
January 5, 2017 9:24 WSPC/103-M3AS 1740005

Mathematical Models and Methods in Applied Sciences
Vol. 27, No. 1 (2017) 159–182
c© The Author(s)
DOI: 10.1142/S021820251740005X

Continuum dynamics of the intention field under weakly
cohesive social interaction

Pierre Degond

Department of Mathematics, Imperial College London,
South Kensington Campus, London SW7 2AZ, UK

pdegond@imperial.ac.uk

Jian-Guo Liu

Department of Physics, Duke University,
Durham, NC 27708, USA

Department of Mathematics, Duke University,
Durham, NC 27708, USA

jliu@phy.duke.edu

Sara Merino-Aceituno

Department of Mathematics, Imperial College London,
South Kensington Campus, London SW7 2AZ, UK

s.merino-aceituno@imperial.ac.uk

Thomas Tardiveau
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We investigate the long-time dynamics of an opinion formation model inspired by a
work by Borghesi, Bouchaud and Jensen. First, we derive a Fokker–Planck-type equation
under the assumption that interactions between individuals produce little consensus of
opinion (grazing collision approximation). Second, we study conditions under which the
Fokker–Planck equation has non-trivial equilibria and derive the macroscopic limit (cor-
responding to the long-time dynamics and spatially localized interactions) for the evo-
lution of the mean opinion. Finally, we compare two different types of interaction rates:
the original one given in the work of Borghesi, Bouchaud and Jensen (symmetric binary
interactions) and one inspired from works by Motsch and Tadmor (non-symmetric binary
interactions). We show that the first case leads to a conservative model for the density
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of the mean opinion whereas the second case leads to a non-conservative equation. We
also show that the speed at which consensus is reached asymptotically for these two

rates has fairly different density dependence.

Keywords: Opinion formation; grazing limit; non-symmetric rate; continuum limit;
Deffuant–Weisbuch model.

AMS Subject Classification: 82C21, 82C22, 82C26, 82C31, 82C40, 82C70, 91B12, 91B14,
91B70, 91B72

1. Introduction

The goal of this paper is the investigation of an opinion formation model inspired
from the one presented in Ref. 10. First, we obtain the mean-field equations for
this model and approximate the dynamics under the assumption that interactions
between individuals produce little convergence of opinions (weak consensus interac-
tion). We study the equilibria for this case and show that, under some conditions, it
corresponds to a Gaussian distribution N (ϕ, σ2) with a fixed given variance σ2 but
undetermined mean ϕ. The final aim is to derive the equation for the evolution of
the mean opinion ϕ in the spatially heterogeneous case when interactions become
localized. During this analysis, we will consider two different cases corresponding
to two different types of interaction rates: the original one given in Ref. 10 and one
inspired from Refs. 29 and 30. We show that, asymptotically, the dynamics for the
second rate reaches consensus faster in regions of low density of individuals while for
high density regions, the dynamics corresponding to the first rate is faster in reach-
ing consensus. The main result is discussed in the next section. As far as we know,
this is the first result that derives the macroscopic dynamics for these equations.

The tools used to carry out the present analysis are borrowed from kinetic the-
ory and hydrodynamic limit techniques which originally were developed to tackle
problems from mathematical physics. Recently these tools have found applications
in the study of emergent phenomena in biological and social systems. Some illustra-
tive examples of this are the study of self-organized collective behavior in different
settings like swarming and flocking,19,28 fish schools,1,11 ant trail formation20 or col-
lective cell migration37; evolution of traffic26 and crowd dynamic3,27; the emergence
of languages,36 cultures,2 segregation31 or social classes.6 In particular, recently
new approaches have been introduced to describe the formation of opinions using
mean-field (or kinetic) equations.4,21,32,34

However, the modeling of opinion formation has a long history. One can trace
it back to the Condorcet method for voting systems (1785) and more recently to
the Fisher-KPP equation (1937) which has found applications in modeling rumor
spreading.7 This was followed in 1971 by Ref. 35 that models polarization phenom-
ena in a society, and in 1982 with the emergence of the concept of sociophysics.24

One of the first approaches to opinion formation consisted of describing society as
a graph, or network, with individuals located at nodes and interacting with their
neighboring nodes. Such a description fostered links with the Ising model where
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spins were replaced by an opinion variable. This first approach also encouraged
to view opinions as discrete-valued variables. The main difference between the
proposed models is the rule by which opinions evolve. The interested reader can
find examples in the voter’s model,12 the majority rule model23 and the Sznajd
model.33 In opposition to this, in the model treated here opinions are repre-
sented by continuum-valued variables and individuals are located in the continuum
space R

n.
In opinion formation two major opposing mechanisms are considered: on the one

hand, interaction between individuals leading to some type of consensus, and on
the other hand, noise that accounts for other factors like self-thinking, media, etc.
The balance between these two antagonist effects is key to the long-time evolution
of opinions and the formation of large-scale patterns like, for example, emergence
of clusters. For instance Ref. 5 investigates the formation of clusters under the
rule that interacting individuals adopt the average value of their opinions. Here,
we also study the balance between these two opposing effects, particularly, we give
conditions for consensus to emerge and we study how given interaction rates affect
the speed at which consensus is reached.

We will start first with an extension of the Deffuant–Weisbuch model.15 Such
models are applied to the study of voters’ intentions and their distance correla-
tions.8,9 For the asymptotic analysis, we consider the individual-based model pre-
sented in Ref. 10 (spatially heterogeneous version of Ref. 15) with an interaction rate
inspired from Refs. 29 and 30. In Ref. 10 the authors consider that the interaction
rate between individuals is given by a centered Gaussian evaluated at the distance
between the opinions of the two interacting individuals. The authors showed that
a phase transition emerges between social dissension and a socially cohesive phase
with the mean opinion obeying a diffusion equation at the kinetic level. Here we
focus our attention on the weak consensus approximation (i.e. the case where lit-
tle consensus of opinions is reached after interactions). The equilibria and phase
transitions that we obtain are consistent with the results in Ref. 10.

There exist related works in the literature that present different settings from
ours. In Ref. 21 a similar model, introduced by Ref. 34, is studied with a constant
interaction rate and bounded domain. In Ref. 25, the authors investigate a kinetic
equation close to ours on a periodic domain. In Ref. 34, the author considers a model
where the outcome of a binary interaction depends on each of the individuals’
intention but not on their difference of opinions. Finally, in Ref. 14 the authors
consider a model for wealth dynamics where binary interactions are possible only
if the outcome wealth remains positive.

The paper is structured as follows. In Sec. 2, we discuss the main result, namely
Theorem 4.1 where the evolution for the mean opinion dynamics is derived. In Sec. 3,
we present the individual-based model for opinion dynamics in the spatially homo-
geneous case and consider interactions leading to weak consensus (analogous to the
so-called “grazing collision approximation” in gas dynamics). We study the equi-
libria of these dynamics. Finally, in Sec. 4 we consider the spatially heterogeneous
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case for the previous model and derive the macroscopic equations for the evolution
of the mean opinion.

2. Discussion of the Main Results

2.1. Framework

In this paper, we consider a model where pairs of individuals interact through
their opinions or intentions (3.1). A parameter γ measures how close both opinions
become after an interaction. We assume here that γ is small and therefore little
consensus is reached during interactions. We will consider that a noise with mean
zero and variance Σ2 is present in the interactions. Finally, these interactions take
place at a given rate depending on how close the opinion of a pair of individuals
is. Particularly, the rate is parametrized by ζ which represents the typical scale at
which interactions take place. Under the conditions of Proposition 3.2 we prove that
the equilibrium for the corresponding mean-field equation is given by a Gaussian
with fixed variance σ2 (given by γ, ζ,Σ2) and undetermined mean ϕ. In particu-
lar, we give criteria on γ,Σ2 and ζ for a phase transition to occur between social
consensus and social dissent, see Remark 3.3.

