1

2
h(ε2∂t + εv∂x)ρε,(4.11)
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with

gεF = −ε
1

2σ
(1 − h)v∂xρ

ε,

and with the initial data

ρε|t=0 = ρinit, gεK |t=0 = h

(
finit −

1

2
ρinit

)
.

Note that ρ(0) is still denoted by ρε in these relations, since it depends on ε through
the coupling with gεK .

Remark that in the kinetic zone (where h = 1), this micro-Macro model gives the
original kinetic equation in its micro-macro decomposition form (4.2)–(4.3). In the
fluid zone (where h = 0), (4.11) gives gK = 0 and (4.10) gives the diffusion model
(4.4). Thus our micro-Macro model is indeed a coupling between the original kinetic
equation and its diffusion approximation.

As in section 3.2, this derivation can be made more rigorous by taking a particular
σ and a well-located buffer zone (where σ is small).

4.1.3. Properties of the micro-Macro model. As for the micro-Macro model
in the hydrodynamic scaling, we can easily prove the following properties.

Proposition 4.1.

(i) Preservation of uniform flows.
If the initial condition finit is a constant equilibrium E[ρinit] = 1

2ρinit, then ρ = ρinit
and gK = h(finit−E[ρinit]) = 0 are solutions of the micro-Macro model (4.10)–(4.11),
and E[ρ] + gK = E[ρinit]; that is, the solution of the micro-Macro model is exactly
the solution of the original kinetic model.

(ii) Full diffusion limit.
As ε goes to zero, the equilibrium part ρε of the micro-Macro model converges to ρ(0),
the solution of the diffusion equation (4.4).

Proof. The proof of point (i) is very similar to that of Proposition 3.2 and is left
to the reader.

For point (ii), we insert the Hilbert expansions gεK = g
(0)
K + εg

(1)
K + O(ε2) and

ρε = ρ(0) + ερ(1) + O(ε2) into (4.10)–(4.11) to obtain

O(1) terms: 〈vg(0)
K 〉 = 0 and g

(0)
K = 0,

O(ε) terms:

∂tρ
(0) − ∂x

(
1

3σ
(1 − h)∂xρ

(0)

)
+ ∂x〈vg(1)

K 〉 = 0 and g
(1)
K = − 1

2σ
hv∂xρ

(0).

The last two relations finally give the equation

∂tρ
(0) − ∂x

(
1

3σ
(1 − h)∂xρ

(0)

)
− ∂x

(
1

3σ
h∂xρ

(0)

)
= 0,

which gives (4.4).
Remark 4.1. The coupled model proposed in [14] for the same equation does

not preserve uniform flows. The problem is not the one we mentioned in Remark 3.1,
since the equilibrium distribution is linear and hence homogeneous of degree one. The
problem—not noticed in [14]—is rather due to the first order correction to the density
of the fluid part that gives an O(ε2) error in the uniform flow preservation. However,
this did not appear in the numerical tests, since this error term appears only in the
fluid zone, where ε is small.
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4.2. A nonlinear example: The radiative heat transfer model.

4.2.1. The model and its diffusion limit. For simplicity, we consider the
radiative transfer equation including heat transfer but without photon scattering.
Moreover, only a one-band approximation is considered, in the one-dimensional slab
geometry (see [25]).

We denote by I = I(t, x, μ) the radiative intensity at time t, at position x in the
direction whose angle with axis Ox has cosine μ. Moreover, T (t, x) is the temperature
of the medium. In the diffusion scaling, the equations are

ε2∂tT
ε − ε2∂xxT

ε = −σ(B(T ε) − [Iε]),(4.12)

ε2∂tI
ε + εμ∂xI

ε = σ(B(T ε) − Iε),(4.13)

where [I] is the total intensity

[I] =
1

2

∫ 1

−1

I(t, x, μ) dμ,

and B(T ) is the black-body intensity

B(T ) = T 4.

We also prescribe initial values

T ε|t=0 = Tinit and Iε|t=0 = Iinit.

These equations do not have exactly the same form as (2.1), but our method
applies with very slight modifications. First, note that despite the fact that the
collision operator has no conservation property, the quantity m(μ) = 1 is locally
conserved if we consider (4.12) and (4.13). Namely, we have the so-called energy
conservation equation

ε∂t(T
ε + [Iε]) + ∂x(−ε∂xT

ε + [μIε]) = 0.(4.14)

The equilibrium states for this model are couples (Teq, Ieq) such that Ieq = B(Teq).
Note that this implies that [μIeq] = 0, which justifies using a diffusion scaling.

Consequently, the micro-macro decomposition is here the following:

Iε = B(T ε) + gε,(4.15)

where T ε is kept untouched. Then the equations for gε and T ε are obtained by using
(4.13) and (4.14):

ε∂t(T
ε + B(T ε)) + ∂x(−ε∂xT

ε + [μgε]) = −ε∂t[g
ε],(4.16)

ε2∂tg
ε + εμ∂xg

ε = −σgε − (ε2∂t + εμ∂x)B(T ε),(4.17)

with initial data

T ε|t=0 = Tinit and gε|t=0 = Iinit −B(Tinit).

This is indeed a system similar to (2.6)–(2.7) adapted to the radiative transfer setting.
An important difference is that the micro-macro decomposition (4.15) does not imply
that [gε] = 0, hence the source term in (4.16).
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Note that a similar idea has been used in [25] in order to derive an asymptotic
preserving discretization. But the decomposition they use is a bit more complicated,
since it makes use of an additional unknown that we do not need here.

Now the diffusion limit of (4.12)–(4.13) is obtained by inserting the Hilbert ex-
pansions T ε = T (0) + εT (1) + O(ε2) and gε = g(0) + εg(1) + O(ε2) into (4.16)–(4.17).
We identify terms of equal power of ε to find

O(1) terms: ∂x[μg(0)] = 0 and g(0) = 0,

O(ε) terms:

∂t(T
(0) + B(T (0))) + ∂x(−∂xT

(0) + [μg(1)]) = 0 and g(1) = − 1

σ
μ∂xB(T (0)).

The last two relations give the following nonlinear diffusion equation:

∂t(T
(0) + B(T (0))) − ∂x

(
∂xT

(0) +
1

3σ
∂xB(T (0))

)
= 0.(4.18)

4.2.2. The micro-Macro model. As in section 2.4, we obtain the following
coupled equations for T ε, gεK = hgε, gεF = (1 − h)gε:

ε∂t(T
ε + B(T ε)) + ∂x(−ε∂xT

ε + [μgεK ] + [μgεF ]) = −ε∂t[g
ε
K ] − ε∂t[g

ε
F ],

(4.19)

ε2∂tg
ε
K + εhμ∂xg

ε
K + εhμ∂xg

ε
F = −σgεK − h(ε2∂t + εμ∂x)B(T ε),

(4.20)

ε2∂tg
ε
F + ε(1 − h)μ∂xg

ε
F + ε(1 − h)μ∂xg

ε
K = −σgεF − (1 − h)(ε2∂t + εμ∂x)B(T ε),

(4.21)

with initial data

T ε|t=0 = Tinit, gεK |t=0 = h(Iinit −B(Tinit)), gεF |t=0 = (1 − h)(Iinit −B(Tinit)).

Now we aim to perform the diffusion approximation for gεF in (4.19) and in (4.21).
However, it turns out that the term ∂t[g

ε
K ] in (4.19) leads to an asymptotic model

that does not have the good properties. Actually, it is better to replace this term by
its value given by (4.20). This yields the following equation:

ε∂t(T
ε + (1 − h)B(T ε) + [gεF ]) − ε∂xxT

ε + (1 − h)(∂x[μgεK ] + ∂x[μgεF ]) =
1

ε
σ[gεK ].

(4.22)

Then using exactly the same arguments as in section 4.1.2, we perform the diffu-
sion approximation for gεF in (4.22) rewritten as

ε∂t[g
ε
F ] + (1 − h)∂x[μgεF ]

= −ε∂t(T
ε + (1 − h)B(T ε)) +

1

ε
σ[gεK ] − (1 − h)∂x[μgεK ] + ε∂xxT

ε,
(4.23)

where every term of the right-hand side is considered to be an O(ε), and also in (4.21)
rewritten as

ε2∂tg
ε
F + ε(1 − h)μ∂xg

ε
F + σgεF = −ε(1 − h)μ∂xg

ε
K − (1 − h)(ε2∂t + εμ∂x)B(T ε),

(4.24)
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where the term involving gεK is assumed to be an O(ε2).
Then inserting the Hilbert expansions T ε = T (0) + εT (1) + O(ε2) and gεF =

g
(0)
F + εg

(1)
F + O(ε2) into (4.23) and (4.24), we find the relations

O(1) terms: (1 − h)∂x[μg
(0)
F ] = 0 and g

(0)
F = 0,

O(ε) terms:

(1 − h)∂x[μg
(1)
F ] = −∂t

(
T (0) + (1 − h)B(T (0))

)
+

1

ε2
σ[gεK ] − (1 − h)∂x

1

ε
[μgεK ]

+ ∂xxT
(0)

and g
(1)
F = − 1

σ
(1 − h)μ∂xB(T (0)).

The last two relations then give a diffusion equation for T (0) coupled with the kinetic
equation (4.20) for gεK . This is our micro-Macro model that finally reads

ε2∂t(T
ε + (1 − h)B(T ε)) − ε2∂xxT

ε − ε2(1 − h)∂x

(
(1 − h)

1

3σ
∂xB(T ε)

)
+ ε(1 − h)∂x[μgεK ] = σ[gεK ],(4.25)

ε2∂tg
ε
K + εhμ∂xg

ε
K + εhμ∂xg

ε
F = −σgεK − h(ε2∂t + εμ∂x)B(T ε),(4.26)

with gεF = −ε(1 − h) 1
σμ∂xB(T ε) and the initial data

T ε|t=0 = Tinit, gεK |t=0 = h(Iinit −B(Tinit)).

Again, note that T (0) is denoted T ε in this model, since it still depends on ε through
the coupling.

As we noticed for the micro-Macro models in the previous sections, this model
gives well the original radiative heat transfer equation (4.12)–(4.13) in the kinetic
zone (where h = 1) and the nonlinear diffusion model (4.18) in the fluid zone (where
h = 0).

4.2.3. Properties of the micro-Macro model. We can now prove that our
micro-Macro model satisfies the following interesting properties.

Proposition 4.2.

(i) Preservation of uniform flows.
If the initial condition (Tinit, Iinit) is a constant equilibrium (i.e., such that Iinit =
B(Tinit)), then T = Tinit and gK = h(Iinit − B(Tinit)) = 0 are solutions of the
micro-Macro model (4.25)–(4.26), and (T,B(T )+ gK) = (Tinit, B(Tinit)); that is, the
kinetic/fluid solution of the micro-Macro model is exactly the solution of the original
kinetic model.

(ii) Full diffusion limit.
As ε goes to zero, the solution (T ε, gεK) of the micro-Macro model converges to
(T (0), 0), where T (0) is a solution of the nonlinear diffusion equation (4.18).

Proof. Again, the proof of (i) is very similar to that of Proposition 3.2 and is left
to the reader. For (ii), we insert the Hilbert expansions T ε = T (0) + εT (1) + O(ε2)

and gεF = g
(0)
F + εg

(1)
F + O(ε2) into (4.26) and into the following energy conservation

relation obtained by averaging the sum of (4.25) and (4.26):

ε∂t(T
ε + B(T ε)) + ε∂t[g

ε
K ] − ε∂x

(
∂xT

ε + (1 − h)
1

3σ
∂xB(T ε)

)
+ ∂x[μgεK ] = 0.