We consider two types of rates given by Eqs. (3.2) and (4.2). The first rate
corresponds to symmetric interactions, i.e. the rate at which a pair (i, j) interacts
is the same as for the pair (j, i). This rate depends only on the spatial distance
and opinion distance between the pair of individuals (i.e. the closer individuals are
in space and in opinion, the higher the rate at which they interact). In the other
case, the interaction is non-symmetric. In this case, individuals forming a cluster in
the space-opinion phase space interact very frequently whereas isolated individuals
undergo fewer interactions and when they do interact they tend to interact with
the close clusters. If i denotes an isolated individual and j an individual belonging
to a close cluster then the influence of j on i will be larger than the influence of i on
j by a ratio roughly equal to the size of the cluster. This implies that the isolated
individual i changes its opinion toward a value closer to the opinion of individual
j, while the opinion of j does not change. This non-symmetric relation is key to
explain why this rate gives faster consensus than the symmetric case in regions of
low density, as we will explain later.

2.2. Conservative properties and entropy

The evolution for the mean opinion, or in the language of Ref. 10 of the “inten-
tion field”, ϕ = ϕ(α, t) (where α is the spatial variable) is given for both rates
in Theorem 4.1 in the asymptotic time limit when interactions become localized.
The density ρ is constant in time and the density of opinion ρϕ evolves according
to

∂

∂t
(ρϕ) = Cs∇α · (ρ2∇αϕ

)
, Cs := γD

ζ3

(2σ2
s + ζ2)3/2

, (2.1)
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for the symmetric case and

∂

∂t
(ρϕ) =

Ca
ρ
∇α · (ρ2∇αϕ

)
, Ca := γD

ζ2

σ2
a + ζ2

, (2.2)

for the non-symmetric case. From these expressions we investigate conservative and
homogenization properties for the respective solutions.

To begin with, notice that, for the symmetric case, the density of opinion ρϕ is a
conserved quantity. This is expected since this is a conserved quantity at the kinetic
level. The opposite holds true for the non-symmetric case: the non-conservation of
ρϕ at the kinetic level is maintained in the macroscopic dynamics. Nevertheless, we
notice that in the non-symmetric case the value for ρ2ϕ is conserved (multiplying
Eq. (2.2) by ρ as it is independent of time). Notice that if transport of individuals
was taken into account on the kinetic equations this conservation property would
most likely not hold (in particular, ρ would become time-dependent).

Moreover, from Eqs. (2.1) and (2.2) we can deduce the following entropy dissi-
pation relations:

∂

∂t

∫
Rn

ρϕ2dα = −Cs
∫

Rn

ρ2|∇αϕ|2dα, (2.3)

for the symmetric case and
∂

∂t

∫
Rn

ρ2ϕ2dα = −Ca
∫

Rn

ρ2|∇αϕ|2dα, (2.4)

for the non-symmetric case. This shows that for both cases the L2(Rn) (weighted)
norms on the left-hand side decrease over time. When the time derivative reaches
zero, the right-hand side vanishes which implies that ∇αϕ = 0 a.e., and so ϕ is
constant a.e. Therefore, the dynamics tend to homogenize the value of the mean
opinion, or intention field, ϕ. Precisely absolute consensus takes place when ϕ is
constant, i.e. there is no difference in the mean opinion between different spatial
regions. Observe that, indeed, constant functions are stationary solutions to both
equations. In the next section, we investigate for which one of the two rates con-
sidered consensus is reached faster asymptotically.

Remark 2.1. (Conserved quantities and analogy with non-equilibrium thermody-
namics) Notice that the mean intention ϕ is not a conserved quantity, only the
density of intention ρϕ is (in the symmetric case). Also, Eq. (2.1) is consistent with
Önsager’s formalism of non-equilibrium thermodynamics where the time derivatives
of the extensive variables (here the mean density of intention) are balanced by the
divergence of fluxes that are linear in the gradients of the intensive variables (here
the mean intention itself). This is often referred to as the linear flux-force theory.
There exists a duality between intensive and extensive variables through the entropy
of the system.16 This is why, in order to study conservative properties and entropy
dissipation relations, we formulate Eqs. (2.1) and (2.2) in Önsager’s formalism,16

i.e. by considering the time derivative corresponding to the extensive variable ρϕ
instead of that of the intensive variable ϕ. However, in the non-symmetric case, the

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
17

.2
7:

15
9-

18
2.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
U

K
E

 U
N

IV
E

R
SI

T
Y

 o
n 

01
/1

4/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



January 5, 2017 9:24 WSPC/103-M3AS 1740005

164 P. Degond et al.

formalism of non-equilibrium thermodynamics does not strictly apply since the time
derivative of the density of intention ρϕ is not balanced by a divergence. Instead,
there is the pre-factor 1/ρ in front of the divergence which makes the equation
non-conservative. Thus, in this case, the standard entropy

∫
ρϕ2dx as put forward

by Önsager need not be dissipated. But another entropy
∫
ρ2ϕ2dx is.

To conclude this section, we remark that by Proposition 3.2 the diffusion con-
stants can be rewritten as Cs = γD(

√
ζ2 − κ/ζ)3 and Ca = γD(2ζ2 − κ)/(2ζ2)

(with κ = Σ2/γ) and so they stay positive for the same range values of κ as that
for which the Gaussian equilibria given in Proposition 3.2 is defined. This shows
that the final model is well-posed.

2.3. Comparison in the speed of consensus

To compare the speed of consensus given by the two different rates, we recast again
Eqs. (4.12)–(4.13) from Theorem 4.1 into, assuming that ρ > 0,

∂ϕ

∂t
− Cs(ρ∆αϕ+ 2∇αρ · ∇αϕ) = 0, Cs := γD

ζ3

(2σ2
s + ζ2)3/2

, (2.5)

for the symmetric case and

∂ϕ

∂t
− Ca

(
∆αϕ+

2
ρ
∇αρ · ∇αϕ

)
= 0, Ca := γD

ζ2

σ2
a + ζ2

, (2.6)

for the non-symmetric case (σs and σa are given in Proposition 3.2). One can
check that Ca > Cs. In both cases we have that the mean opinion, or intention
field, diffuses and is transported in the direction −∇αρ, i.e. from places of high
concentration of individuals to places of low concentration. Since absolute consensus
takes place when ϕ is constant, the faster the mean opinion ϕ is diffused and
transported through space, the faster consensus is reached.

We start by examining regions with low population, say ρ ≤ 1. We observe
that the diffusive coefficient for the symmetric case, given by Csρ, is always smaller
than that of the non-symmetric case, corresponding to Ca (since Ca > Cs). In
particular, in this symmetric case, diffusion slows down in regions with lower density
of individuals. Also the transport of the mean opinion toward areas of lower density
is slower in the symmetric case since this speed corresponds to Cs whereas in the
non-symmetric case it corresponds to Ca/ρ. Notice then that, in the non-symmetric
case, in low density regions this transport takes place very fast. However in the non-
symmetric case, interaction rates are scale-invariant with the local density while in
the symmetric case they are homogeneous of degree one with the density. So, in the
non-symmetric case, agents in low density regions interact at the same rate as in
the high density regions while in the symmetric case, they interact at a much lower
rate. The effect is opposite in the large density regions.