By identifying terms of equal power of ε, we obtain relations
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O(1) terms: ∂x[μg
(0)
K ] = 0 and g

(0)
K = 0,

O(ε) terms:

∂t(T
(0) + B(T (0))) − ∂x

(
∂xT

(0) + (1 − h)
1

3σ
∂xB(T (0))

)
+ ∂x[μg

(1)
K ] = 0

and g
(1)
K = −h

1

σ
μ∂xB(T (0)).

The last two relations give nonlinear diffusion equation (4.18).
Remark 4.2. This model is a typical example for which the coupling method

of [14] does not possess the property of preservation of uniform flows. The main reason
is that as found in [15], the equilibrium state I = B(T ) is not homogeneous of degree
one with respect to T . Namely, in the coupling of [14], we need that B(hT ) = hB(T ),
which is obviously not true.

5. Numerical approximations. Here we briefly present how the previous
micro-Macro models have been discretized for the numerical tests of section 6. To
avoid too large a number of numerical results, we do not solve the micro-Macro model
for the linear transport equation of section 4.1.

The main characteristics of our discretizations are the following. First, the time
variable t is discretized with nodes tn = nΔt for n ≥ 0, the space variable x is
discretized with mesh points xi = iΔx for i = 1, . . . , imax, and we define ia and ib
such that xia = a and xib = b. We set hi = h(xi), ρi = ρ(tn, xi), and gnK,i = gK(tn, xi).
The velocity variable v (or μ) is discretized with nodes vj = jΔv, but for more clarity
we do not use the subscript j in what follows. The integrals in the fluxes and in the
collision operators are approximated by a simple rectangle formula.

It is rather difficult to analyze the structure of our micro-Macro systems (3.8)–
(3.9), (4.25)–(4.26). In particular the discretization of the material derivative of the
local equilibrium on the right-hand side of the kinetic equation is an important issue.
Here we propose a simple approach, yet without rigorous numerical analysis.

First, we recall that the initial step to obtain our models was to rewrite the original
kinetic equation (2.1) as the equivalent system (2.6)–(2.7) by using the micro-macro
decomposition (2.4). Therefore it is natural to design a simple scheme for (2.1) and
then to use the micro-macro decomposition (2.4) to obtain a numerical scheme for
(2.6)–(2.7). Namely, we discretize (2.1) with the following usual first order explicit
upwind approximation:

fn+1
i − fn

i

Δt
+

φi+ 1
2
(fn) − φi− 1

2
(fn)

Δx
= Q(fn

i ),(5.1)

with the numerical flux

φi+ 1
2
(f) = v−fi+1 + v+fi.(5.2)

We can also use standard second order approximation with slope limiters. Under
a classical time step restriction, this scheme has many strong properties, such as
stability in various norms. By using the micro-macro decomposition (2.4), we deduce
from (5.1) the following numerical discretization of (2.6)–(2.7):

ρn+1
i − ρni

Δt
+

Ψn
i+ 1

2

− Ψn
i− 1

2

Δx
= 0,(5.3)

gn+1
i − gni

Δt
+

φi+ 1
2
(gn) − φi− 1

2
(gn)

Δx
=

1

ε
Q(E[ρni ] + gni ) − Sn

i ,(5.4)
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where Ψn
i+ 1

2

is a consistent approximation of Ψ(ρn, gn) = F (ρn) + 〈vmgn〉 at xi+ 1
2
,

and Sn
i denotes the discretization of the downscaling term (∂t + v∂x)E[ρ] defined by

Sn
i =

E[ρn+1
i ] − E[ρni ]

Δt
+

φi+ 1
2
(E[ρn]) − φi− 1

2
(E[ρn])

Δx
.(5.5)

By equivalence with (5.1), this scheme is perfectly stable.
Now, in order to obtain a numerical discretization of our micro-Macro models, a

natural idea is to mimic the derivation of the models on the numerical scheme (5.3)–
(5.4) (namely, splitting of g by using the transition function h and then localization).
While this works very well for the hyperbolic case, we prefer to use another approach
for the parabolic case. These constructions are detailed in the following sections.

5.1. Micro-Macro model for the general hydrodynamic scaling (sec-
tion 3). By applying the same procedure as described in sections 2.4 and 3 to the
numerical scheme (5.3)–(5.4), we obtain the following approximation of our model
(for completeness, the micro-Macro model is recalled before we give the numerical
scheme).

The model.

∂tρ + ∂xF (ρ) + ∂x〈vmgK〉 = 0,

∂tgK + hv∂xgK =
1

ε
hQ(E[ρ] + gK) − h(∂t + v∂x)E[ρ].

The scheme.

ρn+1
i − ρni

Δt
+

Ψn
i+ 1

2

− Ψn
i− 1

2

Δx
= 0,(5.6)

gn+1
K,i − gnK,i

Δt
+ hi

φi+ 1
2
(gnK) − φi− 1

2
(gnK)

Δx
=

1

ε
hiQ(E[ρni ] + gnK,i) − hiS

n
i .(5.7)

Of course, this scheme is no longer equivalent to the numerical approximation of
the original kinetic equation. Consequently, we cannot prove any stability property
for the moment. However, note that in fluid zones (h = 0) and in kinetic zones
(h = 1), we recover two schemes that are stable. Moreover, we will show in section 6
that our scheme behaves very well even where 0 < h < 1.

Now, following a standard method (see [10, 21, 30]), we briefly explain how this
scheme can be extended to second order in space. We simply assume that the flux Ψ
can be split into a positive and a negative part Ψ = Ψ+ + Ψ−. The first and second
order reconstructions of the positive flux are obtained by the following piecewise
polynomial Ψ+(x):

Ψ+(x) = Ψ+(ρi, gK,i) + si(x− xi), x ∈ [xi+ 1
2
, xi− 1

2
].

This equality must be understood componentwise; that is, we have one slope si per
component of the flux. The possible spurious oscillations near discontinuities are
suppressed by the classical minmod slope limiter

si =
1

Δx
minmod

(
Ψ+(ρi+1, gK,i+1) − Ψ+(ρi, gK,i),Ψ

+(ρi, gK,i) − Ψ+(ρi−1, gK,i−1)
)
,

while taking si = 0 gives a first order scheme. We can do the same reconstruction for
the negative flux. Then the numerical flux Ψi+ 1

2
is computed by upwinding and by

using the previous splitting

Ψn
i+ 1

2
= Ψ+

i (xi+ 1
2
) + Ψ−

i+1(xi+ 1
2
).
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Finally, the splitting of Ψ is naturally derived from its kinetic formulation

Ψ(ρ, gK) = F (ρ) + 〈vmgK〉
= 〈vm(E[ρ] + gK)〉
= 〈v+m(E[ρ] + gK)〉 + 〈v−m(E[ρ] + gK)〉.

For the equilibrium part, this is nothing but the kinetic flux vector splitting introduced
by Mandal and Deshpande in [31] for the Euler equations of gas dynamics. We can
also use the flux vector splitting of Perthame [34], where the physical equilibrium is
replaced in the splitting of Ψ by a compactly supported square-shaped distribution.

By applying the same analysis as in section 3.1, it is rather simple to prove that
this scheme preserves uniform flows.

5.2. Asymptotic preserving scheme for relaxation kinetic equations.
This scheme can be directly applied to the BGK and the Jin–Xin models. But in these
cases, the collision operator is linear and can be taken implicit. This avoids a severe
CFL condition due to the collision frequency and gives schemes that are asymptotic
preserving, as explained hereinafter. Indeed, with the explicit time discretization
of the collision operator given above, small ε create large negative contributions to
gn+1
K,i . This can be controlled only if Δt is small enough, say Δt < ετ . Since relaxation

collision operators simply write Q(E[ρ]+g) = − 1
τ g, they can easily be taken implicit,

which gives instead of (5.7) the relation

gn+1
K,i − gnK,i

Δt
+ hi

φi+ 1
2
(gnK) − φi− 1

2
(gnK)

Δx
= − 1

ετ
gn+1
K,i − hiS

n
i .(5.8)

In this case, it seems clear that there is no more positivity issue due to ε and that Δt
can be taken independent of ε. In particular, one can formally pass to the limit ε = 0
in this relation (with constant Δt and Δx) to find gn+1

K,i = 0. Passing to the limit in
the discrete macroscopic relation (5.6) gives a scheme for the asymptotic hyperbolic
model (3.2). A scheme with such a property is often called an “asymptotic preserving
scheme.”

Actually this can be rigorously proved if hi = 1. In this case relation (5.6) and
(5.8) are strictly equivalent to

fn+1
i − fn

i

Δt
+

φi+ 1
2
(fn) − φi− 1

2
(fn)

Δx
=

1

ετ
(E[ρn+1

i ] − fn+1
i ),

which is an implicit discretization of the full relaxation kinetic equation. Thus it is
well known that this scheme is L∞ stable uniformly with respect to ε.

If hi 
= 1, a rigorous proof seems unlikely, while our numerical results show that
the scheme is still stable in this case. However, by using the same kind of arguments
as in section 3.2, this may be understood as follows. Assume the buffer is located
inside the fluid zone (where ε is small). This means that where hi 
= 1, we have
from (5.8) that gnK,i is an O(ε), hence a very small quantity. Outside the buffer zone,
hi = 0, and then gnK,i is zero. Consequently, the possible instabilities should remain
of size ε and located inside the buffer.

Finally, note that even with this technique, the time step is still constrained by
the maximum molecular velocity, which can be very different from the fluid time scale
(given by the macroscopic velocity). In such a case, we could apply a technique used
in [14]: a time stepping algorithm is used to advance differently the macroscopic and
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kinetic parts when necessary. If the time step ΔtK imposed by the kinetic part is
much lower than the time step ΔtF due to the fluid part, we solve the kinetic equation
during N = [ΔtF /ΔtK ] time steps ΔtK with a constant fluid contribution. Then the
fluid equation is solved with time step ΔtF . Note that we did not need to use this
technique in our tests.

5.3. Micro-Macro model model for the heat transfer equation (sec-
tion 4.2). In this case, we find it not very convenient to derive a numerical scheme
from (5.3)–(5.4). Indeed, this leads to complex discretizations as five point stencils
for the diffusion terms. Instead we directly discretize the micro-Macro model by stan-
dard finite difference approximations (three point stencil for second order derivatives
and first order one-sided approximation for the transport operators). We rewrite
below the micro-Macro model we found, and we give the corresponding numerical
approximation we use.

The model.

∂t(T + (1 − h)B(T )) − ∂xxT − (1 − h)∂x

(
(1 − h)

1

3σ
∂xB(T )

)
+ (1 − h)∂x[μgK ] = σ[gK ],

∂tgK + hμ∂xgK − hμ2∂x

(
(1 − h)

1

σ
∂xB(T )

)
= −σgK − h(∂t + μ∂x)B(T ).

The scheme.

(1 + (1 − hi)B
′(Tn

i ))
Tn+1
i − Tn

i

Δt
−

Tn
i+1 − 2Tn

i + Tn
i−1

Δx2

− (1 − hi)
1

Δx

((
1 − h

3σ

)
i+ 1

2

B(Tn
i+1) −B(Tn

i )

Δx
−
(

1 − h

3σ

)
i− 1

2

B(Tn
i ) −B(Tn

i−1)

Δx

)

+ (1 − hi)

[
φi+ 1

2
(gnK) − φi− 1

2
(gnK)

Δx

]
= σi[g

n
K,i],

(5.9)

gn+1
K,i − gnK,i

Δt
+ hi

φi+ 1
2
(gnK) − φi− 1

2
(gnK)

Δx

+ hiμ
2 1

Δx2

((
1 − h

σ

)
i+ 1

2

B(Tn
i+1) −B(Tn

i )

Δx
−
(

1 − h

σ

)
i− 1

2

B(Tn
i ) −B(Tn

i−1)

Δx

)

= −σig
n
K,i − hiS

n
i .