In conclusion, from Theorem 4.1 we deduce the following.

Corollary 2.1. Low density regions reach consensus faster in the non-symmetric
rate case. By contrast, the large density regions reach consensus faster in the

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
17

.2
7:

15
9-

18
2.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
U

K
E

 U
N

IV
E

R
SI

T
Y

 o
n 

01
/1

4/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



January 5, 2017 9:24 WSPC/103-M3AS 1740005

Continuum dynamics of the intention field 165

symmetric case. The crossover density between these two behaviors is given by
Csρ = Ca, i.e.

ρ =
Ca
Cs

. (2.7)

This crossover in the speed to consensus can be understood heuristically as fol-
lows. In the symmetric case any pair of individuals has the same influence on each
other. Contrary to this, in the non-symmetric case, individuals belonging to a clus-
ter (high density region) influence the opinion of isolated individuals (low density
regions) but not the other way around, this is precisely due to the non-symmetric
nature of the rate. As a consequence, in the non-symmetric case, because clusters
have more influence on isolated individuals, isolated individuals adopt quickly the
opinion of the cluster. This can be seen by examining the role of the convection
term (the third term on the left-hand side of (2.5) and (2.6)). Indeed this convec-
tion term shows a transport of the mean opinion in the direction of the gradient
for ρ, i.e. from places of high concentration to places of low concentration. Actually
this convection takes place much faster in low density regions in the non-symmetric
case than in the symmetric case. Now, in high density regions, in the non-symmetric
case, individuals of a cluster tend to interact very frequently among themselves but
they interact less frequently with members of other clusters than in the symmetric
case. This is why for higher density regions the symmetric rate reaches consensus
faster: there are more interactions (exchange of opinions) between clusters.

3. Rate Model and Weak Consensus Approximation

3.1. Kinetic model: Symmetric and non-symmetric cases

We first consider a spatially homogeneous model for opinion formation. Denote
by φi(t) ∈ R the opinion of agent i at time t; for example, it could represent the
intention of agent i to vote for a particular party as in Ref. 10. When the pair
of agents (i, j) interact, they exchange opinions according to the following rule
(φi, φj) → (φ′i, φj) with

φ′i = φi + γ(φj − φi) + ηi, (3.1)

where 0 ≤ γ ≤ 1
2 is a constant which measures how opinions get closer after an

interaction takes place. For each i = 1, . . . , N , where N is the number of agents,
(ηi)i=1,...,N are independent, identically distributed random variables distributed
according to a probability density q = q(η) with zero mean, variance Σ2 and decay-
ing moments. This noise source accounts for other influences. The interaction rate
between a pair of individuals, given by Gζ(φ) = G(|φi − φj |/ζ), is dependent on
the distance between their opinions and is a decreasing function of its argument.
In other words, individuals with far-away opinions interact at a lower rate (as in
Ref. 15). The parameter ζ is a typical scale in the sense that individuals with opin-
ions distant by a quantity greater than ζ have a probability close to zero to interact.
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Here, we will consider two types of interaction rates which we write compactly as

Gζ(|φi − φj |)
H(1

N

∑N
k=1Gζ(|φi − φk|))

,

where H is a function that can correspond to either the constant 1 or the identity
operator depending on the case we are interested in:

H : g ∈ [0,∞) → H(g) ∈ [0,∞),

H(g) =




1, ∀ g ≥ 0, i.e. H = 1 (symmetric case),

or

g, ∀ g ≥ 0, i.e. H = Id (non-symmetric case).

(3.2)

If H ≡ 1, then the rate of interactions between two agents is symmetric. On the
contrary, if H = Id, the rate of interactions for pair (i, j) is not the same as for
pair (j, i). In particular, the non-symmetric rate case is inspired by the models in
Refs. 29 and 30.

We denote by f = f(φ, t) the probability distribution of agent’s intentions φ
at time t. According to the previous rule, and assuming propagation of chaos (see
Remark 3.2 and Ref. 13), the evolution of f is given for any test function g, by

d

dt

∫
R

fgdφ =
∫

R3
[g(φ+ γ(ψ − φ) + η) − g(φ)]

× f(φ, t)f(ψ, t)
Gζ(|φ− ψ|)
H(Gζ ∗ f)

q(η)dηdφdψ. (3.3)

Remark 3.1. The original interaction model presented in Ref. 10 considers the
symmetric interaction rate with interaction rules (φi, φj) → (φ′i, φ

′
j) given by:

φ′i = φi + γ(φj − φi) + ηi,

φ′j = φj + γ(φi − φj) + ηj ,

0 ≤ γ ≤ 1
2 . However, the kinetic equation for this system corresponds precisely

to (3.3) (up to a factor 2 due to the rate being counted twice). This is precisely
a consequence of the symmetry of the interactions. Therefore, for the following
analysis one can consider either of the two interacting processes.

3.2. Approximation under weak consensus assumption

Next we assume that the consensus parameter γ is small, meaning that there is weak
consensus during interactions. This is analogous to the so-called “grazing collisions”
in gas dynamics.18 To prevent the noise term to dominate the dynamics, we assume
too that Σ2 is also small and of the same order of magnitude. In particular, we define
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κ as

Σ2 = κγ, κ = Constant. (3.4)

Under these assumptions, we Taylor expand the bracket in (4.2) to obtain

d

dt

∫
R

fgdφ = γ

∫
R2

[
g′(φ)(ψ − φ) +

κ

2
g′′(φ)

]

× f(φ, t)f(ψ, t)
Gζ(|φ− ψ|)
H(Gζ ∗ f)

dφdψ, (3.5)

where we have dropped the terms O(γ2), O(Σ2) and the ones with higher moments
of q. The equation for f obtained after dropping the low-order terms approximates
the evolution of the opinion dynamics under the weak consensus assumption. This
is in line with the grazing collision approximation in gas dynamics.

Using integration by parts, we get the strong form of the Fokker–Planck equation
for f :

∂f

∂t
= Q(f), (3.6)

Q(f) = γ∂φ

{
(φGζ) ∗ f
H(Gζ ∗ f)

f +
κ

2
∂φ

(
(Gζ ∗ f)

H(Gζ ∗ f)
f

)}
. (3.7)

Remark 3.2. We can directly derive this equation from a stochastic interacting
particle system. We introduce the following system for the intention φi(t) of agent i:

dφi = γ

[
1
N

∑N
j=1(φj − φi)Gζ(φj − φi)

H( 1
N

∑N
k=1Gζ(|φi − φj |))

]
dt

+

√√√√γκ

(
1
N

∑N
j=1Gζ(φj − φi)

H( 1
N

∑N
k=1Gζ(|φi − φj |))

)
dBit,

where Bit are independent standard Brownian motions. We assume that the initial
data φi(0) are drawn independently out of identical probability densities f0(φ). We
notice that the system is invariant under permutations of indices i. Hence the φi(t)
are indistinguishable. Introducing the one- and two-particle marginal distributions
f

(1)
N (φ) and f (2)

N (φ, ψ), and denoting by g(φ) any test function, we have

d

dt

∫
R

g(φ)f (1)
N (φ, t)dφ = γ

N − 1
N

∫
R2

[
g′(φ)(ψ − φ) +

κ

2
g′′(φ)

]

× Gζ(ψ − φ)
H(Gζ ∗ f)

f
(2)
N (φ, ψ, t)dφdψ.

Assuming propagation of chaos in the limit N → ∞, namely there exists a
one-particle distribution f(φ, t) such that f (1)

N (φ, t) → f(φ, t) and f
(2)
N (φ, ψ, t) →
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f(φ, t)f(ψ, t), we get

d

dt

∫
R

g(φ)f(φ, t)dφ = γ

∫
R2

[
g′(φ)(ψ − φ) +

κ

2
g′′(φ)

]

× Gζ(ψ − φ)
H(Gζ ∗ f)

f(φ, t)f(ψ, t)dφdψ,

which is the same as (3.5) without the low-order terms.

We can write (3.7) in a more convenient way by introducing a potential Vf (φ)
such that

∂φVf =
(φGζ) ∗ f
Gζ ∗ f , (3.8)

and a Gibbs distribution

Mf (φ) =
1
Zf

exp
(
−2Vf (φ)

κ

)
, Zf =

∫
R

exp
(
−2Vf(φ)

κ

)
dφ. (3.9)

We recast (3.7) into

Q(f) = γ
κ

2
∂φ

{
Mf∂φ

(
(Gζ ∗ f)

H(Gζ ∗ f)
f

Mf

)}
, (3.10)

which in the symmetric case (H ≡ 1) corresponds to

Q(f) = γ
κ

2
∂φ

{
Mf∂φ

(
(Gζ ∗ f)f

Mf

)}
,

and for the non-symmetric case (H = Id),

Q(f) = γ
κ

2
∂φ

{
Mf∂φ

(
f

Mf

)}
. (3.11)

Remember that κγ = Σ2 which is assumed to be small.

3.3. Equilibria and phase transition

In this section, we investigate the equilibria for the operator Q in Eq. (3.10). In the
general case, we have the following.

Proposition 3.1. feq is an equilibrium, i.e. a solution of Q(feq) = 0, if and only
if f satisfies :

(i) in the symmetric case,

(Gζ ∗ f)f = BfMf , Bf =
∫

R

(Gζ ∗ f)fdφ; (3.12)

(ii) in the non-symmetric case,

f = Mf . (3.13)
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Proof. Integration by parts leads to∫
R

Q(f)
(Gζ ∗ f)

H(Gζ ∗ f)
f

Mf
dφ = −γ κ

2

∫
R

Mf

∣∣∣∣∂φ
(

(Gζ ∗ f)
H(Gζ ∗ f)

f

Mf

)∣∣∣∣
2

dφ.

Then Q(f) = 0 if and only if (Gζ∗f)
H(Gζ∗f)

f
Mf

is a constant. This constant is given by
the constraint

∫
Mf = 1.

Proving the existence of a fixed point for Eqs. (3.12) and (3.13) is in general
challenging. We will focus our attention on the Gaussian case where

G(u) = e−u
2/2. (3.14)

In this case, we have the following.

Proposition 3.2. Assume that the interaction rate G is given by (3.14). Then
Gaussian functions feq = Fσ,ϕ, with

Fσ,ϕ(φ) =
1√
2πσ

exp
(
−|φ− ϕ|2

2σ2

)
(3.15)

are equilibria, provided that :

(i) in the symmetric case, σ = σs with

σ2
s =

ζ2

2( ζ
2

κ − 1)
; (3.16)

(ii) in the non-symmetric case, σ = σa with

σ2
a =

ζ2

2ζ2

κ − 1
. (3.17)

Therefore, Gaussian equilibria exist only for κ such that :

(i) in the symmetric case,

κ < κc,s(ζ) = ζ2; (3.18)

(ii) in the non-symmetric case,

κ < κc,a(ζ) = 2ζ2. (3.19)

Remark 3.3. (Constraints and phase transition)

• The constraints in Eqs. (3.18) and (3.19) give a critical value of κ for which
a phase transition takes place between existence and non-existence of Gaussian
equilibria. Notice that when κ approaches its critical value the variance of the
equilibria diverges. Therefore, opinions spread toward dissension. Otherwise, a
consensus arises. On the contrary, if the noise strength Σ2 → 0 then σ → 0 and
we expect to converge to a Dirac-delta distribution. The phase transition that
we observe here corresponds to the one proven in Ref. 10 when considering the
grazing collision case.
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• It is easy to check that σs > σa, therefore, opinions in the symmetric case are
spread more around their mean than in the non-symmetric one.

• Replacing the value of κ in Eq. (3.4) we can rewrite Eqs. (3.18) and (3.19) as

Σ2 < c0ζ
2γ,

for c0 = 1 in the symmetric case and c0 = 2 in the non-symmetric case. Notice
that for higher values of γ and ζ, we expect more consensus and, therefore,
condensation of the opinions; the larger γ is, the closer the agents get in their
opinions and the larger the typical interaction range ζ is, the more interactions
take place and the faster a consensus can be reached. The product of these two
quantities must bound the strength of the noise Σ2.

Notice that in Ref. 10 the constraint for the symmetric case takes the form

Σ2 < ζ2γ(1 − γ).

This is consistent with our result as in Sec. 3.2 we assumed weak consensus
interactions and drop terms of order γ2.

In the sequel we will use repeatedly the following identities (expressed in the
notation of Eq. (3.15)):

Fσ,0Fη,0 =
1√

2π(σ2 + η2)
Fr

σ2η2

σ2+η2 ,0
, (3.20)

Fσ,ϕ ∗ Fη,µ = F√
σ2+η2,ϕ+µ

, (3.21)

∂ϕ(f ∗ g) = (∂ϕf ∗ g) = (f ∗ ∂ϕg). (3.22)

Notice that in the Gaussian case (3.14) we can express Gζ as

Gζ =
√

2πζFζ,0. (3.23)

Proof of Proposition 3.2. In the case (3.14) we have φGζ = −ζ2∂φGζ and so

(φGζ) ∗ f
Gζ ∗ f = −ζ2∂φ log(Gζ ∗ f),

which implies that

Vf = −ζ2 log(Gζ ∗ f) + Constant.

This implies that

Mf =
1
Cf

(Gζ ∗ f)
2ζ2

κ , Cf =
∫

R

(Gζ ∗ f)
2ζ2

κ dφ. (3.24)

For the symmetric case, inserting this into (3.12), we get

(Gζ ∗ f)f =
Bf
Cf

(Gζ ∗ f)
2ζ2

κ ,
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or

f =
Bf
Cf

(Gζ ∗ f)
2ζ2

κ −1.

Now, one can check using (3.21) and (3.23) that f = Fσ,ϕ is a solution provided
that

σ2 =
ζ2 + σ2

2ζ2

κ − 1
,

which leads to (3.16). The condition for σ2 > 0 is that ζ2

κ − 1 > 0 which leads to
the constraint κ < ζ2.

The non-symmetric case is dealt with analogously by inserting expression (3.24)
into (3.13).

4. Space Inhomogeneous Model and Continuum Limit

In this section, we consider the space inhomogeneous version of the opinion for-
mation model and investigate the evolution of the mean opinion dynamic when
interactions become localized in space. This is done in the spirit of hydrodynamic
limits for kinetic equations.