(5.10)

For clarity, we have dropped ε in these relations. Again, by applying the same
analysis as in section 3.1, it is rather simple to prove that this scheme preserves
uniform flows.

On the contrary, it is much more difficult to design an asymptotic preserving
scheme here. Actually, the stiffness of the equations is due not only to the collision
operator but also to the transport terms. We defer the design of an adapted asymp-
totic preserving scheme to a future work. For instance, it should be possible to extend
the asymptotic preserving scheme of [25] to this model. We refer the reader to [14]
for another example of such a scheme applied to a different kinetic/diffusion coupled
model.
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6. Numerical results. In this section, we want to illustrate the properties and
potentialities of our method with simple one-dimensional (1D) cases. Our goal is
mainly twofold:

• to confirm the robustness and stability of our method;
• to test its accuracy and to show how it can be used to approximate a kinetic

model when a large part of the domain is close to an equilibrium state.
We shall first consider the Jin–Xin relaxation approximation (3.16) of the Burgers
equation. Then we shall use two 1D BGK models similar to (3.14), where the second
one accounts for three-dimensional (3D) effects in velocity. Finally, we shall test our
method on the radiative heat transfer model (4.12)–(4.13).

Example 6.1. Numerical solution of the micro-Macro model for the Jin–Xin
relaxation approximation (3.16) of the Burgers equation.

In the first test, we want to prove that the oscillation observed in [15] (and due
to the nonpreservation of uniform flows) is not created by our new method.

Here we take ε = 0.01. We use 100 points to solve the kinetic model (3.16) in the
entire domain and 100 points for the numerical approximation of the micro-Macro
model. The function h is defined to be piecewise linear and continuous: 0 for x ≤ a,
1 for x ≥ b, and linear between a and b. We use two choices of buffer zones: a = −0.1,
b = 0.1; a = −0.05, b = 0.05, respectively.

In the different figures, the kinetic solution ρ = f1 +f2 is plotted with a solid line,
while the density of the micro-Macro model ρ is shown by the symbol “o.” We also
plot the exact solution for the full hydrodynamic limit—that is, the Burgers equation
in this case—with a dash-dotted line. The buffer zone is made clearly visible by two
vertical dotted lines at x = a and x = b.

We consider a shock wave corresponding to the initial condition: ρ = 1 in [−0.5, 0]
and ρ = 0.5 in [0, 0.5]. We observe (Figures 1–2) that the micro-Macro model is very
close to the kinetic solution in the whole domain. As expected, there is no oscillation
at all.

In a second test, we want to validate our method in a situation more adapted
to the derivation of our model. Consequently, (3.16) is considered with a relaxation
time τ that depends on x instead of the single parameter ε. This relaxation time is
chosen to be 0.001 for x ≤ −0.0505 (fluid domain), 0.1 for x ≥ 0.101 (kinetic domain),
and linear between −0.0505 and 0.101. Following the analysis given in section 3.2,
we choose a buffer zone located inside the fluid zone. Namely, we take a = −0.202
and b = 0.202, with h defined as in the previous test. The initial condition is again a
shock wave but corresponding to the new initial condition: ρ = 1 in [0,−0.1667] and
ρ = 0.5 in [0.1667, 1] (that is, the initial discontinuity is located at the first third of
the domain). For the discretization, we use the second order scheme of section 5.1
with 100 points.

In Figures 3 and 4, the same symbols as in the previous test are used, we plot
the same quantities, and we materialize by dotted lines the fluid and kinetic domains
(with the corresponding values of the relaxation time). We plot our results for four
different times. First, we globally note that the micro-Macro model is really very
close to the full kinetic model. More precisely, when the shock is inside the fluid zone
(Figure 3(top)), the micro-Macro model is slightly different from the kinetic model,
since only the fluid equation is solved here. However, the three models are very
close in this zone. As the shock reaches the kinetic zone, the hydrodynamic solution
becomes very different, while the micro-Macro and the kinetic models remain very
close (almost indistinguishable in the figures). Consequently, our micro-Macro model
behaves fairly well on this test case.
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Fig. 1. The numerical solution of ρ for the Jin–Xin relaxation model (3.16) with ε = 0.01
at t = 0.0450 for the shock initial condition, with narrow (top) and large (bottom) buffer zone.
The solid line is the numerical solution of model (3.16), while “o” is the numerical solution of the
micro-Macro model (1000 grid points), and “.-” is the exact solution for the Burgers equation (full
hydrodynamic limit).
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Fig. 2. The numerical solution of ρ for the Jin–Xin relaxation model (3.16) with ε = 0.01 at
t = 0.350 for the shock initial condition, with narrow (top) and large (bottom) buffer zone. The solid
line is the numerical solution of model (3.16), while “o” is the numerical solution of the micro-Macro
model (1000 grid points), and “.-” is the exact solution for the Burgers equation (full hydrodynamic
limit).
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Fig. 3. The numerical solution of ρ for the Jin–Xin relaxation model (3.16) with a space
dependent relaxation time (from 0.001 to 0.1) at t = 0.0909 (top) and t = 0.2773 (bottom).
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Fig. 4. The numerical solution of ρ for the Jin–Xin relaxation model (3.16) with a space
dependent relaxation time (from 0.001 to 0.1) at t = 0.4773 (top) and t = 0.5909 (bottom).
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Example 6.2. Numerical solution of the micro-Macro model for the 1D-1D BGK
equation (3.14).