4.1. Derivation of the kinetic model

In this section, we assume that the agents are endowed with a spatial variable
α ∈ R

n (with n ∈ {1, 2, 3}) which can be the geographical distance or any other
social metric. Then, each agent labeled i (i ∈ {1, . . . , N}) is described by its location
variable αi(t) and its opinion φi(t) at time t. Inspired by Ref. 10, we can interpret
αi as the city of voter i. It interacts with voter j with opinion φj and resident in
city αj according to rule (3.1) with rate

Gζ(φi − φj)Fε(αi − αj)

H( 1
N

∑N
k=1Gζ(φi − φk)Fε(αi − αk))

,

with

Gζ(φ) = G

( |φ|
ζ

)
, Fε(α) =

1
εn
F

( |α|
ε

)
,

and H given in Eq. (3.2). The parameter ε is supposed to be a measure of the
interaction range in the position variable α. We subsequently normalize F such
that ∫

Rn

F (|α|)dα = 1,

and denote by D the constant

D =
1
2n

∫
Rn

F (|α|)|α|2dα. (4.1)

Let f = f(α, φ, t) be the probability density of the agents in the (α, φ) space
at time t. Following the same reasoning as previously, we can write for any test
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function g = g(α, φ):

d

dt

∫
Rn+1

fgdαdφ =
∫

R2n+3
[g(α, φ+ γ(ψ − φ) + η) − g(α, φ)]f(α, φ, t)f(β, ψ, t)

× Gζ(|φ − ψ|)
H[FεGζ ∗α,φ f ](φ)

Fε(|α− β|)q(η)dηdφdψdαdβ. (4.2)

As done previously in Sec. 3.2 for the spatially homogeneous case, we consider
the case of weak consensus interactions where γ and Σ2 are small and of the same
order of magnitude. Taylor expanding the bracket in the previous expression and
dropping the low-order terms we get

d

dt

∫
R

fgdαdφ = γ

∫
R2n+2

[
∂φg(α, φ)(ψ − φ) +

κ

2
∂2
φg(α, φ)

]
f(α, φ, t)f(β, ψ, t)

× Gζ(|φ− ψ|)
H[FεGζ ∗α,φ f ](φ)

Fε(|α− β|)dφdψdαdβ, (4.3)

where κ is given by Eq. (3.4).
Using integration by parts, we get the strong form of the Fokker–Planck equation

for f in the inhomogeneous case:

∂f

∂t
= Q(f), (4.4)

Q(f) = γ∂φ

{
(FεφGζ) ∗α,φ f
H[FεGζ ∗α,φ f ]

f +
κ

2
∂φ

(
(FεGζ) ∗α,φ f
H[FεGζ ∗α,φ f ]

f

)}
, (4.5)

where ∗α,φ denotes a convolution in both the α and φ variables. This system can
also be directly derived from a stochastic differential system in exactly the same
manner as in the homogeneous case, Remark 3.2. Details are omitted.

Now, we plan to investigate the ε → 0 limit, i.e. we assume that the exchange
of intentions is at leading order a local phenomenon in space. We note that for any
arbitrary function ϕ, we have

Fε ∗ ϕ = ϕ+ ε2D∆αϕ+ O(ε4),

where ∆α denotes the Laplacian operator in the α variable. Using this expansion
and introducing a diffusive time variable t′ = ε2t, we get, dropping the primes,

∂fε

∂t
+ Rε =

1
ε2
Q(fε), (4.6)

where the operator Q is given in (3.7) and:

(i) for the symmetric case,

Rε = Rεs = −γD∂φ
{
(φGζ ∗ ∆αf

ε)fε +
κ

2
∂φ((Gζ ∗ ∆αf

ε)fε)
}

; (4.7)

(ii) for the non-symmetric case,

Rε = Rεa = −γD∂φ
{

(φGζ) ∗ f
(Gζ ∗ f)2

f(Gζ ∗ ∆αf) − (φGζ) ∗ ∆αf

Gζ ∗ f f

}
. (4.8)
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In both cases ∗ denotes a convolution with respect to the φ variable only.
In the following section, we study the formal limit as ε → 0 for the Gaussian
case (3.14).

4.2. Derivation of the hydrodynamic model (Gaussian case)

In this section, we restrict ourselves to the Gaussian case (3.14) and study
the evolution of the mean opinion for Eq. (4.6) in the limit ε → 0. To com-
pute this limit, the concept of collision-invariant is key as it will be explained
next. However, in the non-symmetric case the mean opinion is not a con-
served quantity. This difficulty will be overcome by using a technique remi-
niscent of the classical Hilbert expansion.13 Notice that the lack of conserved
quantities is not new in the literature, see Ref. 17 where the authors use a
novel technique to compute the hydrodynamic limit, different from what we
do here.

First, we deduce the following.

Lemma 4.1. Assume that Gζ is given by (3.23) with κ satisfying (3.18) in the
symmetric case and (3.19) in the non-symmetric case. Assume, further, that the
Gaussian equilibria given by Proposition 3.2 are the only equilibria of Q. Let fε be a
solution of (4.6) and suppose that fε → f as nicely as needed. Then, there exist two
functions ρ = ρ(α, t) and ϕ = ϕ(α, t) such that

f(α, φ, t) = ρ(α, t)Fσ,ϕ(α,t)(φ). (4.9)

The functions ρ = ρ(α, t) and ϕ = ϕ(α, t) are respectively the agents’ density and
intention field at location α and time t, i.e. we have∫

R

f(α, φ, t)dφ = ρ(α, t),
∫

R

f(α, φ, t)φdφ = ρ(α, t)ϕ(α, t). (4.10)

Proof. Letting ε → 0 in (4.6), we get that f formally satisfies Q(f) = 0. Since Q
only operates with respect to the φ variable we deduce that f is proportional to
Fσ,ϕ by Lemma 3.2 with ϕ possibly depending on (α, t). Furthermore, since Fσ,ϕ
is a probability distribution with respect to φ, the proportionality coefficient is the
density ρ(α, t).

Remark 4.1. (The general case) Notice that the equilibria defined via Eqs. (3.12)
and (3.13) (if they exist) are not necessarily defined by some moments of f like
the total mass, mean value or variance. This is the case in classical kinetic theory
where the goal in the hydrodynamic limit is to find the evolution of these moments,
which correspond also to conserved quantities of the system. However, here, in the
general case, it is not clear that this is the case. A partial attempt to solve this
problem can be found in Ref. 22.
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The function (4.9) is a local thermodynamical equilibrium of the system. Now,
we need to find the collision invariants of Q, namely the functions χ(φ) such that∫

R

Q(f)(φ)χ(φ)dφ = 0, ∀ f.

We have the following.

Lemma 4.2. (Collision invariants) The function χ(φ) = 1 is a collision-invariant
of the symmetric and non-symmetric cases. The function χ(φ) = φ is a collision-
invariant of the symmetric case.

Proof. Since Q is a derivative with respect to φ, by integration by parts, it is
straightforward that χ(φ) = 1 is a collision-invariant for both cases. Now, for the
symmetric case, considering χ(φ) = φ, we have, using integration by parts,∫

R

Q(f)(φ)φdφ = −γ
∫

R2
(φ− ψ)Gζ(φ− ψ)f(φ)f(ψ)dφdψ = 0,

because the function (φ, ψ) → Gζ(ψ − φ)f(φ)f(ψ) is invariant by exchange of φ
and ψ while the function (φ, ψ) → (ψ − φ) is changed in its opposite.

That χ(φ) = 1 and χ(φ) = φ are collision invariants corresponds to the conser-
vation of the number of agents and that of the mean intention during an encounter,
respectively.

Lemma 4.3. (Collision-invariant for the linearized operator) Assume that the
solution to (4.4) decays sufficiently fast as |φ| → ∞. Then, under the assump-
tions of Lemma 4.1, in the non-symmetric case, the primitive χ(φ) =

∫ φ(Gζ ∗
Fσ,ϕ(α,t))(φ′)dφ′ is a collision-invariant of the linearized collision operator, denoted
LinQ, around Fσ,ϕ(α,t).