In this example, we perform a test similar to the previous one with the Xin–Jin
model. We take a space dependent relaxation time τ instead of the single parameter
ε such that we can clearly define a fluid zone (where τ is small) and a kinetic zone
(where τ is larger). Note that to our knowledge, this model is not really physical, since
in rarefied gas dynamics, the relaxation time depends on x through the macroscopic
quantities only. But in that case, the definition of fluid and kinetic zones is less
obvious (see Example 6.3).

We compare our micro-Macro model (3.15) to the original kinetic equation and
to the full hydrodynamic limit (3.10) which is Euler equations with γ = 3. The
equations are solved in the domain [0, 1] with 100 points in space and second order
schemes. The time step is the same for the three models and based on the CFL
condition for the kinetic equation. The initial condition is a high density region of
gas at rest at uniform temperature located around the middle of the domain. It is
defined for the kinetic equation by a Maxwellian distribution with the macroscopic
quantities density = 1 + 0.1/

√
0.002π exp(−(x − 0.5)2/(0.002)), velocity = 0, and

temperature = 1. The fluid model is initialized with the same macroscopic data, and
the micro-Macro model is initialized accordingly.

We use three different relaxation time functions and the same buffer zone [0.4950,
0.5248]. The transition function h is defined with a piecewise affine function, as in
the previous example.

In the test, we use a relaxation time that varies smoothly from 0.001 to 1 with the
formula τ(x) = 1/2(2/π arctan((x− 0.5)/0.005− 30) + 1). Thus in the buffer zone, τ
varies between 0.0103 and 0.0127. In Figure 5, we plot the density, the velocity, and
the pressure of the gas, as well as the relaxation time that allows us to see where the
fluid and kinetic zones are located. Quite surprisingly, we observe that the kinetic and
the fluid models are very different even in the fluid zone. It seems that the kinetic
effects of the kinetic zone influence the solution as far as the fluid zone. But the
micro-Macro model does not have this property, since it seems much closer to the
fluid model in this zone than to the kinetic solution. On the contrary, the micro-
Macro and the kinetic models are very close in the kinetic zone. It probably means
that the micro-Macro model does not take into account enough kinetic effect.

Now we decrease these kinetic effects by taking a relaxation time that varies
smoothly from 0.0001 to 0.1 with the formula τ(x) = 1/2(2/π arctan((x−0.5)/0.005−
30) + 1)0.1. Then the kinetic zone is rather what is called a transition regime zone in
aerodynamics. We observe in Figure 6 that the micro-Macro model is now very close
to the kinetic model in the whole domain.

Finally, we use a relaxation time that varies from 0.001 to 1 like in the first test
but with a piecewise linear and continuous function: 0.001 for x < 0.6, 1 for x > 0.7,
and linear between 0.6 and 0.7. Thus the buffer zone is clearly inside a highly fluid
zone (τ is 0.001 inside, while it was around 0.01 in the first test). Again we observe in
Figure 7 that the micro-Macro model is very close to the kinetic model in the whole
domain.

We conclude from this test that to have an accurate approximation of the kinetic
equation with our micro-Macro model, either the buffer zone must be in a real fluid
zone, or the kinetic effects must be localized enough.

Example 6.3. Numerical solution of the micro-Macro model for a 1D-3D BGK
model of rarefied gas dynamics.

Here we test the micro-Macro model for the following BGK model of rarefied gas
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Fig. 5. The numerical solution at t = 0.1103 of density (top left), velocity (top right), and
pressure (bottom left) for the 1D BGK model (3.14) with a space dependent relaxation time (from
0.001 to 1, plotted bottom right).

dynamics:

∂t

(
F
G

)
+ v∂x

(
F
G

)
= ν(ρ)

(
M [ρ] − F

RTM [ρ] −G

)
,

where M [ρ] = n√
2πRT

exp(− (v−u)2

2RT ) and

ρ =

(
n, nu, n

u2

2
+

3

2
nRT

)
=

〈(
1, v,

1

2
v2

)
F + (0, 0, 1)G

〉
.

The collision frequency is ν(ρ) = p
μ , where p = nRT is the pressure and μ = CTω

is the viscosity. For hydrogen, we have R = 208.24, C = 1.99 × 10−3, and ω = 0.81
(see [4]).

This model is 1D in space and two-dimensional (2D) in velocity, but it ac-
counts for 3D velocity effects. It is obtained with standard reduction technique
of the full 3D BGK model of rarefied gas dynamics (see [20]). Namely, F (v) =∫

R×R
f(v, vy, vz) dvydvz and G(v) =

∫
R×R

1
2 (v2

y + v2
z)f(v, vy, vz) dvydvz, where f is the

full distribution function. This model is of the form (2.1), and its hydrodynamic limit
is the Euler system of gas dynamics for monatomic gases (γ = 5/3). A micro-Macro
fluid model of form (2.6)–(2.7) can be derived.
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Fig. 6. The numerical solution at t = 0.1103 of density (top left), velocity (top right), and
pressure (bottom left) for the 1D BGK model (3.14) with a space dependent relaxation time (from
0.0001 to 0.1, plotted bottom right).

We use the classical stationary normal shock wave problem (see [33] or [4]). The
gas is initially into two uniform left and right Maxwellian states separated by a dis-
continuity at x = 0. The two states are related by the Rankine–Hugoniot relations.
The steady state shows the smooth transition between upstream and downstream
states. For the upstream flow, we used a density n = 6.63 × 10−6 kg.m−3, a velocity
u = 2551 m.s−1, and a temperature T = 293 K. These values yield a shock Mach
number of 8.