Proof. The linearized form of Q in Eq. (3.11) around Fσ,ϕ(α,t) is given by:

LinQ(f) = γ∂φ

(
(φGζ ∗ f)Fσ,ϕ(α,t)

Gζ ∗ Fσ,ϕ(α,t)
+

(φGζ ∗ Fσ,ϕ(α,t))f
Gζ ∗ Fσ,ϕ(α,t)

− (φGζ ∗ Fσ,ϕ(α,t))(Gζ ∗ f)Fσ,ϕ(α,t)

(Gζ ∗ Fσ,ϕ(α,t))2
+
κ

2
∂φf

)
. (4.11)

By assumption, the boundary terms vanish. Integrating against χ and using
that χ is the primitive of Gζ ∗ Fσ,ϕ(α,t), we obtain∫

R

LinQ(f)(φ)

[∫ φ

(Gζ ∗ Fσ,ϕ(α,t))(φ′)dφ′
]
dφ

= −γ
∫

R

(
(φGζ ∗ f)Fσ,ϕ(α,t)

Gζ ∗ Fσ,ϕ(α,t)
+

(φGζ ∗ Fσ,ϕ(α,t))f
Gζ ∗ Fσ,ϕ(α,t)
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− (φGζ ∗ Fσ,ϕ(α,t))(Gζ ∗ f)Fσ,ϕ(α,t)

(Gζ ∗ Fσ,ϕ(α,t))2
+
κ

2
∂φf

)
(φ)(Gζ ∗ Fσ,ϕ(α,t))(φ)dφ

(Here we use Fubini’s theorem to change the order of integration...)

= −γ
∫

R

f

[
−(φGζ ∗ Fσ,ϕ(α,t))(φ) + (φGζ ∗ Fσ,ϕ(α,t))(φ)

− Gζ ∗
(

(φGζ ∗ Fσ,ϕ(α,t))Fσ,ϕ(α,t)

(Gζ ∗ Fσ,ϕ(α,t))

)
− κ

2
∂φ(Gζ ∗ Fσ,ϕ(α,t))(φ)

]
dφ

= −γ
∫

R

f

[
−Gζ ∗

(
(φGζ ∗ Fσ,ϕ(α,t))Fσ,ϕ(α,t)

(Gζ ∗ Fσ,ϕ(α,t))

)
− κ

2
∂φ(Gζ ∗ Fσ,ϕ(α,t))(φ)

]
dφ

= 0,

where we have integrated by parts. Using the exponential decay of F at infinity, the
boundary terms in the integration by parts vanish. The last equality is obtained as
follows, using Eqs. (3.21) and (3.23):

Gζ ∗
(

(φGζ ∗ Fσ,ϕ(α,t))Fσ,ϕ(α,t)

(Gζ ∗ Fσ,ϕ(α,t))

)
(φ)

= −ζ2

(
Gζ ∗

(
(∂φ(Gζ ∗ Fσ,ϕ(α,t)))Fσ,ϕ(α,t)

(Gζ ∗ Fσ,ϕ(α,t))

))
(φ)

= −ζ2(Gζ ∗ [(∂φ ln(Gζ ∗ Fσ,ϕ(α,t)))Fσ,ϕ(α,t)])(φ)

= ζ2 1
σ2 + ζ2

(Gζ ∗ (φ − ϕ(α, t))Fσ,ϕ(α,t))(φ)

= −ζ2 σ2

σ2 + ζ2
(Gζ ∗ ∂φFσ,ϕ(α,t))(φ)

= −κ
2
∂φ(Gζ ∗ Fσ,ϕ(α,t))(φ).

In the last equality we used the value of σ given in (3.17).

Finally, we can prove the following.

Theorem 4.1. Under the assumptions of Lemma 4.1, as ε → 0, the solution
fε of (4.6) formally converges to a local thermodynamical equilibrium (4.9), i.e.
fε(α, ϕ, t) = ρ(α, t)Fσ,ϕ(α,t) + O(ε2) in a suitable topology, where ρ is constant
in time and the density of opinion ρϕ evolves according to the following diffusion
equation in regions where ρ > 0:

(i) in the symmetric case,

∂

∂t
(ρϕ) = Cs∇α · ρ2∇αϕ, Cs := γD

ζ3

(2σ2
s + ζ2)3/2

, (4.12)

where σ is given in Eq. (3.16);
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(ii) and in the non-symmetric case,

∂

∂t
(ρϕ) =

Ca
ρ
∇α · ρ2∇αϕ, Ca := γD

ζ2

σ2
a + ζ2

, (4.13)

where σ is given by Eq. (3.17).

For the significance of this theorem we refer the reader to Sec. 2.

Proof of Theorem 4.1. From Lemma 4.1, we deduce that f = f(α, φ, t) =
ρ(α, t)Fσ,ϕ(α,t)(ϕ). Notice that by assumption Gζ is of the form (3.23). We split
the proof between the symmetric case and the non-symmetric case.

Symmetric case. Successively multiplying Eq. (4.6) by 1 and ϕ and using
Lemma 4.2 we get

∂ρε

∂t
(α, t) = 0, (4.14)

∂

∂t
(ρεϕε)(α, t) + γD

∫
R2

(φ − ψ)Gζ(φ − ψ)∆αf
ε(α, ψ, t)

× fε(α, φ, t)dφdψ = 0, (4.15)

where ρε and ϕε are defined by (4.10) with f replaced by fε. Now, letting ε → 0
and using (4.9), we get

∂ρ

∂t
(α, t) = 0, (4.16)

∂

∂t
(ρϕ)(α, t) + γD

∫
R2

(φ− ψ)Gζ(φ− ψ)∆α(ρ(α, t)Fσ,ϕ(α,t)(ψ))

× ρ(α, t)Fσ,ϕ(α,t)(φ)dφdψ = 0, (4.17)

We compute

∇α(ρ(α, t)Fσ,ϕ(α,t)(ψ)) = Fσ,ϕ(α,t)(ψ)
[
∇αρ+

(
ψ − ϕ

σ2

)
ρ∇αϕ

]
(α, t),

and

∆α(ρ(α, t)Fσ,ϕ(α,t)(ψ))

= Fσ,ϕ(α,t)(ψ)

[
∆αρ− 1

σ2
ρ|∇αϕ|2 +

(
ψ − ϕ

σ2

)
(ρ∆αϕ+ 2∇αρ · ∇αϕ)

+
(
ψ − ϕ

σ2

)2

ρ|∇αϕ|2
]

(α, t). (4.18)
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Then, we have

− 1
γD

∂

∂t
(ρϕ)(α, t) = ρ

[
∆αρ− 1

σ2
ρ|∇αϕ|2

]
(α, t)

∫
R2

(φ − ψ)Gζ(φ − ψ)Fσ,ϕ(α,t)(ψ)

×Fσ,ϕ(α,t)(φ)dφdψ + ρ[ρ∆αϕ+ 2∇αρ · ∇αϕ](α, t)

×
∫

R2

ψ − ϕ

σ2
(φ− ψ)Gζ(φ− ψ)Fσ,ϕ(α,t)(ψ)Fσ,ϕ(α,t)(φ)dφdψ

+ ρ2|∇αϕ|2(α, t)
∫

R2

(
ψ − ϕ

σ2

)2

(φ − ψ)Gζ(φ − ψ)

×Fσ,ϕ(α,t)(ψ)Fσ,ϕ(α,t)(φ)dφdψ.