Contrary to the previous models, the present model does not explicitly contain
a small parameter that could indicate where the kinetic effects should be taken into
account. However, it seems clear that the flow is very close to equilibrium far away
from the shock and in a highly nonequilibrium state within the shock. Actually, this
can be made more precise by plotting the local Knudsen number Kn = mean free path

n/∂xn

obtained with a full BGK computation (see Figure 8). According to Bird [4], the
upper limit on Kn at which a kinetic description must be used may be taken to
be 0.2. Consequently, we define three different zones where the kinetic upscaling will
be used: these zones are, respectively, defined by Kn > 10−2, 10−3, 10−4. We do not
use the upper limit Kn > 0.2 given by Bird, since it would give a very narrow zone.

For the numerical computation, we use a finite space domain [−0.5, 0.5] discretized
with a uniform mesh of 300 cells. The velocity domain is [−3410, 4603] discretized
with 40 points. This ensures that both left and right Maxwellian are well represented
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Fig. 7. The numerical solution at t = 0.1103 of density (top left), velocity (top right), and
pressure (bottom left) for the 1D BGK model (3.14) with a space dependent relaxation time (piecewise
linear from 0.001 to 1, plotted bottom right).

on the velocity grid. A second order scheme is used with the kinetic flux vector
splitting of [31] for the macroscopic terms with an implicit time discretization of the
collision operator. For the three tests, the kinetic zone is separated from the fluid zone
by two left and a right buffer zones of length 1/30. The function h is defined with a
piecewise affine function, as in previous examples (it is 1 inside the kinetic zone and
0 in the fluid zone). As usual for this test case, we use a stabilization technique to
prevent the shock from moving to the right. Namely, after each time step, the solution
is shifted so that the mean density point x (defined by the relation n(x) =

nleft+nright

2 )
is equal to 0. See [33] and the references therein for a discussion of this so-called
shift-phenomenon.

In Figures 9–11, we compare the macroscopic quantities density, velocity, tem-
perature, and heat flux obtained with a full kinetic computation to the ones obtained
with our micro-Macro model, with the three different kinetic zones. We observe that
for the density all the results are very close. For the other quantities, the results
obtained with the two largest kinetic zones are very close to the full kinetic solution.
However, the results obtained with the most narrow kinetic zone are correct only
inside the shock and downstream. In the upstream part, we can clearly see a kind of
discontinuity, located in the left buffer zone. This is probably due to the fact that the
macroscopic model (Euler model) is used where the kinetic effects are still important,
even if the local Knudsen number is lower than 10−2 in this zone. Note that this
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Fig. 8. Local Knudsen number for the stationary normal shock wave (in log scale). The three
zones where the kinetic upscaling will be used are represented by dotted lines.

number is based on the density only; it is thus not surprising that it does not take
into account all the nonequilibrium effects. Instead we could use much more precise
criteria that exist in the literature to determine how a flow locally departs from an
equilibrium state (see, for instance, [27, 32, 37]).

We also plot in Figures 12–16 the reduced distribution function F (x, v) into five
different points of the flow: x = −0.1383 (upstream), x = −0.2217 (left part of the
shock), x = 0 (middle of the initial shock), x = 0.0117 (right part of the shock),
x = 0.0717 (downstream). We find that all the results are very close (even if the
results obtained with the most narrow zone are less accurate than the others).

This test thus shows that our micro-Macro model behaves fairly well to describe
rarefied gas problems. However, we think that the macroscopic model (Euler equa-
tions) is not very well adapted for this case. Indeed, the solution given by the Euler
model is simply the initial discontinuity, which is very far from the kinetic solution,
in particular in the upstream flow. Instead, we could probably use a much narrower
kinetic zone if the macroscopic model was Navier–Stokes equations instead of Euler
equations. The derivation of such micro-Macro model is deferred to a future work.

Example 6.4. Numerical solution of the micro-Macro model for the radiative heat
transfer problem.

We solve the kinetic problem (4.12)–(4.13), the asymptotic diffusion model (4.18),
and the micro-Macro model (4.25)–(4.26) in the domain [0, 1]. We use Dirichlet bound-
ary conditions for the temperature:

T (t, 0) = 1, T (t, 1) = 0,

and equilibrium Dirichlet boundary conditions for the radiative intensity:

I(t, 0, μ) = 1, μ > 0, I(t, 1, μ) = 0, μ < 0.
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Fig. 9. Density, velocity, and temperature (top) and heat flux (bottom) for the stationary
normal shock wave. Comparison of the full kinetic BGK equation to the micro-Macro model with a
kinetic zone defined by a local Knudsen number greater than 10−2.
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Fig. 10. Density, velocity, and temperature (top) and heat flux (bottom) for the stationary
normal shock wave. Comparison of the full kinetic BGK equation to the micro-Macro model with a
kinetic zone defined by a local Knudsen number greater than 10−3.
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Fig. 11. Density, velocity, and temperature (top) and heat flux (bottom) for the stationary
normal shock wave. Comparison of the full kinetic BGK equation to the micro-Macro model with a
kinetic zone defined by a local Knudsen number greater than 10−4.
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Fig. 12. Stationary normal shock wave problem: reduced distribution function F (x, v) at x =
−0.1383 m (upstream) for BGK and micro-Macro model used with three different kinetic zones (1:
Kn > 10−2, 2: Kn > 10−2, 3: Kn > 10−2).
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Fig. 13. Stationary normal shock wave problem: reduced distribution function F (x, v) at x =
−0.0217 m (left part of the shock) for BGK and micro-Macro model used with three different kinetic
zones (1: Kn > 10−2, 2: Kn > 10−2, 3: Kn > 10−2).

The corresponding boundary conditions for gK are

gK(t, 0, μ) = 0, μ > 0, gK(t, 1, μ) = 0, μ < 0.