The first integral is identically zero by antisymmetry. The second and third integrals
are denoted by I2 and I3. To compute them, we introduce the change of variables
φ̄ = φ− ϕ(α, t), ψ̄ = ψ − ϕ(α, t) and we get (omitting the bars for simplicity):

I2 =
∫

R2

ψ

σ2
(φ− ψ)Gζ(φ− ψ)Fσ,0(ψ)Fσ,0(φ)dφdψ,

I3 =
∫

R2

(
ψ

σ2

)2

(φ− ψ)Gζ(φ− ψ)Fσ,0(ψ)Fσ,0(φ)dφdψ = 0.

The integral I3 is identically 0 by antisymmetry. Now, we compute the integral I2
using consecutively Eqs. (3.23), (3.22), (3.21) and (3.20):

I2 =
∫

R2
ζ2∂φGζ(φ − ψ)∂ψFσ,0(ψ)Fσ,0(φ)dφdψ

= ζ2

∫
R

(∂φGζ ∗ ∂φFσ,0)(φ)Fσ,0(φ)dφ

= ζ2

∫
R

∂2
φ(Gζ ∗ Fσ,0)(φ)Fσ,0(φ)dφ

= −ζ2

∫
R

∂φ(Gζ ∗ Fσ,0)(φ)∂φFσ,0(φ)dφ

= −ζ2

∫
R

√
2πζ∂φ

(
F√

σ2+ζ2,0

)
(φ)∂φFσ,0(φ)dφ

= −ζ3
√

2π
∫

R

φ2

σ2(σ2 + ζ2)
√

2π(2σ2 + ζ2)
Fr

σ2(σ2+ζ2)
2σ2+ζ2 ,0

(φ)dφ

= − ζ3

(2σ2 + ζ2)3/2
.

Finally,

1
γD

∂

∂t
(ρϕ)(α, t) =

ζ3

(2σ2 + ζ2)3/2
ρ[ρ∆αϕ+ 2∇αρ · ∇αϕ](α, t),

which gives the result for the symmetric case.
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Non-symmetric case. We conclude that ρ = ρ(α) is independent of time ana-
logously as for the symmetric case. To compute the equation for ϕ = ϕ(α, t) we
will use the collision-invariant for the linearized operator given in Lemma 4.3. We
multiply Eq. (4.6) by

χ = χ(φ) =
∫ φ(

Gζ ∗ Fσ,ϕ(α,t)

)
(φ′)dφ′,

and obtain∫
R

χ(φ)
[
∂fε
∂t

− γD∂φ

{
fε

(
φGζ ∗ ∆αfε
Gζ ∗ fε − (φGζ ∗ fε)(Gζ ∗ ∆αfε)

(Gζ ∗ fε)2
)}]

(φ)dφ

=
1
ε2

∫
R

Q(fε)(φ)χ(φ)dφ. (4.19)

Now writing that fε = ρ(α, t)Fσ,ϕ(α,t) + ε2f1 + o(ε2) (by assumption), we have
that Q(fε) = ε2 LinQ(f1) + o(ε2), where LinQ is given in (4.11). Consequently, by
Lemma 4.3, it holds that

1
ε2

∫
Q(fε)(φ)χ(φ)dφ −−−−→

ε→+0
0.

We are left with computing the left-hand side of Eq. (4.19). Letting ε → 0,
keeping the highest order in ε and integrating by parts, we obtain

0 =
∫

R

χ(φ)
∂f

∂t
dφ + γD

∫
R

(Gζ ∗ Fσ,ϕ(α,t))f

×
[
φGζ ∗ ∆αf

Gζ ∗ f − (φGζ ∗ f)(Gζ ∗ ∆αf)
(Gζ ∗ f)2

]
(φ)dφ

:= I1 + I2 + I3,

with f = ρ(α)Fσ,ϕ(α,t). Next we compute each one of the terms. For I1 we obtain,
using again Eqs. (3.20)–(3.23),

I1 =
∫

R

∂f

∂t
(φ)χ(φ)dφ

= ρ(α)
∫

R

∂Fσ,ϕ(α,t)

∂t
(φ)χ(φ)dφ

=
∂ϕ

∂t
(α, t)ρ(α)

∫
R

∂φFσ,ϕ(α,t)(φ)χ(φ)dφ

=
∂ϕ

∂t
(α, t)ρ(α)

∫
R

Fσ,ϕ(α,t)(φ)(Gζ ∗ Fσ,ϕ(α,t))(φ)dφ

=
√

2πζ
∂ϕ

∂t
(α, t)ρ(α)

∫
R

Fσ,ϕ(α,t)(φ)F√
σ2+ζ2,ϕ(α,t)

(φ)dφ
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=
√

2πζ
∂ϕ

∂t
(α, t)ρ(α)

1√
2π(2σ2 + ζ2)

∫
R

Fr
σ2(σ2+ζ2)

2σ2+ζ2 ,ϕ(α,t)
(φ)dφ

=
√

2πζ
∂ϕ

∂t
(α, t)ρ(α)

1√
2π(2σ2 + ζ2)

.

The integral

I2 = γD

∫
R

Fσ,ϕ(α,t)(φ)(φGζ ∗ ∆αf)(φ)dφ

= −γD ζ3

(2σ2 + ζ2)3/2
[ρ∆αϕ+ 2∇αρ · ∇αϕ]

was already computed in the symmetric case (observe that the factor ρ is not present
here), so we are left with computing

I3 = −γD
∫

R

Fσ,ϕ(α,t)(φ)
(
φGζ ∗ Fσ,ϕ(α,t)(Gζ ∗ ∆α(ρ(α)Fσ,ϕ(α,t)))

Gζ ∗ Fσ,ϕ(α,t)

)
(φ)dφ.

Using the computation for ∆α(ρFσ,ϕ(α,t)) in Eq. (4.18), we can compute analogously
as for the symmetric case. One can check that the only term that does not cancel
by an antisymmetry argument (as done previously for the integrals I1 and I3 in the
symmetric case) is

I3 = [ρ∆αϕ+ 2∇αρ · ∇αϕ]γD
∫

R

Fσ,ϕ(α,t)(φ)
(φGζ ∗ f)(Gζ ∗ ∂φFσ,ϕ(α,t))

(Gζ ∗ f)
(φ)dφ

= −ζ2[ρ∆αϕ+ 2∇αρ · ∇αϕ]γD

×
∫

R

Fσ,ϕ(α,t)(φ)
∂φ(Gζ ∗ Fσ,ϕ(α,t))∂φ(Gζ ∗ Fσ,ϕ(α,t))

(Gζ ∗ Fσ,ϕ(α,t))
(φ)dφ

= ζ2[ρ∆αϕ+ 2∇αρ · ∇αϕ]γD

×
∫

R

Fσ,ϕ(α,t)(φ)∂φ(Gζ ∗ Fσ,ϕ(α,t)(φ))
(φ − ϕ)
σ2 + ζ2

(φ)dφ

= −
√

2πζ3[ρ∆αϕ+ 2∇αρ · ∇αϕ]γD

×
∫

R

Fσ,ϕ(α,t)(φ)F√
σ2+ζ2,ϕ(α,t)

(φ)
(φ− ϕ)2

(σ2 + ζ2)2
dφ

= −
√

2πζ3[ρ∆αϕ+ 2∇αρ · ∇αϕ]γD
∫

R

(φ− ϕ)2

(σ2 + ζ2)2

Fr
σ2(σ2+ζ2)

2σ2+ζ2 ,ϕ(α,t)√
2π(2σ2 + ζ2)

(φ)dφ

= −
√

2πζ3[ρ∆αϕ+ 2∇αρ · ∇αϕ]
γDσ2

(σ2 + ζ2)
√

2π(2σ2 + ζ2)(2σ2 + ζ2)
.