The initial data are I|t=0 = T |t=0 = 0, and thus gK |t=0 = 0.
In this example, we take ε = 1, and the value of the opacity σ characterizes

the nature of the regime (transport or diffusive). It is defined to be piecewise linear
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Fig. 14. Stationary normal shock wave problem: reduced distribution function F (x, v) at x =
0 m (in the shock) for BGK and micro-Macro model used with three different kinetic zones (1:
Kn > 10−2, 2: Kn > 10−2, 3: Kn > 10−2).
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Fig. 15. Stationary normal shock wave problem: reduced distribution function F (x, v) at x =
0.0117 m (right part of the shock) for BGK and micro-Macro model used with three different kinetic
zones (1: Kn > 10−2, 2: Kn > 10−2, 3: Kn > 10−2).

and continuous: 1 for x ≤ 0.1, 100 for x ≥ 0.15, and linear between 0.1 and 0.15.
Therefore we can consider that the interval [0, 0.1] is purely kinetic, while [0.15, 1] is
purely diffusive.

The function h is also defined to be piecewise linear and continuous: 0 for x ≤ a,
1 for x ≥ b, and linear between a and b. We use two choices of buffer zones: a = 0.12,
b = 0.17; a = 0.16, b = 0.21, respectively. Note that these buffers have the same size,
while only the second one is inside the fluid zone (this was suggested by the analysis
given in section 3.2).
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Fig. 16. Stationary normal shock wave problem: reduced distribution function F (x, v) at x =
0.0717 m (downstream) for BGK and micro-Macro model used with three different kinetic zones (1:
Kn > 10−2, 2: Kn > 10−2, 3: Kn > 10−2).

We use 100 points for x and 20 points for μ. We compute both transient and
steady states.

In the different figures, the temperature of the kinetic model is plotted with a
solid line, while the temperature of the micro-Macro model is shown by the symbol
“o.” We also plot the temperature of the full diffusion limit with a dash-dotted line.
The buffer zone is made clearly visible by two vertical dotted lines at x = a and x = b.

For the transient state (t = 0.0185) we observe in Figure 17 that the micro-
Macro model is very close to the kinetic solution in the whole domain. This result
is remarkable, since the full diffusion model itself is completely wrong, even in the
diffusive domain, whereas our micro-Macro model is nothing but the full diffusion
equation in the diffusion domain. This difference is due to the fact that the diffusion
model fails to capture the correct dynamics in the kinetic zone, while our micro-Macro
model does not.

For the steady state (Figure 18), the conclusions are similar except that with
the buffer which is not completely in the fluid zone: the results obtained with this
buffer are not as accurate as with the other one. This comforts the analysis given in
section 3.2.

Finally, we mention that our micro-Macro model is perfectly in agreement with
the diffusion equation if both domains are diffusive (say, σ = 1 everywhere). The
corresponding results are not plotted here.

7. Conclusion. In this work, we have presented a method to model kinetic prob-
lems by using a fluid approximation wherever it is possible. We have proposed a way
to include a localized kinetic upscaling that corrects the fluid model wherever it is
necessary. In parts of the domain where the particles are very far from an equilibrium
state, our method turns to the full kinetic equation, while where equilibrium state is
reached, only the fluid equations are solved. The main ingredients we have used are
a splitting of the distribution function into an equilibrium leading part plus a pertur-
bative nonequilibrium term, and the idea of buffer zones and transition functions as
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Fig. 17. The numerical solution of the temperature for the radiative heat transfer model (4.2)
at t = 0.0185, with a buffer inside the fluid zone (top) and a buffer partially outside the fluid zone
(bottom).

proposed in [14] and [15].
Of course, the previous numerical results are only preliminary tests. An intensive

series of new tests should be done to measure the performances of our method, in
particular in 2D configurations. But already, we have presented several tests in one
space dimension that show our method behaves quite satisfactorily. Moreover, we
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Fig. 18. The numerical solution of the temperature for the radiative heat transfer model (4.2)
at steady state, with a buffer inside the fluid zone (top) and a buffer partially outside the fluid zone
(bottom).

have shown that our method raises the main question addressed in [15], while it shares
many similar properties. It is very easy to use and to implement, since the zones where
the kinetic upscaling is taken into account are defined through a function which is
evaluated once for all on the grid. For instance, several kinetic subdomains with
nonconnex buffer zones can easily be used without modifying the implementation.
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Moreover, its simplicity allows us to apply it to very different problems, such as
rarefied gas dynamics and radiative heat transfer.

Further developments of this work could include the use of a time-dependent
transition function h coupled with a physical criterion to obtain an adaptive micro-
Macro model as it is done in [13]. It is also very important to build asymptotic
preserving schemes for micro-Macro models that account for diffusion scale, like the
radiative heat transfer model. Moreover, for the case of rarefied gas dynamics, it
should be very relevant to extend our approach to a micro-Macro model whose fluid
model would be the Navier–Stokes equations rather than the Euler equations. Finally,
we shall also try to apply this method in other physical problems where multiscale
effects are important.
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Thèse, Université Paris VI, Paris, 1993.

[36] J. Schneider, Direct coupling of fluid and kinetic equations, Transport Theory Statist. Phys.,
25 (1996), pp. 681–698.

[37] P. Le Tallec and F. Mallinger, Coupling Boltzmann and Navier-Stokes equations by half
fluxes, J. Comput. Phys., 136 (1997), pp. 51–67.

[38] S. Tiwari, Coupling of the Boltzmann and Euler equations with automatic domain decompo-
sition, J. Comput. Phys., 144 (1998), pp. 710–726.

[39] G. J. Wagner, E. G. Karpov, and W. K. Liu, Molecular dynamics boundary conditions for
regular crystal lattices, Comput. Methods Appl. Mech. Engrg., 193 (2004), pp. 1579–1601.

[40] H. C. Yee, A Class of High-Resolution Explicit and Implicit Shock-Capturing Methods, Tech-
nical Report Lecture Series 1989-04, von Karman Institute for Fluid Dynamics, Rhode-
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