We conclude

ρ
∂ϕ

∂t
= γD

ζ2

σ2 + ζ2
[ρ∆αϕ+ 2∇αρ · ∇αϕ].

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
17

.2
7:

15
9-

18
2.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
U

K
E

 U
N

IV
E

R
SI

T
Y

 o
n 

01
/1

4/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



January 5, 2017 9:24 WSPC/103-M3AS 1740005

180 P. Degond et al.

5. Conclusions

In this work, we have studied the long-time dynamics of an opinion model in the
limit of spatially localized interactions under the assumption of low consensus. The
considered model is borrowed from Ref. 10 where it is used to model voter’s inten-
tions. We have investigated the dynamics under two different interaction rates: one
given in Ref. 10 (symmetric binary interactions) and the other inspired from Refs. 29
and 30 (non-symmetric binary interactions). In particular, we show that the density
of opinion ρϕ is a conserved quantity for the symmetric case but not for the non-
symmetric case; this is a direct translation of the conservative (or non-conservative)
properties of their respective kinetic equations. Moreover, in Corollary 2.1 we give
criterion on the spatial density ρ to decide for which one of the two rates consensus
is reached faster.

The interaction rates considered come with a modeling choice: the symmetric
rate in Ref. 10 assumes, for instance, that any two pairs of individuals have the
same influence on each other; this is not the case for the non-symmetric rate,
which assumes that individuals in a large group are more influential than solitary
ones. Other modeling assumptions can be considered, for example, we could assume
transport of individuals between different spatial regions. In this manner, one could
assume that individuals move toward places where larger clusters are formed (migra-
tion from the countryside to the cities) or a rule where individuals move to places
where others think alike. As we can see, a variety of possible modeling assumptions
can modify these opinion models in various directions. The validity of the model
considered will depend on the actual situation that we wish to describe. In any
case, the derivation of the macroscopic equations for these models leads, first, to
the long-time dynamics, and second, to understanding the relevance of a particular
modeling choice and contrast it with other alternative choices. Here, we have illus-
trated this idea by comparing the conservative properties and the influence on the
speed toward consensus for two different interaction rates.

Deriving macroscopic equations for these models has many benefits: it gives
access to the long-time dynamics in both a qualitative way (by analyzing the depen-
dence of the diffusion constants on the model parameters) and in a quantitative way
(by enabling numerical simulations for a large number of agents and over a long
time without suffering from the curse of complexity). It also allows us to explore
the relevance of particular modeling choices by contrasting them with alternate
choices (illustrated here by the striking differences between two different interac-
tion models in their conservation properties and speed toward consensus). For the
non-symmetric case, we were led to develop a theory beyond the state-of-the-art
of kinetic theory which is mostly restricted to the conservative case (see however
Ref. 19 for another instance of treatment of non-conservative interactions). Being
able to treat non-conservative interactions is key toward the development of kinetic
theory for social interactions as such interactions cannot be associated with a con-
served quantity in general.
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from CNRS, Institut de Mathématiques de Toulouse, France. P.D. is grateful to
J.-P. Bouchaud for suggesting the problem and for stimulating discussions. J.G.L.
was partially supported by KI-Net NSF RNMS Grant No. 1107291 and NSF Grant
DMS 1514826. S.M.A. was supported by the British “Engineering and Physical
Research Council” under Grant Ref.: EP/M006883/1. T.T. gratefully acknowledges
the hospitality of the Department of Mathematics at Imperial College London,
where this research was conducted.

Data statement

No new data was generated in the course of this research.

References

1. I. Aoki, A simulation study on the schooling mechanism in fish, Bull. Jpn. Soc. Sci.
Fish. 48 (1982) 1081–1088.

2. R. Axelrod, The dissemination of culture. A model with local convergence and global
polarization, J. Conflict Resolut. 41 (1997) 203–206.

3. N. Bellomo, A. Bellouquid and D. Knopoff, From the microscale to collective crowd
dynamics, Multiscale Model. Simulat. 11 (2013) 943–963.

4. E. Ben-Naim, Opinion dynamics: Rise and fall of political parties, Europhys. Lett. 69
(2005) 671.

5. E. Ben-Naim, P. L. Krapivsky and S. Redner, Bifurcations and patterns in compromise
processes, Physica D 183 (2003) 190–204.

6. E. Ben-Naim and S. Redner, Dynamics of social diversity, J. Stat. Mech. Theory Exp.
11 (2005) L11002.

7. H. Berestycki, J.-M. Roquejoffre and L. Rossi, Travelling waves, spreading and extinc-
tion for Fisher-KPP propagation driven by a line with fast diffusion, Nonlinear Anal.
137 (2016) 171–189.

8. C. Borghesi and J.-P. Bouchaud, Spatial correlations in vote statistics: A diffusive
field model for decision-making, Eur. Phys. J. B 75 (2010) 395–404.

9. C. Borghesi, J.-C. Raynal and J.-P. Bouchaud, Election turnout statistics in many
countries: Similarities, differences, and a diffusive field model for decision-making,
PLoS ONE 7 (2012) e36289.

10. J.-P. Bouchaud, C. Borghesi and P. Jensen, On the emergence of an “intention field”
for socially cohesive agents, J. Stat. Mech. Theory Exp. 3 (2014) P03010.

11. E. Carlen, M. C. Carvalho, P. Degond and B. Wennberg, A Boltzmann model for rod
alignment and schooling fish, Nonlinearity 28 (2015) 1783–1803.

12. C. Castellano, S. Fortunato and V. Loreto, Statistical physics of social dynamics, Rev.
Mod. Phys. 81 (2009) 591–646.

13. C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases
(Springer Science & Business Media, 2013).

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
17

.2
7:

15
9-

18
2.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
U

K
E

 U
N

IV
E

R
SI

T
Y

 o
n 

01
/1

4/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.worldscientific.com/action/showLinks?crossref=10.2331%2Fsuisan.48.1081
http://www.worldscientific.com/action/showLinks?crossref=10.1016%2FS0167-2789%2803%2900171-4&isi=000185119000003
http://www.worldscientific.com/action/showLinks?crossref=10.1103%2FRevModPhys.81.591&isi=000267197500005
http://www.worldscientific.com/action/showLinks?crossref=10.1371%2Fjournal.pone.0036289&isi=000305341300014
http://www.worldscientific.com/action/showLinks?crossref=10.1177%2F0022002797041002001&isi=A1997WN84400001
http://www.worldscientific.com/action/showLinks?crossref=10.1088%2F1742-5468%2F2005%2F11%2FL11002
http://www.worldscientific.com/action/showLinks?crossref=10.1137%2F130904569&isi=000325006000012
http://www.worldscientific.com/action/showLinks?crossref=10.1016%2Fj.na.2016.01.023&isi=000374007900007
http://www.worldscientific.com/action/showLinks?crossref=10.1209%2Fepl%2Fi2004-10421-1
http://www.worldscientific.com/action/showLinks?crossref=10.1088%2F0951-7715%2F28%2F6%2F1783&isi=000354547300010
http://www.worldscientific.com/action/showLinks?crossref=10.1140%2Fepjb%2Fe2010-00151-1&isi=000278473500016


January 5, 2017 9:24 WSPC/103-M3AS 1740005

182 P. Degond et al.

14. S. Cordier, L. Pareschi and G. Toscani, On a kinetic model for a simple market
economy, J. Stat. Phys. 120 (2005) 253–277.

15. G. Deffuant, D. Neau, F. Amblard and G. Weisbuch, Mixing beliefs among interacting
agents, Adv. Complex Syst. 3 (2001) 87–98.
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